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Marginalized blind deconvolution of Adaptive Optics corrected
images using MCMC methods

Alix Yan®", Laurent M. Mugnier?, Jean-Francois Giovannelli®, Romain Fétick?, Cyril Petit*
“DOTA/ONERA - Université Paris Saclay, 29 Avenue de la Division Leclerc, Chétillon, France
PIMS (Univ. Bordeaux, CNRS, BINP), 351 Cours de la Libération, Talence, France

Abstract.  Adaptive optics (AO) corrected image restoration is particularly difficult, as it suffers from the lack of
knowledge on the point spread function (PSF) in addition to usual difficulties. An efficient approach is to marginalize
the object out of the problem and to estimate the PSF and (object and noise) hyperparameters only, before deconvolv-
ing the image using these estimates. Recent works have applied this marginal blind deconvolution method, based on
the Maximum A Posterior (MAP) estimator, combined with a parametric model of the PSF, to a series of AO corrected
astronomical and satellite images. However, this method does not enable one to infer global uncertainties on the pa-
rameters. In this paper, we propose a new PSF estimation method, which consists in choosing the Minimum Mean
Square Error (MMSE) estimator and computing the latter as well as the associated uncertainties thanks to a Markov
chain Monte Carlo (MCMC) algorithm. We validate our method by means of realistic simulations, in both astronom-
ical and satellite observation contexts. Finally, we present results on experimental images for both applications: an
astronomical observation on VLT/SPHERE with the Zimpol instrument and a ground-based LEO satellite observation
at OCA’s 1.52 m telescope with ONERA’s ODISSEE AO bench.

Keywords: Image restoration, blind deconvolution, adaptive optics, astronomical imaging, satellite imaging, MCMC,

Bayes.
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1 Introduction

Ground-based high angular resolution imaging in the visible has numerous applications, such as as-
tronomy and satellite observation. The observations are limited by atmospheric turbulence, which
can be corrected in real time by adaptive optics (AO). However, the correction is partial and resid-
ual blurring remains, impacting high spatial frequencies of the observed object. Therefore, the
observation system includes post-processing to restore the high frequencies.

The residual blurring is described by the system point-spread function (PSF), which is not
entirely known, so both the observed object and the PSF are estimated. The historical way to
proceed is to estimate them jointly,> which leads to a degenerated solution®* in the absence of
strong constraints. Another way to proceed is to first estimate the PSF by “marginalizing” over
the object, i.e. by integrating the joint probability density function over all possible objects with a
given prior probability density function, and then to deconvolve the image with the estimated PSF.?
In our case, the PSF has a physical parametric model and the object is described by a Gaussian
prior with a parametric model for its power spectral density (PSD), whose parameters are also
estimated along with PSF parameters. The method we have been using so far, AMIRAL (standing
for Automatic Myopic Image Restoration ALgorithm), combines PSF and PSD parametrization as

well as a marginal maximum a posteriori (MAP) estimator.’



The method we propose in the present paper uses another Bayesian estimator, which mini-
mizes the mean square error on the sought parameters, corresponding to the mean of the marginal
posterior distribution. From this method, we also infer uncertainties on PSF and PSD parame-
ters.®” To do so, we include prior distributions for PSF and PSD parameters and we compute the
marginal posterior distribution by stochastic sampling. We first introduce a Markov chain Monte
Carlo (MCMC) algorithm to sample this posterior distribution.® Then, we validate our method on
simulated data and we finally apply our method to experimental data, for both astronomical and
satellite observation contexts, corresponding to different instruments and turbulence conditions.

2 Imaging model and MMSE estimator
2.1 Imaging equation and prior distributions

We consider that the image ¢ results from the 2D discrete convolution of the object o with the
PSF h, to which noise n (mostly photon noise and detector readout noise) is added, giving the
following imaging model:’

i=hxo+mn (1

In this study, we simulate and restore both astronomical and satellite AO-corrected images,
implying two different contexts: astronomical images taken on a VLT/SPHERE-like instrument'’
with the Zimpol imaging polarimeter,” and ground-based satellite observation at the Cote d’ Azur
Observatory (OCA) with the ODISSEE AO system.!!

For the PSF, we use the PSFAO19 model,'” which has been designed specifically for describ-
ing an AO-corrected PSF with few physical parameters. Its two main parameters are the Fried
parameter r( taken at the imaging wavelength (850 nm), describing the turbulence’s strength, and
the variance of the residual turbulent phase vy, describing the quality of AO correction. This model
has been validated on several AO systems and on different telescopes.'!:!2

Noise is taken independent from the object, and is approximated as zero-mean, additive, white
and Gaussian, which is a fine description given the flux levels in typical images. Moreover, in this
paper, we approximate the noise precision (inverse variance) as homogeneous, and we denote it by
Y- Therefore the noise PSD is S,, = 1/7,.

An example of simulated astronomical observation is given in Figure 1, with the true object on
the left and the simulated image on the right. The image is simulated using the PSFAO19 model,
and with uniform zero-mean additive white Gaussian noise.

As a prior for the object, we consider a Gaussian model described by its mean m,, and its PSD
S,. The mean object m,, is taken uniform on all pixels, estimated at the average value of the image

(because the uncertainty on m, is small given the number of pixels). For the object PSD, we use



Fig 1 Left: synthetic view of Vesta (true object 0), of size 512 x 512. Right: simulated image ¢, with true parameters
ro = 0.15m, vy = 1.3rad”® and v,, = 2.62 10~* ph~2.

the following parametric model:
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and f = | f| the radial frequency. This circularly-symmetric model is a slightly modified writing of
Matérn’s model.!*!* In this model, v, sets the global PSD level, p is the PSD decrease rate at high
frequencies, and k gives the breakpoint between the two regimes of the model. In previous works,
attempts to estimate hyperparameter p jointly with the other sought parameters has been shown to
strongly decrease PSF parameter estimation accuracy. Therefore, we choose to work in a “mostly
unsupervised” mode, where p is fixed to a standard value. In the case of astronomical observations
of asteroids, a well-fitting empirical value is around p = 3, whereas for satellite observation a
standard value for p would be around 2.5-2.6.

Let P = N? the image size in pixels. We consider o and h as arrays of the same size, and
approximate them as periodic. Given this approximation and the imaging model of Eq. (1), the
likelihood writes:

(b%ww<>mﬂm~%)%ﬁﬁm

where ~ denotes the discrete Fourier transform (DFT) and the product on f is on all pixels in the
spatial frequency domain. For the object and the image, the DFT is normalized so as to comply
with Parseval’s theorem. For the PSF, the DFT is normalized so that B(O) equals the sum of the PSF
on the numerical array. Moreover, this value is set to 1 by convention, to express flux conservation.
h is also called the (discretized) optical transfer function (OTF).

Given the previous approximations, the object covariance matrix is circulant-block-circulant



and we can write the object prior distribution as follows:

plobio ) = (22) L (S exp [ = 225,() () — mol F)P))
f

Regarding PSF parameters as well as noise and object PSD parameters, hereafter called pa-
rameters, we consider that each parameter ,,, ,, k, 79 and v4 can take any value in a given range.
Therefore, following the Laplace rule (or principle of insufficient reason), we use uniform priors
for each of them.!> The prior interval is taken large enough: from 0.1 to 10 times the usual value
of the considered parameter for v,, 7, and k, given knowledge on these parameters. The prior
intervals taken for PSF parameters are the following: for o we take [5cm; 30 cm| and for v, we
take [0.5 rad?; 3.0 rad?], which correspond to a large range of values taking into account the global
knowledge on the AO system and the turbulence.

Fig 2 Hierarchical model summing up the inter-dependency between the object, the image and all parameters.

In Figure 2 we provide the chosen hierarchical model which sums up the variable interdepend-
ency. [16, chap. 8] Each upper node (parent) is connected with an edge to a node below (child)
and the model says that a child’s distribution, given all nodes above, only depends on its parents.
In our model, it means for example that p(z|0, V., Vo, k, 70, vs) = p(%|0, Y, 70, vy). Therefore
P(%, Yo, k|0, Yoy T0, V5) = P(8|0, Vi, 70, Vp) X D(Vo, k|0, Yy T0, V), Which means that the image 4
and object PSD parameters 7, and %k are independent conditionally to the object and the other
parameters. Additionally, the object, the noise variance and the PSF parameters are independent
conditionally to object PSD parameters meaning p(0|Yn, Yo, k, 70, vs) = p(0|70, k). Moreover, as
the hierarchical model reads, all parameters (v,, &, 1o, v4 and 7y,,) are a priori considered indepen-
dent.

2.2 Marginal estimator

The joint distribution is, following the conditioning rule, the multiplication of the likelihood by the
prior distributions. Given the hierarchical model of Figure 2 and as explained previously:

p(za O, Vns Yo kv To, U¢) = p('l|0, YnyTo, /U¢)p(0”707 k)p(’yn)p(’yo)p(/C)p(’r‘o)p(’u¢)



From it, we can derive the expression of any target distribution. As explained above, a way to
estimate the object and the parameters is to first estimate the parameters by computing the so called
marginalized posterior probability, meaning integrating the posterior density over the object:

p(7n7707k7T07v¢‘i) = /p(077n7707k77107v¢|i)d0
1
—— i 2 d
p(’L) /p(ll’vovfyfmfyov 7T07U¢) o

In practice, we write the marginal posterior distribution following the Bayes rule, from the marginal
likelihood and the priors taken as uniform and independent, as mentionned in section 2.1:

P(7)P(Vo)P(k)p(ro)p(vs)
p(%)

p(7n7707k7T07U¢’i) = p(i"Ymekﬂ’oavqﬁ) (2)
Given that the noise is taken Gaussian, white, homogeneous and a priori independent from the
object considered Gaussian, the image being a linear combination of both is also Gaussian. There-
fore, the marginal likelihood writes':

Pl York70,v5) = (2m) P2 T (SiCF) 2 exp [ = %ﬁ(f) —n(HIP/S]) B
I

with image PSD S; and mean image m;:

Si(£) = So( )RS + S, )
mi(f) = h(f)imo(f)

The marginal posterior distribution for the parameters can then easily be written using Eqs.(2)—(4).

2.3 MMSE estimator and sampling

The MMSE estimator is known to be the mean of the posterior distribution, whereas the MAP
estimator, computed by AMIRAL, is its mode. Given the complexity of the posterior, there is
no known analytical way to calculate it. A way to compute it is to draw samples under the pos-
terior distribution and compute their empirical mean. The posterior distribution being complex,
it is not possible to sample it directly, therefore we use a Metropolis-Hastings algorithm to by-
pass the problem.!” It consists in drawing samples under a chosen proposition distribution and
accepting the samples (else, duplicating the previous value) with a prescribed probability. Several
versions are possible: in particular, we can either draw all the parameters simultaneously (standard

!Given Eq. (3), maximizing the marginal likelihood, as in the previous method,~3~5 can be interpreted as finding the
parameters for the image PSD model S; of Eq. (4) that best fit the empirical PSD [i( f) — 7, (f)]2.



Metropolis-Hastings) or separately (Metropolis-Hastings-within-Gibbs). Drawing the parameters
together can make the acceptance probability fall (except if we use more advanced, e.g. gradient-
based algorithms such as MALA or HMC methods),'”"'” whereas drawing parameters individually
can slow down the algorithm as it changes parameters one by one and requires more likelihood
computations.

For simplicity, we use here the second version. In a standard Gibbs algorithm, each param-
eter is drawn under its own conditional posterior distribution, which is proportional to the prior
of the considered parameter times the marginal likelihood of Eq. (3). As mentioned above, be-
cause drawing the parameters under their conditional posterior distribution is difficult, we use a
Metropolis-Hastings-within-Gibbs algorithm instead of the standard Gibbs. Asymptotically, the
samples are under the marginal posterior distribution for all parameters, and their empirical mean
tends towards the expectation of the distribution.!”

In our case, we use a Random Walk Metropolis-Hastings algorithm: the proposed sample for
each parameter is drawn under a symmetric (Gaussian) distribution around the current value of
the parameter. The standard deviation of the Gaussian distribution is chosen to be (.01 times the
allowed range of the prior. This choice is based on the empirical sensitivity of the PSF or the noise
and object PSD to the parameters, and only impacts the convergence time, which is an issue we do
not tackle in this paper.

3 Results on simulated data
3.1 Results on astronomical images

The obtained results are shown for the simulated image displayed in Figure 1, using as the true

object the synthetic view of asteroid Vesta, built by the OASIS software,?”

on a dark background
of size 512 x 512 pixels. True PSF parameters are 7y = 0.15m and vy = 1.3 rad? at the imaging
wavelength A = 550 nm, which corresponds to realistic turbulence and correction conditions.
The AO system is a “SPHERE-like” AO system, and its parameters are taken identical to those
used with the previous method,” for comparison purposes. Noise is taken zero-mean, additive,
white and Gaussian with a variance equal to the mean value of the object as a first approximation
of the photon noise. The total flux of the object is set to F}, = 10° ph (photons), typical from
VLT/SPHERE/Zimpol asteroid observations (ESO Large Program ID 199.C-0074), therefore ~,, =
P/F,=2.62x 10~*ph 2,

The PSF and PSD parameters are estimated following the proposed method, except the mean
object m,, which is taken equal to the average value of the image, and the object PSD power which
is fixed to p = 3, which corresponds to a reasonable default value of p for asteroids. The Gibbs
sampler is run for 100 000 iterations, which corresponds to a few hours, to verify the convergence.
In Figure 3, we plot the samples chains and the corresponding histograms for 7,,, 7o and vy.



The inspection of Figure 3 suggests that chains have a short burn-in period, followed by a
stationary state. As expected from Markov chains, for each parameter the samples are correlated.

Moreover, the samples are concentrated in a small interval relatively to their prior interval.
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Fig 3 From top to bottom: +,,, 79, v¢. Left: chain of samples for simulated astronomical image. Right: corresponding
histogram. True values in dashed line.

Parameter m+to True
Y (ph™?) | 2.62x107% £8.03x10~" | 2.62x10~*
7o (M) 0.142 £+ 0.007 0.15

vy (rad®) 1.17 +0.03 1.30

7 (ph™?) [ 2.37x1071% £ 5.41x10~1 -

k 0.768 + 0.594 -

Table 1 Mean value, associated standard deviation and true value, for +y,,, 79, V¢, 7, and k for simulated astronomical
image.

The empirical mean values m, corresponding to our estimates, and standard deviations o, cor-
responding to our predicted uncertainties, for each parameter are displayed in Table 1.2! Firstly,
we can note that the error made on the parameters is small: the noise precision is very precisely
estimated, with an error smaller than 0.2%, and PSF parameters are also well estimated, with a
5% error on ry and a 10% error on v4. Additionally, the estimated ry and v, are very close to the
previous results obtained with AMIRAL: for the same conditions,’ the estimated PSF parameters
were 1o = 0.142m and v, = 1.13 rad® (compared to 7 = 0.142m and vs = 1.17rad” in Table 1).

We also compare the resulting OTF to the true OTF in Figure 4. The slight underestimation
of ry leads to the lowering of the global OTF level and its impact can mainly be seen at low
frequencies. Concerning vy, its mild underestimation leads to a slower decrease of the OTF and
impacts the slope of the latter at medium-high frequencies.” Thus, we notice that the errors on
both parameters partially compensate. We interpret this compensation as the result of the fact that
(a) essentially, the method fits the OTF itself (fitting the image PSD), and (b) several couples of
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Fig 4 True (in green) and estimated (in blue) OTF for simulated astronomical image, including computed uncertainties
(in blue, + and - for upper and lower uncertainty bounds).

parameters lead to close OTFs, in other words that the two parameters are coupled. As a result, the
normalized RMSE for the OTF is quite small (around 7%).

Concerning the uncertainties derived from our method, we notice in Table 1 that the true value
for parameter ry is in the range [m,, =20,], and the true v, is in the interval [m,,, +50,,], therefore
the uncertainties on PSF parameters seem under-estimated. We can also compute uncertainties
directly on the sought OTF: for each sample (r¢, v4), we compute the corresponding OTF in order
to compute its empirical mean m;, and standard deviation ;. As shown in Figure 4, the true OTF
is within the interval [m,; + 20,3], for all frequencies. Therefore, even though the uncertainties on
PSF parameters are somewhat under-estimated, our method gives a very satisfactory uncertainty
estimation on the OTF itself.
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Fig 5 PSDs for simulated astronomical image. Model in solid line, and empirical PSD averaged azimuthally in dashed
line. Left: Image PSD. Right: Object PSD.

In Figure 5 (left), we perform an important sanity check of the method to verify that our model



for the image PSD of Eq. (4), which combines object PSD, PSF and noise PSD, accurately fits
the empirical image PSD averaged azimuthally (cf. Eq.(3)). Moreover, given the fact that the
true object is not the realization of a Gaussian random field following our PSD model, a way to
check v, and £’s estimation accuracy is to look at the fitting of our model to the empirical object
PSD, averaged azimuthally. As displayed in Figure 5 (right), the object PSD model visually fits
correctly the empirical object PSD, the slight overestimation of the object PSD being consistent
with the slight underestimation of the OTF.

Fig 6 Left and center: true object and image for simulated asteroid observation, 256 x 256 cropped from Figure 1.
Right: restored object from the estimated PSF and PSD parameters, also cropped.

Finally, Figure 6 shows the image in Figure 1 restored with the estimated OTF. Many details of
the Vesta surface can be seen, that were not visible on the data. Particularly, with our method we
retrieve sharp edges of the asteroid from which one can estimate the object volume and sphericity,
as well as main crater and albedo features.

To test the robustness of our method to noise, we ran the algorithm for ten different noise
realisations, in the simulation conditions described above. We compute the bias and standard
deviation of the estimated parameters on these ten noise realisations, as well as the maximum error.
We also compute the minimum and maximum predicted uncertainty (i.e. the standard deviation of
the posterior distribution). These values are summed up in Table 2.

Parameter True Max. error Em pirical Empirical Predicted uncertainty
bias std. dev.

Y (ph™?) [ 2.62x107% [ 2.3x1075 [ 9.5x107% | 9.0x1077 € [7.8x1077,8.0x 107

ro (M) 0.150 0.012 0.006 0.005 € [0.006, 0.009]

vy (rad”) 1.30 0.14 0.12 0.01 € [0.02,0.03]

7 (ph™?) - - - 4.1x107" | € [4.5x1071,8.9x 107 1]

k - - - 0.1 € [0.4,0.7]

Table 2 Summary of results on ten noise realisations: true value, maximum error and bias (if available), standard

deviation of estimates for -y,,, 79, V¢, 7, and k, and minimum/maximum predicted uncertainty.

In these ten cases, we notice very little variations on the estimates: the computed standard
deviations (fifth column in Table 2) are small with respect to the true values (second column).
Moreover, the estimates are satisfactory: first, the errors on the estimated parameters are quite

9



small (third column), particularly on the noise precision (error is less than 1%). For the PSF
parameters, the error is smaller than 11%. Concerning parameter r, the predicted uncertainty is
very satisfactory: the true value is always within the interval [m,, £ 20,,]. For parameter vy, we
notice that the error is here dominated by the bias, which is more than ten times greater than the
standard deviation (which is not the case for the other parameters). Our interpretation is that this
bias is due to the choice of p: indeed, in Ref. 22, we have tested our method in the exact same
conditions for another value for hyperparameter p, tuned slightly differently.” With a value of
p = 2.9 instead of 3.0, the error on v4 becomes smaller and the estimated uncertainties are then

satisfactory (the true v, is then in the interval [m, , T 20, ¢]).

10°
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107!
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Fig 7 Results on OTF uncertainties for ten realisations of a noisy simulated astronomical image: true OTF (in black)
and predicted range [mj, + 207, (+ and - for upper and lower uncertainty bounds, each color corresponds to a noise

realisation).

Finally, even though the uncertainties are under-estimated for v, with the default p, concerning
the OTF itself the uncertainties are always well estimated: for all ten cases, the true OTF is within
the interval [m,; + QU;L], as shown in Figure 7. Moreover, the root mean squared error on the OTF
is smaller than 1.3 times the posterior standard deviation on OTF (averaged on noise realisations),

for all frequencies.

3.2 Results on satellite image

We now show results for a simulated satellite image, using as the true object a synthetic view of the
SPOT satellite on a dark background of size 512 x 512 pixels.?? We simulate its observation using
the ODISSEE AO system at OCA,'" and with true PSF parameters 7, = 0.10 m and v4 = 1.85rad?,

10



at the imaging wavelength A = 850 nm, which corresponds to a stronger turbulence, and to a more
modest correction than for the astronomical simulation because of a less complex AO system. The
noise is taken as zero-mean, additive, white and Gaussian, and its variance is taken equal to the
mean value of the object. Here, the mean flux is 10 photons per image pixel, corresponding to
a somewhat optimistic value. The pixel sampling is close to the Shannon-Nyquist criterion, with
slightly more than 2 pixels per A/D.

Fig 8 Left: Synthetic view of SPOT (true object), of size 512 x 512. Right: simulated image, with true parameters
o = 0.10m, vy = 1.85rad® and 7, = 1.00 10~* ph~2.

The object PSD power p is fixed to an empirical standard value for satellites p = 2.6, to fit the
empirical object PSD. The Gibbs sampler is run for 100 000 iterations. In Figure 9, we plot the
sample chains and the corresponding histograms for ,,, 7o and v.
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Fig 9 From top to bottom: ~,,, 7o, v,. Left: chains of samples for simulated satellite image. Right: corresponding
histogram. True values in dashed line.

Similarly to the previous simulations, the empirical mean values m and standard deviations o
of the posterior distribution for each parameter are displayed in Table 3. The noise precision 7, as
well as PSF parameters 7 and v, are relatively well estimated, with an error of respectively 2%,
14% and 17%. These results are very close to those obtained with AMIRAL.: for similar conditions,

11



Parameter m=+o True
Vi (ph’z) 1.02 x10™* £ 3.63x10~ 7 1.00 x10~*

7o (M) 0.114 + 0.008 0.10
vy (rad®) 2.16 £+ 0.01 1.85
7 (ph™?) | 1.90 x10~ ™ £2.37 x10~ " -
k 3.14 + 1.45 -

Table 3 Mean value, associated standard deviation and true value, for v, 79, v4, 7o and k, for simulated satellite

image.

the estimated PSF parameters are 79 = 0.112m and vy = 2.16rad®. We notice that the error
on PSF parameters is greater for the satellite observation than for the astronomical observation.
Our interpretation of these results, checked by complementary simulations, is that it is due to the
spectrum of the satellite object which is less isotropic than Vesta, and therefore does not fit our
isotropic power spectral density model as well.

Concerning uncertainties, similarly to previous asteroid case, the posterior standard deviation
for ry seems to be a good uncertainty prediction for this parameter as the true value is within the
interval [m,,, & 20,,]. On the contrary, o,, seems small, giving an under-estimated uncertainty.
The reasons for this under-estimation are being investigated, though it should be linked to the
more difficult observation conditions simulated here. Additionally, the previous discussion about
the correlation between parameters p and vs** is still valid and further work on tuning hyper-
parameter p for satellite observation should be done.

10°
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107!
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0.0 0.2 0.4 0.6 0.8 1.0
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Fig 10 True (in green) and estimated (in blue) OTF for simulated satellite image, including computed uncertainties (in
blue, + and - for upper and lower uncertainty bounds).

We also compare the resulting estimated OTF to the true OTF in Figure 10. Here again, as dis-
cussed previously, we notice that the errors on both parameters partially compensate, as a result the
normalized RMSE for the OTF is quite low (around 8%). Concerning the uncertainties, we notice
again that even though the uncertainties on PSF parameters are under-estimated, the uncertainties

12



on the OTF itself are quite satisfactory as the true OTF is within the interval [m;, &+ 307,

Additionally, the estimations result in a good image PSD fitting, as shown in Figure 11. More-
over, as displayed in Figure 11, the object PSD model visually fits well the empirical object PSD.
Finally, Figure 12 shows results from the restoration of the image in Figure 8 (right) using the
estimated OTF. We notice that details of the satellite surface are restored.

13 ke Image PSD (model) Object PSD (model)
L I Image PSD (empirical) 1025 Object PSD (empirical)
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Fig 11 PSDs for simulated satellite image. Model in solid line, and empirical PSD averaged azimuthally in dashed
line. Left: image PSD. Right: object PSD.

Fig 12 Left and center: True object and image for simulated satellite observation, 256 x 256 cropped from 512 x 512
(Figure 8). Right: restored object, also cropped.

4 Results on experimental data
4.1 Results on an astronomical image

After testing our method on both astronomical and satellite simulated data, therefore for different
turbulence conditions and AO systems, we apply it to experimental images. Here we process an
experimental image of Vesta?* taken by SPHERE/Zimpol in the same mostly unsupervised mode
as previously where p = 3, and run the Gibbs sampler for 100 000 iterations. Data and restored
object are shown in Figure 13. We recognize the same surface features as from the synthetic view
in Figure 1. In this experimental case, the bright edge corona starts to appear (on the left side),
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and the image is slightly granular. This may be due to a slight over-deconvolution i.e. to a slight
under-estimation of the OTF.

Fig 13 Left: Vesta observed by SPHERE/Zimpol on the European Very Large Telescope (VLT) in Chile.’* Right:
restored object with the estimated PSF.

Results obtained for the PSF parameters (mean+standard deviation) are the following: 7o =
0.26 + 0.04m and v, = 2.62 £ 0.06rad’. These values are close to the values obtained with
AMIRAL’ (ry = 0.32m, vy = 2.78 radQ) for the same conditions, the newly estimated r, being
more likely than the one estimated by AMIRAL according to the known statistics on 7.'> We also
look at the image PSD model and the empirical image PSD for Vesta in Figure 14. They fit well,
especially at low and medium frequencies, where signal dominates noise. For high frequencies,
where the noise is dominant, we see that the noise floor is not flat (whereas we model the noise as

white), and believe it may be due to the data reduction by SPHERE/Zimpol’s pipeline.
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Fig 14 PSD model and Vesta empirical image PSD averaged azimuthally, in dashed line.

4.2 Results on a satellite image

Finally, we test our method on an experimental image of Envisat, taken at the OCA with ON-
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ERA’s ODISSEE AO system.!! We fix paramater p to a reasonable value for satellites (p = 2.5),
and run the Gibbs sampler for 500 000 iterations.

Fig 15 Left: Envisat observed by ODISSEE at the OCA.!! Right: restored object.

Our results on the estimated PSF parameters are the following: 7y = 0.08m and vy =
0.89 rad?, which can be compared to the results obtained with AMIRAL: r, = 0.06 m and vy =
1.13rad?, for the same conditions. Concerning the restored image, as shown in Figure 15, we
retrieve some elements of the satellite, and we checked on a CAD model of Envisat that the bright

spots we obtain on the restored image indeed correspond to instruments and antennas on its surface.
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Fig 16 PSD model and Envisat empirical image PSD averaged azimuthally, in dashed line.

Finally, concerning the image PSD model and the empirical image PSD for Envisat, as shown
in Figure 16, we have a globally good image PSD fitting. The oscillations of the empirical image
PSD are likely to come from oscillations of the OTF, which are consistent with the exposure time
(= 1s) which is short with respect to turbulence residuals averaging, and constitutes a deviation
to the infinite exposure assumption of our AO-corrected PSF model. These oscillations might also
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come partly from the spectrum of the object itself, which deserves further studies by means of

simulations.

5 Conclusion

We have presented a new marginal blind deconvolution method extending previous works, using a
MCMC algorithm, more precisely a Random Walk Metropolis-Hastings-within-Gibbs algorithm.
In addition to PSF and hyperparameter estimation combined with image restoration, we now have
access to the whole posterior distribution. This enables us to compute the optimal estimator min-
imizing the mean square error. Additionally, with the posterior distribution, we can compute un-
certainties based on the posterior standard deviation. This method has been validated on simulated
images, giving accurate estimations of noise and object hyperparameters, as well as satisfactory
OTF estimations. Two different contexts were simulated: on the one hand, the observation of aster-
oid Vesta on the VLT, and on the other hand the observation of the SPOT satellite using ONERA’s
AO bench on the 1.52 m-telescope at OCA. The satisfactory results obtained in both conditions
suggest the broad applicability of the method. Additionally, for the simulated asteroid images, we
have computed our estimations for several noise realisations, to check the robustness of our method
to noise, both for estimated parameter values and predicted uncertainties. Finally, our method has
also been applied to experimental images, in both contexts.

In this work, hyperparameter p, which codes for the decrease of the object PSD, has been fixed
to a reasonable value according to the class of the object (either asteroids, or satellites). The PSF
estimation quality is sensitive to the choice of p, as we verified it by changing its value.?> Moreover,
jointly estimating p with the other parameters is difficult as mentioned in earlier studies.’ In the
near future, we plan to tackle the joint estimation of p. Beyond the choice of p, for objects that
are far from isotropic, which is the case for some satellites, it would be worth considering an
anisotropic prior model.

In order to enable the estimation of such a richer prior model, and to improve the PSF estima-
tion quality, we plan to add constraints on the object (namely, support and/or positivity contraints).
Indeed, such constraints should help separate the contributions of the object and of the PSF to the
image.

Lastly, we currently sample each parameter individually, using a Metropolis-Hastings-within-
Gibbs algorithm and the convergence speed issue has not been investigated. To accelerate the
convergence, a possible development is to use a Metropolis-Hastings algorithm to sample all pa-
rameters jointly, thus without using the Gibbs sampler, and to use gradient-based methods such as

a Metropolis-adjusted Langevin algorithm.!”"
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