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Abstract: This paper investigates necessary and sufficient Lyapunov conditions for Input-to-
State Stability (ISS) of Linear Difference Equations with pointwise delays and an additive
exogenous signal. Grounding on recent works in the literature on necessary conditions for
the exponential stability of such Difference Equations, we propose a quadratic Lyapunov
functional involving the derivative of the so-called delay Lyapunov matrix of the corresponding
homogeneous Difference Equation. We prove that the ISS of Linear Difference Equations is
equivalent to the existence of an ISS Lyapunov functional. We apply this result to the stability
and ISS analysis of hyperbolic Partial Differential Equations of conservation laws.
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1. INTRODUCTION

Difference Equations constitute a class of delay systems
that has been seldom studied in the literature. Never-
theless, it has been long noticed, with the earliest link
going back to d’Alembert formula, that they can be used
to represent a broad class of hyperbolic Partial Differ-
ence Equations (PDEs). These include conservation laws
(see (Bastin and Coron, 2016)) and wave equations used
to model transport and propagation phenomena, such as
thermal exchanges occurring, for instance, for automotive
engines or acoustic systems, to name a few. Recently,
the exact relation between Linear First-Order Hyperbolic
PDEs and Linear Difference Equations (LDEs) has been
comprehensively studied in (Auriol and Di Meglio, 2019).

In this paper, we are interested in the Input-to-State
Stability (ISS) of LDEs with pointwise delays with respect
to an additive exogenous signal. We wish to study if one
can characterize this property with a Lyapunov functional,
as it is possible for neutral functional differential equations
(see (Pepe and Karafyllis, 2013; Pepe, 2014)), for instance.
This question arose in our recent work (see (Auriol and
Bresch-Pietri, 2022)) investigating robust feedback for an
underactuated network of interconnected PDEs actuated
at the boundary, as the one appearing in mining venti-
lation systems such as in (Rodriguez-Diaz et al., 2021)
or oil production systems consisting of networks of pipes.
Indeed, to study the cascade of these PDEs, one wishes
to consider the equivalent LDE and rely on Lyapunov
ISS functionals to investigate the effect of the cascade, as
commonly done in a small-gain context, for instance.

Nevertheless, while the Input-to-State Stability of a
large number of PDEs with bounded control operator
or admissible boundary control is now well-grounded
(see (Mironchenko and Prieur, 2020) for a complete re-
view of this field) and its characterization with a coer-
cive ISS Lyapunov function clearly investigated, it is not
the case for Difference Equations. Indeed, to our best
knowledge, some of the only works investigating this ques-
tion are (Hale and Verduyn Lunel, 1993) and (Karafyl-
lis and Krstic, 2014). On the one hand, (Hale and Ver-
duyn Lunel, 1993) proved that the asymptotic stability
of the homogeneous LDE is equivalent to the ISS of the
non-homogeneous one (via Duhamel’s principle) but did
not consider Lyapunov characterization. On the other
hand, (Karafyllis and Krstic, 2014) proposed Lyapunov
ISS conditions of general nonlinear Difference Equations,
but which are only sufficient. ISS Lyapunov characteri-
zations for nonlinear continuous-time difference equations
are provided in (Pepe, 2014) in terms of Lyapunov func-
tional continuous-time difference operator

In this paper, necessary and sufficient Lyapunov conditions
for ISS of LDEs with pointwise delays are thus investi-
gated. Grounding on the recent work of (Rocha Campos
et al., 2018) on necessary Lyapunov conditions for the
exponential stability of such LDEs, we propose a quadratic
functional involving the derivative of the so-called delay
Lyapunov matrix of the homogeneous system. With a
careful analysis of the discontinuities of this matrix and
adequate modifications of the Lyapunov functional con-
structed in (Rocha Campos et al., 2018), we prove that
the ISS of a LDE is equivalent to the existence of an ISS



Lyapunov functional. This is the main contribution of the
paper.

The paper is organized as follows. Section 2 first presents
the problem under consideration, along with preliminary
properties. Then, a Lyapunov-Krasovskii functional is con-
structed in Section 3, in which the main theorem of the
paper, that is, the equivalence between ISS of a LDE and
existence of an ISS Lyapunov functional, is stated. Finally,
Section 4 focuses on applying this result to the stability
and ISS analysis of hyperbolic PDEs of conservation laws
before drawing perspectives of future works in Section 5.

Notations: A function f is said to be piecewise continuous
(resp. constant) on an interval [a, b] ⊂ R if the interval
can be partitioned by a finite number of points (ti)0≤i≤n

so that f is continuous (resp. constant) on each subinter-
val (ti−1, ti) and admits finite right-hand and left-hand
limits at each ti. A function f is said to be piecewise
constant on R or R+ if its restriction to any interval is
piecewise constant. For any fixed τ > 0, we denote Cpw

τ =
Cpw([−τ, 0),Rn) the Banach space of piecewise continuous
functions mapping the interval [−τ, 0) into Rn. For a
function φ : [−τ,∞) 7→ Rn, we define its partial trajectory
φ[t] by φ[t](θ) = φ(t + θ),−τ ≤ θ ≤ 0. The space Cpw

τ is

endowed with the norm ||φ||2
Cpw

τ
= sups∈[−τ,0) φ

T (s)φ(s)

or with the L2
τ norm ||φ||2L2

τ
=
∫ 0

−τ
φT (s)φ(s)ds. The set of

natural numbers is denoted by N. For all positive integers p
and q, we denote Mp×q(R) the set of real matrices with p
rows and q columns. The identity matrix of size n ∈ N is
denoted Idn or Id, when no confusion arises. We denote || ·
|| the usual Euclidean norm. For real matrices, the induced
norm is used. The Dini upper right-hand derivative of a
functional v(φ[t]) is denoted by D+v(φ[t]).

2. PROBLEM UNDER CONSIDERATION AND
PRELIMINARY RESULTS

2.1 Presentation of the system

Consider M ∈ N\{0} and positive time-delays τk > 0
(1 ≤ k ≤ M) ordered as 0 < τ1 < τ2 < ... < τM . Introduce
the following non-homogeneous difference system

X(t) =

M∑
k=1

AkX(t− τk) + f(t), t ≥ 0 (1)

where Ak ∈ Mn×n(R). The initial data are given by X0 ∈
Cpw

τM . The function f is an exogenous signal which belongs
to Cpw([0,∞),Rn). A function X : [−τM ,∞) → Rn is
called a solution of the initial value problem (1) if X[0] =

X0 and if equation (1) is satisfied for t ≥ 0. The solution
at time t of the system (1) with initial condition X0 is
denoted by X(t,X0). The dependence with respect to X0

may be dropped when no confusion arises. We define the
homogenous system associated to (1) as

X(t) =

M∑
k=1

AkX(t− τk), (2)

with the initial data X0 ∈ Cpw
τM . In this paper, we use the

following definition of stability

Definition 1. System (2) is said to be (L2-)exponentially
stable if there exist µ > 0 and β ≥ 0 such that for any
X0 ∈ Cpw

τM , we have

||X[t]||L2
τM

≤ βe−µt||X0||L2
τM

, t ≥ 0. (3)

Note that the exponential stability of the homogeneous
system (2) has been explicitly characterized with a spectral
condition in (Hale and Verduyn Lunel, 1993, Chapter 9,
Theorem 6.1) when the delays are rationally indepen-
dent 1 . This spectral condition has since been consider-
ably analyzed in the literature (see (Michiels et al., 2009;
Henrion and Vyhĺıdal, 2012; Sipahi et al., 2010; Car-
valho, 1996; Damak et al., 2015; Fridman, 2002; Niculescu,
2001; Pepe, 2005)). Alternatively, Lyapunov–Krasovskii
functionals with prescribed derivative defined by the so-
called Lyapunov delay matrix have also been proposed
in (Kharitonov and Zhabko, 2003; Egorov and Mondié,
2014). The properties of this Lyapunov delay matrix and
a corresponding complete type Lyapunov–Krasovskii func-
tional has been introduced in (Rocha Campos et al., 2018).
This inspired the core of our approach to ISS Lyapunov
characterization of system (1).

2.2 Preliminary definitions and properties

In this section, we define the fundamental matrix and
the Lyapunov matrix associated with system (2). We also
recall some properties that have been shown in (Rocha
et al., 2017).

Lemma 2. ((Rocha et al., 2017)). Assume that det(Id −∑M
k=1 Ak) ̸= 0. The n × n matrix function K(t) defined

for all t ≥ 0 by

K(t) =

M∑
k=1

K(t− τk)Ak =

M∑
k=1

AkK(t− τk), t ≥ 0, (4)

with the initial condition

K(θ) = K0 = (

M∑
k=1

Ak − Id)−1, θ ∈ [−τM , 0), (5)

is called the fundamental matrix of system (2). For any
initial condition X0 ∈ Cpw

τM , the response of system (2) is
given by

X(t) =

M∑
k=1

D+

∫ 0

−τk

K(t− θ − τk)AkX
0(θ)dθ. (6)

Obviously, the matrix K is perfectly defined when the
system (2) is exponentially stable. Formula (6) is known
as the Cauchy formula. The fundamental matrix K(t)
is a piecewise constant function, with discontinuity points
defined by

tk = min
p1
k
,...pm

k

{
M∑
j=1

pjkτj |
M∑
j=1

pjkτj > tk−1, pjk ∈ N}. (7)

We denote the set of discontinuity instants of K as IK =
{tk}k∈N. For all t ≥ 0, we define ∆K as

∆K(t) = K(t+)−K(t−). (8)

It can be easily verified that ∆K(0) = Id. Moreover, if
the homogeneous system (2) is exponentially stable, then
the matrix ∆K exponentially converges to zero. We now
define the Lyapunov matrix associated to system (2).

1 Extending the variable X, it is always possible to rewrite the
system in a situation where the delays are rationally independent.



Definition 3. ((Rocha Campos et al., 2018)). Let (2) be
exponentially stable. For every n × n symmetric positive
definite matrix W , the Lyapunov matrix

U(τ) =

∫ ∞

0

(K(t)−K0)
TWK(t+ τ)dt, (9)

is well defined for all τ ≥ −τM .

The matrix U plays a crucial role in the design of the
Lyapunov-Krasovskii functional introduced in (Rocha Cam-
pos et al., 2018). Unlike the matrix K, the definition of
this functional is only needed on the interval [−τM , τM ].
Its derivative can be expressed as

U ′(τ) =
∑
k≥0

(KT (tk − τ)−KT
0 )W∆K(tk). (10)

Due to the discontinuities of K, U ′ is also discontinuous.
We define the derivative’s jump discontinuities as

∆U ′(τ) = U ′(τ+)− U ′(τ−), τ ∈ [−τM , τM ].

and it holds for τ ∈ [−τM , τM ]

∆U ′(τ) = −
∑
k≥0

∆KT (tk − τ)W∆K(tk). (11)

We recall below some useful properties, proved in (Rocha
et al., 2017), of the Lyapunov matrix derivative’s jump
discontinuities.

Lemma 4. (Rocha et al., 2017) Consider that system (2)
is exponentially stable. Then the matrix function ∆U ′(τ)
satisfies

• the Symmetry property

∆U ′(−τ) = [∆U ′(τ)]T , (12)

• the Dynamic property

∆U ′(τ) =


M∑
k=1

∆U ′(τ − τk)Ak, τ > 0,

M∑
k=1

AT
k∆U ′(τ + τk), τ < 0,

(13)

• and the Generalized algebraic property for all τ ≥ 0

W∆K(τ) =

M∑
i,j=1

AT
i ∆U ′(τ + τi − τj)Aj −∆U ′(τ). (14)

It is important to emphasize that when the delays τi are
not rationally independent the matrix U ′ may have an
infinite number of discontinuities on the interval [0, τM ].
In what follows, for any −τM < t0 < t1 < τM , we denote
I((t0, t1)) the set of discontinuity points of the function U ′

that belong to (t0, t1). We establish the following lemma.

Lemma 5. The set I((−τM , τM )) is countable and ∆U ′

is thus equal almost everywhere to the zero function.
Moreover, if the homogeneous system (2) is exponentially
stable then the quantity

∑
τc∈I((−τM ,τM )) ||∆U ′(τc)|| is

finite.

Proof. Using the definition of ∆U ′(τ) given in equa-
tion (11) and the fact that K is a piecewise constant ma-
trix, we have that ∆U ′ is equal to zero on each interval of
(−τM , τM )∩I((−τM , τM ))c. Furthermore, τc ∈ (−τM , τM )
is a discontinuity point if and only if there exists k ∈ N
such that tk−τc ∈ IK. In other words, τc is a discontinuity
point if and only if there exist (k, q) ∈ N2 such that

tk − tq ∈ (−τM , τM ) and τc = tk − tq. As the set IK is
countable, so is the set I((−τM , τM )). Consequently, we
can write∑
τc∈I((−τM ,τM ))

||∆U ′(τc)|| ≤
∑
q≥0

∑
k≥0

||∆KT (tq)W∆K(tk)||.

To show that the right-hand side of the previous equa-
tion converges, we simply need to prove that the series∑

k≥0 ||∆K(tk)|| converges. Using the exponential conver-
gence of ∆K, there exists βK ≥ 0 and µK > 0 such that
for all t ≥ 0 ||∆K(t)|| ≤ βKe−µKt. Consequently, we have∑

k≥0

||∆K(tk)|| ≤ βK

∑
k≥0

e−µKtk .

For all ℓ ∈ N, the number ℓτ1 ∈ IK. Consequently, there
exists kℓ ∈ N such that tkℓ

= ℓτ1. Similarly, there exists
kℓ+1 ∈ N such that kℓ+1 = (ℓ + 1)τ1. The number of
elements of IK that are smaller than (ℓ+ 1)τ1 is bounded
by (ℓ + 2)M (maximal number of linear combinations of
the τi with integer coefficients such that each coefficient is
smaller than (ℓ+1)). Consequently, the number of elements
of IK that belong to [ℓτ1, (ℓ+1)τ1) is bounded by (ℓ+2)M .
We denote Iℓ the set of elements of IK that belong to
[ℓτ1, (ℓ + 1)τ1). We immediately have ∪ℓ∈N Iℓ = IK and
Card (Iℓ) ≤ (ℓ+ 2)M . Consequently, we have∑

k≥0

||∆K(tk)|| =
∑
ℓ≥0

∑
tk∈Iℓ

||∆K(tk)||

≤
∑
ℓ≥0

∑
tk∈Iℓ

βKe−µKtk ≤
∑
ℓ≥0

βK Card (Iℓ)e−µK(ℓδ1)

≤
∑
ℓ≥0

βK(ℓ+ 2)Me−µKτ1ℓ,

which is converging. This concludes the proof. 2

Since the set I((−τM , τM )) is countable, we will denote its
elements τ qc (q ∈ N). We also define the sequence cq as

cq = ∥∆U ′(τ qc )∥ (15)

2.3 Objectives

For the homogeneous system (2), (Rocha Campos et al.,
2018) uses the Lyapunov matrix U to design a functional
with prescribed derivative, providing that (2) is exponen-
tially stable. Having an explicit Lyapunov functional for
the homogeneous equation (2) is an important result as it
can pave the path towards stability analysis of the non-
homogeneous system (1). More specifically, in this paper,
we are interested in the following stability property.

Definition 6. System (1) is said to be (L2-)Input-to-State
Stable (ISS) if there exist R, λ, γ > 0 such that, for any
piecewise continuous function f ,

∥X[t]∥L2
τM

≤ Re−λt∥X0∥L2
τM

+ γ sup
s∈[0,t]

||f(s)||2 , t ≥ 0 .

(16)

Observe that when f ≡ 0, this property resumes to the
exponential stability of (2), which is thus necessary.

Throughout the next section (Section 3), we will adjust
the design proposed in (Rocha Campos et al., 2018) to
characterize this ISS property in terms of the existence of
a Lyapunov functional, that is equivalent to the L2-norm of
the state. Contrary to (Rocha Campos et al., 2018), where
the Lyapunov functional candidate is obtained with the



help of the Cauchy formula (following a converse Lyapunov
approach), we will directly define the functional of interest
and then explicitly compute its time-derivative. Finally,
we will show how such a Lyapunov functional can be of
interest for the ISS analysis of hyperbolic systems of PDEs
(Section 4).

3. LYAPUNOV-KRASOVSKII FUNCTIONAL

To obtain a necessary condition for the Input-to-State Sta-
bility of (1), we first assume in the sequel that system (2)
is exponentially stable. Correspondingly, we first introduce
the functional v0(φ) defined for all φ ∈ Cpw

τM by

v0(φ) =

M∑
i=1

M∑
j=1

∫ 0

−τi

∫ 0

−τj

φT (ξ)AT
i D

+
ξ D

+
θ (

∫ ∞

0

KT (ν

− ξ − τi)WK(ν − θ − τj)dν)Ajφ(θ)dθdξ, (17)

where we have denoted D+
ξ and D+

θ the Dini derivative

with respect to ξ and θ. The integral term
∫∞
0

KT (ν− ξ−
τi)WK(ν−θ−τj)dν is well-defined since the fundamental
matrix verifies equation (4), which is assumed to be
exponentially stable. The functional (17) corresponds to
the one given in (Rocha Campos et al., 2018). From the
definition of U in equation (9), we obtain∫ ∞

0

KT (ν − ξ − τi)WK(ν − θ − τj)dν =

∫ ∞

0

KT
0 W

K(s− θ − τj)ds+ U(−θ − τj + ξ + τi). (18)

Consequently, we have

D+
ξ D

+
θ

∫ ∞

0

KT (ν − ξ − τi)WK(ν − θ − τj)dν

= D+
θ D

+
ξ U(−θ − τj + ξ + τi). (19)

We emphasize that the definition of the functional v0
requires system (2) to be exponentially stable. We have
the following lemma.

Lemma 7. If system (2) is exponentially stable, then there
exists α1 > 0, such that for all φ ∈ Cpw

τM

0 ≤ v0(φ) ≤ α1||φ||2L2
τM

. (20)

Proof. Define Y (t, φ) as the solution of (2) with the
initial data φ. Using the Cauchy formula, we can rewrite
v0(φ) as an improper integral

v0(φ) =

∫ ∞

0

Y T (t)WY (t)dt,

which is well-defined since Y exponentially converges to
zero. Thus v0(φ) ≥ 0, as W is definite positive. Consider

N ∈ N and define g(N) =
∫ NτM
0

Y T (t)WY (t)dt. We have

g(N) ≤ ||W ||
N−1∑
k=0

∫ 0

−τM

||Y (ν + (k + 1)τM )||2dν

≤ ||W ||
N−1∑
k=0

β2e−2µ(k+1)τM ||φ||2L2
τM

where the constants β and µ are defined in (3). This implies
the expected result by taking N → ∞. 2

The next lemma gives the expression of the time-derivative
of v0(X[t]), when X[t] is the solution of equation (1).

Lemma 8. Consider the functional v0 defined by equa-
tion (17) and X[t] the solution of equation (1). Assume
that system (2) is exponentially stable. Then, for all t ≥ 0
we have

D+v0(X[t]) = −XT (t)WX(t)− 2XT (t)∆U ′(0)f(t)

+ fT (t)∆U ′(0)f(t)

− 2

M∑
i=1

∑
τc∈I((0,τi))

XT (t+ τk − τi)A
T
i ∆U ′(τc)f(t). (21)

Note that the expression given by equation (21) is well
defined due to Lemma 5.

Proof. Performing the change of variable τ = ξ−τj+τi−
θ, equation (17) rewrites

v0(X[t]) = −
M∑
i=1

M∑
j=1

∫ 0

−τi

∫ ξ+τi

ξ+τi−τj

XT (t+ ξ)AT
i U

′′(τ)

AjX(t− τ + ξ + τi − τj)dτdξ, (22)

where, following (Rocha Campos et al., 2018), U ′′(τ) is
the second-order derivative of the function U . Observe
that this second derivative must be understood in the
sense of distributions as the function U ′ may be discon-

tinuous. Let us denote vji (X[t]) =
∫ 0

−τi

∫ ξ+τi
ξ+τi−τj

XT (t +

ξ)AT
i U

′′(τ)AjX(t− τ + ξ + τi − τj)dτdξ. The function v0
can be written as v(X[t]) =

∑3
k=1 γk(X[t]), where

γ1(X[t]) = −
M∑
i=1

vii(X[t]), γ2(X[t]) = −
M∑
i=1

M∑
j=i+1

vji (X[t]),

γ3(X[t]) = −
M∑
i=1

i−1∑
j=1

vji (X[t]).

Using the fact that ∆U ′ is equal to zero almost everywhere,
that is outside the set I((−τM , τM )) and Fubini’s theorem,
we obtain

γ2(X[t]) = −
∑

1≤i<j≤M

( ∑
τc∈I((−τj ,τi−τj))

∫ τc−τi+τj

−τi

Lij(t, ξ, τc)dξ

+
∑

τc∈I((τi−τj ,0))

∫ 0

−τi

Lij(t, ξ, τc)dξ +
∑

τc∈I((0,τi))

∫ 0

τc−τi

Lij(t, ξ, τc)dξ

+

∫ 0

−τi

(Lij(t, ξ, τi − τj) + Lij(t, ξ, 0))dξ

)
, (23)

where

Lij(t, ξ, τc) = XT (t+ ξ)AT
i ∆U ′(τc)AjX(t+ τi − τj − τc + ξ).

Noticing that ∂
∂tLij(t, ξ, τc) =

∂
∂ξLij(t, ξ, τc), it is straight-

forward to compute the time derivative of γ2. We obtain
after simplification

D+γ2(X[t]) = −
∑

1≤i<j≤M

( ∑
τc∈I((−τj ,τi−τj))

Lij(t, τc − τi + τj , τc)

−
∑

τc∈I((−τj ,0))

Lij(t,−τi, τc) +
∑

τc∈I((τi−τj ,τi))

Lij(t, 0, τc)

−
∑

τc∈I((0,τi))

Lij(t, τc − τi, τc) + Lij(t, 0, τi − τj)−Lij(t,−τi, 0)

)
.

Similar computations can be performed to obtain the time
derivatives of γ1 and γ3. Summing the different terms, we
obtain



D+v0(X[t]) = −
∑

1≤i,j≤M

( ∑
τc∈I((−τj ,τi−τj))

Lij(t, τc − τi + τj , τc)

−
∑

τc∈I((−τj ,0))

Lij(t,−τi, τc) +
∑

τc∈I((τi−τj ,τi))

Lij(t, 0, τc) (24)

−
∑

τc∈I((0,τi))

Lij(t, τc − τi, τc) + Lij(t, 0, τi − τj)−Lij(t,−τi, 0)

)
.

Consider the first term of this sum and define τk = τc +
τj . Using the definitions of the discontinuity points for
∆U ′ and the dynamic property of ∆U ′ (equation (13)), it
rewrites

M∑
i,j=1

∑
τc∈I((−τj ,τi−τj))

Lij(t, τc − τi + τj , τc)

=

M∑
i,j=1

∑
τk∈I((0,τi))

XT (t+ τk − τi)A
T
i ∆U ′(τk − τj)AjX(t),

with eq. (13)
=

M∑
i=1

∑
τk∈I((0,τi))

XT (t+ τk − τi)A
T
i ∆U ′(τk)X(t)

with eq. (1)
=

M∑
i=1

∑
τk∈I((0,τi))

XT (t+ τk − τi)A
T
i ∆U ′(τk)

×

(
M∑
j=1

AjX(t− τj) + f(t)

)

=

M∑
i=1

∑
τk∈I((0,τi))

(

M∑
j=1

(Lij(t, τk − τi, τk) +Mi(τk)f(t)),

where Mi(τk) = XT (t+ τk − τi)A
T
i ∆U ′(τk). The first part

of this expression corresponds to the fourth term of (25).
Similarly, using τk = τc − τi and (13) we have

M∑
i,j=1

∑
τc∈I((τi−τj ,τi))

Lij(t, 0, τc)

=

M∑
i,j=1

∑
τk∈I((−τj ,0))

XT (t)AT
i ∆U ′(τk + τi)AjX(t− τk − τj),

=

M∑
j=1

∑
τk∈I((−τj ,0))

XT (t)∆U ′(τk)AjX(t− τk − τj)

=

M∑
j=1

∑
τk∈I((−τj ,0))

(

M∑
i=1

AiX(t− τi) + f(t))T∆U ′(τk)

·AjX(t− τk − τj)

=

M∑
j=1

∑
τk∈I((−τj ,0))

(

M∑
i=1

Lij(t,−τi, τk) +Mj(−τk)f(t)),

since, due to the symmetry property (12), we have
fT (t)∆U ′(τk)AjX(t − τk − τj) = XT (t − τk − τj)Aj

∆U ′(−τk)f(t). Consequently, we obtain

D+v0(X[t]) = −
∑

1≤i,j≤M

XT (t)AT
i ∆U ′(τi − τj)AjX(t)

+
∑

1≤i,j≤M

XT (t− τi)A
T
i ∆U ′(0)AjX(t− τj)

− 2

M∑
i=1

∑
τc∈I((0,τi))

XT (t+ τc − τi)A
T
i ∆U ′(τc)f(t). (25)

Using equation (1), we have

D+v0(X[t]) = −
∑

1≤i,j≤M

XT (t)AT
i ∆U ′(τi − τj)AjX(t)

+ (X(t)− f(t))T∆U ′(0)(X(t)− f(t))

− 2

M∑
i=1

∑
τc∈I((0,τi))

XT (t+ τc − τi)A
T
i ∆U ′(τc)f(t). (26)

Finally, using the generalized algebraic property (14) and
the fact that ∆K(0) = Id, we obtain

D+v0(X[t]) = −XT (t)WX(t)−XT (t)∆U ′(0)f(t)

− fT (t)∆U ′(0)X(t) + fT (t)∆U ′(0)f(t)

− 2

M∑
i=1

∑
τc∈I((0,τi))

XT (t+ τc − τi)A
T
i ∆U ′(τc)f(t), (27)

which is the expected result. 2

In the absence of the exogenous signal f , we have the
negativity of the time-derivative of v0(X[t]). However, the

functional v0 is not equivalent to the L2 norm. Moreover,
we wish to obtain a strict Lyapunov functional, that is,
with an exponential decay in the absence of the exogenous
signal f . Inspired by (Diagne et al., 2012), we introduce
two intermediate functionals defined for φ ∈ Cpw

τM by

v̄0(φ) =

M∑
i=1

M∑
j=1

∫ 0

−τi

∫ 0

−τj

φT (ξ)AT
i D

+
ξ D

+
θ (

∫ ∞

0

KT (ν

− ξ − τi)WK(ν − θ − τj)dν)Ajφ(θ)e
ρ
2 (θ+ξ)dθdξ, (28)

ṽ0(φ) = v̄0(φ)− v0(φ) (29)

where ρ > 0 is a tuning parameter that will be defined
later. Since v̄0(φ) = v0(e

ρ
2 ·φ), we have v̄0(φ) ≥ 0 for all

φ ∈ Cpw
τM . The functional v̄0 is introduced to obtain an

exponential decay rate.

Lemma 9. Consider X[t] the solution of equation (1) and
assume that system (2) is exponentially stable. Then, there
exist real parameters K1 > 0,K2 > 0, a > 0, ā > 0, a
sequence of positive coefficients d̄q such that the series∑

q≥0 d̄q converges and a sequence of increasing scalar

numbers τ̄q with τ̄0 = 0 (all independent on ρ) which are
such that, for all t ≥ 0 and all ϵ > 0, we have

D+v̄0(X[t]) ≤ −ρv̄0(X[t])−XT (t)WX(t) + (
a

ϵ
+ ā)||f(t)||2

+ (K1(1− e−ρτM ) +K2ϵ)
∑
q

d̄q||X(t− τ̄q)||2. (30)

Proof. The computations done in the proof of Lemma 8
can be adjusted to compute the time derivative of ṽ0(X[t]).
The terms Lij(t, ξ, τ) are replaced by

L̃ij(t, ξ, τ) = L̄ij(t, ξ, τ)− Lij(t, ξ, τ) (31)

with L̄ij(t, ξ, τ) = Lij(t, ξ, τ)e
ρ
2 (2ξ−τ+τi−τj). Thus, taking

the time derivative and using the fact that ∂
∂ξ L̃ij(t, ξ, τ) =

∂
∂t L̃ij(t, ξ, τ) + ρL̄ij(t, ξ, τ) , we obtain

D+ṽ0(X[t]) = −
∑

1≤i,j≤M

(
−L̃ij(t,−τi, 0) + L̃ij(t, 0, τi

− τj)−
∑

τc∈I((−τj ,0))

L̃ij(t,−τi, τc) +
∑

τc∈I((τi−τj ,τi))

L̃ij(t, 0, τc)



+
∑

τc∈I((−τj ,τi−τj))

L̃ij(t, τc − τi + τj , τc)

−
∑

τc∈I((0,τi))

L̃ij(t, τc − τi, τc)

)
− ρv̄0(X[t]). (32)

Consider 1 ≤ i, j ≤ M and the term
∑

τc∈I((0,τi)) L̃ij(t, τc−
τi, τc). Using Young’s and Cauchy-Schwarz’s inequalities,
we have∑

τc∈I((0,τi))

L̃ij(t, τc − τi, τc) ≤ (1− e−ρτM )||AjX(t− τj)||

||
∑

τc∈I((0,τi))

∆U ′(τc)AiX(t+ τc − τi)||

≤ (1− e−ρτM )||A||2||X(t− τj)||
∑

τc∈I((0,τi))

||∆U ′(τc)||

· ||X(t+ τc − τi)||

≤ 1− e−ρτM

2
(K0||X(t− τj)||2

+ ||A||2
∑

{q∈N, τq
c ∈(0,τi)}

cq||X(t+ τ qc − τi)||2)

where ||A|| = max1≤i≤M ||Ai||,K0 = ||A||2
∑

τc∈I((−τM ,τM ))

||∆U ′(τc)|| (which is well defined due to Lemma 5), and
where cq and τ qc are defined in equation (15). Performing
analogous computations to deal with the other terms of
equation (32), we can define a sequence of coefficients d̃q
such that the series

∑
q≥0 d̃q converges and an increasing

sequence of delays τ̃q with τ̄0 = 0 such that

D+ṽ0(X[t]) ≤K1(1− eρτM )
∑
q≥0

d̃q||X(t− τ̃q)||2 − ρv̄0(X[t])

(33)

for a certain K1, with all parameters independent of ρ.

Let us now turn our attention to v̄0 which satisfies D+v̄0 =
D+ṽ0 +D+v0 with D+ṽ0 satisfying (33) and D+v0 given
in (21). Using Young’s inequality, for every ϵ0 > 0, it holds

|XT∆U ′(0)f(t)| ≤ ϵ

2
||X||2 + 1

2ϵ
||∆U ′(0)||2||f ||2. (34)

Finally, we can use Young’s inequality to bound the last
term of equation (21) by

1

ϵ
||f ||2 + ϵ||A||

M∑
i=1

∑
q∈N,τq

c ∈(0,τi)

cq||X(t+ τ qc − τ)||2. (35)

We obtain the expected expression by gathering equa-
tions (21), (33), (34), and (35) 2

Consider a sequence of positive coefficients bq such that
the series

∑
q≥1 bq converges and define, for all φ ∈ Cpw

τM ,
the functional v1 as

v1(φ) =v̄0(φ) +
∑
q≥1

bq

∫ 0

−τ̄q

φ(ν)Tφ(ν)eρνdν

+ b

∫ 0

−τM

φ(ν)Tφ(ν)eρνdν, (36)

where b > 0. We have the following lemma.

Lemma 10. For all φ ∈ Cpw
τM , v1(φ) ≥ 0. Consider X[t]

the solution of equation (1) and assume that system (2) is
exponentially stable. Then, the parameters ρ > 0, b > 0,
bq > 0 and ϵ > 0 can be chosen such that

D+v1(X[t]) ≤− ρv1(X[t]) + (
a

ϵ
+ ā)||f(t)||2

− be−ρτM ||X(t− τM )||2, (37)

the coefficients ā and a being defined in the statement of
Lemma 9.

Proof. Obviously, v1(φ) ≥ 0, since v̄0(φ) ≥ 0 Taking time
derivative and using integrations by parts, we obtain

D+v1(X[t]) = D+v̄0(X[t]) +
∑
q≥0

bq||X(t)||2 −
∑
q≥0

bqe
−ρτ̄q

||X(t− τ̄q)||2 − ρ
∑
q≥1

bq

∫ 0

−τ̄q

X(t+ ν)TX(t+ ν)eρνdν

+ b||X(t)||2 − be−ρτM ||X(t− τM )||2

− ρb

∫ 0

−τM

X(t+ ν)TX(t+ ν)eρνdν

≤ −ρv1(X[t]) + (
a

ϵ
+ ā)||f(t)||2 − be−ρτM ||X(t− τM )||2

−
∑
q≥1

(bqe
−ρτM − (K2ϵ+K1(1− e−ρτM ))d̄q)||X(t− τ̄q)||2

+ (
∑
q≥1

bq + b− w + d̄0(K1(1− e−ρτM ) +K2ϵ))||X(t)||2,

(38)

where w > 0 is the smallest eigenvalue of the matrix W .
We now choose ϵ, ρ, b and bq, such that

b+
∑
q≥1

bq + d̄0(K1(1− e−ρτM ) +K2ϵ))− w < 0, (39)

d̄q(K1(1− e−ρτM ) +K2ϵ)− bqe
−ρτM < 0. (40)

These conditions are always feasible as long as the bq, b,
ρ, and ϵ are chosen small enough. Consequently, we obtain
the expected result. 2

We now establish the existence of quadratic bounds for v1.

Lemma 11. If system (2) is exponentially stable, then
there exist αℓ > 0, αu > 0 such that for all φ ∈ Cpw

τM

αℓ||φ||2L2
τM

≤ v1(φ) ≤ αu||φ||2L2
τM

. (41)

Proof. The second inequality is easy to show using
Lemma 7 and the fact that v̄0(φ) = v0(e

ρ
2 ·φ). Its proof

is omitted. The proof of the first inequality is adjusted
from (Rocha Campos et al., 2018). We define the func-
tional ṽ(φ) such that ṽ(φ) = v1(φ)−αℓ||φ||2L2

τM

. We define

Yt as the solution of (2) with the initial data φ. We obtain
from equation (37)

D+v1(Yt) ≤− ρv1(Yt)− be−ρτM ||Y (t− τM )||2, (42)

since f ≡ 0 for solutions of the homogenous equation.
Thus, we have

D+ṽ(Yt) ≤ −be−ρτM ||Y (t− τM )||2

− αℓ[Y
T (t)Y (t)− Y T (t− τM )Y (t− τM )]. (43)

Choosing 0 < αℓ ≤ be−ρτM , we obtain D+ṽ(Yt) ≤ 0.
Integrating between 0 and T , we have ṽ(YT ) ≤ ṽ(φ). The
exponential stability of YT allows taking T → ∞. We can
conclude that v1(φ) ≥ αℓ||φ||2L2

τM

. 2

We can now state the main result of this paper, which
characterizes the Input-to-State Stability of System (1)
with a Lyapunov functional.



Theorem 12. Consider system (1) with the initial data
X0 ∈ Cpw

τM . Assume that f belongs to Cpw([0,∞),Rn).
The two following statements are equivalent:

(1) the solution to (1) is L2-ISS;
(2) there exists a quadratic function v1 : Cpw

τM → R+ such
that
(a) ∃ ρ, σ > 0 D+v1(X[t]) ≤ −ρv1(X[t]) + σ∥f(t)∥2
(b) ∃αl, αu > 0 ∀φ ∈ Cpw

τM αℓ||φ||2L2
τM

≤ v1(φ) ≤
αu||φ||2L2

τM

.

Proof. Let us first prove that (1) implies (2). First, let
us observe that (16) implies that the homogeneous equa-
tion (4) is exponentially stable. Hence, one can consider
the functional v1 as defined in (36). Lemma 10 then guar-
antees (a) while Lemma 11 gives (b). Now, assume that (2)
holds. From (a), using the comparison principle, we obtain

v1(X[t]) ≤ e−ρtv1(X
0) +

∫ t

0

σeρ(ν−t)||f(ν)||2dν.

Using (b), we thus have

||X[t]||2L2
τM

≤ αu

αℓ
e−ρt||X0||2L2

τM

+
σ

αℓ

∫ t

0

eρ(ν−t)||f(ν)||2dν

≤ αu

αℓ
e−ρt||X0||2L2

τM

+
σ

ραℓ
sup

s∈[0,t]

||f(s)||2.

Taking the square root we obtain the expected result with

R =
√

αu

αℓ
, λ = ρ/2 and γ =

√
σ

ραℓ
. 2

This result constitutes somehow an extension of (Hale and
Verduyn Lunel, 1993, Chapter 9, Theorem 6.1), which
proved that the asymptotic stability of (2) is equivalent
to the ISS of (1) with respect to the exogenous signal
f . Notice however that (Hale and Verduyn Lunel, 1993)
consider the ISS with respect to the sup-norm of X[t],
which is thus a stronger property than the one we are
interested in. In the next section, we illustrate how this
result is of interest for hyperbolic PDEs of conservation
laws.

Remark 13. The numerical evaluation of the ISS gain γ
is an important practical question, which requires ex-
ploring the numerical implementation of the Lyapunov
functional v1. The main related difficulty is due to the

series
∑

q≥1 bq
∫ 0

−τ̄q
φ(ν)Tφ(ν)eρνdν. Moreover, the term

v0 requires computing the function U ′′(τ), which is not
an easy task in the case of rationally independent de-
lays. Interestingly, the computations become much simpler
when the delays are rationally dependent (as the ∆U ′

only has a finite number of discontinuities in this case).
Thus, for practical use of the Lyapunov v1 (to design
stabilizing control laws, for instance), one could consider a
sufficiently good approximation of the Lyapunov matrix U
using rationally dependent delays (see (Rocha et al., 2017)
for more details).

4. APPLICATION TO THE STABILITY AND
INPUT-TO-STATE STABILITY ANALYSIS OF

HYPERBOLIC PDES OF CONSERVATION LAWS

In this section, we show how the Lyapunov functional
obtained in Section 3 can be used for the stability analysis
of linear hyperbolic PDEs of conservation laws, i.e.

ut(t, x) + Λ+ux(t, x) = 0, (44)

vt(t, x)− Λ−vx(t, x) = 0, (45)

evolving in {(t, x) | t > 0, x ∈ [0, 1]}, where u =
(u1, . . . , un)

T , v = (u1, . . . , vm)T (n and m belonging to
N\{0}) and ut and ux denote time- and space-derivatives,
with the following linear boundary conditions

u(t, 0) = Qv(t, 0), v(t, 1) = Ru(t, 1) + f(t). (46)

The initial conditions (u0, v0) is assumed to belong to
H1([0, 1],R)n+m. Under appropriate compatibility condi-
tions, the system is well-posed (see (Bastin and Coron,
2016)). The matrices Λ+ = diag(λi) and Λ− = diag(µi)
are diagonal and represent the transport velocities. We
assume −µm < . . . < −µ1 < 0, λ1 < . . . < λn. The
matrices Q and R are constant.

Using the method of characteristics, the PDE system (44)-
(46) can be rewritten as a difference systems (2) by
defining for all i ∈ {1, . . . n} and j ∈ {1, . . .m}, the time
delays τij =

1
λi

+ 1
µj
.

Theorem 14. ((Auriol and Di Meglio, 2019)). The stabil-
ity properties of the system (44)-(46) are equivalent to
those of the difference system defined for all 1 ≤ i ≤ m by

zi(t) =

n∑
k=1

m∑
ℓ=1

QikRkℓzℓ(t− τkℓ) + fi(t) , (47)

i.e. there exist two constants C1 > 0 and C2 > 0 and a
constant r > 0 such that for all t > τ ,

C1||z[t]||L2
r
≤ ||(u, v)||L2([0,1]) ≤ C2||z[t]||L2

τ
. (48)

The proof of this theorem can be found in (Auriol and
Di Meglio, 2019). The function z corresponds to v(t, 1). It
is important to emphasize that the difference system (47)
and the PDE system (44)-(46) have equivalent stability
properties in the sense of (48). However, they are not
strictly equivalent as it may be impossible to reconstruct
part of the PDE states (initial condition, for instance) from
the state z. In that sense, the system (47) can be seen
as a comparison system (see (Niculescu, 2001)). Finally,
since the PDE system (44)-(46) is well-posed for H1

initial conditions that verify the compatibility conditions,
we have that the function v(t, 1) = z(t) is (piecewise)
continuous due to Sobolev embedding theorem.

By means of simple manipulations, equation (47) can be
expressed as a homogeneous difference equation (2) (the
matrices Ai depending on Q and R). Thus, when f ≡ 0,
we now have an explicit Lyapunov functional (namely the
functional v1 defined by equation (36)) characterizing the
system exponential stability of (44)-(46). This functional
is more general than the one given in (Coron et al., 2008;
Bastin and Coron, 2016), which not only requires the ex-
ponential stability of the system but dissipative boundary

conditions, i.e. inf{||∆
(
0 Q
R 0

)
∆−1||, ∆ ∈ Dn+m,+} < 1,

where Dn+m,+ is the set of diagonal matrices of dimension
n + m whose elements on the diagonal are positive. An
explicit Lyapunov functional can be of specific interest
for control purposes. Indeed, several control strategies (as
event-triggered controllers) require Lyapunov functionals
(see e.g., (Espitia et al., 2016)). Moreover, it also opens
some interesting perspectives regarding robustness anal-
ysis (see (Auriol et al., 2022b) for a discussion on the



interest of having such a general functional to deal with
robustness with respect to stochastic delays in the actua-
tion). This will be the purpose of further investigations.

Remark 15. As mentioned in Remark 13, the Lyapunov
functional v1 may be difficult to compute numerically,
and the functional given in (Bastin and Coron, 2016)
may appear more amenable. However, one could consider
approximating the velocities λi and µi by rational numbers
such that the delays τkℓ become rationally independent. In
that case, the Lyapunov functional v1 can be easily com-
puted. The stability of the approximated system will imply
the stability of the real one (as long as the approximation is
precise enough) due to the inherent robustness properties
of the system (see (Auriol et al., 2022a)).

5. CONCLUSION

This paper investigated the Input-to-State Stability of Lin-
ear Difference Equations with pointwise delays and proved
its equivalence with the existence of an ISS Lyapunov
functional. We illustrated how this result could be used for
the stability analysis of hyperbolic PDEs of conservation
laws. Future works should focus on extending this analysis
to LDEs including both pointwise and distributed de-
lays, grounding on the recent necessary Lyapunov stability
conditions obtained in (Ortiz et al., 2019, 2022) for an
integral delay equation. The proposed analysis could then
be applied to hyperbolic PDEs of balance laws and extend
the previous Lyapunov conditions obtained in (Bastin and
Coron, 2016; Bou Saba et al., 2019; Karafyllis and Krstic,
2019). This is a direction for future works.
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