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Abstract
Belnap Dunn logic is a four-valued logic introduced
to model reasoning with incomplete or contradictory
information. In this article, we show how Dempster-
Shafer theory can be used over Belnap Dunn logic in
order to formalise reasoning with incomplete and/or
contradictory pieces of evidence. First, we discuss
how to encode different kinds of evidence, and how to
interpret the resulting belief and plausibility functions.
Then, we discuss the behavior of Dempster’s rule in this
framework and present a variation of the rule. Finally,
we show how to construct credal sets of classical
probability measures based on this kind of evidence.
Keywords: Dempster-Shafer theory, Belnap Dunn lo-
gic, contradictory evidence.

1. Introduction

Combination of evidence and conflict in Dempster-
Shafer theory. Combination of conflicting or contra-
dictory sources has been a major topic of study in Dempster-
Shafer (DS) theory [8, 11, 10, 3]. In Dempster’s original
combination rule (DS-rule) [8], it was assumed that the
sources are completely reliable, and hence any conflict
between them is considered impossible. Zadeh [11] gives
an example to show that DS-rule can lead to counter intuit-
ive results when it is used to aggregate pieces of evidence
that are not fully reliable and with significant degree of
conflict between them. Several modifications of DS-rule
have been proposed and studied in the literature to aggregate
evidences both from not fully reliable sources and from
sources strongly contradicting each other. Shafer [8] de-
scribes discounting or tradeoff method to deal with conflict.
In this method, when the sources have a conflict between
them, the analyst discounts sources based on their reliability

before using DS-rule. Yager [10] proposes a combination
rule which is similar to DS-rule but the mass attached to
conflicting evidence is assigned to the whole frame of dis-
cernment. That is, having conflicting evidence is considered
equivalent to having no information. Dubois and Prade [3]
propose instead that if two sources attache mass to sets 𝐴

and 𝐵, with 𝐴 ∩ 𝐵 = ∅, then in the combination the mass
𝑚(𝐴) · 𝑚(𝐵) is attached to the set 𝐴 ∪ 𝐵. Intuitively this
corresponds to the idea that if sources are contradictory,
then the analyst concludes that at least one of them is correct.
In this work, we use an expansion of Benlap Dunn logic
(BD) to represent and combine conflicting evidence. BD
allows us to represent and reason about incomplete and
contradictory information.

Belnap Dunn logic. BD was introduced to reason about
information rather than about truth [1]. In classical logic a
statement 𝑝 is either true or false, meaning that 𝑝 is true
(resp. false) iff the statement 𝑝 is true (resp. false) in the
world. In BD, a statement 𝑝 is either “supported by the
available information”, or “contradicted by the available
information”, or “neither supported nor contradicted by the
available information”, or “both supported and contradicted
by the available information”. These four truth values are
respectively denoted T (true), F (false), N (neither), B
(both) and are interpreted over the 4-valued De Morgan
algebra (Figure 1).

The four elements ordered from bottom to top define the
so-called truth lattice. The truth tables of the conjunction
∧ and disjunction ∨ of this lattice are given in Definition 1.
By going from F to T, one goes from a situation where
the information available fully supports the falsity of the
statement, to a situation where the information available
fully supports the truth of the statement. The four elements
ordered from left to right define the so-called information
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Figure 1: Belnap–Dunn square

lattice. By going from N to B, one goes from a situation
where there is no information about the statement, to a
situation where there is contradictory information about
the statement. The truth tables of the disjunction ⊔ and
the conjunction ⊓ of the information lattice are given in
Definition 10.

A logic such that 𝑝 ∨ ¬𝑝 (resp. 𝑝 ∧ ¬𝑝) is not an ax-
iom is called paracomplete (resp. paraconsistent). BD is
a weakening of classical propositional logic that is both
paracomplete and paraconsistent.

Paraconsistent probabilities. In the classical case, p(𝜙)
(resp. p(¬𝜙)) encodes the probability that 𝜙 is true (resp.
false). Dunn [4] introduces paraconsistent probabilities that
describe the information available about 𝜙 via four numbers
(𝑏, 𝑑, 𝑢, 𝑐). They encode the degree of belief 𝑏, disbelief
𝑑, uncertainty 𝑢 (ignorance), and conflict 𝑐 (contradiction)
about 𝜙. Klein et al. [6] presents a probabilistic extension
of BD with a sound and complete axiomatization.

Our project. In Bı́lková et al. [2], we introduce belief
functions over BD models and present logics to reason both
with probabilities and belief functions over BD. This work is
a first step towards understanding (imprecise) probabilities
within a paracomplete and paraconsistent framework. In this
article, we show how situations, where highly contradictory
information is available, can be formalised using BD and
DS-theory.

Structure of the paper. First, in Section 2, we provide
preliminaries on the semantics of BD, paraconsistent probab-
ilities, and in Section 3, we discuss how to encode evidence
via mass functions over BD-models and how to interpret the
resulting belief and plausibility functions. Then, in Section 4,
we discuss a variation of DS-rule over BD-models and its
interpretation in BD. Finally, in Section 5 and Section 6,
we introduce different notions of support of a statement
that induce different belief functions over BD formulas,
and we show that some of them allow to deduce credal
sets of classical probabilities based on mass functions over
BD-models.

2. An expansion of Belnap Dunn logic and
non-standard probabilities

Semantics of Belnap Dunn logic. In this paragraph, we
present an expansion of BD with an additional connective
△ from Sano and Omori [7]. Throughout the paper, Prop
will denote a finite set of propositional variables and Lit =
Prop ∪ {¬𝑝 | 𝑝 ∈ Prop} the associated set of litterals.

Definition 1 (Semantics of BD△) Let V = {T,B,N,F}
and define the following grammar in the Backus–Naur form.
ℒBD△ ∋ 𝜙 B ⊥ | ⊤ | 𝑝 ∈ Prop | ¬𝜙 | (𝜙 ∧ 𝜙) | (𝜙 ∨ 𝜙) | △𝜙.

Let ℒBD denote the △-free fragment of ℒBD△ .
A 4-valuation is a map 𝑣4 : Prop→V that is extended

to complex formulas using the following definitions.
¬
T F
B B
N N
F T

∧ T B N F
T T B N F
B B B F F
N N F N F
F F F F F

⊤ T
⊥ F

△
T T
B T
N F
F F

∨ T B N F
T T T T T
B T B T B
N T T N N
F T B N F

⊤ T

We say that 𝜙 BD-entails 𝜒 (𝜙 |=BD 𝜒) iff it holds that if
𝑣4 (𝜙) ∈ {T,B}, then 𝑣4 (𝜒) ∈ {T,B} for every 4-valuation.
𝜙 BD△-entails 𝜒 (𝜙 |=BD△ 𝜒) iff it holds that if 𝑣4 (𝜙) ∈
{T,B}, then 𝑣4 (𝜒) ∈ {T,B} and if 𝑣4 (𝜒) ∈ {F,B}, then
𝑣4 (𝜙) ∈ {F,B} for every 4-valuation.

We will use the fact that BD and classical logic (CL)
share the same language and that |=BD⊆|=CL (see e.g. [9]).

Observe that ¬, ∧, and ∨ preserve B and N, thus there
is no {△,⊥,⊤}-free formula that is always true or always
non-false. For instance, saying that the formula 𝑝 ∨ ¬𝑝
is always true would be interpreted as “it is always the
case that we have either the information that 𝑝 is true or
the information that ¬𝑝 is true”. On the other hand, for
every 𝑣4, 𝑣4 (△𝑝 ∨ ¬△𝑝) = T and 𝑣4 (△𝑝 ∧ ¬△𝑝) = F.
Indeed, the formula △𝑝 ∨ ¬△𝑝 is interpreted as “either we
have information stating that 𝑝 is true or we do not have
information stating that 𝑝 is true”.

Definition 2 (Lindenbaum algebras) Let � be the con-
gruence relation on ℒBD defined as 𝜙 � 𝜙′ iff 𝜙 |=BD 𝜙′

and 𝜙′ |=BD 𝜙. The BD Lindenbaum algebra over ℒBD is
the De Morgan algebra ⟨{[𝜙]𝜙∈ℒBD },∧,∨,¬⟩, where [𝜙]
is the equivalence class of the formula 𝜙, ¬[𝜙] = [¬𝜙] and
[𝜙] ⊙ [𝜓] = [𝜙 ⊙ 𝜓] for ⊙ ∈ {∧,∨}. The CL Lindenbaum
algebra over ℒBD is the Boolean algebra defined similarly
using |=CL.

Definition 3 (BD-model) A BD-model is a tuple 𝔐 =

⟨𝑊, 𝑣4⟩ with 𝑊 a finite nonempty set and 𝑣4 : Prop×𝑊 →
V. 𝑣4 is extended to complex formulas using tables from
Definition 1. For every nonempty V ⊆ V, the V-extension
of a formula 𝜙 on 𝔐 is |𝜙 |V = {𝑤 ∈ 𝑊 : 𝑣4 (𝜙, 𝑤) ∈ V}.
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For instance, 𝑣4 (𝑝, 𝑤) = B means that “the state 𝑤 has
information supporting both the truth and the falsity of
𝑝” and |𝜙|T,F is the set of states that either provide only
information supporting the truth of 𝜙 or only information
supporting the falsity of 𝜙. Note also that if all variables of
𝜙 are in scope of △, then |𝜙|B,N = ∅.

Definition 4 (Canonical model) The canonical BD-
model over Prop is a tuple 𝔐𝑐 = ⟨𝑊𝑐, 𝑣4⟩, where
𝑊𝑐 = P(Lit) and the valuation 𝑣4 : Prop ×𝑊𝑐 → V is

defined as follows:

𝑣4 (𝑝, 𝑤) = N if 𝑝,¬𝑝 ∉ 𝑤,
𝑣4 (𝑝, 𝑤) = T if 𝑝 ∈ 𝑤 and ¬𝑝 ∉ 𝑤,
𝑣4 (𝑝, 𝑤) = F if 𝑝 ∉ 𝑤 and ¬𝑝 ∈ 𝑤,
𝑣4 (𝑝, 𝑤) = B if 𝑝,¬𝑝 ∈ 𝑤.

Intuitively, 𝑊𝑐 is the set of all possible valuations 𝑣4 over
Prop. Similarly, P(Prop) can be seen as the set of all
classical valuations: i.e. 𝑝 is true at 𝑆 ∈ P(Prop) iff 𝑝 ∈ 𝑆.
A state 𝑤 ∈ 𝑊𝑐 is said incomplete (resp. classical) if
𝑣4 (𝑝, 𝑤) ∈ {T,N,F} (resp. 𝑣4 (𝑝, 𝑤) ∈ {T,F}) for every
𝑝 ∈ Prop.

Definition 5 We consider formulas in ℒBD. A conjunctive
clause is irredundant if it contains each literal at most
once. A formula 𝜑 is in irredundant disjunctive normal
form (iDNF) if it is a disjunction of irredundant conjunctive
clauses, and moreover, if 𝜑 =

∨
𝑖∈𝐼 𝜑𝑖 implies 𝜑𝑖 ̸ |=BD 𝜑 𝑗

for every 𝑖 ≠ 𝑗 .

Every formula in ℒBD is BD-equivalent to a unique (up to
permutation of clauses and literals) formula in iDNF.

Definition 6 We consider formulas in ℒBD△ . A V-atom
is one of the following formulas.

T𝑝 B △𝑝 ∧ ¬△¬𝑝 B𝑝 B △𝑝 ∧ △¬𝑝
N𝑝 B ¬△𝑝 ∧ ¬△¬𝑝 F𝑝 B ¬△𝑝 ∧ △¬𝑝

A V-literal is a formula of the form V𝑝 B
∨

X∈V X𝑝 with
V ⊆ V. A witnessed clause is a conjunction of V-literals. A
clause is reduced iff no variable occurs twice. A witnessed
clause is complete iff it is reduced, every variable occurs
once, and it contains onlyV-atoms. A witnessed disjunctive
normal form (wDNF) is a disjunction of witnessed clauses.
A wDNF

∨
𝑖∈𝐼 𝑐𝑖 is maximal iff it is composed of complete

clauses and |𝑐𝑖 |T = |𝑐 𝑗 |T implies 𝑖 = 𝑗 .

Note that a V-witness X𝑝 means ‘𝑝 has value X’. A
V-literal over 𝑝 designates the set of values 𝑝 can have.
A wDNF specifies the possible values of variables, e.g.,
𝜙 = ({T,N}𝑝∧{B,N}𝑞∧{T,F}𝑟)∨({N}𝑝∧{N}𝑞∧{N}𝑟)
means that ‘either 𝑝 is non-false, 𝑞 is non-classical, and 𝑟 is
classical, or 𝑝, 𝑞, and 𝑟 have value N.’ For sake of readability,
we write TN𝑝 instead of {T,N}𝑝. Using this convention
for 𝜙 we get 𝜙 = (TN𝑝∧BN𝑞∧TF𝑟)∨(N𝑝∧N𝑞∧N𝑟).

For any formula 𝜙 ∈ ℒBD△ and for any nonempty set of
truth values V ⊆ V, one can write a formula V𝜙 ∈ ℒBD△

such that |V𝜙|T = |𝜙|V. To reduce the use of superscripts,
whenever there is no ambiguity, we will write |𝜙| instead
of |𝜙|T and |V𝜙| instead of |𝜙 |V.

Notice that the T-extension on the canonical model of
a complete clause is a singleton, that is, any state 𝑤 of the
canonical model can be uniquely (up to permutation of the
V-atoms) represented by a complete witnessed clause 𝑐𝑤
and every set 𝑋 of states can be uniquely (up to permutation
of the clauses) represented by the corresponding maximal
wDNF formula 𝜙𝑋 =

∨
𝑤∈𝑋 𝑐𝑤 .

Paraconsistent probabilities Several equivalent repres-
entations of paraconsistent probabilities have been intro-
duced in the literature. In this article, we focus our attention
on probabilities over BD-models by Klein et al. [6].

Definition 7 (Probability assignments) A (paraconsist-
ent) probability assignment is a function p : ℒBD → [0, 1]
satisfying, for all 𝜙, 𝜓 ∈ ℒBD,
1. p(⊥) = 0 and p(⊤) = 1,
2. monotonicity. if 𝜙 |=BD 𝜓, then p(𝜙) ≤ p(𝜓),
3. import-export rule. p(𝜙 ∨ 𝜓) + p(𝜙 ∧ 𝜓) = p(𝜙) + p(𝜓).

A classical probability assignment is a function p :
ℒBD → [0, 1] satisfying, for all 𝜙, 𝜓 ∈ ℒ𝐶𝐿 ,
1. normalization. p(⊤) = 1,
2. monotonicity. if 𝜙 |=CL 𝜓, then p(𝜙) ≤ p(𝜓),
3. finite additivity. p(𝜙∨𝜓) = p(𝜙)+p(𝜓), for (𝜙∧𝜓)|=CL⊥.

Monotonicity ensures that equivalent formulas have the
same probability. For classical probabilities, if we define
probability measures over the CL Lindenbaum algebra,
monotonicity follows from additivity. In addition, one can
easily show that any classical probability assignment is also
a probability assignment.

Definition 8 (Probabilistic BD-models) A probabilistic
BD-model is a tuple 𝔐 = ⟨𝑊, 𝑣4, 𝜇⟩ such that ⟨𝑊, 𝑣4⟩
is a BD-model and 𝜇 : P(𝑊) → [0, 1] is a probability
measure on P(𝑊).

Then, the induced probability assignment is defined as
follows: for any formula 𝜙 ∈ ℒBD,

p(𝜙) = 𝜇( |TB𝜙|).

Klein et al. [6] present the results over the two-valuation
semantics of BD. Here, we choose to work with an equivalent
semantics using a 4-valued valuation. We straightforwardly
rephrase their results on that semantics.

While working with BD, some subsets of states of the
canonical model cannot be represented by a formula, how-
ever using the axioms of probabilities, one can compute the
measure of each subset of states. We use BD△ as a tool to
designate each subset of states via a formula. This will be
useful to describe the focal elements of mass functions and
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to present aggregation rules in a reader friendly manner.
Probabilities over the logic BD△ are not known in the liter-
ature and the algebraic semantic of this logic is not yet fully
understood. Therefore, the study of (imprecise) probabilit-
ies over BD△ is an open problem we do not discuss in this
article. We now define the notion of belief and plausibility
over BD formulas.

Definition 9 A belief and a plausibility assignment over
BD formulas are functions Bel, Pl : LBD → [0, 1] s.t.
(1) they are monotone w.r.t. BD entailment,
(2) they satisfy respectively: for every 𝑛 ∈ ℕ, for all
𝜙1 . . . 𝜙𝑛 ∈ ℒBD,

Bel(𝜙1 ∨ · · · ∨ 𝜙𝑛) ≥
∑︁

∅≠𝐼⊆[1,𝑛]
(−1) |𝐼 |+1Bel

(∧
𝑖∈𝐼

𝜙𝑖

)
,

(1)
and

Pl(𝜙1 ∧ · · · ∧ 𝜙𝑛) ≤
∑︁

∅≠𝐼⊆[1,𝑛]
(−1) |𝐼 |+1Pl

(∨
𝑖∈𝐼

𝜙𝑖

)
. (2)

A belief (resp. plausibility) assignment is said to be
normal if Bel(⊥) = 0 and Bel(⊤) = 1 (resp. Pl(⊥) = 0
and Pl(⊤) = 1).

3. Dempster-Shafer theory and BD.
In this section, we discuss how to encode information
via a mass function over the canonical model. Then we
discuss the behaviour of DS-rule on the canonical model
via examples. m : P(𝑆) → [0, 1] is a mass function over
𝑆 if

∑
𝑠∈𝑆 m(𝑠) = 1. m is normal if m(∅) = 0. Let m be a

mass function over 𝑆. We note belm and plm the maps from
P(𝑆) to [0, 1] defined as follows:

belm (𝑋) =
∑︁
𝑌⊆𝑋
m(𝑌 ), and plm (𝑋) = 1 − belm (𝑋𝑐)

where 𝑋𝑐 is the set complement of 𝑋 . belm (resp. plm) is a
belief (resp. plausibility) function.

In this section, we consider the canonical model 𝔐𝑐 =

⟨𝑊𝑐, 𝑣4⟩ over the finite set of propositional variables Prop.

Encoding of evidence on the canonical model. Within
BD△, the statement “there is information supporting 𝑝” is
encoded by the formula 𝑝 and equivalently by the V-literal
T𝑝 ∨ B𝑝 noted TB𝑝. Indeed, the formula 𝑝 is satisfied
by every state 𝑤 such that 𝑣4 (𝑤) (𝑝) ∈ {T,B} which is
equivalent to 𝑣4 (𝑤) (TB𝑝) = T. Therefore, one encodes the
statement “the information 100% supports 𝑝” via the mass
function m𝑝 : P(𝑊𝑐) → [0, 1] such that m( |TB𝑝 |) = 1.
The mass function mT𝑝 such that mT𝑝 ( |T𝑝 |) = 1 encodes
classical evidence supporting 𝑝, i.e. “the information 100%
supports 𝑝 and there is no information available supporting
¬𝑝”. We say that “the information supports exactly 𝑝.”

Encoding of contradiction. In this framework, we can
encode a source stating “I have information supporting 𝑝

with certainty 0.3, ¬𝑝 with certainty 0.3 and the remaining
of my information supports exactly 𝑞, and is contradictory
about 𝑝” via the mass function m such that m( |TB𝑝 |) =
m( |TB¬𝑝 |) = 0.3 and m( |T𝑞 ∧ B𝑝 |) = 0.4.

Encoding absence of evidence. One can differentiate
between the statement “I have no information about 𝑝” and
transmitting no information by either assigning the mass to
the set |N𝑝 | or to the set 𝑊𝑐 = |⊤|.

Encoding incomplete sources. A source is said to be
incomplete if, for every 𝑝 ∈ Prop, it says “either there is
information supporting exactly 𝑝 or there is information
supporting exactly ¬𝑝 or there is no information about
𝑝”. For instance, a coherent database, that contains no
contradictory information but has no information about
some entries.

Encoding classical sources. A source is said
classical, if it affirms that, for every 𝑝 ∈ Prop,
“the information supports exactly 𝑝 or supports exactly ¬𝑝.”

How to encode lack of information? When the source
announces “𝑝 with certainty 0.8”, where do we assign
the remaining 0.2? The formulas 𝜓CL =

∧
𝑝∈Prop TF𝑝 and

𝜓PCL =
∧

𝑝∈Prop TNF𝑝 correspond to the set of states
assigning values in the set {T,F} or {T,N,F} to every
variable, that is the so-called classical and incomplete states.
The formula 𝜓𝑊𝑐

= ⊤ corresponds to the set of all states.
The choice between these alternatives depend on the nature
of the source (e.g. is the source contradictory?) and the
reasoning framework of the analyst (e.g. does the analyst
accept contradictory evidence?).

Interpreting belief and plausibility over BD-models.
As the mass function is defined on the powerset algebra of
the canonical model, belm and plm are respectively belief
and plausibility functions and every combination rule using
only the fact that the underlying algebra is a powerset algebra
can still be used.

The BD-negation ¬ does not correspond to the set theor-
etic complement, however the map pl¬m : P(𝑊𝑐) → [0, 1]
such that pl¬m (𝑋𝜙) = 1−belm (𝑋¬𝜙) with 𝑋𝜙 = |TB𝜙| and
𝑋¬𝜙 = |TB¬𝜙| is still a plausibility function. plm ( |TB𝜙|)
and pl¬m ( |TB𝜙 |) represent respectively the amount of evid-
ence coherent with the truth of 𝜙 and not supporting the fals-
ity of 𝜙. But one can have models such that plm ( |TB𝜙|) ≠
pl¬m ( |TB𝜙 |) and belm ( |TB𝜙|) > pl¬m ( |TB𝜙 |). See Bı́lková
et al. [2] for more details.

Belief and plausibility as lower and upper paraconsist-
ent probabilities. Recall that a probabilistic BD-model
induces a probability assignment on BD-formulas s.t.
p(𝜙) = 𝜇( |𝜙|TB). That is, the measure of the set of states
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that support the truth of 𝜙, but can be contradictory about 𝜙.
m induces the following lower (resp. upper) bound BelTB (𝜙)
(resp. PlTB (𝜙)) on p(𝜙):

BelTB (𝜙) B belm ( |𝜙|TB), (3)
PlTB (𝜙) B plm ( |𝜙|TB) = 1 − belm (( |𝜙 |TB)𝑐). (4)

Since |𝜙 ∨ 𝜓 |TB = |𝜙|TB ∪ |𝜓 |TB, |𝜙 ∧ 𝜓 |TB =

|𝜙 |TB ∩ |𝜓 |TB, and belm and plm are belief and plausibility
function, BelTB and PlTB are respectively belief and
plausibility assignments over BD formulas. Moreover,
BelTB (⊤) = 1 and BelTB (⊥) = 0. Therefore, BelTB and
PlTB are normal.

Let Fm be the set of probability measures on P(𝑊) such
that belm and plm are the lower and upper probabilities
given by Fm. Every probability measure 𝜇 : P(𝑊) → [0, 1]
induces a probability assignment p𝜇 on BD formulas such
that, for any formula 𝜙, p𝜇 (𝜙) B 𝜇( |𝜙|TB) as described in
Section 2. Then BelTB and PlTB are the lower and upper
probabilities given by the set FTB = {p𝜇 | 𝜇 ∈ Fm}.

Behaviour of DS-rule. Since we are considering mass
functions over powerset algebras, one may still apply exist-
ing combination rules. However, the results for non-classical
sources may be unintuitive, as to be expected. Let m1, m2
be two mass functions over 𝑆. Their aggregation m1⊕2 via
DS-rule is defined as follows: m1⊕2 (∅) = 0, otherwise

m1⊕2 (𝑋) =
∑{m1 (𝑋1) · m2 (𝑋2) | 𝑋1 ∩ 𝑋2 = 𝑋}

1 −∑{m1 (𝑋1) · m2 (𝑋2) | 𝑋1 ∩ 𝑋2 ≠ ∅} .

Example 1 (Two disagreeing doctors) It is assumed that
a patient can have one and only one of the diseases 𝑆 =

{𝑎, 𝑏, 𝑐} (the events 𝑎, 𝑏 and 𝑐 are incompatible).
Doctor 1 thinks that the patient has disease 𝑎 with

certainty 0.9 and that it is very unlikely the patient has
disease 𝑏, therefore assigning certainty 0.1 to that option.
Doctor 2 thinks that the patient has disease 𝑐 with certainty
0.9 and that it is very unlikely the patient has disease 𝑏,
therefore assigning certainty 0.1 to that option.

An analyst can interpret the claim of Doctor 1 as “I have
information that 𝑎∧¬𝑏∧¬𝑐 is true and that¬(𝑎∧¬𝑏∧¬𝑐)
is false with certainty 0.9”, which corresponds to assigning
mass 0.9 to the set |T𝑎 ∧ F𝑏 ∧ F𝑐 |T. Following the same
kind of reasoning for Doctor 2, the analyst gets the
following mass functions:
m1 ( |T𝑎 ∧ F𝑏 ∧ F𝑐 |) = 0.9, m1 ( |F𝑎 ∧ T𝑏 ∧ F𝑐 |) = 0.1,
m2 ( |F𝑎 ∧ F𝑏 ∧ T𝑐 |) = 0.9, m2 ( |F𝑎 ∧ T𝑏 ∧ F𝑐 |) = 0.1.
Since T𝑎 ∧ F𝑎 is a contradictory statement in BD△, one

will get exactly the same conclusion as in the classical case
by applying DS-rule, that is: m1⊕2 ( |F𝑎 ∧ T𝑏 ∧ F𝑐 |) = 1.

This conclusion may be perfectly justified if Doctor 1
(resp. 2) is an expert on disease 𝑐 (resp. 𝑎), therefore

when they say it cannot be disease 𝑐 (resp. 𝑎), they are
necessarily correct. However, one may want to be able to
consider doctors who might be wrong (without having to
evaluate how reliable they are) or to describe situations
in which the doctors refuse to give an opinion about the
diseases they are not knowledgeable about.

Example 2 (Reasoning with BD) We still consider our
two doctors, but we do not assume that they are fully reliable
experts. Therefore, when they announce 𝑝 we assign the
corresponding mass to |TB𝑝 | rather than |T𝑝 |. In this
framework, this means that two contradictory pieces of
information |TB𝑝 | and |FB𝑝 | are not inconsistent. When
doctor 1 (resp. 2) announces the evidence supports disease
𝑥, they still imply that they reject the other diseases. We get
the following mass functions

m1 ( |TB𝑎 ∧ FB𝑏 ∧ FB𝑐 |) = 0.9
m1 ( |FB𝑎 ∧ TB𝑏 ∧ FB𝑐 |) = 0.1
m2 ( |FB𝑎 ∧ FB𝑏 ∧ TB𝑐 |) = 0.9
m2 ( |FB𝑎 ∧ TB𝑏 ∧ FB𝑐 |) = 0.1

and the following aggregated mass function

m1⊕2 (𝑋) =


0.81 if 𝑋 = |B𝑎 ∧ FB𝑏 ∧ B𝑐 |
0.09 if 𝑋 = |B𝑎 ∧ B𝑏 ∧ FB𝑐 |

or 𝑋 = |FB𝑎 ∧ B𝑏 ∧ B𝑐 |
0.01 if 𝑋 = |FB𝑎 ∧ TB𝑏 ∧ FB𝑐 |
0 otherwise.

bel1⊕2 ( |TB𝜙|) and pl1⊕2 ( |TB𝜙|) = 1−bel1⊕2 ( |NF𝜙|)
provide the following lower and upper probabilities:

𝜙 𝑎 ¬𝑎 𝑏 ¬𝑏 𝑎 ∧ ¬𝑎 𝑏 ∧ ¬𝑏
bel1⊕2 0.9 1 0.19 0.99 0.9 0.18
pl1⊕2 1 1 1 1 1 1

Notice that 𝑣4 (𝑝 ∧ ¬𝑝, 𝑤) = B if 𝑣4 (𝑝, 𝑤) = B and
𝑣4 (𝑝 ∧ ¬𝑝, 𝑤) = N otherwise. The values for 𝑎 (resp. ¬𝑎,
𝑎 ∧ ¬𝑎) are the same as those for 𝑐 (resp. ¬𝑐, 𝑐 ∧ ¬𝑐).

We have that bel1⊕2 ( |TB𝑎 |) = bel1⊕2 ( |TB𝑐 |) = 0.9
is 4.7 times larger than bel1⊕2 ( |TB𝑏 |) = 0.19 where
bel1⊕2 ( |TB𝑎 |) encodes how much evidence supports the
truth of 𝑎. In addition, bel1⊕2 ( |B𝑎 |) = bel1⊕2 ( |B𝑐 |) = 0.9
is 5 times larger than bel1⊕2 ( |B𝑏 |) = 0.18 which means
that the evidence is highly contradictory regarding 𝑎 and 𝑐

and 5 times less contradictory regarding 𝑏. This is confirmed
by the fact that bel1⊕2 ( |FB𝑎 |) = bel1⊕2 ( |FB𝑐 |) = 1 - that
is all the evidence supports the fact that it is not disease 𝑎

or 𝑐 - and bel1⊕2 ( |TB𝑎 |) = bel1⊕2 ( |B𝑎 |) = 0.9 - that is,
all the evidence supporting the truth of 𝑎 is contradictory.

The mass function highlights that (1) doctors agree the
patient most likely does not have disease 𝑏, (2) evidence
strongly supports the hypothesis that they have disease 𝑎 or
𝑐 and (3) the evidence is highly contradictory which may
suggest that further investigation is necessary.

Example 3 (Reasoning with incomplete information)
Now, Doctor 1 considers only diseases 𝑎 and 𝑏 and states
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that it is disease 𝑎 with certainty 0.9 and disease 𝑏 with
certainty 0.1. They do not provide any information about
disease 𝑐. Doctor 2 states that it is disease 𝑏 with certainty
0.1, disease 𝑐 with certainty 0.9 and that they could not
find any conclusive information about disease 𝑎 and cannot
estimate the induced uncertainty. If one assumes that the
sources reason classically, one can encode them as follows:
m1 ( |T𝑎 ∧ F𝑏 |) = 0.9 m2 ( |N𝑎 ∧ F𝑏 ∧ T𝑐 |) = 0.9
m1 ( |F𝑎 ∧ T𝑏 |) = 0.1 m2 ( |N𝑎 ∧ T𝑏 ∧ F𝑐 |) = 0.1.

Here, it is impossible to aggregate using DS-rule because
T𝑎 ∧ N𝑎 = F𝑎 ∧ N𝑎 = ⊥. That it, DS-rule behaves as if
the information about 𝑎 was contradictory. However, if
one source says ‘I have information supporting 𝑎’ and
one source says ‘I have no information about 𝑎’, one
would expect to conclude ‘the sources have information
supporting 𝑎’. This problem will be resolved by the
variation of DS-rule proposed in Section 4.

Example 1 shows that one can still encode classical
reasoning and computation in the proposed BD framework,
by assigning non-zero mass only to sets of classical states.
Example 2 shows that if one assigns non-zero mass only
to sets representable as the TB-extensions of BD formulas,
then DS-rule allows to describe the nature (contradictory or
not) of the available information. Example 3 shows that DS-
rule may not be suitable for combination of more general
types of sources. In the next section we propose a variation
of DS-rule more suitable for our framework.

4. Aggregation rule based on the information
lattice

In the previous section, we discussed the behaviour of DS-
rule within the framework of BD. If one works only with
set of states that are the TB extension of BD-formulas, then
DS-rule provides a natural way to aggregate information: if
two sources agree about the truth of 𝜙, the corresponding
mass is assigned to |TB𝜙|, otherwise it is assigned to |B𝜙 |.
However, if one wants to work with mass functions whose
focal elements are arbitrary sets of states, behaviour of
DS-rule is less intuitive (see Example 3).

As shown in Example 1, classical pieces of information
can be encoded in BD framework by assigning mass to
the set |T𝜙|. In this case, DS-rule will behave as in the
classical framework. However, here we get more options to
assign the mass m1 (𝑋) · m2 (𝑌 ) when 𝑋 ∩ 𝑌 = ∅ (i.e. mass
of contradictory evidence). As discussed previously (page
1), the algebra of truth values of BD (Figure 1) contains
two lattices: the truth lattice and the information lattice.
In this section, we use the information lattice to propose a
variation of DS-rule.

First, we present the behavior of the logical connectives of
the information lattice. Then, we define a fusion operation ⊙

on maximal wDNF’s using⊔ and use this operation to define
an aggregation rule on mass functions over the canonical
model. Finally, we discuss the mathematical properties and
the behavior of this aggregation rule.

Definition 10 We denote ⊔ (resp. ⊓) the disjunction (resp.
conjunction) of the information lattice of Figure 1. It is
called information join (resp. information meet). These
operators onV are defined as follows:

⊔ T B N F
T T B T B
B B B B B
N T B N F
F B B F F

⊓ T B N F
T T T N N
B T B N F
N N N N N
F N F N F

We propose the following fusion operator on formulas. If
two formulas convey non-contradictory information, then
the fusion returns the common ground. For instance, TB𝑝⊙
TF𝑝 = T𝑝. Indeed, the first formula states ‘the evidence
supports the truth of 𝑝 or it is contradictory about 𝑝’, and
the second states ‘the evidence supports the truth of 𝑝 or
the falsity of 𝑝’. Both agree on the fact that ‘the evidence
supports the truth of 𝑝’. This behavior is exactly the same
as DS-rule on non-contradictory pieces of evidence.

If two formulas convey contradictory information about
𝑝, then the fusion returns the information join on the
information about 𝑝. For instance, T𝑝 ⊙ F𝑝 = B𝑝 and
(T𝑝 ∧T𝑞) ⊙ (F𝑝 ∧T𝑞) = B𝑝 ∧T𝑞. One can also consider
more complex formulas such as TB𝑝 ⊙ FN𝑝 = TB𝑝. The
first formula states ‘the information supports the truth of 𝑝
or it is contradictory about 𝑝’ and the second formula states

‘the information supports the falsity of 𝑝 or is inconclusive
about 𝑝’. The fusion conveys the fact that ‘the aggregated
information either supports the truth of 𝑝 or is contradictory
about 𝑝’.

In the following, we define the fusion on maximal wDNF.
This is enough because every set of states is uniquely
represented by a maximal wDNF and vice versa.

Definition 11 (Fusion) Let ⊙ be a binary operation
defined on BD△ formulas in maximal wDNF as follows.
Let 𝜙 =

∨
𝑖∈𝐼 𝑐𝑖 and 𝜓 =

∨
𝑗∈𝐽 𝑑 𝑗 be BD△ formulas in

maximal wDNF. If 𝜙 ∧ 𝜓 ̸ |=BD ⊥, then 𝜙 ⊙ 𝜓 = 𝜙 ∧ 𝜓, else

𝜙⊙𝜓 =
∨

𝑖∈𝐼, 𝑗∈𝐽
𝑐𝑖⊙𝑑 𝑗 with 𝑐𝑖⊙𝑑 𝑗 =

∧
𝑝∈Prop

(𝑋𝑖⊔𝑋 𝑗 )𝑝.

𝑐𝑖 and 𝑑 𝑗 are complete clauses, therefore each variable
appears exactly once in aV-atom.

Proposition 12 ⊙ is idempotent and commutative. The
neutral element is the mass function assigning 1 to 𝑊𝑐.

Notice that the empty set is represented by the empty
disjunction and that the fusion between a formula and the
empty disjunction is the empty disjunction. In addition,

6



Describing and Quantifying Contradictory Evidence via Belnap Dunn Logic

since ∧ is idempotent, ⊙ is idempotent. Since, ∧ and ⊔
are commutative, ⊙ is commutative. However, it is not
associative. For instance, consider the formulas: 𝜙 = (T ∧
N𝑞) ∨ (N𝑝 ∧ F𝑞), 𝜒 = (N𝑝 ∧ T𝑞) ∨ (N𝑝 ∧ N𝑞) and
𝜓 = (T𝑝 ∧ N𝑞) ∨ (N𝑝 ∧ T𝑞) ∨ (T𝑝 ∧ F𝑞).

Now, we can define the aggregation rule ⊙ over mass
functions on canonical models.

Definition 13 Let m1, m2 : P(𝑊𝑐) → [0, 1] be two mass
functions on the canonical model. Let 𝜙𝑋 denote the
maximal wDNF such that |𝜙𝑋 | = 𝑋 for any 𝑋 ⊆ 𝑊𝑐.
Let 𝑋 ⊙ 𝑌 denote the set |𝜙𝑋 ⊙ 𝜙𝑌 |. The aggregation
m1⊙2 : P(𝑊𝑐) → [0, 1] is defined as follows.

m1⊙2 (𝑍) =
∑︁

𝑋,𝑌 ∈P(𝑊𝑐 ) s.t. 𝑋⊙𝑌=𝑍
m1 (𝑋) · m2 (𝑌 ). (5)

Example 1. Two disagreeing doctors. One gets the fol-
lowing aggregated mass function

m1⊙2 (𝑋) =


0.81 if 𝑋 = |B𝑎 ∧ F𝑏 ∧ B𝑐 |
0.09 if 𝑋 = |B𝑎 ∧ B𝑏 ∧ F𝑐 |

or 𝑋 = |F𝑎 ∧ B𝑏 ∧ B𝑐 |
0.01 if 𝑋 = |F𝑎 ∧ T𝑏 ∧ F𝑐 |
0 otherwise.

The focal elements of m1⊙2 are singletons, therefore it
induces a probability assignment p such that

𝜙 𝑎 ¬𝑎 𝑏 ¬𝑏 𝑎 ∧ ¬𝑎 𝑏 ∧ ¬𝑏
p 0.9 1 0.19 0.99 0.9 0.18

and p(𝜙) = bel1⊙2 ( |TB𝜙|) = pl1⊙2 ( |TB𝜙|). Notice that
the conclusions are very similar to Example 2. The mass
function encodes the fact that the information is highly
contradictory about 𝑎 and 𝑐 with p( |B𝑎 |) = p(B𝑐) = 0.9
and that the evidence supporting 𝑏 is rather weak and
mostly non-contradictory: p( |T𝑏 |) = 0.01, p( |F𝑏 |) = 0.81,
p( |B𝑏 |) = 0.18. Thus, unlike in the case of DS-rule where
all the contradictory evidence is discarded, our combination
rule describes the extent of contradictions between doctors
about different diseases.

Example 2. Two disagreeing doctors. Here, the aggreg-
ation will be identical to DS-rule, since the mass functions
do not contradict each other in the sense of BD.

Example 3. Reasoning with incomplete information.
One gets the following aggregated mass function.

m1⊙2 (𝑋) =


0.81 if 𝑋 = |T𝑎 ∧ F𝑏 ∧ T𝑐 |
0.09 if 𝑋 = |T𝑎 ∧ B𝑏 ∧ F𝑐 |

or 𝑋 = |F𝑎 ∧ B𝑏 ∧ T𝑐 |
0.01 if 𝑋 = |F𝑎 ∧ T𝑏 ∧ F𝑐 |
0 otherwise.

The focal elements of m1⊙2 are singletons, therefore it
induces a probability assignment p such that

𝜙 𝑎 ¬𝑎 𝑏 ¬𝑏 𝑎 ∧ ¬𝑎 𝑏 ∧ ¬𝑏
p 0.9 0.1 0.19 0.99 0 0.18

the values for 𝑎 (resp. ¬𝑎, 𝑎 ∧ ¬𝑎) are the same as those
for 𝑐 (resp. ¬𝑐, 𝑐 ∧ ¬𝑐). Here, the mass function encodes
the fact that the available information strongly supports the
truth of 𝑎 and 𝑐. This result comes from the fact that ⊔
tells us the nature of the available information: incomplete,
contradictory, supporting the statement.

Thus, the proposed combination rule ⊙ has the following
advantages over DS-rule: (1) It behaves more in accordance
with intuition than DS-rule when dealing with pieces of
evidence which cannot be encoded using BD-formulas
as shown in Example 3. (2) It provides a more nuanced
framework to pinpoint topics leading to conflict between
classical sources and quantify the conflict on different topics
rather than overall conflict as shown in Example 1.

5. What would be a ‘good classical’ piece of
evidence?

In this section, we discuss what can be considered as a
good classical piece of evidence for a statement 𝜙 in the
paraconsistent framework, and therefore which notions -
based on the evidence- of “belief” and “plausibility” would
be the most pertinent to estimate a lower and upper bound
on an unknown classical probability assignment p on the
formulas.

Let 𝔐𝑐 = ⟨𝑊𝑐, 𝑣4⟩ be the canonical model over Prop.
Let m : P(𝑊𝑐) → [0, 1] be a mass function and belm
(resp. plm) its associated belief (resp. plausibility) function
(cf. Section 3). Consider a formula 𝜙 ∈ ℒBD.

T-support. A state 𝑤 ∈ 𝑊𝑐 provides T-support to 𝜙, if
𝑤 ∈ |𝜙|T. That is, 𝑤 supports the truth of 𝜙, and does
not support falsity of 𝜙. Notice that if 𝑣4 (𝑝, 𝑤) = N and
𝑣4 (𝑞, 𝑤) = B, then 𝑣4 (𝑝 ∨ 𝑞, 𝑤) = T. Thus, in general
|𝜙∨𝜓 |T ≠ |𝜙|T∪ |𝜓 |T. We define the following lower (resp.
upper) bound BelT (𝜙) (resp. PlT (𝜙)) on p(𝜙):

BelT (𝜙) B belm ( |𝜙|T) and PlT (𝜙) B 1 − belm ( |𝜙 |F).

Since 𝜙 |=BD 𝜓 implies that |𝜙|T ⊆ |𝜓 |T, BelT and PlT
are monotone w.r.t. |=BD. In addition, we have |𝜙|T∪ |𝜓 |T ⊆
|𝜙∨𝜓 |T and |𝜙|T ∩ |𝜓 |T = |𝜙∧𝜓 |T. Thus, for every 𝑛 ∈ ℕ,
for every 𝜙1, . . . , 𝜙𝑛 ∈ ℒBD,

BelT (
∨

1≤𝑖≤𝑛
𝜙𝑖) = belm ( |

∨
1≤𝑖≤𝑛

𝜙𝑖 |T) ≥ belm (
⋃

1≤𝑖≤𝑛
|𝜙𝑖 |T),

BelT (
∧

1≤𝑖≤𝑛
𝜙𝑖) = belm ( |

∧
1≤𝑖≤𝑛

𝜙𝑖 |T) = belm (
⋂
𝑖∈𝐼
|𝜙𝑖 |T).

Moreover, BelT (⊥) = 0 and BelT (⊤) = 1. Hence, BelT
is a belief assignment over BD. In addition, we have
1 − belm ( |𝜙|F) = 1 − belm ( |¬𝜙|T) = 1 − BelT (¬𝜙). As,
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¬ is a De Morgan negation, PlT is a normal plausibility
function [5, Lemma 2.14]. Thus, BelT and PlT are respect-
ively normal belief and plausibility assignments. Note that
since BelT ≤ BelTB ≤ PlTB ≤ PlT, every probability
assignment p ∈ FTB satisfies BelT ≤ p ≤ PlT. Thus, BelT
and PlT define a non-empty credal set of probabilities.

This notion of support in a formula 𝜙 does not require for
a piece of evidence to be consistent about every subformula
of 𝜙, it simply requires for the evidence to support 𝜙 without
supporting its negation.

Support based on classical ‘proofs’. Let 𝑄𝑤 := {𝑙 ∈
Lit | 𝑣4 (𝑙, 𝑤) = T}. A state𝑤 ∈ 𝑊 supports 𝜙 if it provides
a classical ‘proof’ of 𝜙, i.e. if

(∧
𝑙∈𝑄𝑤

𝑙
)
|=CL 𝜙. For any

formula 𝜙, let |𝜙|CP be the set of states which provide a
classical ‘proof’ of 𝜙. We obtain the following lower bound
BelCP (𝜙) on p(𝜙):

BelCP (𝜙) = belm ( |𝜙|CP).

The associated plausibility function is defined by PlCP (𝜙) =
1−BelCP ( |¬𝜙|CP). By the properties of classical entailment
we have |𝜙|CP ∪ |𝜓 |CP ⊆ |𝜙 ∨ 𝜓 |CP and |𝜙 ∧ 𝜓 |CP =

|𝜙 |CP∩|𝜓 |CP. This implies that BelCP satisfies equation (1).
As PlCP (𝜙) = 1 − belm ( |¬𝜙|CP), plCP satisfies equation
(2). Moreover, since ⊥ and ⊤ are falsum and tautology, we
have BelCP (⊥) = 0 and BelCP (⊤) = 1. Thus, BelCP and
PlCP are belief and plausibility assignments.

This notion of support is natural when the analyst only
considers evidence as support for 𝜙 if the part of the evidence
which is classical entails 𝜙.

Remark 14 Note that for any propositional variable 𝑝, we
have |𝑝 |CP = |𝑝 |T. Thus, we have BelCP (𝑝) = BelT (𝑝).
Moreover, for any formula 𝜙, if 𝜙 has a classical proof, then
it must be exactly true. Therefore, BelCP ≤ BelT.

Support from incomplete (resp. classical) states. Here,
for the support of 𝜙, we consider only incomplete (resp.
classical) states. Let IC ⊆ 𝑊𝑐 (resp. C ⊆ 𝑊𝑐), be the set of
incomplete (resp. classical) states. These notions of support
induce respectively the following lower bounds on p(𝜙),

BelIC (𝜙) := belm ( |𝜙|T ∩ IC),

and
BelC (𝜙) := belm ( |𝜙 |T ∩ C).

The associated upper bounds are given by PlIC (𝜙) = 1 −
belm ( |𝜙|F ∩ IC) and PlC (𝜙) = 1 − belm ( |𝜙|F ∩ C). As
BelT and PlT satisfy equations (1) and (2) respectively,
BelIC (resp. BelC) and PlIC (resp. PlC) must also satisfy
these equations. Therefore, BelIC (resp. BelC) and PlIC
(resp. PlC) are belief and plausibility assignments.

However, since we only consider incomplete (resp. clas-
sical) states when we calculate BelIC (resp. BelC),

BelIC (⊤) (resp. BelC (⊤)) need not be 1. Thus, in gen-
eral, BelIC and BelC are non-normal belief functions.

This notion of support is natural when the analyst wants
to restrict themselves to the incomplete or classical states.
That is, they ignore completely any evidence which is
contradictory in evaluating belief and plausibility.

Comparison of the different supports.

Proposition 15 For any mass function m and any 𝜙 ∈ ℒBD,
we have the following chain of inclusions.
[BelBD (𝜙), PlBD (𝜙)] ⊆ [BelT (𝜙), PlT (𝜙)]
⊆ [BelCP (𝜙), PlCP (𝜙)] ⊆ [BelIC (𝜙), PlIC (𝜙)]
⊆ [BelC (𝜙), PlC (𝜙)] .

For any formula 𝜙, the interval [Bel(𝜙), Pl(𝜙)] describes
the uncertainty in probability of 𝜙. Thus, intuitively, this
proposition corresponds to the fact that uncertainty in the
formula increases as requirement for admittance of an
evidence as support increases. That is, if more information
is ignored by the analyst (due to stronger requirements) the
uncertainty in probability of any formula 𝜙 increases.

6. Lower and upper bounds for classical
probabilities

In this section, we show that BelCP, BelIC and BelC induce
credal sets of classical probabilities on CL Lindembaum
algebra, and that, in general, it is not possible to find classical
probabilities coherent with BelT.

Let 𝔹 be the CL Lindenbaum algebra over ℒBD (Defin-
ition 2). Since, Prop is finite, 𝔹 is finite too. Let m be a
mass function on the canonical model, X ∈ {CP,C, IC},
and BelX and PlX be the belief and plausibility functions
on ℒBD corresponding to X-support. Let belX, plX : 𝔹→
[0, 1] be as follows: for any [𝜙] ∈ 𝔹,

belX ( [𝜙]) = BelX (
∨̂
[𝜙]), and pl( [𝜙]) = PlX (

∧̂
[𝜙]),

with
∨̂[𝜙] :=

∨{𝜓 ∈ ℒBD | 𝜓 ∈ [𝜙] and 𝜓 is in iDNF},
and

∧̂[𝜙] :=
∧{𝜓 ∈ ℒBD | 𝜓 ∈ [𝜙] and 𝜓 is in iDNF}.

[𝜙] ⊆ ℒBD is an infinite set of formulas, but each formula in
BD is equivalent to a formula in iDNF and there are finitely
many formulas in iDNF. Therefore,

∨̂[𝜙] is well-defined.

Proposition 16 The following equalities hold:
[∨̂[𝜙]] = [𝜙] [∧̂[𝜙]] = [𝜙]
[∨̂[𝜙 ∨ 𝜓]] = [∨̂( [𝜙] ∨ [𝜓])] = [∨̂[𝜙] ∨ ∨̂[𝜓]]
[∨̂[𝜙 ∧ 𝜓]] = [∨̂( [𝜙] ∧ [𝜓])] = [∨̂[𝜙] ∧ ∨̂[𝜓]]
[∧̂[𝜙 ∨ 𝜓]] = [∧̂( [𝜙] ∨ [𝜓])] = [∧̂[𝜙] ∨ ∧̂[𝜓]]
[∧̂[𝜙 ∧ 𝜓]] = [∧̂( [𝜙] ∧ [𝜓])] = [∧̂[𝜙] ∧ ∧̂[𝜓]]
[¬∧̂[𝜙]] = [∨̂¬[𝜙]] = [∨̂[¬𝜙]]
[¬∨̂[𝜙]] = [∧̂¬[𝜙]] = [∧̂[¬𝜙]]
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Theorem 17 Let CM be the set of classical probability
measures on the finite Boolean algebra𝔹, let𝔹∗ = 𝔹∖{⊤𝔹},
and for X ∈ {IC,C,CP},

FX := {𝜇 ∈ CM | ∀𝑎 ∈ 𝔹, belX (𝑎) ≤ 𝜇(𝑎)}.

For X ∈ {IC,C} (resp. X = CP), belX and plX are
non-normal (resp. normal) belief and plausibility functions
on 𝔹, and, for 𝑎 ∈ 𝔹∗ (resp. 𝑎 ∈ 𝔹), belX (𝑎) and plX (𝑎)
provide optimal lower and upper bounds on FX. In addition,

∅ ⊊ FCP ⊆ FIC ⊆ FC

Proof Let 𝜙, 𝜙′ ∈ ℒBD. Note that for every 𝜙′ ∈ [𝜙], we
have BelX (𝜙′) ≤ belX ( [𝜙]) and plX ( [𝜙]) ≤ PlX (𝜙′).
Since, BelX and PlX are belief and plausibility assignments,
Proposition 16 implies that belX and plX are monotone
and satisfy equations (1) and (2) respectively. In addition,
for 𝜙 ∈ ℒBD, we have
plX ( [𝜙]) = PlX (

∧̂[𝜙]) = 1 − BelX (¬
∧̂[𝜙])

= 1 − BelX (
∨̂[¬𝜙]) = 1 − belX (¬[𝜙]).

Moreover, 𝜙 ∈ [⊥] implies BelX (𝜙) = 0, because |𝜙 |T∩
IC = |𝜙|T∩C = ∅ and

(∧
𝑙∈𝑄𝑤

𝑙
)
̸ |=CL ⊥ for every 𝑤 ∈ 𝑊𝑐.

In addition, belCP ( [⊤]) = 1, because ∅ |=CL ⊤. Therefore,
belCP and plCP are normal belief and plausibility functions.
However, for X ∈ {IC,C}, belX and plX are non-normal
belief and plausibility functions. Indeed, belX ( [⊤]) and
plX ( [⊥]) can be different than 1 and 0 respectively, because
belX ( [⊤]) = belm (X) ≠ belm (𝑊𝑐).

For X = CP, since belCP is a normal belief function on
a Boolean algebra, and plX is its associated plausibility
function, FX is a non empty credal set and belX and plX
are its lower and upper probabilities. Now, let us consider
the case X ∈ {IC,C}. Let 𝜇 ∈ FX. If belX (𝑎) ≤ 𝜇(𝑎) for
every 𝑎 ∈ 𝔹, then, for every 𝑎 ∈ 𝔹, we have

𝜇(¬𝑎) = 1 − 𝜇(𝑎) ≤ 1 − belX (𝑎) = plX (¬𝑎).

Thus, FX is the set of classical probability measures lying
between belX and plX for every 𝑎 ∈ 𝔹.

We can describe FX constructively as follows. Let mbelX :
𝔹→ [0, 1] be defined as follows: for 𝑎 ∈ 𝔹,

mbelX (𝑎) = belX (𝑎) −
∑︁
𝑏<𝑎

mbelX (𝑏).

We have
∑

𝑎∈𝔹 mbelX (𝑎) = belX (⊤𝔹) = belX ( [⊤]) ≤ 1.
Let At be the set of atoms of 𝔹, 𝑘 = |At|, and, for every 𝑎 ∈
𝔹, let At(𝑎) be the set of atoms below 𝑎 and 𝑘𝑎 = |At(𝑎) |.
LetMX be the set of mass functions m : At→ [0, 1] that
can be constructed as follows.
1. Set m(𝑎) = 0 for all 𝑎 ∈ 𝔹.
2. Let {𝛼𝑖}𝑖∈[1,𝑘 ] be a family of real numbers in [0, 1] such
that

∑
1≤𝑖≤𝑘 𝛼𝑖 = 1. For 𝑎𝑖 ∈ At,

m(𝑎𝑖) ← m(𝑎𝑖) + 𝛼𝑖 (1 − belX (⊤𝔹)).

3. Let {𝛽𝑖,𝑎}𝑖∈[1,𝑘𝑎 ] be a family of real numbers in [0, 1]
such that

∑
1≤𝑖≤𝑘𝑎 𝛽𝑖,𝑎 = 1. For 𝑎𝑖 ∈ At(𝑎),

m(𝑎𝑖) ← m(𝑎𝑖) + 𝛽𝑖,𝑎mbelX (𝑎).

Notice that
∑

𝑏≤𝑎 mbelX (𝑏) ≤
∑

𝑏∈At(𝑎) m(𝑏). Thus, the
probability measure 𝜇m induced by m satisfies belX ≤ 𝜇m
and 𝜇m ∈ FX. On the other hand, if 𝜇 ∈ FX, its associated
mass function m𝜇 satisfies: for any 𝑎 ∈ 𝔹,

∑
𝑏≤𝑎 mbel (𝑏) ≤∑

𝑏∈At(𝑎) m𝜇 (𝑏) and
∑

𝑎∈At m𝜇 (𝑎) = 1. Thus, m𝜇 can be
constructed by the above method with the right choice of
weights (𝛼s and 𝛽s). Therefore, FX is the set of probability
measures induced by the mass functions inMX.

In the case of belT, Theorem 17 does not hold in general.
Consider a mass function m such that belm ({𝑤 | 𝑤 ∈
|𝑝 |B ∩ |𝑞 |N}) = 1. Then the formula (𝑝 ∧ ¬𝑝) ∨ (𝑞 ∧ ¬𝑞)
is classically equivalent to a contradiction, but we have
belT ((𝑝∧¬𝑝) ∨ (𝑞∧¬𝑞)) = 1. As (𝑝∧¬𝑝) ∨ (𝑞∧¬𝑞) ∈
[⊥], if some probability measure 𝜇 is above it, then we
have belT ((𝑝 ∧ ¬𝑝) ∨ (𝑞 ∧ ¬𝑞)) = 1 ≤ 𝜇[⊥] which is
not possible for a classical probability measure. Therefore
T-support is not a notion of supporting evidence adequate
to deduce classical probabilities from evidence formalised
over a BD-model.

7. Conclusion
In this paper we provide a framework for applying DS-
theory to sources that might be (self) contradictory. We
describe how to encode different kind of evidence, and
show via examples that DS-rule may behave unintuitively.
We propose a variation of DS-rule that uses the algebraic
structure of the truth values to describe more finely the
available information and its nature (incomplete, consistent,
contradictory). Finally, we show how one can extract a
credal set of classical probability measures consistent with
the evidence.

In the future, we intend to study the behaviour of more
existing aggregation rules in the BD framework in order
to understand exactly to what kind of situations they can
be applied and how it compares to the classical framework.
In addition, the semantics of BD offers more possibilities
to define aggregation rules via new logical connectives.
We wish to understand their meaning and mathematical
properties.
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