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Abstract

The increasing availability of Second Life Li-ion Batteries (SLBs) makes so that accurate ageing modeling can be a

powerful tool to estimate the impact of a certain utilisation profile. However, several stress factors can impact the

ageing, and uncertainties are an important issue for the second life, due to the sometimes unknown first life utilisation

and the natural variability of electrochemical devices. In this work, we propose an empirical, event-based model for the

second life of li-ion cells. Its parameterization is supported by real data of Li-NMC (Lithium Nickel Manganese Cobalt

oxides) cells and considers cycling ageing with three stress factors: current, cycle depth and mean State of Charge (SoC).

The model takes uncertainties in consideration, and we provide all the parameters in Open Data fashion. This simple

model can be easily implemented and coupled to cycle counting algorithms in order to predict a lifetime range for a

given SoC profile. Finally, we analyse the effect of individual cell uncertainties and their impact on a battery pack.

Simulation results show that the model is able to properly simulate the second life duration when compared to practical

results available in the literature.
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1. Introduction

The increased demand of Li-ion Batteries (LIBs) ob-

served on the last decade is expected to continue expand-

ing for many years, mainly due to the growth of the Elec-

tric Vehicle (EV) fleets all over the world. This implies an

estimated availability of several gigawatt-hours (GWh) per

year in Second Life li-ion Batteries (SLBs) in the future

[1].

The significant environmental impact of the manufac-
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turing and recycling of LIBs is a motivating factor for their

reuse [2]. This opens up the way for a second life of these

cells in less demanding stationary applications, such as an-

cillary services associated to renewable energy sources and

charging stations [2, 3].

Proper modeling of the ageing of these batteries can

be an important tool for engineers, either for online esti-

mation of their State of Health (SoH) or for analysis and

prognostic related to a certain application.

Accurate modeling of the capacity loss is, however, a

daunting task. The ageing of a battery is a function of

several external stress factors, such as the current and cy-

cle depth. Moreover, LIBs are electrochemical devices, so
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uncertainties associated to their ageing can play an impor-

tant role - specially during their second life.

1.1. Ageing modeling

Regarding the modeling of the capacity loss of LIBs,

distinct approaches are identified in the literature - a de-

tailed review is available in [4].

One possible technique is the electrochemical and/or

physical modeling, where detailed equations are used to

model phenomena related to the mechanical and/or chem-

ical degradation. Works such as [5–8] are good examples of

this approach. The main drawbacks of such models are the

related to their complex nature: difficulties to parameter-

ize, to consider the uncertainties and to implement them

programmatically.

Another common approach is the statistical modeling,

such as presented in [9–11]. This approach is based on

data, with the utilisation of statistical methods and the

development of models capable of predicting the capacity

loss. These models can be adaptive and online, correcting

their prediction as the ageing takes place. The main draw-

back of this technique is that they are limited by their own

data, risking to under-perform if the real utilisation of the

batteries is different than expected.

The empirical or analytical approach consists of mod-

els where the equations and parameters are found through

empirical fitting of observed data. This is the case in works

such as [12–15]. This method is limited by the complex

ageing nature of LIBs: finding an equation or a set of equa-

tions able to consider several stress factors is a daunting

task, requiring a significant amount of data.

The capacity loss of LIBs is usually characterised by a

fast degradation starting at a SoH of around 80%, the so-

called ageing knee, and a slower degradation when the cell

is deeply aged - this is visible in the experimental data of

[12]. Empirical models usually rely on exponential and/or

polynomial equations to represent this behaviour.

However, ageing models considering specifically the sec-

ond life are, to the extent of our knowledge, underdevel-

oped in the literature. As the model presented in this work

concentrates on the second life (i.e. a SoH between 80%

and 50%), we believe a simple exponential can provide

an adequate representation - this is explained in detail in

Subsec. 3.2

1.2. Ageing stress factors

Several stress factors have been identified in the liter-

ature for the ageing of LIBs [5, 13–21]. Regarding cyclic

ageing, the main ones are the cycle depth, the current, the

mean SoC and the temperature. For calendar ageing, the

stress factors usually considered are the time, the temper-

ature and the storage SoC.

The cycle depth, hereby called ∆SoC, can be defined as

the range between the initial and final SoC of a charge or

discharge segment. This variable is also known as ∆DoD

in the literature. A larger cycle depth is more detrimen-

tal to the lifetime of the battery, as the chemical volume

changes during cycling are increased, causing a loss of ac-

tive material [20, 22].

The current or C-rate is a well known source of stress

for batteries, and a main role of any Battery Management

System (BMS) is to monitor this variable. Usually, the

higher the current, the more the capacity loss is accel-

erated due to increased Solid Eletrolyte Interphase (SEI)

growth and electrode cracking [23, 24]. This is a known

problem of the so-called fast charge of LIBs [25, 26]. Fur-

thermore, high currents induce higher losses due to the

internal resistance of the cell, also impacting its tempera-

ture.
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The mean SoC or SoCm in which the cell is cycled is

another important factor that plays on cycle ageing: for

example, a cycle with a ∆SoC = 20% around a SoCm =

90% impacts the ageing more than around a SoCm = 50%;

this is well documented in the literature [17, 18].

The temperature is well described in the literature as a

stress factor for both cyclic and calendar ageing. High tem-

peratures induce SEI growth and decomposition reactions

in the electrolyte, SEI and binder [22, 23] - all these induce

a loss of lithium inventory, reducing the capacity of the

cell. Low temperatures induce lithium plating and den-

trite formation, causing a loss of active material [20, 23].

Continuous cycling at a given temperature plays a major

role in the dominant ageing mechanism [27].

The time and the storage SoC also play an important

role on calendar ageing. Time is usually correlated with

the SEI growth and modeled with a square root relation

[23, 24, 28]. Storage at high or low values of SoC is a

source of degradation due to loss of active material and

litium on both electrodes, as shown in [17, 20, 23].

1.3. Uncertainties related to LIBs

The uncertainty related to the ageing rate of LIBs is

often visible in works that present experimental results

of several cells. Even though most works concentrate on

first life ageing, some interesting literature showcase the

importance of considering the ageing variability.

Baumhöfer et al (2014) [29] present ageing data from 48

identical cells cycled under the same conditions, showing

how the capacity deviation from mean increases as the

cell ages. It is visible in their data how this deviation is

specially significant on the second life. The same data set

is later used in [12] to propose a long-term ageing model.

In [30], 96 cells connected in series are aged and the

individual capacity of each cell is presented. The fact that

the weakest cell limits the entire pack is visible in their

results. In [31], the voltage dispersion of cells coming from

eight different packs is studied.

The utilisation of empirical data to parameterize LIB

uncertainties is a common approach when there is enough

data, with the main advantages being the reliability of

real-life experimentation and the flexibility of the approach.

One example is found in [30], where the authors use data

from over 20000 cells to parameterise a distribution of the

cell capacity at the beginning of their lives. This is then

used on the proposed ageing models.

Other works focus on the impact of the cell uncertain-

ties in a battery pack. In [32], a statistical method is used

to detect cells with shorter lifetime, whereas [33] shows the

importance of considering cell imbalances when estimating

the behaviour of a pack.

Moreover, as this work focuses on the second life, an-

other uncertainty is also important: the SoH at the be-

ginning of the second life utilisation. In real life applica-

tions, where batteries are retrieved for a second life, it is

clear that they will not all be at the same SoH: not only

can SLBs come from different sources (thus different first

lives), but also cells coming from the same source can have

an ageing variability as shown in [29].

1.4. Article objective and structure

The objective of this work is to propose a simple yet

accurate model for cyclic ageing of second life batteries,

including cell-level ageing uncertainties.

This model is intended as a prognostic tool, suited for

offline analysis of second life applications. We also propose

a straightforward way to model the ageing uncertainties.

The goal of the model is to be a feasibility analysis tool,

allowing for an estimation of the lifetime range for any SoC

profile.
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The main characteristics of our model are:

1. A classic exponential-based modeling of capacity loss.

2. Consideration of three stress factors: cycle depth,

mean SoC and current value.

3. Parameterization based on experimental data and

made available in open data fashion.

4. Modeling of two types of uncertainty (initial SoH

value and rate of ageing).

5. Simple software implementation.

6. Easily coupling to cycle counting algorithms to esti-

mate a lifetime for any given SoC profile.

We believe this work bridges two important gaps on

the literature: the modeling of second life ageing and the

consideration of uncertainties on the capacity loss.

We understand that these contributions can be valu-

able for anyone studying second life applications, the im-

pact of the utilisation on the lifetime of the batteries and

the effect of cell uncertainties on a pack.

This work is organized as follows: Sec. 2 presents the

methodology used in this work. Sec. 3 explains in detail

the modeling approach and identified parameters, Sec. 4

shows the results of our model both in cell and pack level,

and finally Sec. 5 concludes this work.

2. Methodology

2.1. Formal Definitions

The following paragraphs define some key concepts and

abbreviations used in this work.

The State of Charge - SoC is the instantaneous amount

of charge Q of the cell divided by its actual capacity Qa,

as shown in Eq. 1. Using this convention, the SoC values

are always between 0 and 100 %.

SoC[%] =
Q

Qa
· 100 (1)

The State of Health - SoH is the actual capacity Qa of

the cell divided by its nominal capacity Qn, as shown in

Eq. 2. We assume the common definition that the Second

Life of a LIB begins around a SoH of 80 %.

SoH[%] =
Qa

Qn
· 100 (2)

We consider that, in a given SoC profile, a cycle can be

defined by three parameters: the depth ∆SoC, the mean

value SoCm and its current C-rate (which is the slope of

the SoC).

The C-Rate is defined by the electric current going

through the battery divided by its nominal value. A C-rate

of 1C represents a charge at the nominal current, whereas

−C/2 represent a discharge at half the nominal current.

2.2. Initial assumptions

The model developed in this work concentrates on the

cyclic ageing, with three stress factors as an input: the cy-

cle depth, the mean SoC and the C-rate. More specifically,

we use data from Li-NMC cells (Lithium Nickel Manganese

Cobalt oxides).

An important assumption is that our model is event-

based, meaning that the total ageing is considered to be

caused by several events, each one with a small capacity

loss associated. In our case, the events are the cycles that

the battery go through during its life. As described in

[34], this incurs some assumptions, notably: that the ca-

pacity loss of each cycle is small, and that it is not directly

dependant of the previous cycles.

Another choice in this work is that we do not consider

the calendar ageing. Usually, if a cell is stored in ade-

quate conditions, the calendar ageing is a long-term effect,
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sometimes even reversible [35]. We consider that the util-

isation of second life batteries implies a short to medium

term application, where the calendar effect would not play

a major role when compared to the cyclic ageing.

Finally, we choose not to consider the temperature as a

stress factor, even though it is a well known source of age-

ing. Considering the temperature would require another

layer of modeling and parameterization, as it is closely re-

lated to other stress factors such as the current and the

cycle characteristics.

The temperature of a cell is also a function of its shape

and physical properties, e.g. how the cells are arranged in

a pack, air flow, etc. A thermal model would be needed to

properly consider this.

Moreover, the objective of our model is to be a tool of

analysis of SoC profiles when coupled to a cycle counting

algorithm such as the Rainflow method. The tempera-

ture of each cell would be an extra input that is often not

available on real data.

Furthermore, we consider that second life applications

will normally operate in conditions that do not induce

strong heat in the batteries - for example, avoiding high

currents or high depths of discharge seems to be reasonable

practical choices.

2.3. Modeling methodology

One of the most important challenges of any ageing

model is to correctly evaluate the impact of several possible

combinations of stress factors (the inputs) on the capacity

loss (the output).

As previously discussed in Subsec. 1.2, several pub-

lished studies concentrate on the impact of stress factors

on cyclic ageing. However, it is uncommon to find results

of an extensive testing considering all the factors and the

relation between them.

This is due to the increased number of tests that would

be needed to consider all possible cases - a monumental

work would be needed to test all possible conditions of

cyclic ageing. Moreover, ageing results available in the

literature concentrate mainly on the first life, and there

are few works with data on second life ageing.

In this work, our modeling and parameterization are

based on an approach that considers our own experimen-

tal data, but also the results of selected works from other

researchers. The steps to do so are the following:

1. We depart from experimental data of cyclic ageing

of several cells during the second life, previously pre-

sented in [27, 36]. The characteristics of these cells

are shown in Table 1. All these cells were cycled

with the same profile: a C-rate of ±C/2, a ∆SoC of

100% and a temperature of 25 °C - we consider these

to be the standard conditions of our model. We use

these results to find the standard model and its pa-

rameters; this is done with well known curve-fitting

techniques.

2. We observe that, in our experimental data, there are

two types of uncertainty: the initial SoH value and

the behaviour throughout the second life (faster or

slower ageing). We compare our data with other

publicly available results, then we model and param-

eterize the uncertainties for our standard conditions

3. We find works in the literature that have cycled Li-

ion batteries (of similar technology as ours) in the

same standard conditions, but also on other condi-

tions. For example, we select a work that has cycled

NMC cells at a C-rate of C/2 and at other values

of current [24]. This gives us an idea of the relative

impact of these conditions on the standard model

developed on step 1.
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4. We carefully select and treat this data from other

works to parameterize a relative ageing term that

impacts out standard model. This term is responsi-

ble for making the ageing tendency slower or faster

depending on the stress factors (inputs).

The details of these steps are explained in Sec. 3.

Table 1: Investigated cell characteristics

Cell Format 18650
Positive Electrode NMC + LMO (Lithium Nickel

Manganese Cobalt Oxide +
Lithium Manganese Oxide)

Specific Capacity 158.5mAhg−1

Negative Electrode Graphite
Specific Capacity 309mAhg−1

Cell Capacity 2.15Ah (nominal), 1.72Ah at
SoH = 80%

Nominal Voltage 3.65V

Once the model is fully parameterized, we perform sev-

eral simulations of second life ageing, considering multiple

cells and various conditions. We compare these results to

practical ageing results available in the literature in order

to validate our model.

We also study the impact of individual cell uncertain-

ties on a pack: this is done by considering that the weak-

est cell limits the total capacity of the pack. We perform

Monte Carlo simulations with different pack sizes in order

to assess how the uncertainties spread from the cells to

limit the total expected lifetime of the pack.

3. Ageing Modeling

The capacity loss model proposed in this article is shown

in Eq. 3 below.

Qloss = a eσ b εQc − c (3)

Where:

• The capacity loss Qloss used in this work is specific

to the second life: a value of Qloss = 0 represents a

cell at a SoH of 80%.

• Qc is the cumulative cycled capacity of the cell: it is

the abscissa of our model.

• a, b are parameters from our standard model, calcu-

lated from a fit of experimental data from previous

works [27, 36].

• σ is a relative ageing term, a function of our cycling

stress factors: the ∆SoC, SoCm and the C-rate.

• c, ε are parameters used to model the uncertainties.

The meaning, hypothesis and parameterization method-

ology of each one of these parameters will be detailed in

the subsections below.

3.1. Cumulative cycled capacity Qc

Several battery ageing models available in the litera-

ture are a function of the number of cycles that the cell

went through. We believe this is not an ideal choice for

the abscissa of an ageing model, specially on second life, as

the definition of a cycle is limited: as the cell ages, a cycle

of a given SoC depth ∆SoC implies less and less energy

cycled.

Various authors use the notion of Full Equivalent Cy-

cles (FEC) to counter this limitation, where the total amount

of ampere-hours cycled by the battery is divided by the ini-

tial capacity. This is an easy way to represent the lifetime

of the cell, but it does not represent the fact that the ac-

tual energy throughput in a cycle gets smaller as the cell

loses capacity.

In this work, we choose the abscissa of our model to be

simply the cumulative cycled capacity Qc of the battery,

or the total amount of ampere-hours cycled. This choice
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has the advantage of being simple to comprehend and im-

plement in real life. Moreover, it can easily be transformed

into Full Equivalent Cycles.

3.2. Standard model and parameters a, b

The experimental data we use to model and parameter-

ize the standard model comes from the cycling of several

cells during their second life. These results have originally

been published in [27], where a study of the chemical im-

pact of the cell conditions was shown. A dynamic model

for the second life has also been proposed based on this

data [36].

As described in these previous works, the cells under-

went cycling conditions at a C-rate of ±C/2, a ∆SoC of

100% and a temperature of 25 °C, with a check-up charac-

terisation cycle performed at every 50 cycles to assess the

capacity of the cell.

Some of the cells had their first life at a temperature

of 0 °C and others of 25 °C. In this work, we ignore their

first life condition in the ageing model, as we make the

hypothesis that the first life conditions might be unknown

in real life applications. Moreover, the uncertainty terms

can be used to represent a cell that has a degraded second

life due to a stressful first life operation.

Five of these cells have been selected for the ageing

model proposed in this work. By performing curve-fitting

to the capacity loss curve of each cell, we notice that a

simple exponential model is sufficient to adequately rep-

resent their behaviour. We then average the fit of each

cell in order to obtain the parameters a, b of our model,

available in Table 2.

Figure 1 show the ageing curves of each of the cells, as

well as the average fit obtained and an uncertainty range

representing two standards deviations (more details about

the uncertainties in Subsec. 3.4).

Figure 1: Experimental curves, average fit and uncertainty range

As previously discussed in Sec. 1.1, double exponential

models are often used to model LIBs capacity loss. We

believe that a single exponential is adequate for our model,

as the second life is often characterised by the so-called

ageing knee [12], i.e. a faster tendency to lose capacity.

Moreover, our choice for a simple exponential model is

explained by the behaviour of our data and the focus of

this work in the second life. However, we believe the same

method - the idea of using variables σ, ε to expand and

compress the exponential term - could be used for double

exponential models.

The exponential described in Eq. 3 along with param-

eters a, b consist what we call the standard model. All the

other parameters of the model are supposed to modify the

standard model, making the lifetime loss faster or slower,

or adding uncertainties.

3.3. Relative Ageing Term σ

The σ function in our model represents the impact of

the stress factors on the ageing. Cycling the battery in

stressful conditions (such as with a high current or a large

cycle depth) should yield bigger values of σ, meaning that

the exponential capacity loss of Eq. 3 will be faster.

As previously mentioned, the stress factors that we re-

tain for the second life are the cycle depth ∆SoC, the

mean state of charge SoCm and the current (C-rate). The
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σ term is then, naturally, a function of these three factors,

as shown in Eq. 4 below.

σ = γ(∆SoC, SoCm) · δ(Crate) (4)

The detail of these two functions and their associated

parameters will be discussed below.

3.3.1. γ, a function of ∆SoC and SoCm

The impact of the cycle depth on ageing is usually rep-

resented by the so-called Wöhler curves [34, 37], where the

expected number of equivalent cycles is plotted as a func-

tion of the cycle depth ∆SoC. Some manufacturers test

their cells and make this information publicly available on

the datasheets, however that is not always the case.

The objective of the γ function is, then, to establish a

weight to each possible pair of ∆SoC, SoCm. This function

is naturally limited by the following relation:

SoCm ± ∆SoC

2
∈ [0 100]% (5)

Meaning that the combination of these two inputs must

be contained in a SoC between 0 and 100% - for example,

a cycle with a ∆SoC = 100% is only possible around a

mean SoC of SoCm = 50%.

In order to model and parameterize this function, we

select the work from Ecker et al. (2014) [17], in which

NMC cells similar to ours were tested in different condi-

tions of ∆SoC and SoCm during the first life of the cells.

We make the observation that a ∆SoC of 100% is the

worst possible case for the ageing of a battery. The γ func-

tion is built so that a value of 1 is attributed to this con-

dition, and all other possible ∆SoC, SoCm combinations

yield a value between 0 and 1.

In order to adapt the data from Ecker et al. (2014)

to our desired function, we make the hypothesis that the

relative ageing between two conditions remain the same in

the second life.

For example, let us consider that a cell (a) cycled at

∆SoC = 100%, SoCm = 50% lasted 500 cycles on the

first life, and a cell (b) cycled at ∆SoC = 50%, SoCm =

50% lasted 1000 equivalent cycles at the same C-rate. We

suppose that cell (b) would also last twice as long on the

second life - this relation is true if an exponential is chosen

to model the capacity loss. The γ function would, then,

return a value of 1 for the conditions of cell (a), and a

value of 0.5 for the conditions of cell (b). This would

effectively make cell (b) capacity loss be two times slower

in our model.

We use this approach to normalize the cycling results

of this experimental data set, then we fit a function that

approximates the observed behaviour. This results in Eq.

6 below:

γ = r1 · (SoC%
m)2 + r2 · SoC%

m + r3 +
∆SoC%

100
(6)

Where parameters r1, r2, r3 are available on Table 2.

The resulting fit of the γ function is visible on Fig. 2

below, as well as the experimental points calculated from

the data of Ecker et al. (2014) [17].

Figure 2: Experimental points identified from Ecker et al. (2014)
[17] and surface of the proposed gamma function
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The chosen γ function shows a 1/∆SoC behaviour as

observed in [17]. In the SoCm axis, we observe that a

parabola represents a good fit of the experimental data;

its parameters are limited so that the axis of symmetry

(lowest point) is around SoCm = 50%. This parabolic

relation is also observed in [18].

The choices explained above for the fitting of this curve

are made so that a physical relation is observed: that the

capacity loss induced by a cycle is intensified the bigger its

value of ∆SoC is and the farther away from SoCm = 50%.

Nonetheless, error calculations between our γ function

and the experimental points deduced from Ecker et al.

(2014) show that our fit is representative of the reality.

We obtain a Mean Absolute Error (MAE) of 0.056 and a

Root Mean Square Error (RMSE) of 0.070.

As the values of γ are contained between 0 and 1, these

metrics can be understood as a MAE% of 5.6% and a

RMSE% of 7%. We consider these values to be accept-

able as (a) the objective of the fit is to capture a physical

relation, not the most precise passage between the points

and (b) the experimental nature of the data from Ecker et

al. (2014), which is uncertain by nature.

3.3.2. δ, a function of the current rate

For the modeling and parameterization of the current

effect, we select the work of Wang et al. (2014) [24], where

NMC cells similar to ours were cycled at different values

of current, cycle depth and temperature.

In this work, the authors notice that the rate of capac-

ity loss has a near-exponential behaviour with the increase

of the C-rate. We consider that their model equation for

a temperature of 20 °C (near ambient temperature) is the

one closer to our own results. This relation is shown in

Eq. 7 below.

δ = α · eβ·|Crate| (7)

Where α and β are parameters identified and available

on Table 2. We also choose to consider the absolute value

of the C-rate, meaning that we make the hypothesis that

the impact of the C-rate on ageing is the same for both

charge and discharge of the battery.

In order to find these parameters, we adapt their equa-

tion using the same approach previously described for the

γ function. This means that the δ function yields a value

of 1 for a C-rate of C/2 (our standard conditions). Higher

values of current should return values bigger than one,

thus making our capacity loss function faster, and smaller

values of current should return values smaller than one.

3.4. Uncertainties modeling - parameters c, ε

When analysing experimental data of several cells cy-

cled in the same conditions [27, 29], two types of ageing

uncertainties are visible: the initial capacity and the age-

ing trend.

The initial capacity uncertainty refers to the variability

of the capacity when the cell is obtained. This is true even

for cells fresh out of the industry: some have a capacity

slightly higher or lower than the nominal expected value.

As this work concentrates on the second life, this uncer-

tainty is even more important: the batteries recuperated

for these applications might have had very different first

lives, and will certainly not always be at a SoH of precisely

80%.

In this work, we model the initial capacity uncertainty

through the parameter c, as shown in Eq. 3. If the value

of c is equal to the value of parameter a, the cell starts

the second life precisely at a SoH of 80%, or a capacity of

1.72Ah.
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The parameter ε works similarly as the σ function, in

that a value of 1 represents no uncertainty, and values

bigger or smaller represent faster or slower ageing, respec-

tively.

For practical purposes, the values of c, ε should be de-

fined at the beginning of a simulation (c.f. Appendix A).

This means that the cell will have its initial capacity and

its ageing trend fixed. The interest in using these two vari-

ables is to simulate several cells, each one with a different

ageing behaviour.

We propose, then, that probability distributions should

be used to attribute values to c and ε. Regarding c, our

data analysis indicates that an adequate representation is

attained with a normal law with a Mean (µ) at c = a =

0.0190Ah and a Standard Deviation (SD) of 5
3 · 2.15

100 =

0.0358Ah. This translates to a law centered at a SoH

of 80% and with three standard deviations spanning the

interval SoH ∈ (75 85) %. A cell with c > a represents,

in our model, a Qloss < 0 at the beginning of a simulation

- this means simply a cell starting their second life at a

SoH higher than 80%.

Concerning parameter ε, a normal distribution can also

be used to represent a faster or slower ageing trend. We

propose a law with a Mean µ = 1 and a Standard Devi-

ation of SD = 0.1. Three standard deviations represent,

then, up to 30% faster or slower ageing.

An user of the model proposed in this work can, of

course, propose different behaviours for these parameters,

such as other distribution laws or standard deviations.

3.5. Model Overview and Utilisation

The proposed model, described by Eqs. 3-7 in the pre-

vious subsections, has all its identified parameter values

available in Table 2.

Table 2: Identified parameters of the proposed model

Name Value Unit

a 0.0190 Ah
b 0.0090 Ah−1

r1 1.5365e− 02 −
r2 1.5365e− 04 −
r3 0.3841 −
α 0.8277 −
β 0.3904 −
c Normal law with µ = 0.0190, SD =

0.0358
Ah

ε Normal law with µ = 1, SD = 0.1 −

We believe the same modeling approach could be used

for other cell technologies and capacities, with a different

data set needed to parameterize the model.

The algorithm to implement our model programmati-

cally is proposed in a flowchart, available in Appendix A.

This is ideally coupled to a cycle counting algorithm, such

as Rainflow Counting, which can identify cycles with any

combination of stress factors, different C-rates and even

half cycles.

4. Model Applications and Results

4.1. Cell-level Analysis

A first demonstration of the applications and results

achievable with our model is to consider the effect of reg-

ular cycling under different conditions.

This is shown in Fig. 3, where the capacity loss is simu-

lated for three different cases. In each case, two stress fac-

tors are constant and one is variable. In these simulations,

the solid lines correspond to a cell with no uncertainties,

and the shaded areas represent two standard deviations of

parameters c, ε.

The abscissa of these curves is the cumulative cycled

capacity Qc. If we consider the nominal cell capacity of

2.15Ah, we can see that, in terms of Full Equivalent Cycles

(FEC), the second life would last from a few dozen cycles

10



(a) Different ∆SoC values

(b) Different SoCm values

(c) Different C-rate values

Figure 3: Simulation results showcasing the impact of the stress
factors. In each subfigure, two stress factors remain constant and
one is made variable.

in stressful conditions (such as a current of 4C on Fig. 3c)

to around a thousand cycles in milder conditions (such as

a ∆SoC = 20% on Fig. 3a).

These durations seem to be consistent with works that

cycled LIBs during the second life, such as [12]. The re-

lation between the stress conditions is consistent with the

works used to develop our ageing model (c.f. Subsec 3.3).

As we force the stress factors to remain constant, the

charge throughput (value of Qc) of each cycle on the sim-

ulation gets smaller as the cell ages - a ∆SoC of 100%

represents more cycled energy at a SoH of 80% than at a

SoH of 70%, for example.

One hypothesis of our uncertainties modeling is also

visible on these results: our model is built so that the

uncertainty range is affected by the stress conditions. This

means that cell cycled at stressful conditions will have a

narrower uncertainty range.

Once these initial results are established, our next propo-

sition is to evaluate the effect of our uncertainty model-

ing. This is shown in Fig. 4a, where 50 independent cells

were simulated with the following stress factors: ∆SoC =

100%, SoCm = 50%, Crate = C/2. Each cell had different

parameters c, ε originated from the probability distribu-

tions as proposed in Table 2.

Figure 4b is heavily inspired by Fig. 7 of Baumhöfer

et al (2014) [29], a work that shows experimental data of

48 cells aged under the same conditions. By comparing

the results of our model with the experimental data in

[29], it is visible that our uncertainty modeling is able to

successfully represent the ageing variability of LIBs on cell

level.

4.2. Pack-level Analysis

The results presented thus far motivate us to analyse

the impact of individual cell uncertainties in a battery

pack, notably consisting of cells in series.

It is well known that the weakest cell in a series con-

nection of batteries limits the capacity of the entire branch

(given that a BMS is used to protect the cells from being

overdischarged). Even if a BMS is used to balance the

cells in a pack during a charge, the discharging capacity is

always limited by the cells with the lowest capacities.
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(a) Capacity loss behaviour of the 50 simulated cells

(b) Cells ordered by their capacity over the second life

Figure 4: Simulation of 50 independent cells, each one with different
uncertainty parameters. Two cells are highlighted: in red, a cell
starting with a high capacity and having a fast ageing trend; in blue,
a cell starting with a smaller capacity and having a slower ageing
trend.

We imagine, then, a simple connection of 3 cells in

series, with each cell having different uncertainty parame-

ters:

• Cell 1: c = −0.0885, ε = 0.8

• Cell 2: c = 0.0190, ε = 1

• Cell 3: c = 0.1265, ε = 1.2

We then perform a cycle-by-cycle simulation, where the

cells always have a SoCm = 50% and a Crate = C/2. At

each cycle, the capacity of the weakest cell is identified:

this cell will be cycled at a ∆SoC = 100%. The other

cells will be limited by the capacity of the weakest cell,

having a smaller cycle depth. We consider the pack ca-

pacity in ampere-hours then to be that of the weakest cell;

the capacity in watt-hours (storable energy) is obtained

by multiplying by the cell nominal voltage Vnom = 3.65V.

The simulation results are shown in Fig. 5.

(a) Capacity of 3 cells in series (left y-axis) and the total pack capacity
(right y-axis)

(b) Cycle depth ∆SoC of 3 cells in series

Figure 5: Simulation of three cells in series with the weakest cell
limiting the pack capacity

Figure 5b illustrates that the ∆SoC of each cell in the

pack evolves as the cells age. The impact of this is visible in

Fig. 5a - the pack capacity has initially a slower capacity

loss trend, as it is dominated by Cell #1, which has a

smaller value of ε. Eventually, Cell #3, which has a faster

ageing trend (larger ε) takes its place as the weakest cell;

the capacity of the pack starts deteriorating faster.

These results indicate that our model is capable of suc-

cessfully simulate sudden increases in the rate of capacity

loss of a pack, due to the limiting induced by a weaker cell.

We presume it can be used as a prognostic tool of such
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situations when coupled with real measurements from a

battery pack.

Finally, we propose another test based on the number

of cells in series in a pack. As observed in Fig. 5a, a single

cell can reduce the lifetime of the entire pack.

We assume the association of four different number of

cells in series (Ns): 1, 3, 10 and 50. We choose to limit

our analysis to series-connected cells, even though a real

pack comprises Np cells in parallel, as the objective is to

examine the limiting effect of the weaker cells in a pack.

Then, for each value of Ns, we simulate the capacity

loss until an arbitrary End of Second Life (EOSL). This

is done with a similar procedure as used in Fig. 5: each

individual cell has different uncertainty parameters c, ε,

and the ∆SoC of each cell is calculated at each cycle so

that the pack is limited by the weakest cell.

We then perform these simulations 1000 times for each

value of Ns, in a Monte Carlo method. At each simulation,

we store the cumulative cycled capacity Qc. The idea is

to obtain a distribution representing a lifetime range for

each pack size.

The simulation results are presented in boxplot fash-

ion in Fig. 6. These should be read as representation

of the data distribution; for example, the black dashed

lines (called whiskers) represent 99.3% of the data. For

the single cell, the boxplot showcases that 99.3% of the

simulations yielded a Qc between 345 and 575Ah at the

EOSL.

It is visible that, the more cells are associated in series,

the narrower is the range of cycled capacity of the pack.

This is due do the fact that, with more and more cells in

series, the higher is the probability of having a weak cell

with a fast capacity loss tendency that will limit the entire

pack.

Figure 6: Results of Monte Carlo simulations of the lifetime range
of different pack sizes

We believe this is an interesting result, as it showcases

the impact of individual cell uncertainties in a pack. If a

second life battery pack is to be assembled with random

cells (in a remanufacturing process), we understand that

an association of a large number of cells in series is to be

avoided for the aforementioned reason.

Nonetheless, a battery pack needs to have a certain

voltage level depending on the application; minimizing the

number of cells in series at all costs would raise the require-

ments on interfacing elements, such as power electronic

converters, which would create other issues. Ultimately, a

compromise is to be found.

5. Conclusion

In this work, an ageing model applied for second life Li-

ion cells was proposed. This empirical model is built and

parameterized with experimental data of Li-NMC cells,

and is intended to simulate cyclic ageing of cells consid-

ering three stress factors: current, cycle depth and mean

SoC.

The novelty of the model is in its focus on the second

life and the ability to easily simulate uncertainties related

to the ageing, which are not negligible. Moreover, all the

equations and parameters are provided in open data fash-

ion
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Results show that this ageing model is capable of pre-

dicting the lifetime range for different operating conditions

of the Li-ion cells. The simulated capacity loss trends ob-

tained are compatible with experimental results available

in the literature, indicating the plausibility of the proposed

model.

The modeling of uncertainties is shown to successfully

emulate the real ageing variability of LIBs. Moreover, it

allows for the simulation of the effects of cell-level uncer-

tainties in a battery pack.

This works bridges a gap related to the specific mod-

eling of the second life ageing, as well as the increasing

associated uncertainties. We believe this model can be

useful to anyone considering the deployment of second life

batteries and desiring to simulate their ageing.

Future works will go in the direction of using this model

as the intended prognostic tool it is, analysing SoC profiles

and the feasibility of second life applications. The addition

of a thermal model is also considered in order to increase

the completeness of the model and to expand the possible

applications that can be studied.
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Appendix A. Model implementation algorithm for a given SoC profile

Start

For each cell, attribute val-

ues of: c, ε,Qc(0), Qloss(0)

Get data from the ith cycle:

∆SoC, SoCm, Crate, Q
cycle
c

Calculate σ(i) from the stress factors

Calculate Qc(i) = Qc(i − 1) + Qcycle
c

Calculate Qloss(i) = Qloss(i − 1) +(
fQloss

∣∣∣ σ(i)
Qc(i)

− fQloss

∣∣∣ σ(i)
Qc(i−1)

)
︸ ︷︷ ︸

Capacity loss of the ith cycle

Qloss(i) > QEOSL
loss ? i ← i + 1

Stop

Loop: i=1: ...

no

yes

Where:

• fQloss
is Eq. 3.

• σ(i) is calculated with Eq. 4.

• QEOSL
loss is an arbitrary constant determining the End Of Second life.

• Parameters c, ε come from a probability distribution as explained in Subsec. 3.4.

• Qcycle
c is the cycled charge (in Ampere-hours) of the cycle in question.

For the sake of simplicity, the algorithm above works for regular SoC profiles, i.e. profiles consisting of repeated cycles

with the same stress factors (same charge and discharge C-rates). If this is not the case, the algorithm simply has to be

adapted to calculate fQloss
for the charge and discharge segments separately when calculating Qloss.
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