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Abstract:
In this paper, we consider a system of two coupled scalar-valued hyperbolic partial differential
equations (PDEs) with random parameters. We formulate a stability condition under which the
classical backstepping controller (designed for a nominal system whose parameters are constant)
stabilizes the system. More precisely, we guarantee closed-loop mean-square exponential stability
under random system parameter perturbations, provided the nominal parameters are sufficiently
close to the stochastic ones on average. The proof is based on a Lyapunov analysis, the Lyapunov
functional candidate describing the contraction of L2-norm of the system states. An illustrative
traffic flow regulation example shows the viability and importance of the proposed result.
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1. INTRODUCTION

Hyperbolic PDEs are frequently used in the literature to
model physical phenomena involving matter transporta-
tion across space and propagation. Among the numerous
examples of conservation and balance laws that hyper-
bolic systems can model, we can cite traffic flow (Yu
and Krstic, 2019), heat exchangers (Xu and Sallet, 2002),
fluids in open channels (Bastin and Coron, 2016), me-
chanical vibrations in drilling devices (Saldivar et al.,
2016). This explains why the control and estimation of
coupled hyperbolic PDEs is an active research topic, dif-
ferent types of control strategies having been developed
in the literature (Litrico and Fromion, 2009; Woittennek
et al., 2017; Bastin and Coron, 2016; Strecker and Aamo,
2017). Among them, we can emphasize the backstepping
methodology (Krstic and Smyshlyaev, 2008) that enabled
the design of explicit controllers first for scalar hyperbolic
systems (Coron et al., 2013), then for general n + m
systems (Coron et al., 2017).

In all these contributions, the system parameters are as-
sumed to be time-independent, and only a few results
focus on hyperbolic systems with time-varying coefficients
(Coron and Nguyen, 2021; Mokhtari and Ammar Khodja,
2022). However, when considering applications as freeway
transportation systems, some parameters may be subject
to abrupt changes due to external causes, e.g., the ran-
dom flux at the entrance of the freeway (Colombo, 2003)
or changes in drivers’ behavior. This has motivated the
stability analysis of switching hyperbolic systems (Amin
et al., 2011) or Markov jump linear hyperbolic conserva-
tion laws (Zhang and Prieur, 2017). In this latter con-

tribution, the authors considered stochastic velocities and
showed mean-square exponential stability under appropri-
ate conditions (balance between the dissipativity of the
hyperbolic and the transition probability of the Markov
process). The proof relied on a Lyapunov analysis.

In the present contribution, we consider a 2×2 hyperbolic
system where all parameters are stochastic. More precisely,
they are modeled by independent Markov processes with
a finite number of states (Kolmanovsky and Maizenberg,
2001). The objective is to guarantee the mean-square
closed-loop stability. To do so, we consider a backstepping
controller designed for a nominal system with constant
coefficients (Vazquez et al., 2011). We show that the
closed loop system is mean-square exponentially stable,
provided the nominal parameters are sufficiently close to
the stochastic ones on average. The proposed approach
follows the methodology presented in (Kong and Bresch-
Pietri, 2022a,b) for the case of linear systems with random
input delays. It relies on a Lyapunov analysis of the closed-
loop system. The exponential stability is shown using the
so-called technique of probabilistic delay averaging (Kol-
manovsky and Maizenberg, 2001).

The paper is organized as follows. In Section 2, we formu-
late the problem under consideration, introduce the nom-
inal system, present the control law, and define the real
stochastic system. We formulate our stabilization result
at the end of the section. In Section 3, we take advan-
tage of the backstepping methodology to reformulate the
stochastic system in a more amenable form. In Section 4,
we present the Lyapunov analysis, which is used to prove
the paper’s main result. We apply our methodology to the



test case of traffic control in Section 5. Some concluding
remarks end the paper in Section 6.

Notations: We denote L2([0, 1],R) the space of real-valued
square-integrable functions defined on [0, 1] with the stan-
dard L2 norm, i.e., for any f ∈ L2([0, 1],R), we have

||f ||L2 =
(∫ 1

0
f2(x)dx

) 1
2

. E(x) denotes the expectation

of a random variable x. For a random signal x(t), the
conditional expectation of x(t) at the instant t knowing
that x(s) = x0 at the instant s ≤ t is denoted E[s,x0](x(t)).

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Nominal system

Let us consider the following nominal 2 × 2 linear hyper-
bolic system

∂tunom(t, x) + λ0∂xunom(t, x) = σ+
0 vnom(t, x), (1)

∂tvnom(t, x)− µ0∂xvnom(t, x) = σ−
0 unom(t, x), (2)

with the boundary conditions

unom(t, 0) = q0vnom(t, 0), (3)

vnom(t, 1) = ρ0unom(t, 1) + U(t), (4)

where (unom(t, x), vnom(t, x))
T is the state of the sys-

tem, the different arguments evolving in {(t, x) s.t. t >
0, x ∈ [0, 1]}. The nominal velocities are denoted λ0 > 0
and µ0 > 0 are constant. The in-domain couplings σ+

0

and σ−
0 , and the boundary couplings ρ0 and q0 are also

assumed to be constant. The function U(t) corresponds to
the actuation, which can be chosen as desired. We assume
q0 ̸= 0. The initial conditions u0

nom and v0nom are assumed
to belong in L2([0, 1],R). System (1)-(4) is the more gen-
eral form for a one-dimensional 2 × 2 hyperbolic linear
system (without integral or boundary terms) (Vazquez
et al., 2011). It appears in the linearization of Saint-Venant
equations (Bastin and Coron, 2016), in the linearization
of ARZ equations for trafic networks (Yu et al., 2020b;
Espitia et al., 2022), in heat exchangers equations and
other hyperbolic balance laws (Bastin and Coron, 2016).

System (1)-(4) may be unstable due to the in-domain
couplings σ+ and σ−. The control input U(t) may be
designed to guarantee the exponential stability of the
closed-loop system. We assume here that the boundary
conditions are dissipative (i.e., |ρ0q0| < 1) since such a
condition is necessary to guarantee the delay-robustness
of the closed-loop system (i.e., the closed-loop system is
robust to the introduction of an arbitrarily small delay in
the loop) (Auriol and Di Meglio, 2019; Auriol, 2018).

A stabilizing control law has been designed in (Coron
et al., 2013; Vazquez et al., 2011; Auriol et al., 2018) using
the backstepping approach (Krstic and Smyshlyaev, 2008).
Consider the set of kernel equations

λ0∂xK
uu(x, y) + λ0∂yK

uu(x, y) = −σ−
0 K

uv(x, y), (5)

λ0∂xK
uv(x, y)− µ0∂yK

uv(x, y) = −σ+
0 K

uu(x, y), (6)

µ0∂xK
vu(x, y)− λ0∂yK

vu(x, y) = σ−
0 K

vv(x, y), (7)

µ0∂xK
vv(x, y) + µ0∂yK

vv(x, y) = σ+
0 K

vu(x, y), (8)

with the boundary conditions

Kuu(x, 0) =
µ0

λ0q0
Kuv(x, 0), Kuv(x, x) = − σ+

0

λ0 + µ0
, (9)

Kvv(x, 0) =
λ0q0
µ0

Kvu(x, 0), Kvu(x, x) =
σ−
0

λ0 + µ0
, (10)

where the kernels K ·· are defined on the triangular domain
T = {(x, y), 0 ≤ y ≤ x ≤ 1}. The set of kernel equa-
tions (5)-(10) admits a unique (bounded) solution which
is of class C∞ on T . An explicit expression of the kernels
can be obtained using Marcum-Q functions (Vazquez and
Krstic, 2014). Consider now the control law

U(t) =

∫ 1

0

(ρ0K
uu(1, y)−Kvu(1, y))unom(t, y)dy

+

∫ 1

0

(ρ0K
uv(1, y)−Kvv(1, y))vnom(t, y)dy. (11)

Then the closed-loop system (1)-(4) is well-posed and
exponentially converges to zero in the sense of the L2-
norm (Coron et al., 2013) (Auriol et al., 2018, Lemma 2).

2.2 Real system

We now consider the real stochastic 2×2 linear hyperbolic
system

∂tu(t, x) + λ(t)∂xu(t, x) = σ+(t)v(t, x), (12)

∂tv(t, x)− µ(t)∂xv(t, x) = σ−(t)u(t, x), (13)

with the boundary conditions

u(t, 0) = q(t)v(t, 0), (14)

v(t, 1) = ρ(t)u(t, 1) + U(t), (15)

where the state of the system is now (u(t, x), v(t, x))T .
The different parameters are now random independent
variables. We denote S = {λ, µ, σ+, σ−, q, ρ} the set of
random variables. Each random element X of the set S is
a Markov process with the following properties.

• (P1) X(t) ∈ {Xi, i ∈ {1, . . . , rX}}, rX ∈ N with
X ≤ X1 < · · · < XrX ≤ X̄.

• (P2) The transition probabilities PX
ij (t1, t2) qualify

the probability to switch from Xi at time t1 to Xj

at time t2 ((i, j) ∈ {1, . . . , rX}2, 0 ≤ t1 ≤ t2). They
satisfy
(1) PX

ij : R2 → [0, 1] with
∑rX

j=1 P
X
ij (t1, t2) = 1.

(2) PX
ij is a differentiable function which, for s < t

follows the Kolmogorov equation

∂tP
X
ij (s, t) = −cXj (t)PX

ij (s, t) +

rX∑
k=1

PX
ik (s, t)τ

X
kj(t),

PX
ii (s, s) = 1, and PX

ij (s, s) = 0 for i ̸= j, (16)

where τij and cXj =
∑rX

k=1 τ
X
jk are nonnegative-

valued functions such that for any t, τXii (t) = 0.
Moreover, the functions τXik are upper bounded
by a constant τ⋆X .

• (P3) The realizations of X are right-continuous.

Moreover, we assume that for all X ∈ S, we have X ≤
X0 ≤ X̄ (where X0 is the nominal value given in the
definition of system (1)-(4), e.g. X0 = λ0 if X = λ).
We also assume that λ > 0, µ > 0 and |ρ̄q̄| < 1. It
is common to assume only a finite number of values in
(P1) (Kolmanovsky and Maizenberg, 2001; Sadeghpour
et al., 2019). Similarly, it is standard to assume Property
(P3) for the modeling of continuous-time Markov chains.
It is important to mention that the properties (P1) and



(P3), along with the Markov property, guarantee that
PX
ij satisfies the Kolmogorov Equation (16) for certain

positive-valued functions τXij , c
X
j (Rausand and Hoyland,

2003; Ross, 2014). Thus Property (P2) only implies that
the functions τXij are bounded, which is a mild modeling

assumption. We emphasize that the parameter τXij ∆t is
approximately the probability of transition from Xi to Xj

on the interval [t, t + ∆t). Moreover, 1 − cXj (t)∆t is the
probability of staying at Xj during this time interval.

For each X ∈ S, we denote by TX = {X1, . . . , XrX}
the set of possible realizations for the variable X. Let
T = Tλ × Tµ × Tσ+ × Tσ− × Tq × Tρ and for any t, let
δ(t) ∈ R6 be defined by

δ(t) = (λ(t), µ(t), σ+(t), σ−(t), q(t), ρ(t)). (17)

Since all the variables are independent, δ is a Markov
process whose transition probabilities can be deduced from
those of S, and with a finite number of states r =
rλrµrσ+rσ−rqrρ. Finally, we denote by R the Cartesian
product of the sets {1, . . . , rX}, X ∈ S. An element
j ∈ R is a multi-index composed of 6 indices (integers):
(jλ, jµ, jσ+ , jσ− , jq, jρ), and we will say that δ(t) = δj if
X(t) = XjX for any X ∈ S. Finally, we denote τjℓ =
ΠX∈SτXjXℓX

, and similarly, Pij = ΠX∈SPiXjX .

We now prove the well-posedness of our stochastic system.

Lemma 1. For any initial condition (u0, v0) ∈ L2[0, 1] and
for any initial states δ(0) for the stochastic parameters,
the closed-loop system (12)-(13) with the control law (11)
admits a unique solution (u, v) such that for any t,

E[0,(u0,v0δ(0))]{||(u(t, ·), v(t, ·)||L2[0,1]} < ∞.

Proof. The proof can be easily adjusted from (Zhang and
Prieur, 2017). Almost every sample path of our stochastic
processes are right-continuous step functions with a finite
number of jumps in any finite time interval. We can then
define a sequence {tk; k = 0, 1, . . . } of stopping time such
that t0, limk→∞ tk = ∞ and every X ∈ S is constant on
tk ≤ t < tk+1. We can then iteratively build the solution
on each interval [tk, tk+1] by applying (Bastin and Coron,
2016, Theorem A.4). The rest of the proof is analogous to
(Zhang and Prieur, 2017, Proof of Proposition 1). 2

2.3 Problem statement

The objective is this paper is to show that the nomi-
nal controller defined in equation (11) still stabilizes the
stochastic system (12)-(15), provided the nominal parame-
ters are sufficiently close to the stochastic ones on average.
More precisely, we want to show the following sufficient
condition for robust stabilization

Theorem 2. Consider the closed-loop system (12)-(15)
with the control law (11). There exists a positive constant
ϵ⋆, such that if, for all time t ≥ 0 and all X ∈ S,∑

X∈S

E[0,X(0)](|X0 −X(t)|) ≤ ϵ⋆, (18)

then the closed loop system is mean-square exponentially
stable, that is, there exists κ > 0 and γ > 0 such that

E[0,(w(0),δ(0))](w(t)) ≤ κe−γtw(0), (19)

where

w(t) =

∫ 1

0

u2(t, x) + v2(t, x)dx. (20)

Theorem 2 generalizes the deterministic robustness results
stated in (Auriol and Di Meglio, 2020) to the case of
stochastic parameters. The proof of Theorem 2 will be
given in the next sections. It is inspired by (Kong and
Bresch-Pietri, 2022b). First, the system is simplified using
a backstepping transformation (Section 3). Then, the
stability is shown using a Lyapunov analysis (Section 4).

3. BACKSTEPPING TRANSFORMATION

To prove Theorem 2, we first simplify the structure of
the system using a backstepping transformation (Krstic
and Smyshlyaev, 2008). Consider the integral change of
coordinates

α(t, x) = u(t, x) +

∫ x

0

Kuu(x, y)u(t, y) +Kuv(x, y)v(t, y)dy, (21)

β(t, x) = v(t, x) +

∫ x

0

Kvu(x, y)u(t, y) +Kvv(x, y)v(t, y)dy, (22)

where the kernels K ·· are defined by (5)-(10). The trans-
formation (21)-(22) is a Volterra transformation and is in-
vertible (Yoshida, 1960). In particular, there exist bounded
functions L·· defined on the triangular domain T such that

u(t, x) = α(t, x) +

∫ x

0

Lαα(x, y)α(t, y) + Lαβ(x, y)β(t, y)dy, (23)

v(t, x) = β(t, x) +

∫ x

0

Lβα(x, y)α(t, y) + Lββ(x, y)β(t, y)dy. (24)

The kernels L are explicitly defined in (Bou Saba et al.,
2019). The states (α, β) and (u, v) have equivalent L2

norms, i.e. there exist m > 0 and M > 0 such that

m||(u, v)||L2 ≤ ||(α, β)||L2 ≤ M ||(u, v)||L2 (25)

Consider now U(t) as defined by equation (11). Differen-
tiating equations (23)-(22) with respect to time and space
and integrating by parts, we can show that the variables
α and β are solutions to the following set of PDEs

∂tα(t, x) + λ(t)∂xα(t, x) = f1(δ(t))v(t, x) + f2(δ(t))β(t, 0)

+

∫ x

0

f3(δ(t), x, y)u(t, y) + f4(δ(t), x, y)v(t, y)dy (26)

∂tβ(t, x)− µ(t)∂xβ(t, x) = g1(δ(t))u(t, x) + g2(δ(t))β(t, 0)

+

∫ x

0

g3(δ(t), x, y)u(t, y) + g4(δ(t), x, y)v(t, y)dy, (27)

with the boundary conditions

α(t, 0) = q(t)β(t, 0), (28)

β(t, 1) = ρ(t)α(t, 1) + (ρ(t)− ρ0)

∫ 1

0

Kvu(1, y)u(t, y)dy

+ (ρ(t)− ρ0)

∫ 1

0

Kvv(1, y)v(t, y)dy (29)

where the different functions are defined by

f1(δ(t)) = σ+(t)− σ+
0

λ(t) + µ(t)

λ0 + µ0
, g1(δ(t)) = σ−(t)− σ−

0

λ(t) + µ(t)

λ0 + µ0
,

f2(δ(t)) = (
λ(t)q(t)

λ0q0
µ0 − µ(t))Kuv(x, 0),

g2(δ(t)) = (λ(t)q(t)−
µ(t)

µ0
λ0q0)K

vu(x, 0),

f3(δ(t), x, y) = −
λ(t)

λ0
σ−
0 Kuv(x, y) + σ−(t)Kuv(x, y),

f4(δ(t), x, y) = (λ(t)− λ0)∂xK
uv(x, y)− (µ(t)− µ0)∂yK

uv(x, y)

−Kuu(x, y)(σ+
0 − σ+(t)),



g3(δ(t), x, y) = (λ(t)− λ0)∂yK
vu(x, y)− (µ(t)− µ0)∂xK

vu(x, y)

−Kvu(x, y)(σ−
0 − σ−(t)),

g4(δ(t), x, y) = (σ+(t)− σ+
0

µ(t)

µ0
)Kvu(x, y).

Note that all the terms that depend on (u, v) in the target
system (26)-(29) could be expressed in terms of (α, β)
using the inverse transformation (23)-(24). However, this
would make the computations more complex and is not
required for the stability analysis. The target system (26)-
(29) may appear much more complex than the original
system (12)-(15). However, it is important to emphasize
that all the terms that appear on the right-hand side
of the different equations become small if the stochastic
parameters are close enough to the nominal ones. More
precisely, we have the following lemma

Lemma 3. There exists a constant M0 > 0 such that for
any realization δ(t) = δj (j ∈ R) of the stochastic variable
δ and for any (x, y) ∈ T , for all i ∈ {1, 2, 3, 4}, we have

|fi(δj)| < M0

∑
X∈S

|X0 −Xj |, (30)

|gi(δj)| < M0

∑
X∈S

|X0 −Xj |, (31)

Note that we omitted the variables (x, y) in the inequalities
to ease the notations.

Proof. Consider the function f1(δj). We have

f1(δj) = (σ+
jσ+

− σ+
0 )−

σ+
0

λ0 + µ0
(λjλ − λ0)

− σ+
0

λ0 + µ0
(µjµ − µ0),

which implies

|f1(δj)| ≤ max{1, | σ+
0

λ0 + µ0
|}

∑
X∈S

|X0 −Xj |. (32)

Consider now the function f3(δj , x, y). We obtain

|f3(δj , x, y)| ≤ |λjλ − λ0|
|σ−

0 |
|λ0|

sup
T

|Kuv(x, y)|

+ |σ−
0 − σ−

jσ−
| sup

T
|Kuv(x, y)|

≤ (1 +
|σ−

0 |
|λ0|

) sup
T

|Kuv(x, y)|
∑
X∈S

|X0 −Xj |,

where supT |Kuv(x, y)| is well defined due to the bound-
edness of the kernels K ··. The other inequalities can be
shown in a similar way, using the boundedness of ∂xK

··

and ∂yK
··. 2

Thus, the target system (26)-(29) is simpler in the sense
that it simplifies the robustness analysis that will be
carried out in the next section. With this new set of
coordinates, we can now analyze the exponential stability
of the closed-loop system.

4. LYAPUNOV ANALYSIS

Let us denote the state of the target system (26)-(29)
as z(t, ·) = (α(t, ·), β(t, ·)) ∈ (L2([0, 1],R))2. As the
solution to (26)-(29) is unique (due to the unicity of
the solution of (12)-(15)), (z,S) defines a continuous-
time Markov process. Define the infinitesimal generator

L (Kolmanovskii and Myshkis, 2013; Ross, 2014) acting
on a functional V : (L2([0, 1],R))2 × T → R as

LV (z, δ) = lim sup
∆t→0+

1

∆t

× E[t,(z,δ)](V (z(t+∆t), δ(t+∆t))− V (z, δ)). (33)

We define Lj , the infinitesimal generator of the Markov
process (z, δ) obtained from the system (26)-(29) by fixing
δ(t) = δj (j ∈ R) as

LjV (z) =
dV

dz
(z, δj)hj(z)

+
∑
ℓ∈R

(Vℓ(z)− Vj(z))τjℓ(t), (34)

where Vℓ(z) = V (z, δℓ), and hj is the operator correspond-
ing to the dynamics of the target system (26)-(29) with the
fixed value δ(t) = δj

hj(z) =


−λjλ∂xα(x) + f1(δj)v(t, x) + f2(δj)β(t, 0)

+

∫ x

0

f3(δj , x, y)u(t, y) + f4(δj , x, y)v(t, y)dy

µjµ∂xα(x) + g1(δj)v(t, x) + g2(δj)β(t, 0)

+

∫ x

0

g3(δj , x, y)u(t, y) + g4(δj , x, y)v(t, y)dy


To shorten the computations, we denote in the sequel
V (t), LV (t), Vj(t) and LjV (t) instead of (respectively)
V (z(t), δ(t)), LV (z(t), δ(t)), V (z(t), δj) and Lj(V (z(t))).
From now, we consider that δ(t = 0) = δi for some i ∈ R.

4.1 Derivation of the Lyapunov function

Consider the following Lyapunov functional candidate

V (z, δ) =

∫ 1

0

e−
ν

λ(t)
x

λ(t)
α2(t, x) + a

e
ν

µ(t)
x

µ(t)
β2(t, x)dx, (35)

with a, ν > 0. This functional explicitly depend on δ
through the velocities λ and µ. Since the velocities λ(t)
and µ(t) are upper and lower bounded, the functional V
is equivalent to the L2-norm of the state (α, β) (and con-
sequently to the L2-norm of the state (u, v) due to (25)),
i.e. there exists ku and kℓ such that

kℓ||(α, β)||2L2 ≤ V (t) ≤ ku||(α, β)||2L2 (36)

We have the following lemma

Lemma 4. There exists η > 0, M1 > 0 and M2 > 0 such
that the Lyapunov functional V satisfies

r∑
j=1

Pij(0, t)LjV (t) ≤ −V (t)
(
η −M2k(t)

− (M1 +M2rτ
⋆)

∑
X∈S

E[0,X(0)](|X0 −X(t)|)
)
, (37)

where the function k is defined by

k(t) =
∑
X∈S

r∑
j=1

|Xj −X0|(∂tPij(0, t) + cjPij(0, t)).

Proof. Consider that δ = δj . Let us compute the first

term of equation (34) (
dVj

dz (z)hj(z)). Applying integration
by parts, we obtain

dVj

dz
(z)hj(z) = −νVj(t) +

∫ 1

0

2

λjλ

e
− ν

λjλ
x
α(t, x)[f1(δj)

v(t, x) + f2(δj)β(t, 0) +

∫ x

0

f3(δj , x, y)u(t, y) + f4(δj , x, y)



v(t, y)dy] +
2

µjµ

e
ν

µjµ
x
β(t, x)[g1(δj)v(t, x) + g2(δj)β(t, 0)

+

∫ x

0

g3(δj , x, y)u(t, y) + g4(δj , x, y)v(t, y)dy]dx

+ (q2jq − a)β2(t, 0)− e
− ν

λjλ α2(t, 1) + ae
ν

µjµ (ρjρα(t, 1)

+ (ρjρ − ρ0)

∫ 1

0

Kvu(1, y)u(t, y) +Kvv(1, y)v(t, y)dy)2.

Notice first that there exists η > 0 such that for all j

−νVj(t) ≤ −ηV (t). Consider the term
∫ 1

0
2

λjλ
e
− ν

λjλ
x
α(t, x)

f1(δj)v(t, x)dx. Combining Young’s inequality and Lemma 3,
we obtain∫ 1

0

| 2

λjλ

e
− ν

λjλ
x
α(t, x)f1(δj)v(t, x)|dx

≤ 1

λ
M0

∑
X∈S

|X0 −Xj |(
∫ 1

0

v2(t, x) + α2(t, x)dx)

≤ M0

kℓλ

∑
X∈S

|X0 −Xj |(1 +
1

m
)V (t)

where m and kℓ are defined in (25) and (36). Consider

now the term
∫ 1

0
2

λjλ
e
− ν

λjλ α(t, x)f2(δj)β(t, 0)dx. Combin-

ing Young’s inequality and Lemma 3, we obtain∫ 1

0

| 2

λjλ

e
− ν

λjλ α(t, x)f2(δj)β(t, 0)|dx

≤ M0

kℓϵ0λ

∑
X∈S

|X0 −Xj |V (t) +
M0

λ

∑
X∈S

|X0 −X|ϵ0β2(t, 0),

where ϵ0 can be chosen arbitrarily small. In what follows
we denote ϵ1 = M0

2λ

∑
X∈S |X0 − X|ϵ0. Performing anal-

ogous computations on all the terms that appear in the

expression of
dVj

dz (z)hj(z), we obtain

dVj

dz
(z)hj(z) ≤ −ηV (t) +M1

∑
X∈S

|X0 −Xj |V (t) + (ϵ1

+ q2jq − a)β2(t, 0) + α2(t, 1)(ae
ν

µjµ ρ2jρ(1 + ϵ2)− e
− ν

λjλ ),

where the constant ϵ2 > 0 can be chosen arbitrarily small
and where the constant M1 depends on M0, ϵ1 and on the
parameters of the system. Let us now choose ν, ϵ1 and ϵ2
such that

ϵ1 + q2jq − a < 0

ae
ν

µjµ ρ2jρ(1 + ϵ2)− e
− ν

λjλ < 0.

These conditions are always feasible since |ρjρqjq | < 1.

Indeed, we choose ϵ1 and ϵ2 small enough such that (q2jq −
ϵ1)ρ

2
jρ
(1 + ϵ2) < 1 and inject the first inequality to the

second one to obtain (q2jq − ϵ1)ρ
2
jρ

< e
− ν

λjλ
− ν

µjµ . It is then

sufficient to choose ν small enough. The first equation gives
a. Consequently, we obtain

dVj

dz
(z)hj(z) ≤ −ηV (t) +M1

∑
X∈S

|X0 −Xj |V (t). (38)

Consider now the second term of LjV (z) that appear
in (34):

r∑
ℓ=1

(Vℓ(z)− Vj(z))τjℓ =

r∑
ℓ=1

τjℓ

∫ 1

0

(
e
− ν

λℓλ
x

λℓλ

− e
− ν

λjλ
x

λjλ

)

α2(t, x) + a(
e

ν
µℓµ

x

µℓµ

− e
ν

µjµ
x

µjµ

)β2(t, x)dx.

Using the mean value theorem, on the functions λ 7→ e
− ν

λ
x

λ

and µ 7→ e
ν
µ

x

µ , we obtain
r∑

ℓ=1

(Vℓ(z)− Vj(z))τjℓ ≤ M2

r∑
ℓ=1

∑
X∈S

τjℓ|Xℓ −Xj |V (t),

where M2 is defined by

M2 =
2λ̄

kℓ

1

λ2 (
ν

λ
+ λ̄) +

2µ̄

kℓ

1

µ2
(
ν

µ
+ µ̄)e

ν
µ .

Combining this inequality with equation (38)

LjV (t) ≤ −ηV (t) +M1

∑
X∈S

|X0 −Xj |V (t)

+M2

r∑
ℓ=1

∑
X∈S

τjℓ|Xℓ −Xj |V (t). (39)

We now compute the quantity L̄ =
∑r

j=1 Pij(0, t)LjV (t).

Notice first that
∑r

j=1 Pij(0, t)
∑

X∈S |X0−Xj | = E[0,δ(0)]

(
∑

X∈S |X0−X(t)|) =
∑

X∈S E[0,X(0)](|X0−X(t)|), since
all the variables are independent. Thus, applying the
triangular inequality, the following inequality holds

L̄ ≤ −(η −M1

∑
X∈S

E[0,X(0)](|X0 −X(t)|))V (t)

+M2

r∑
j=1

r∑
ℓ=1

Pij(0, t)
∑
X∈S

τjℓ(|Xℓ −X0|+ |Xj −X0|)V (t)

≤ −(η − (M1 +M2rτ
⋆)

∑
X∈S

E[0,X(0)](|X0 −X(t)|))V (t)

+M2

r∑
j=1

r∑
ℓ=1

Pij(0, t)
∑
X∈S

τjℓ|Xℓ −X0|V (t)

Applying (16), we obtain

L̄ ≤ −(η − (M1 +M2rτ
⋆)

∑
X∈S

E[0,X(0)](|X0 −X(t)|))V (t)

+M2

∑
X∈S

r∑
j=1

|Xj −X0|(∂tPij(0, t) + cjPij(0, t))V (t).

This concludes the proof of Lemma 4. 2

4.2 Proof of Theorem 2

We now have all the tools to prove Theorem 2. Let us
denote k0(t) = η − (M1 + M2rτ

⋆)
∑

X∈S E[0,X(0)](|X0 −
X(t)|)−M2k(t)) and define the functional Z(t) as

Z(t) = exp(

∫ t

0

k0(s)ds)V (t).

Using the expression of k(t) in Lemma 4, we have∫ t

0

k(s)ds ≤
∑
X∈S

(E[0,X(0)](|X0 −X(t)|)

+ c⋆
∫ t

0

E[0,X(0)](|X0 −X(s)|)ds),

where c⋆ = rτ⋆. Consequently, choosing ϵ⋆ (defined in the
statement of Theorem 2 as

ϵ⋆ =
η

2(2M2c⋆) +M1
(40)



we obtain

E[0,(z,δ)(0))](Z(t)) ≥ E[0,(z,δ)(0))](e
−M2ϵ

⋆+ η
2 tV (t)). (41)

In the meantime we have

E[0,(z(0),δ(0))](LZ(t)) = e

∫ t

0
k0(s)dsE[0,(z(0),δ(0))](LV (t)).

Since E[0,(z(0),δ(0))](LV (t)) = E[0,(z(0),δ(0))](
∑r

j=1 Pij(0, t)

LjV (t)), we obtain using equation (37)

E[0,(z(0),δ(0))](LZ(t)) ≤ exp(

∫ t

0

k0(s)ds)E[0,(z(0),δ(0))](k0(t)

V (t) +

r∑
j=1

Pij(0, t)LjV (t)) ≤ 0.

Therefore, according to Dynkin’s formula (Dynkin, 2012,
Theorem 5.1, p. 132), we obtain

E[0,(z(0),δ(0))](Z(t))− Z(0) = E[0,(z(0),δ(0))](

∫ t

0

LZ(s)ds)

≤ 0. (42)

Consequently, defining γ = η
2 , and combining equa-

tions (41) and (42), we obtain

E[0,(z(0),δ(0))](V (t)) ≤ V (0)eM2ϵ
⋆

e−γt. (43)

We can easily conclude the proof of Theorem 2 using the
fact that V (t) is equivalent to the L2-norm of the system,
that is w(t).

5. APPLICATION TO THE TRAFFIC CONGESTION
REGULATION

In this section, we illustrate our theoretical results with the
example of traffic congestion regulation under uncertain
driver behaviour. The Aw–Rascle–Zhang (ARZ) model
(Aw and Rascle, 2000; Zhang, 2002), consisting of second-
order nonlinear partial differential equations (PDEs), can
describe the macroscopic traffic dynamics. More precisely,
considering a freeway segment of length L, the traffic flux q
(number of vehicles per unit time which cross a given point
on the road) and the traffic speed v verify (Yu and Krstic,
2019)

∂tq(t, x) + v∂xq(t, x) =
q(γp− v)

v
∂xv(t, x)

+
q(vf − p− v)

τv
, (44)

∂tv(t, x)− (γp− v)∂xq(t, x) =
vf − p− v

τ
, (45)

where the traffic pressure is defined by p(t, x) =
vf

ργ
m
( qv )

γ .

The parameter γ represents the overall drivers’ property,
reflecting their change of driving behavior to the increase
of density, vf is the maximum velocity, and τ is the
relaxation time related to driving behavior (Dabiri and
Kulcsar, 2022). In (Yu and Krstic, 2019), the system (44)-
(45) is linearized around a steady-state (q⋆, v⋆). The small
deviations from the nominal profile are defined as q̃(t, x) =
q(t, x) − q⋆ and ṽ(t, x) = v(t, x) − v⋆. At the boundary,
we consider a constant traffic flux q⋆ entering the domain
(it can be obtained using mainline flux metering at the
inlet): q = q⋆. At the other extremity, we have v =
v⋆

q⋆ q. Depending on the choice of parameters (q⋆, v⋆) the

traffic may be congested (Yu and Krstic, 2019). Then,
it is possible to consider ramp metering as a boundary
actuation to stabilize the oscillations of traffic flow and

speed. We consider that we control the traffic upstream of
the ramp metering (UORM). The objective is to stabilize
the deviations q̃(t, x) and ṽ(t, x). After linearization and a
change of coordinates, these states verify equations, these
states verify equations (1)-(4) where

λ0 = v⋆, µ0 = γp⋆ − v⋆, q = 1− γp⋆

v⋆
,

ρ = exp(− L

τv⋆
), σ+

0 = 0, σ−
0 (x) = −1

τ
exp(− x

τv⋆
),

For this linearized system, the controller (11) can be used
to guarantee exponential stability. To obtain a more real-
istic description of the drivers’ behavior, we now consider
that the variable γ(t) is stochastic. It follows a Markov
process characterized by the properties (P1)-(P3). We will
show in simulations that the closed-loop system is mean-
square exponentially stable under condition (18). Note
that this example cannot be seen as a direct application
of Theorem 2 for two reasons:

(1) First, the parameter σ−
0 is spatially varying. Our

methodology could easily be adjusted to overcome
this limitation.

(2) Then, since µ0 and q both depend on γ, they cannot
be seen as independent variables. The computations
we proposed could be adjusted but become more
involved.

(3) Finally, the change of coordinates required to rewrite
the linearized ARZ equations in the Riemann coordi-
nates depends on γ and may add extra terms to the
analysis. Again, the proposed computations could be
adjusted to deal with this problem.

Despite these limitations, we chose to consider the pro-
posed test case to emphasize possible extensions of our
methodology. The length of the freeway segment is cho-
sen as L = 0.5 km. The simulation time is T =
600s. The maximum speed limit is vm = 40 ms−1.
The maximum density of the road is ρm = 800 ve-
hicles per kilometer. The steady states are (q⋆, v⋆) =
(11640 vehicles per hour, 19.5 km.h−1). The relaxation
time is τ = 60s. We consider five different values for
γ (γ1, γ2, γ3, γ4, γ5) = (0.1, 0.48, 0.52, 0.53, 1.5). The ini-
tial transition probabilities are taken as (0.02, 0.32, 0.32,
0.32, 0.02), which means that the values are initially con-
centrated between γ2, γ3, γ4 ∈ [0.48, 0.53]. We choose the
reference value γ0 = 0.5. We operate the simulation with
the transition rates τij defined as

τij(t) =


0 if i = j

2κ if i ∈ {1, 5}
0.1κ if i ∈ {2, 3, 4}, j ∈ {1, 5}
κ(1 + 2 cos(ϵ(i+ 5j)t)2 if i, j ∈ {2, 3, 4}, i ̸= j

where κ = 10 and ϵ = 10−3. The dynamic of the state
probabilities P γ

j (t) = P(γ(t) = γj) is pictured in Figure 1,
and reflects the choice of transition rates: the mass of the
probability function is concentrated on the three states
γ2, γ3, γ4 close to the nominal value (which take turns
being the most probable state), and a residual mass (close
to zero) is put evenly on the two remaining states γ1
and γ5. We have pictured in Figure 2 an example of a
realization of the random parameter γ modeled by these
probabilities. As expected, the process spends most of its



time around the nominal value γ0 = 0.5, with frequent but
short-lived jumps to the two extremal states γ1 and γ5.

We give in (3) the closed-loop simulation of traffic flow
rate and velocity with the nominal control law (11) for
a realization of the stochastic parameter γ(t). The solver
is identical to the one used in (Yu et al., 2020a, 2022).
As expected, since the nominal value γ0 is close to the
different realisations, we have the exponential mean-square
stability of the closed-loop system. Finally, we show in
Figure 4 the Monte-Carlo simulation of ||(q̃, ṽ)||L2 (100
trials) with the nominal control law (11) for the chosen
stochastic parameter γ(t). The illustrates the properties
stated in Theorem 2.

Fig. 1. Dynamic of the transition probabilities
P1, P2, P3, P4, P5 and expected difference to the
nominal value.

Fig. 2. Example of a realization of the random parame-
ter γ(t)

Fig. 3. Closed-loop simulation of traffic flow rate and veloc-
ity with the nominal control law (11) for a realization
of the stochastic parameter γ(t). The controlled flow
rate evolution is highlighted in red.

Fig. 4. Monte Carlo simulation of ||(q̃, ṽ)||L2 (100 trials)
with the nominal control law (11) for the chosen
stochastic parameter γ(t).

6. CONCLUSIONS

In this paper, we considered the stability of coupled and
uncertain 2× 2 hyperbolic system. Parametric uncertain-
ties are modeled as independent Markov processes with a
finite number of values. We showed that the classical back-
stepping controller proposed in (Vazquez et al., 2011) for
nominal constant parameters guarantees the exponential
mean-square stability of the closed-loop system provided
that the nominal values are close enough on average to
the real ones. This result generalizes the deterministic
robustness results stated in (Auriol and Di Meglio, 2020).
The proposed methodology is adjusted from (Kong and
Bresch-Pietri, 2022a) and is based on a Lyapunov analysis.
We illustrated our results on the test case of traffic control.

Future works will focus on the generalization of our ap-
proach to non-independent stochastic parameters and to a
larger class of random variables (that may not be described
by Markov processes) and random fields.
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