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Abstract
Polarized networks, composed of weakly connected and self-reinforcing groups, can limit the diffusion of ideas, behaviors,
and innovations. Here, we use a complex contagion model, in which diffusion depends on both the connectivity and the
similarity of individuals, to ask how to optimally build bridges and enhance diffusion in networks characterized by
fragmentation and homophily. First, we show that the problem is NP-hard. Then, we explore the space of solutions using
heuristics, finding that connecting high degree nodes, or hubs, is an ineffective strategy to accelerate diffusion in fragmented
and homophilous networks.We show that in these networks, diffusion is more effectively accelerated by connecting similar
but low degree nodes. These results tell us that, in the presence of homophily and polarization, connecting communities
through their most central actors may impede rather than facilitate diffusion. Instead, strategies to accelerate the diffusion
of innovation, behaviors, and ideas should focus on creating links among the most similar members of different com-
munities. These findings shed light on the diffusion of ideas and innovations in polarized networks.
CCS Concepts: • Mathematics of computing → Network optimization; • Information systems → Social networks
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Significance statement

Filter bubbles can significantly inhibit the diffusion of ideas and behaviors, motivating the need to explore
mechanisms to improve the flow of information among disconnected groups. Here, we explore how to connect
dissimilar groups by strategically building bridges that maximize the diffusion of information. Our models assumes
diffusion depends on the similarity among individuals (e.g., similarity in attributes that could be thought of as age,
gender, tastes, etc.) and on the fraction of an individual’s neighbors who have previously adopted the idea, behavior,
or technology.We find that the best strategies involve connecting similar but low-degree nodes.We also find that hubs
are effective at promoting diffusion among their groups, but are ineffective as bridges between communities. These
findings shed light on the diffusion of ideas and innovations in polarized social networks and suggest that efforts to
bridge communities could focus on building relationships among relatively similar individuals from different groups.
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Introduction

The diffusion of innovations, behaviors, and ideas is limited
by the structure of networks (Pastor-Satorras and Vespignani
2001), the asymmetry of relationships (Christakis and Fowler,
2007), and by homophily (Alshamsi et al., 2015; Bisgin et al.,
2010; Christakis and Fowler 2009;McPherson et al., 2001)—
the tendency of people to connect with those to whom they
are similar. During the last decades, an important area of study
in network science has focused on understanding the diffu-
sion of ideas, behaviors, opinions, and diseases, not in ide-
alized networks, but in networks characterized by intricate
structures (Barabási and Albert, 1999; Boguá et al., 2003;
Dezso and Barabasi, 2001; Kempe et al., 2005; Pastor-
Satorras and Vespignani, 2001), tightly knit communities
(Stegehuis et al., 2016; Watts and Strogatz, 1998), different
spreading dynamics (Pastor-Satorras et al., 2015), asym-
metric relationships (Fowler and Christakis, 2008), high
degrees of homophily (Raasch et al., 2013), and differential
susceptibility (Smilkov et al., 2014).

One area of particular interest is the diffusion of infor-
mation in homophilous networks. Homophily can hinder
the spread of information when people fail to pass on or
absorb knowledge from those who are dissimilar (Raasch
et al., 2013). Homophily can lead to the formation of echo
chambers and redundant information (Lobel and Sadler
2015), limiting our collective ability to adopt behaviors
(Rostila, 2010), ideas, and innovations (Burt, 2009; Mäkelä
et al., 2012; Rogers 2010; Tortoriello et al., 2012). A key
question in this literature is how to promote the diffusion of
ideas, innovations, and behaviors, in networks fragmented
into homophilous, self-reinforcing communities.

Here, we explore strategies to build bridges among dis-
similar communities with the goal to accelerate the diffusion
of information. We do this through mathematical modeling
and numerical simulations designed to help understand the
balance between the roles of homophily and connectivity in
accelerating, or impeding diffusion. Our model assumes that
pairs of nodes sharing some attributes (e.g., similar in terms
age, income, gender, race, occupation, etc.) are more effective
at communicating ideas, behaviors, and information, among
them, than pairs of dissimilar nodes.

In our model, we gradually add bridges among com-
munities by targeting pairs of nodes based on their con-
nectivity or similarity. We perform analysis for two
diffusion models: the independent cascade (Goldenberg
et al., 2001) and the linear threshold (Kempe et al.,
2003) model. Our results indicate that, in the presence of
homophily, diffusion is facilitated by bridges connecting
similar nodes rather that high degree nodes. This expands
our understanding of network diffusion, which has long
emphasized the fact that hubs facilitate spreading in net-
works (Dezso and Barabasi, 2001; Pastor-Satorras and
Vespignani, 2001). Our findings show that linking similar

and low degree nodes can be significantly more effective to
promote diffusion among dissimilar communities
in situations characterized by similarity mediated diffusion
and social reinforcement.

Results

Conceptual framework

A diffusion model is a set of rules governing how nodes
affect their neighbors. Diffusion models are used to study
the spread of ideas, innovations, diseases, and behaviors
(Christakis and Fowler, 2007; Karsai et al., 2014; Pastor-
Satorras and Vespignani, 2001; Rogers 2010). In the
presence of homophily, diffusion can also depend on the
similarity of two nodes, the basic assumption being that
nodes are more likely to be influenced by their most similar
neighbors.

Here, we model the attributes of each node using a
vector of values between 0 and 1. Moreover, we consider
two similarity metrics: difference similarity (where the
distance between two nodes is the average difference
between their attributes) and cosine similarity (the cosine
of the angle between the two vectors of attributes). Both
difference similarity and cosine similarity take values
between 0 and 1. Identical vectors have a similarity of one
and uncorrelated vectors have a similarity of zero under
both metrics.

We use these similarity metrics in two models of dif-
fusion: independent cascade (Goldenberg et al., 2001; Saito
et al., 2008; Wang et al., 2012) and linear threshold (Kempe
et al., 2003). The independent cascade model is a proxy for
simple diffusion. In this model, each node has a chance to
activate each of its inactive neighbors. In our case, that
probability depends on the similarity between a node and its
neighbor. The linear threshold model is a proxy for complex
diffusion. Here, activation depends on the sum of simi-
larities with active neighbors. Activation happens when this
sum exceeds an inner threshold (e.g., a peer-pressure
model). Technical details of the network notation, simi-
larity measures and diffusion models are provided in the
Methods section.

To illustrate the trade-offs involved in building bridges
between nodes in dissimilar communities, we present a toy
model (Figure 1(a)). This toy model involves a network
consisting of two components: community 1, containing
only a single node, and community 2 containing a path
between three nodes. In this model, each node has two
numerical attributes. We fix the first attribute of nodes in
community 2 to 1, to ensure a high similarity among them
and make the second attribute a function of the variable x.
When x = 0, all nodes are identical, but dissimilarity grows
together with x.
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Now consider a diffusion process starting in community
1. Our goal is to add a connection between the two com-
munities that minimizes the total time needed to diffuse the
active state (e.g., the behavior or idea) to the entire network.
In this example, we have two options: connecting the node
in community 1 to the center of the target community (its
hub), or connecting it to one of the peripheral nodes (which
are structurally equivalent).

Using the difference similarity metric, the similarity
between the seed node in community 1 and the central node
of community 2 is σ1(x) = 1 – x, while the similarity between
a peripheral node in community 2 and the seed node or the
central node is σ2(x) = 1 – x

2. Figure 1(b) illustrates how the
value of difference similarity between nodes depends on x.

Nowwe can compute the expected time for activating the
entire network after adding an edge between the seed node
and the hub of the target community. First, activating the
center of the path takes an expected time of 1

σ1ðxÞ (since the
expected activation time is τ ¼ 1

p). Then, we independently
activate both peripheral nodes. Since the probability that in a
single round at least one of the peripheral nodes is activated
is 1� ð1� σ2ðxÞÞ2 (as ð1� σ2ðxÞÞ2 is the probability that
the activation of both nodes fail), it takes on average

1
1�ð1�σ2ðxÞÞ2 rounds until at least one of the peripheral nodes is
activated. Let us consider such a situation in which at least
one node get activated. With probability σ2(x)

2 both pe-
ripheral nodes got activated and the additional time nec-
essary to activate the entire network is zero. However, with
probability 2σ2(x) (1 – σ2(x)) exactly one of the peripheral
nodes got activated, in which case we have to wait for the
activation of the other peripheral node. Therefore, the
conditional probability that we have to wait until the other
peripheral node gets activated is
2σ2ðxÞð1� σ2ðxÞÞ=1� ð1� σ2ðxÞÞ2 (the probability that
exactly one node got activated divided by the probability

that at least one node got activated). If this is the case, we
have to wait on average additional 1

σ2ðxÞ rounds until the other
peripheral node is also activated (the details of these
computations are presented in Appendix A). Therefore, the
expected time τ1 for activating entire network is

τ1ðxÞ¼ 1

σ1ðxÞþ
1

1�ð1�σ2ðxÞÞ2
þ2σ2ðxÞð1�σ2ðxÞÞ

1�ð1�σ2ðxÞÞ2
1

σ2ðxÞ

¼ 1

1� x
þ4ð1þ xÞ

4� x2

Alternatively, if we add an edge between the seed node and
one of the peripheral nodes, the expected time needed to in-
dependently activate the first peripheral node, followed by the
central node, and the remaining peripheral node, is 1

σ2ðxÞ. Thus,
the total expected time τ2 to activate the three nodes is equal to

τ2ðxÞ ¼ 1

σ2ðxÞ þ
1

σ2ðxÞ þ
1

σ2ðxÞ ¼
6

2� x

Figure 1(c) plots these two functions. We can see that the
expected time needed to activate the entire network depends on
the value of x. For small values of x, that is when all nodes are
similar and the effect of homophily is weak, the structure plays
the deciding role. In this case, it is better to connect the seed
node to the center of the target community, even though the
seed node is more similar to the peripheral nodes. However, for
values of x that are greater than

ffiffiffiffiffi
13

p � 3 ≈ 0:606, homophily
trumps connectivity. Here, it is optimal to connect the seed node
to one of the peripheral nodes. Indeed, for x = 1 the similarity
between the seed node and the central node reaches zero. At
that point, diffusion can only take place with a connection
between the seed node and one of the peripheral nodes (hence,
the diverging red line on Figure 1(c)).

Figure 1. (a) Toy network used to illustrate the trade-off between connectivity and similarity in the independent cascade model with
homophily. Dashed lines represent links that can be added to the network. (b) Difference similarity between nodes as a function of the
value of parameter x. The red color denotes the similarity between the seed node A and the central node B, while the blue color denotes
the similarity between the seed node A and a peripheral node C. (c) Expected time needed to activate the entire network as a function of
the value of parameter x for the independent cascade model. The red line shows the time needed to activate the entire network after
adding a link between the seed node and the central node. The blue line represents the time needed to activate the full network after
linking the seed node and one of the peripheral nodes. Lines represent analytical curves, points were computed using Monte Carlo
simulations.
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Notice that for this network simple heuristics tend to
always give the same solution, regardless of the value of x.
For example, connecting similar nodes always results in a
link between the seed node and a peripheral node, while
connecting based on degree always results in a link between
the seed node and the central node. Since the optimal choice
depends on x, these simple heuristics are inadequate to solve
the problem even in this simple case. Nevertheless, heu-
ristics can serve as a good starting point when searching for
solutions.

A qualitatively similar result is obtained for the same
network in the case of complex diffusion (albeit with a
different crossover value for x). Here, we assume that the
thresholds are generated using a uniform distribution. If we
add an edge between the seed node and the center of the
path, the expected time to activate the full network using the
linear threshold model is

τ01ðxÞ¼
3

σ1ðxÞþ
1

1�ð1�σ2ðxÞÞ2
þ2σ2ðxÞð1�σ2ðxÞÞ

1�ð1�σ2ðxÞÞ2
1

σ2ðxÞ

¼ 3

1�x
þ4ð1þxÞ

4�x2

At the same time, if we add an edge between the seed
node and one of the peripheral nodes, the expected time to
activate the full network using the linear threshold model is
equal to

τ02ðxÞ ¼
2

σ2ðxÞ þ
2

σ2ðxÞ þ
1

σ2ðxÞ ¼
10

2� x

As a result, for values of x that are greater thanffiffiffiffi
37

p �5
3 ≈ 0:361, it is optimal to connect the seed node to one

of the peripheral nodes, otherwise it is optimal to connect it
to the central node. In Appendix A, we analyze this example
in more detail. We also present other illustrative instances of
the problem.

Computational complexity of the problem

We now investigate whether it is possible to find an optimal
way of building a bridge between two dissimilar commu-
nities in a social network. We consider a diffusion process
starting from a particular group of nodes called the seed
community, that is at the beginning of the process only
nodes from the seed community are active. We start with
formally defining the problem faced by the party tasked with
improving the speed of diffusion.

Definition 2.1. (Forming Bridges). The problem is defined
by a tuple ðG,X , bC, bA, b, σ, τÞ, whereG = (V, E) is a network,
X 2X

n is a set of characteristics of the nodes, bC � V is the
seed community, bA4E is the set of edges allowed to be
added, b2N is the budget specifying the maximal number
of edges that can be added to the network, σ is a chosen
similarity measure, and τ is the function measuring the
expected time of activation of an entire network according
to a chosen influence model. The goal is then to identify a
set of edges A*4bA such that A* is in:

argmin
A4bA : jAj≤bτ

�
ðV ,E[AÞ, bC�

A trivial solution could be fully to fully connect the two
communities. However, this could be either expensive or
impossible. Some edges can be too costly to maintain,
especially between highly dissimilar people. Other con-
nections may be impossible to create, for example, if
prejudice or personal conflict prevents forming a link be-
tween two people. To model these kinds of constraints, we
introduce set bA. What is more, there is a suggested cognitive
constraint to the number of social relationships that each
person can maintain (Hill and Dunbar, 2003). Therefore, the
process of adding a number of edges between communities
need to be strategic where each new edge is carefully se-
lected to maximize diffusion and accordingly minimize the
expected time necessary to activate an entire network.

Figure 2. Schematic of the simulation model explored, using two random networks of 500 and 2000 nodes. The chart on the right
shows the total time needed to activate a network as a function of the average degree, and similarity, of the links added among the two
communities. The network consists of the Erd}os–Rényi seed community with 500 nodes and a Barabási–Albert target community with
2000 nodes. Our generalized linear threshold diffusion model is used with cosine similarity in these simulations. Results are an average of
100 simulation runs, with new network generated for each run.
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We investigate the computational complexity of the
problem, that is, we ask whether there exists an efficient
algorithm of selecting the best edges to be added to a
network in order to boost the diffusion between com-
munities. Unfortunately, we find the problem to be an
exponential task in a general case, that is, there exists no
algorithm that finds an optimal solution for large networks
in feasible time. Details of the computational complexity
analysis of the problem, including the proof of
NP-hardness are presented in Appendix B. The
NP-hardness proof is based on a reduction from a

well-known Set Cover problem, one of Karp’s twenty one
NP-complete problems (Karp, 1972). We show a method
of building a network that reflects the structure of a given
Set Cover problem instance and use this network as an
input to the Forming Bridges problem. We then prove that
a solution of the constructed Forming Bridges problem
instance corresponds to a solution of the given instance of
the Set Cover problem. Hence, if the Forming Bridges
problem could be solved in polynomial time, it would
imply that the Set Cover problem could also be solved in
polynomial time.

Figure 3. Total time needed to activate a network when using a source community of Erd}os–Rényi with 500 nodes and a target
community with 2000 nodes. Axes represent the coordinate of the strategic space, with node similarity in the y-axis, and average
degree as the x-axis. Color intensity indicates the expected time needed to activate the entire target network. Lower times represent
better performance. These results are an average of 100 simulation runs, with new network generated for each run.
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Simulation results

Given the computational complexity of the model, we
explore more intricate network structures using heuristics
and simulations. The technical details of our simulations are
presented in Appendix C. Here, we present an overview of
the simulations and their main results.

We consider networks consisting of two separate compo-
nents: one representing the seed community and the other
representing the target community. The target community is
generated using either the Erd}os–Rényi model (Erd}os and
Rényi, 1959) (where every pair of nodes is connected with
the same probability), the Watts–Strogatz model (Watts and
Strogatz, 1998) (where resulting networks have small-world

Figure 4. Results for differential susceptibility setting, for the best strategy in each setting. The x-axis of each plot represents the value of
α, that is, susceptibility coefficient of the resilient nodes, while the y-axis represents the value of p, that is, the percentage of resilient
nodes in the network. Color intensity indicates the expected time needed to activate the entire target network. Lower times represent
better performance. These results are an average of 100 simulation runs, with new network generated for each run.
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property), or the Barabási–Albert model (Barabási and Albert,
1999) (where the structure of the network follows an assortative
scale-free topology). Similarly, the seed community is generated
using either an Erd}os–Rényi model, Watts–Strogatz model, or a
Barabási–Albert model. Since the structure of the seed com-
munity does not introduce any noticeable differences in our
results, here, we report the results in which the seed community
is generated using the Erd}os–Rényi model. The seed com-
munity consists of 500 nodes, all of which are active at the
beginning of the simulation, while the target community con-
sists of 2000 nodes, all of which are inactive at the beginning of
the simulation. In our simulations, we use undirected networks.
While directed networks can carry additional information about

a node’s status (Ball and Newman, 2013), they require addi-
tional assumptions to guarantee that the entire network can be
activated by a diffusion process. In particular, the target com-
munity in a directed network has to be strongly connected in
order to be able to be activated via an arbitrary bridge, and not
every directed network structure could be used in our simu-
lations. Hence, we focus on undirected networks, as any such
network can be used as the target community.

To model homophily, we assign two attributes to nodes
using different distributions. The mean value of the first
attribute is 0.2 in the seed community and 0.8 in the target
community, while the mean value of the second attribute is
0.8 in the seed community and 0.2 in the target community.
Hence, both attributes contribute to the dissimilarity of seed
and target community. We use normal distributions with a
standard deviation of 0.05. Results for varying levels of
homophily are presented in Appendix D.

Here we build a bridge between two communities using
10 edges. To characterize possible bridge building strate-
gies, we use two key characteristics of the edges: (1) the
similarity between the ends of the edge and (2) the average
degree of the nodes in an edge. In particular, we consider a
strategic space with coordinates 

kðxÞ þ kðyÞ
k*1 þ k*2

,
σðx, yÞ
σ*

!

where k(x) is the degree of node x, k*1 and k*2 are the highest
and the second highest degree in the network, respectively,
σ(x, y) is the similarity between nodes x and y, and σ* is the
highest similarity among all pair of nodes in the network.
Therefore, every potential edge to be added is translated to a
point in this strategic space. Whenever an edge will be
added to the network, the heuristic picks the edge closest to
a point in the strategic space according to the Euclidean
metric. For instance, the (1, 1) strategy will pick edges with
the highest average degree and highest similarity, while the�
0, 1

2

�
strategy will pick edges with the lowest average

degree and a medium similarity. Notice that this definition
of the strategic space guarantees that as long as there are any
non-edges between communities, new edges will be added

Figure 5. Time of activation of an entire network as a function of
the value of parameter x, given the linear threshold model. The
red color represents impact of adding an edge between the seed
and the center while the blue color represents the impact of adding
an edge between the seed and any peripheral node.

Figure 6. The network used to illustrate effects of homophily on
the expected time of activation in the linear threshold model.

Figure 7. Expected time of activation of node v depending on the types of its predecessor v0 and successor v00, given the linear threshold
model. Numbers on edges express similarities between nodes.
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to the network as a result of executing the heuristic. It is
theoretically possible that there are no available edges to be
added in the direct vicinity of a given point in strategy space,
in which case the closest (according to the Euclidean metric)
option is selected. However, in our simulations both
communities start completely disconnected (which results
in 106 edges that can be added to the network), providing a
wide range of options, out of which we select only 10.

Figure 2 illustrates our main result by presenting the
average time needed to activate an entire Barabási–Albert
network using our generalized linear threshold diffusion
model with cosine similarity. It shows that, on average, the
best results (the lowest total diffusion times) are achieved by
adding edges between similar low degree nodes in
Barabási–Albert networks (strategies located in the upper
left corner of the plot). This strategy is clearly superior to
adding an edge between high degree and low similarity
nodes (strategies located in the lower right of the plot, which
take three times more time than the best strategies).

Figure 3 shows this result in more settings, including
Erd}os–Rényi, Watts–Strogatz, and Barabási–Albert net-
works, and using simple and complex contagion (respec-
tively independent cascade and linear threshold diffusion
models). As expected, heuristics targeting hubs are rela-
tively effective in cases characterized by simple contagion,
specially in heterogeneous networks. But when social re-
inforcement is present (linear threshold diffusion model)
adding connections among low degree nodes tends to be a
superior strategy, especially if one is able to find low degree
nodes that are relatively similar between the source and
target community. Even though this result might seem
surprising, it is worth noting that in order to spread the
diffusion process to the other community, it is first necessary
to activate at least one node within it. While a hub may seem
like a perfect candidate for such a “foothold,” it can be very
difficult to activate, due to suppressing influence from many
inactive neighbors and, on average, low similarity with the
active neighbors from the source community. On the other
hand, if a member of the target community has a low degree,
even a single highly similar active neighbor from the source

community can significantly sway their opinion. Once at
least a few such low-degree members of the target com-
munity get activated, they can help the diffusion process
reach the hubs, with which they will be on average much
more similar than the members of the source community.

Activating the hubs (nodes with highest degrees in the
network) is believed to be crucial for spreading diffusion
efficiently in social networks (Pastor-Satorras and Ves-
pignani, 2001). However, our results suggest that this is not
necessarily the case when similarity and social reinforce-
ment play a role in diffusion process. This is consistent with
the literature suggesting that strategic targeting of hubs is
not always the most effective diffusion strategy (Alshamsi
et al., 2018; Centola and Macy, 2007).

We also perform a number of other experiments, exploring
different aspects of our setting. As mentioned above,
Appendix D presents our results regarding networks with
varying levels of homophily. In general, we find that diffusion
is faster in more homophilous networks, but the relative
performance of our heuristic strategies remains the same, that
is, strategies that are more effective in more homophilous
networks tend to be more effective also in less homophilous
networks. In Appendix E, we present simulations for net-
works with varying size of the source and the target com-
munity. We find that when it comes to the relative
effectiveness of different bridge construction strategies, the
observed trends are independent of the network size. In other
words, the heuristics that are most effective for a particular
diffusion model remain so no matter the size of the network.

Finally, we also consider cases where nodes have dif-
ferential susceptibility, that is, making some of the nodes
less susceptible to activation, which can affect diffusion
(Smilkov et al., 2014). To this end, we assume that each
node x in the network has a susceptibility coefficient αx2 (0,
1]. To take this coefficient into consideration, we now
slightly alter definitions of the diffusion models. In the
independent cascade model, the probability of activating
node y by its neighbor x is now p (x, y) = αyσ(x, y)q, where σ

Figure 8. Examples of possible orders of empty and filled nodes
in community C2. The network in subfigure (C) gets activated
faster than the network in subfigure (B), but slower than the
network in subfigure (A).

Figure 9. Network construction used in the proof of Theorem
B.1.
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is the chosen similarity measure and q is the basic activation
probability. In the linear threshold model, an inactive node x
becomes active in round t when αx

P
y2I(t�1)\N(x)σ(x, y) ≥θx,

where σ is the chosen similarity measure and θx is the
threshold assigned to the node x. Notice that if for every
node we have αx = 1 then the diffusion model is exactly the
same as before. At the beginning of each simulation, we
pick pn nodes uniformly at random and we set their

susceptibility coefficients to α, where p 2 [0, 1] and α 2 (0,
1]. For all other nodes, we set their susceptibility coeffi-
cients to 1. We then add 10 edges using the best heuristic
from the basic setting and measure the time necessary to
activate the entire network.

Our results concerning differential susceptibility are
presented in Figure 4. As can be seen from the figure, the
value of the susceptibility coefficient of the resilient nodes is

Figure 10. Comparison between the expected time of activating entire network for the best (for this particular setting) strategy and
baseline heuristics, in network consisting of the ER (500, 10) seed community and a target community with 2, 000 nodes. Plots are
presented with logarithmic scales. The results are presented as an average over 100 simulation runs, with new network generated for
each run. Colored areas represent 95% confidence intervals.
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considerably more important than the percentage of the
population that they constitute. While (Smilkov et al., 2014)
reported that even a small group of highly susceptible nodes
can support a persisting infection in a Susceptible-Infected-
Susceptible model, we analyze an opposite setting and find
that even a relatively small number of highly resilient nodes
can greatly increase the time necessary to activate a network
in our model. At the same time, even a large portion of
moderately susceptible nodes has a relatively insignificant
effect on the activation time. The results are consistent with
respect to the used similarity measure and diffusion model.
Our observations confirm that even in a process where
diffusion is affected by similarity, differences in individual

susceptibility can significantly affect the diffusion
dynamics.

Discussion

Innovations, ideas, and behaviors, can only benefit society if
they are able to diffuse. Yet, human society tends to be
fragmented, and composed of groups of like-minded people.
Homophily is a social glue that on the one hand helps stabilize
social groups, but on the other, impedes the diffusion of
behaviors, ideas, and innovations among them (Centola 2011;
McPherson et al., 2001; Pancs and Vriend 2007; Rogers 2010;

Figure 11. Results for experiments with different levels of homophily, for network consisting of the ER (500, 10) seed community and
ER (2000, 10) target community. The segregation value is expressed as the percentage of inter-type edges in the network.
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Rostila 2010; Singh 2005; Sie et al., 2012; Van de Rijt et al.,
2009).

Here, we explored the question of how to accelerate
diffusion in networks characterized by homophily and
fragmentation. From a computational complexity point of
view, we prove the problem to be NP-hard, that is, finding an
optimal solutionmay require exponential computations and is
impractical for larger networks. This result highlights the
need to approach this problem through heuristic methods that
leverage structural information, such as the centrality of
nodes, and intrinsic characteristics, such as those explaining
the homophily between a pair of individuals. Our results
showed that, particularly in the case of the complex

contagion, diffusion among dissimilar communities can be
accelerated by connecting similar low-degree nodes, instead
of connecting dissimilar high-degree nodes. These results are
slightly counter-intuitive, given the importance that the
network science literature has placed on the connectivity of
nodes as a key for diffusion (Dezso and Barabasi, 2001;
Pastor-Satorras and Vespignani, 2001. Our findings suggest
this to be true only for diffusion based on simple contagion,
which in the literature is often associated with modeling
phenomena such as contagious diseases (Min and San
Miguel, 2018), the spread of rumors (Ibrahim et al., 2016),
and viral marketing (Chen et al., 2010). In contrast, complex
contagion is usually used to model more intricate processes

Figure 12. Results for experiments with different levels of homophily, for network consisting of the ER (500, 10) seed community and
WS(2000, 10) target community. The segregation value is expressed as the percentage of inter-type edges in the network.
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such as the diffusion of innovations (Karsai et al., 2014),
economic diversification and development (Hidalgo et al.,
2007; Hidalgo, 2021), participation in social movements
(McAdam and Paulsen, 1993), and fashion trends (Crane,
1999). This discrepancy between potential applications of
both models gives us a new insight into the interpretation of
our findings. The effectiveness of diffusion among the net-
work nodes depends on their absorptive capacity (Cohen and
Levinthal, 1990), that is, their ability to assimilate the new
information. The spreading of ideas that are relatively easy to
internalize can greatly benefit from the involvement of net-
work hubs. However, in the case of ideas that are more
difficult to absorb, synergy coming from the similarity be-
tween nodes may prove crucial.

It is worth noting that in reality the problem of con-
structing inter-community bridges might be more complex,
as some connections might be more costly, or even im-
possible to be added, that is, some parts of the strategic
space might be inadmissible. A possible way to model such
a setting is the use of signed networks (Leskovec et al.,
2010), that is, networks in which edges can represent either
positive (friendly) or negative (antagonistic) relations. In
particular, real-life signed networks are known to exhibit
certain structural balance (Kirkley et al., 2019), where some
configurations of positive and negative links are preferred
over others. It is possible that building bridges that support
these preferred configurations might be more beneficial to
diffusion in signed networks. Another way in which real-life

Figure 13. Results for experiments with different levels of homophily, for network consisting of the ER (500, 10) seed community and
BA (2000, 5) target community. The segregation value is expressed as the percentage of inter-type edges in the network.
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social networks might be more intricate than those used in
our simulations concerns the distribution of node attributes.
We assume that said distribution depends solely on the
community to which the node belongs. However, a recent
study indicates that people with similar network charac-
teristics might share similar neural activity (Baek et al.,
2022). It suggests the existence of an additional dimension
of homophily, where a hub of community A could be more
similar to a hub of community B, than to a low-degree node
from community B. If the correlation between the charac-
teristics and behaviors of hubs is systematically strong, and
this translates to susceptibility among them, these corre-
lations could make hubs potentially viable bridges. Further
research will be needed to understand if that is the case.

Our findings have important lessons and policy implica-
tions. While high degree nodes play an important role in
network diffusion, they are often hard to influence from
outside their own communities. Hubs can therefore be more
effective as promoters of diffusion among their own com-
munity instead of bridge builders. In fact, linking low-degree
but highly similar members of dissimilar communities can
give surprisingly good results, suggesting that future efforts to
bridge communities could focus on connecting similar
members of dissimilar communities. In a world where leaders
look for the approval of those who follow them, a better
approach to connect opposing groups could be to start from
the bottom, by promoting relationships between low con-
nectivity members in their base, and then having that in-
fluence percolate up to the leadership.

Methods

Network notation

We denote a network byG = (V, E), where V is a set of n nodes
and E4 V × V is a set of edges. We denote the edge between
nodes x and y by (x, y). In this work, we consider only
undirected networks, that is, networks where E is a set of
unordered pairs and we do not discern between edges (x, y)
and (y, x). We assume that networks do not contain self-loops,
that is, "x2V ðx, xÞÏE. By E ¼ V ×V ∖ð[x2Vfðx, xÞg[EÞ we
denote the set of all non-existing edges.

We denote the set of neighbors of x inG by NG(x), that is,
NGðxÞ ¼ fy2V : ðx, yÞ 2Eg. We denote by kG(x) the
number of neighbors (the degree) of a node x, that is, kG(x) =
|NG(x)|. To make the notation more readable, we will often
omit the network itself from the notation, for example, by
writing k(x) instead of kG(x), whenever the network in
question is clear from the context.

Similarity measures

Tomodel homophily, that is, the tendency of members of the
social network to form ties with people similar to them-
selves, we need to define properties of each node and
measure the similarity between nodes according to these
properties. To do this, we assign to each node x a vector of h
attributes, that is, vector (x1,…, xh). Let X denote the set of
all possible attributes vectors. We assume that each attribute

Figure 14. Results of experiments with different homophily levels for best heuristic in network without inter-type edges. Each line
represents results for different target community. Colored areas represent 95% confidence intervals. Scales are fixed for easier comparison.
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has a value from interval [0, 1]. We denote the similarity
between two characteristics vectors by σ :X ×X→ ½0; 1�.
We consider the following two similarity measures: dif-
ference similarity and cosine similarity.

Difference-similarity is expressed in terms of average
difference between attributes values, with all attributes
considered equally important

σDðx, yÞ ¼ 1�
P

ijxi � yij
h

This similarity was used with categorical variables by
(Centola, 2011).

Cosine similarity is expressed as the cosine of an angle
between two vectors in R

h space

σCðx, yÞ ¼
P

ixiyiffiffiffiffiffiffiffiffiffiffiffiP
ix

2
i

p ffiffiffiffiffiffiffiffiffiffiffiP
iy

2
i

p
This similarity was used by (Aral et al., 2009).

Similarity mediated diffusion

We incorporate the similarity measures into two widely used
models of diffusion: independent cascade (Goldenberg
et al., 2001) and linear threshold (Kempe et al., 2003).

Figure 15. Same as Figure 3 but for networks consisting of a source community of Erd}os–Rényi with 250 nodes and a target community
with 1000 nodes.
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Both of these models describe diffusion in a network in
terms of node activation. The diffusion process in both
models consists of discrete rounds, starting with a small
fraction of active “seed” nodes.

In the independent cascade model, each node has a chance
to activate each of its inactive neighbors with a constant
probability (Goldenberg et al., 2001). The independent cas-
cademodel is a proxy for simple diffusion, where diffusion can
result from contact with a single “activated” individual
(Christakis and Fowler, 2007; Fowler and Christakis, 2008;
Pastor-Satorras and Vespignani, 2001; Pastor-Satorras et al.,
2015). We assume that the probability of a node activating its
inactive neighbor is proportional to the similarity between

them, p (x, y) = σ(x, y)q, where p (x, y) is the probability that
node x will activate its neighbor y, σ(x, y) is the similarity
between the two nodes and q is the basic probability of ac-
tivation (in our simulations we assume that q = 0.2). Each node
tries to activate each of its neighbors in every simulation round.

In the linear threshold model a node becomes active only
if a certain fraction of its neighbors are active (Kempe et al.,
2003). This model is a proxy for complex diffusion where
diffusion requires contact with multiple “active” individuals
(Karsai et al., 2014). We implement this model by assuming
that the sum of similarities with active neighbors needs to
exceed a threshold for a node to be activated (p(x) = P
(
P

y2A(x)σ(x, y) > θx)where p(x) is the probability of activating

Figure 16. Same as Figure 3 but for networks consisting of a source community of Erd}os–Rényi with 500 nodes and a target community
with 1000 nodes.
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node x, A(x) is the set of active neighbors of x, σ(x, y) is the
similarity between nodes x and y, and θx is a threshold
assigned to node x based on a certain distribution). To
guarantee that in the end all nodes in the network are ac-
tivated, a new threshold is assigned to each inactive node at
the beginning of each round (this way in a connected
network with non-zero similarities, at least one node always
has positive probability of being activated).
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Erd}os P and Rényi A (1959) On random graphs I. Publicationes
Mathematicae Debrecen 6(1959): 290–297.

Fowler JH and Christakis NA (2008) Dynamic spread of happiness
in a large social network: longitudinal analysis over 20 years in
the framingham heart study. Bmj: British Medical Journal 337:
a2338.

Goldenberg J, Libai B and Muller E (2001) Using complex sys-
tems analysis to advance marketing theory development:
modeling heterogeneity effects on new product growth through
stochastic cellular automata. Academy of Marketing Science
Review 9: 1–19.

Hidalgo CA (2021) Economic complexity theory and applications.
Nature Reviews Physics 3(2): 92–113.

Hidalgo CA, Bailey K, Barabási A-L, et al. (2007) The product
space conditions the development of nations. Science 317:
5837–6487.

Hill RA and Dunbar RIM (2003) Social network size in humans.
Human Nature 14: 53–72.

Ibrahim RA, Hefny HA and Hassanien AE (2016) Controlling
rumor cascade over social networks. In: International Con-
ference on Advanced Intelligent Systems and Informatics. New
York, NY: Springer, pp. 456–466.

Karp RM (1972) Reducibility among combinatorial problems. In:
Complexity of Computer Computations. New York, NY:
Springer, pp. 85–103.

Karsai M, Iniguez G, Kaski K, et al. (2014) Complex contagion
process in spreading of online innovation. Journal of The Royal
Society Interface 11(101): 20140694.

Kempe D, Kleinberg J and Tardos É (2003) Maximizing the spread
of influence through a social network. In: Proceedings of the
Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. New York, NY: ACM,
pp. 137–146.

Kempe D, Kleinberg J and Tardos É (2005) Influential nodes in a
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Appendix A

Illustrative examples

To illustrate the model and to demonstrate that homo-
phily can be the driving force behind the diffusion
process, we now show some exemplary instances of our
problem.

We will first present an example of utilizing simple
diffusion, that is, independent cascade model. Consider
the network G presented in Figure 1(a) in the main
article, consisting of two components, the seed com-
munity 1, containing only a single node, and the target
community 2 in the form of a path with three nodes.
Each node in the network has two numerical attributes,
with values depicted in the figure. Attribute values of
most of the nodes are determined by the parameter x 2
[0, 1].

The difference similarity between the node from the seed
community and the center of the path is

σ1ðxÞ ¼ 1� jx� 0j þ j1� x� 1j
2

¼ 1� x

While the similarity between a peripheral node and either
the seed node or the center of the path is

σ2ðxÞ ¼ 1� jx� xj þ j1� ð1� xÞj
2

¼ 1� jx� 0j þ j1� 1j
2

¼ 1� x

2

As it can be seen, for x = 0 the similarity between every
two nodes in the network is equal to 1, as for x = 0 all nodes
has exactly the same attributes values.While x increases, the
similarity between the seed node and the center of the path
decreases, until it reaches 0, while the similarity between
peripheral nodes and other types of nodes in the network
decreases until it reaches 1/2. Figure 1(b) illustrates how the
value of difference similarity between nodes depends on the
value of x.

Given these similarity values we can compute the ex-
pected time of activating entire network after adding an edge
between the seed node and either the center of the path or
one of the peripheral nodes. If we add an edge between the
seed node and the center of the path, the expected time of
activation is equal to
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τ1ðxÞ ¼ 1

σ1ðxÞ þ
1þ 2ð1� σ2ðxÞÞ
1� ð1� σ2ðxÞÞ2

1

σ2ðxÞ

¼ 1

1� x
þ 1þ x

1� x2

4

¼ 1

1� x
þ 4ð1þ xÞ

4� x2

As first we need to activate the center of the path in
expected time 1

σ1ðxÞ and then we independently activate both
peripheral nodes. It takes on average 1

1�ð1�σ2ðxÞÞ2 rounds until
at least one of them is activated. Then, the probability that
only one peripheral node became activated is 2σ2ðxÞð1�
σ2ðxÞÞ=1� ð1� σ2ðxÞÞ2 (where 2σ2(x) (1 � σ2(x)) is the
probability that exactly one peripheral becomes activated,
while 1� ð1� σ2ðxÞÞ2 is the probability that at least one
becomes activated) and we have to wait on average 1

σ2ðxÞ
rounds until the other peripheral node is also activated.

On the other hand, if we add an edge between the seed
node and one of the peripheral nodes, the expected time of
activation is equal to

τ2ðxÞ ¼ 1

σ2ðxÞ þ
1

σ2ðxÞ þ
1

σ2ðxÞ ¼
3

1� x
2

¼ 6

2� x

As first we need to activate the peripheral that we connect
to the seed, then we activate the center of the path, and then
we independently activate the remaining peripheral node,
each of them in expected time 1/σ2(x).

Figure 1(c) illustrates how the expected time of acti-
vation of the entire network depends on the value of pa-
rameter x. We can see that depending on the values of
similarity (determined by the value of x) the structure of the
network itself becomes more or less important. For the low
values of x, that is, when all nodes in the network are highly
similar to each other, the structure plays the deciding role
and it is the optimal choice to connect the seed node to the
center of the path, even though the seed node itself is more
similar to the peripheral nodes. We have τ1(x) = τ2(x) for
x ¼ ffiffiffiffiffi

13
p � 3; hence, for the values of x higher thanffiffiffiffiffi

13
p � 3, it is optimal to connect the seed node to one of the
peripheral node. Indeed, for x = 1 the similarity between the
seed node and the center of the path reaches zero; hence, the
diffusion can only take place with a connection between the
seed node and one of the peripheral nodes.

Let us now analyze the complex diffusion case for the
same network. We will assume that the thresholds are gen-
erated using uniform distribution. If we add an edge between
the seed node and the center of the path, the expected time of
activation under linear threshold model is equal to

τ01ðxÞ¼
3

σ1ðxÞþ
1

1�ð1�σ2ðxÞÞ2
þ1þ2ð1�σ2ðxÞÞ
1�ð1�σ2ðxÞÞ2

1

σ2ðxÞ

¼ 3

1� x
þ 1þ x

1� x2

4

¼ 3

1� x
þ4ð1þ xÞ

4� x2

At the same time, if we add an edge between the seed
node and one of the peripheral nodes, the expected time of
activation under linear threshold model is equal to

τ02ðxÞ ¼
2

σ2ðxÞ þ
2

σ2ðxÞ þ
1

σ2ðxÞ ¼
5

1� x
2

¼ 10

2� x

Figure 5 presents the expected time of activating the
entire network under linear threshold model. As it can be
seen, the general trends are analogical to these of the in-
dependent cascade model.

We now present another example of a similarity-based
diffusion in the presence of complex diffusion in a network,
that is, the linear threshold model. Consider a network with
two different types of nodes and only one numerical at-
tribute for each node. For the filled nodes, the value of this
attribute is 1, while for the empty nodes it is determined by
parameter x 2 (0, 1]. In this network, we have two com-
munities: the seed community C1 with one filled node and
one empty node connected with an edge, as well as com-
munity C2 consisting of k filled nodes and k empty nodes
connected into a path. Let us assume that we are only al-
lowed to add an edge between one node from the seed
community and one of the ends of the path. The situation is
presented in Figure 6.

Now let us consider how the expected time of activation
of the entire network depends on the order of k filled and k
empty nodes in community C2. Notice that every node v in
community C2 becomes activated when only one of its
neighbors active. We will call this neighbor the predecessor,
and the other neighbor (if it exists) the successor of v.

Figure 7 presents the expected time of activation of a
node under linear threshold model, depending on the types
of its predecessor v0 and successor v00. We will consider
various possible orders of empty and filled nodes in
community C2 presented in Figure 8. In particular,
Figure 8(a) presents a network with k filled nodes followed
by k empty nodes. In the network presented in Figure 8(a),
the expected time of activation of the entire network is

τaðxÞ ¼ 2k þ 2

x
þ 2ðk � 2Þ þ 1 ¼ 4k � 3þ 2

x

Since each of the k filled nodes is activated in expected
time 2, the first empty node is activated in expected time 2/x,
the following k � 2 empty nodes in expected time 2 each,
and finally the last node in time 1. Hence, for a totally
segregated network the expected time of activation is 4k �
3 + 2/x.

Moving to the network presented in Figure 8(b), its total
expected time of activation is

τbðxÞ ¼ 2þ ð2k � 2Þ 2
x
þ 1

x
¼ 4k � 3

x
þ 2
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Since the first filled node is activated in expected time 2,
the following 2k � 2 nodes are activated in expected time 2

x
each, while the last node is activated in time 1

x. Hence, in
such network the total expected time of activation is never
shorter than in a fully segregated network.

Finally, for network presented in Figure 8(c) the ex-
pected time of activation is

τcðxÞ ¼ 2k þ ðk � 1Þ 2
x
þ 1

x
¼ 2k � 1

x
þ 2k

Since every of the k nodes with predecessor of the same
type is activated in expected time 2, k � 1 nodes with
predecessors of different types are activated in expected
time 2/x each, while the last node is activated in time 1/x. In
particular, we have that τc is always greater than τa and it is
always smaller than τb. As it can be seen, the most ho-
mogenous structure provides the best expected time of
activation.

Appendix B

Complexity analysis

Here, we present the proof of NP-hardness of the Forming
Bridges problem.

Theorem B.1. Forming Bridges problem is NP-hard for
independent cascade and linear threshold diffusion models.

Proof.
The decision version of the optimization problem is the

following: given a network G = (V, E), a set of character-
istics of the nodes X, the seed community bC, is the set of
edges allowed to be added bA, the budget b, a similarity
measure σ, a function τ measuring the expected time of
activation according to a certain influence model, and a
value τ* 2R, determine whether there exists a set of edges
A*4bA such that |A*| ≤ b and τððV ,E[A*Þ, bCÞ ≤ τ*.

The main idea of the NP-hardness proof is as follows.We
will show a reduction from the NP-complete Set Cover
problem. We build a network that reflects the structure of a
given Set Cover problem instance and use it as an input for
the Forming Bridges problem. Finally, we show that a
solution of the Forming Bridges problem corresponds to a
solution of the given instance of the Set Cover problem.

An instance of the NP-complete Set Cover problem is
defined by a universe U = {u1, …, um}, a collection of sets
S = {S1,…, Sk} such that"jSj�U, and an integer b ≤ k. The
goal is to determine whether there exist b elements of S the
union of which equals U.

We will now create a network G based on the given
instance of the Set Cover problem, as shown in Figure 9:

· The set of nodes: For every Si 2 S, we create a single
node, denoted by Si. For every ui 2 U, we create a
single node, denoted by ui. We also create a single
node a.

· The set of edges: For every uj 2 U and every Si 2 S
such that uj 2 Si we create an edge (Si, uj). Moreover,
for every two nodes Si, Sj 2 S we create an edge (Si,
Sj), that is, we connect the nodes from set S into a
clique.

Let X be a set of characteristics such that every node has
only one attribute, and all of them has the same value of the
attribute. Notice that in that situation we have that similarity
between any two nodes in the network is 1, no matter what
the chosen similarity measure is σ.

Let the diffusion model (represented by function τ) be
either the independent cascade model with q = 1 or the linear
threshold model with distribution of thresholds always
returning 1. Notice that under these conditions for both
diffusion models we have that every node in the network
becomes activated as soon as at least one of its neighbors
becomes activated. This is because in the independent
cascade model all probabilities of activation are equal to 1
(as similarity between all pairs of nodes is 1), and in the
linear threshold model all thresholds are equal to 1.

Moreover, let the seed community be bC ¼ fag, the set of
edges allowed to be added be bA ¼ fða, SiÞ : Si 2 Sg, the
budget b be the same as in the given Set Cover problem
instance, and the expected time in which we intend to
activate entire network be τ* = 2.

Now, consider an instance of the problem of Forming
Bridges ðG,X , bC, bA, b, σ, τ, τ*Þ. We will now show that an
optimal solution to this instance corresponds to an optimal
solution to the given instance of the Set Cover problem.

First, we will show that if there exists a solution to the
given instance of the Set Cover problem, there also exists a
solution to the constructed instance of the Forming Bridges
problem. Let S* be a solution to the given instance of the Set
Cover problem. Now, consider a solution to the constructed
instance of the Forming Bridges problem A* = {(a, Si): Si 2
S*}. In the network (V, E [ A*), all nodes in S* becomes
activated in the first activation round. Then, in the second
round, all their neighbors become activated. Since S* is a
solution to the given instance of the Set Cover problem, for
every node uj there exists a node Si such that Si2 S* and uj is
connected with Si. All other nodes Si ÏS* are neighbors of
nodes in S*; hence, they also become activated in the second
round. Therefore, the expected time of activation of an
entire network is 2 and A* is a solution to the constructed
instance of the Forming Bridges problem.

Now, we will show that if there exists a solution to the
constructed instance of the Forming Bridges problem, then
there also exists a solution to the given instance of the Set
Cover problem. Let A* be a solution to the constructed
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instance of the Forming Bridges problem. Consider a set
S* = {Si 2 S: (a, Si) 2 A*}. We will now show that S* is a
solution to the given instance of the Set Cover problem.
Consider the activation process in the network (V, E [ A*).
In the first round, all nodes in S* become activated as these
are the only neighbors of node a, the sole member of the
seed community. Since A* is a solution to the constructed
instance of the Forming Bridges problem, we have
τððV ,E[AÞ, bCÞ ≤ 2; hence, all the remaining nodes have to
become activated in the second round of activation, in-
cluding all nodes uj 2 U. Therefore, for every node uj 2 U
there must exist a node Si2 S* such that uj is connected with
Si. Because of the way we constructed the network G, this
also means that for every uj 2 U there exists a node Si 2 S*
such that uj2 Si. Hence, S* is a solution to the given instance
of the Set Cover problem.

This implies that the constructed instance of the Forming
Bridges problem has a solution if and only if the given
instance of the Set Cover problem has a solution, thus
concluding the proof.

Appendix C

Experimental analysis of the model

We now present the setting of our experiments using dif-
ferent heuristic techniques of connecting dissimilar
communities.

In the basic version of our experiments, we consider a
network consisting of two disconnected components, each
of them forming a separate community. One of the com-
munities is active from the beginning of the process (the
seed community), whereas the other community we will call
the target community. Every component of the initially
disconnected network is generated using one of the fol-
lowing standard network generation models:

· Random networks generated using the Erd}os–Rényi
model (Erd}os and Rényi, 1959). For every pair of
nodes, we add an edge between them with a certain
probability. We denote such a network by ER (n, d),
where n is the number of nodes and d is the expected
average degree.

· Small world networks generated using the Watts–
Strogatz model (Watts and Strogatz, 1998). The
network starts as a regular ring lattice, and each edge
network is then rewired with probability p = 0.25. We
denote such a network by WS (n, d), where n is the
number of nodes and d is the expected average
degree.

· Preferential attachment networks generated using the
Barabási–Albert model (Barabási and Albert, 1999).
We add nodes to the network one by one. For each

node, we create a constant number of new edges,
connecting it to nodes added previously with a
probability proportional to their degrees. We denote
such a network by BA (n, d), where n is the number of
nodes and d is the number of links added with
each node.

For every node. we generate attribute values based on
certain distributions. To reflect the differences between
communities, the distribution we use for generating attri-
butes is different for every community. In our experiments,
we assume that every node has two different numerical
attributes, a1 and a2. All distributions are normal distri-
butions where the value of standard deviation is 0.05. For
the seed community, we generate the value of a1 from
distribution with mean 0.2 and the value of a2 from dis-
tribution with mean 0.8. For the target community, we
generate the value of a1 from distribution with mean 0.8 and
the value of a2 from distribution with mean 0.2.

In the independent cascade model, we set the basic
probability of activation to q = 0.2. In the linear threshold
model, we use uniform distribution to choose the value of
thresholds. In each of our experiments, we build a bridge
consisting of 10 edges. We always pick an edge connecting
one node from the seed community and one node from the
target community. The results of these experiments are
presented in the main article.

In another series of experiments we compare the per-
formance of the best strategy for each network with the
following baseline solutions (in all cases ties are broken
uniformly at random):

· Max similarity algorithm where we connect two
nodes with the highest similarity measure value,

· Min similarity algorithmwhere we connect two nodes
with the lowest similarity measure value,

· Max degree algorithm where we connect two nodes
with the highest sum of degrees,

· Min degree algorithm where we connect two nodes
with the lowest sum of degrees,

· Random algorithm where we connect a pair of nodes
chosen uniformly at random, we use this strategy as a
baseline.

Figure 10 presents plots of expected time necessary to
activate entire network for different networks, similarity
measures and diffusion models. In all cases, the best
parametric strategy is among the most effective ways of
constructing the bridge between communities.

As for the comparison between the independent cascade
and linear threshold diffusion models, the main difference is
the change of efficiency of the degree-based heuristic al-
gorithms. For the independent cascade model, the max
degree heuristic is far more efficient than its min
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counterpart. This is because connecting to nodes with high
degree helps to reach a large number of nodes in the target
community in just a single step. As for the linear threshold
model, simply connecting to a high degree node that does
not already have a large number of neighbors in the seed
community, makes this node extremely hard to activate, as
one new neighbor has very small contribution to the total
sum of similarities necessary to overcome the threshold. On
the other hand, a low degree node in a linear threshold
model is fairly easy to activate as every new connection
accounts for a considerable part of the total sum of similarity
with its neighbors.

Appendix D

Experiments with different levels
of homophily

We now perform a series of experiments to check how the
different levels of homophily affect the effectiveness of
various strategies of building bridges between communities.
We start with the network where attributes are determined as
in the basic experiments, that is, all nodes in the seed
community have attributes taken from one distribution,
while all nodes in the target community have attributes
taken from a different distribution. We call nodes from the
seed community type I nodes and we call nodes with the
target community type II nodes. We call an edge between a
node of type I and a node of type II an inter-type edge.

For such a network we repeatedly perform the following
procedure. We change places of two nodes, one of type I and
one of type II, such that this change increases the number of
inter-type edges in the network. Other than this requirement,
the nodes to change places are chosen uniformly at random.
We measure the percentage of inter-type edges in the net-
work and the time necessary to activate entire network after

building a bridge (consisting of 10 edges) between both
communities. The results of our experiments are presented
in Figures 11–13 for the strategy space, while Figure 14
presents the changing effectiveness of the best strategy (in a
network without inter-type edges) in each setting.

As it can be seen, time necessary to activate the entire
network decreases with homophily in case of both inde-
pendent cascade and linear threshold models. In case of the
independent cascade model, higher homophily results in
higher average probability of activation (as similarity of two
nodes connected with inter-type edge is lower than two
nodes of the same type). In case of the linear threshold
model, a lower expected similarity on edges decreases the
probability of becoming activated, as our swapping pro-
cedure keeps degree of each node constant. Moreover, this
confirms our observations about the nature of complex
contagion in homophilous and heterophilous networks
made in Appendix A.

Appendix E

Results for networks with varying size

We now perform a series of experiments investigating the
effect of network size on the effectiveness of different ways
of constructing a bridge between communities. While in the
main article, we focus on networks consisting of a source
community with 500 nodes and a target community with
2000 nodes, here we also run simulations for smaller
networks.

Figures 15–17 present our results. As can be seen from
the figures, the trends observed for smaller networks are the
same as those for their larger counterparts presented in
Figure 3. It suggests that the findings reported in the main
article might be independent on the size of the network.
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