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ABSTRACT5

A variational approach is used to derivate a set of Serre equations for fully nonlinear, dispersive6

waves in channels of arbitrary cross-section. A family of travelling waves is found, as well as the7

relation between amplitude and celerity of solitary waves. An upper bound is proposed for the8

solitary wave amplitude as a function of the Froude number in trapezoidal cross-sectional canals,9

showing good agreement with an existing theory. For waves of moderate amplitude, cnoidal10

waves result with a soliton limit; the latter waves and their properties (celerity, wave number)11

are written as functions of the channel bank slope and channel bank curvature. The theoretical12

findings are in agreement with well-established results of the literature, in particular with more13

recent Boussinesq-type theories. A validation is proposed against existing experimental data.14

INTRODUCTION15

Aim of present work16

Dispersive, non linear waves can occur in rivers and channels in many circumstances, like vessel17

wave wakes, waves due to ship lock or hydropower dam operations, to cite a few. Weakly dispersive,18

non linear wave trains, also referred to as undular bores, take place under various conditions like19

tidal bores (Chanson 2011) or Favre waves (Favre 1935). Understanding andmodelling the behavior20

of these channel waves are thus necessary to the engineering design of river waterworks, canal21

operations or maintenance. Of particular interest is the example of Favre waves, due to rapid gate22

closure in hydropower stations (see Figure 1). These wave trains propagate far upstream with23
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little dissipation or damping, as evidenced by on-site tests (Violeau 2022) and laboratory models24

(Treske 1994). They can cause unexpected loads or floods along an extended part of the channel25

banks. The issue of dam break prediction is also at stake, recent numerical models showing that26

their numerical simulation benefit from dispersive wave models (see e.g. Mohapatra et al. 1999,27

Mohapatra and Chaudhry 2004 for an illustration with a Boussinesq-type model). Flow over weirs28

are also concerned, as demonstrated by Castro-Orgaz et al. (2022). More generally, for all channel29

dispersive, non linear waves, both the theory and the numerical modeling (and, to less extent, the30

design of scale models) require building relevant systems of equations.31

In the context of the physical understanding and numerical modeling of non-linear, dispersive32

water waves, the Serre equations (Serre 1953a, Serre 1953b), also celebrated as the Serre–Green–33

Naghdi or Su–Gardner equations (Green et al. 1974, Su and Gardner 1969), have the advantage34

of being fully non-linear (through only weakly dispersive), contrary to the family of Boussinesq-35

type models. The Serre equations have been the subject of further extensions, including two-36

dimensional flow on arbitrary bottoms (Green and Naghdi 1976, Seabra-Santos et al. 1987). Only37

few papers (to the author’s knowledge) refer to an extension of the Serre equations to channel flows38

with arbitrary channel cross section. A recent attempt was made by Debyaoui and Ersoy (2020)39

using the traditional asymptotic expansion method, leading to a complex formulation after long40

computations.41

More generally, non-linear, dispersive waves in channels of arbitrary cross section have been the42

topic of limited publications so far, the prominent theoretical works being those by Peters (1968),43

Peregrine (1968), Fenton (1973), and more recently Teng and Wu (1997) and Winckler and Liu44

(2015). All these authors propose Boussinesq-like models and derive some propagation properties45

of classical wave families, i.e. cnoidal and solitary waves. In all these works the effect of the46

channel cross-sectional shape on these waves is primarily governed by the channel bank slope. As47

for numerical models of dispersive waves in arbitrary cross section channels, the Serre–Green–48

Naghdi equations are mostly considered, which requires a two-dimensional model (Chassagne et al.49

2019, Biswas et al. 2021).50
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The present work aims at establishing simple, one-dimensional Serre-like equations for arbitrary51

cross-section channels with limited mathematical calculations. For this purpose, consider the52

variational approach by Clamond and Dutykh (2012). After building these equations we exhibit53

some families of travelling waves whose properties are successfully compared with those from the54

existing literature. The plan of the paper is as follows: after summarising Clamond and Dutykh’s55

method (2012) in the next section, a first part is dedicated to the construction of an appropriate56

wave Lagrangian, which is then applied to channel flow to derive the Saint-Venant equations, then57

the newly proposed Serre model. In a second part we study travelling waves emerging from this58

model, with a focus on moderate amplitude waves for which a quantitative study is possible.59

Clamond and Dutykh’s wave Lagrangian60

We consider Clamond and Dutykh (2012)’s variational approach, where they build shallow61

water wave equations from a variational approach for a potential, incompressible flow. To this62

purpose, they consider Luke’s wave Lagrangian (1967):63

ℒ =

∫
𝑡

∫
x
L𝑑xd𝑡, (1)64

L = −
∫ [

−𝑑

[
𝑔𝑧 + 𝜙𝑡 + 1

2 |∇𝜙 |2 + 1
2𝜙

2
𝑧

]
d𝑧, (2)65

where subscripts refer to partial derivatives. The flow potential is denoted as 𝜙, the vertical66

coordinate is treated separately from the horizontals x = (𝑥, 𝑦)𝑇 and ∇ (·) = (·)x. Time is denoted67

as 𝑡, and the sea (or river, etc.) bottom is at 𝑧 = −𝑑 (x, 𝑡) while 𝑧 = [ (x, 𝑡) represents the free surface68

elevation, so that the local water depth is ℎ = [ + 𝑑. Luke (1967) showed how the variation of the69

above Lagrangian leads to the equations of a free surface, incompressible potential flow. Clamond70

and Dutykh (2012) proposed to modify Luke’s Lagrangian (1)–(2) to yield a relaxed form. To do71

so, they explicitely introduced the velocity (u, 𝑤) (with horizontal and vertical components u and72

𝑤), as well as the potential flow condition (u, 𝑤) = (∇𝜙, 𝜙𝑧), prescribed by a field of Lagrange73
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multipliers (_, a):74

L = 𝜙[𝑡 + 𝜙𝑑𝑡 − 1
2𝑔

(
[2 − 𝑑2

)
(3)75

−
∫ [

−𝑑

(
1
2 |u|2 + 1

2𝑤
2 + _ · (∇𝜙 − u) + a (𝜙𝑧 − 𝑤)

)
d𝑧,76

where the term 𝑔𝑧was integrated explicitely, while 𝜙𝑡 was integrated by parts. In (3) and everywhere77

in this paper, we denote by �̂� = 𝜑 (𝑧 = [) and �̌� = 𝜑 (𝑧 = −𝑑) the values of an arbitrary field 𝜑78

at the surface and the bottom, respectively. The resulting Lagrangian contains more unknowns79

but allows for more flexibility, hence the name of relaxed Lagrangian. Equation (3) is once more80

modified by the use of the following identities which assume vanishing fields for infinite values of81

the coordinates:82 ∫
x

∫ [

−𝑑
_ · ∇𝜙d𝑧dx =

∫
x

∫ [

−𝑑
(∇ · (𝜙_) − 𝜙∇ · _) d𝑧dx, (4)83

then84

∫
x

∫ [

−𝑑
∇ · (𝜙_) d𝑧dx =

∫
x

(
∇ ·

∫ [

−𝑑
𝜙_𝑑𝑧 − 𝜙_̂ · ∇[ − 𝜙_̌ · ∇𝑑

)
dx (5)85

= −
∫

x

(
𝜙_̂ · ∇[ + 𝜙_̌ · ∇𝑑

)
dx,86

and finally87 ∫ [

−𝑑
a𝜙𝑧𝑑𝑧 = â𝜙 − ǎ𝜙 −

∫ [

−𝑑
a𝑧𝜙d𝑧. (6)88

With (3) to (6), we obtain Clamond and Dutykh’s Lagrangian:89

L = 𝜙

(
[𝑡 + _̂ · ∇[ − â

)
+ 𝜙

(
𝑑𝑡 + _̌ · ∇𝑑 + ǎ

)
− 1

2𝑔
(
[2 − 𝑑2

)
(7)90

+
∫ [

−𝑑

(
_ · u + a𝑤 − 1

2 |u|2 − 1
2𝑤

2 + 𝜙 (∇ · _ + a𝑧)
)

d𝑧.91

Note that the surface and bottom potentials, 𝜙 and 𝜙, are now the Lagrange multipliers of the92

kinematic boundary conditions of these two boundaries, applied to the conjugate velocity field93

(_, a), while 𝜙 is the multiplier associated to the incompressibility condition of the latter field.94

4 Violeau, March 17, 2023



VARIATIONAL DISPERSIVE WAVE MODEL FOR CHANNELS AND RIVERS95

General considerations96

Weconsider a channel or river of weak curvature, so that a one-dimensional approach is relevant.97

For the sake of generality we allow the bed/banks to be mobile, to account for sediment mobility,98

landslide, seism, etc. We assume the bed to have an average upstream-downstream slope of angle99

Θ with the horizontal, and place ourselves in a frame where the longitudinal axis 𝑥 is inclined with100

the same angle, which allows accounting for the effects of a local bed slope 𝑑𝑥 (see Figure 2).101

This amounts to changing 𝑔 for 𝑔 cosΘ, a horizontal driving force being added to the momentum102

equation. Extending Clamond and Dutykh’s method to this framework is done by reducing the103

space integration of the Lagrangian to the 𝑥 axis:104

ℒ =

∫
𝑡

∫
𝑥

Ld𝑥d𝑡, (8)105

while the Lagrangian density L is the integral of (7) on the transverse horizontal axis 𝑦, with the106

above-mentioned modifications:107

L =

∫ 𝐵𝑟

−𝐵𝑙

©«
𝜙

(
[𝑡 + _̂[𝑥 + ˆ̀[𝑦 − â

)
+ 𝜙

(
𝑑𝑡 + _̌𝑑𝑥 + ˇ̀𝑑𝑦 + ǎ

)
−1

2 (𝑔 cosΘ)
(
[2 − 𝑑2) ª®®¬ d𝑦 (9)108

+
∫ 𝐵𝑟

−𝐵𝑙

∫ [

−𝑑

©«
(𝑔 sinΘ) 𝑥 + _𝑢 + `𝑣 + a𝑤 − 1

2
(
𝑢2 + 𝑣2 + 𝑤2)

+𝜙
(
_𝑥 + `𝑦 + a𝑧

) ª®®¬ d𝑧d𝑦109

where 𝑦 = −𝐵𝑙 (𝑥, 𝑡) and 𝑦 = 𝐵𝑟 (𝑥, 𝑡) denote the transverse coordinates of the left and right110

banks, respectively; they both depend on the free surface elevation on banks. We decomposed the111

horizontal velocity and its conjugate field as u = 𝑢e𝑥 + 𝑣e𝑦 and _ = _e𝑥 + `e𝑦.112

As explained by Clamond and Dutykh (2012), prescribing appropriate Ansätze for the velocity113

components and prescribing various kinds of boundary conditions in their Lagrangian allows finding114

various wave model equations. First, the Lagrangian (9) simplifies by assuming the potential to be115
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independent of the altitude 𝑧, i.e. 𝜙 = [𝜙] (𝑥, 𝑦, 𝑡). With this assumption, indeed:116

∫ 𝐵𝑟

−𝐵𝑙

(
ˆ̀[𝑦 + ˇ̀𝑑𝑦 +

∫ [

−𝑑
`𝑦d𝑧

)
d𝑦 =

∫ 𝐵𝑟

−𝐵𝑙

(∫ [

−𝑑
`d𝑧

)
𝑦

d𝑦 (10)117

=

[∫ [

−𝑑
`d𝑧

] 𝑦=𝐵𝑟
𝑦=−𝐵𝑙

= 0,118

−â + ǎ +
∫ [

−𝑑
a𝑧d𝑧 = 0. (11)119

To establish (10), we used Leibnitz’ integration rule, noting that [ + 𝑑 = ℎ = 0 for 𝑦 = −𝐵𝑙 and120

𝑦 = 𝐵𝑟 . With the above two equations, we obtain121

L =

∫ 𝐵𝑟

−𝐵𝑙

(
[𝜙]

(
ℎ𝑡 + _̂[𝑥 + _̌𝑑𝑥

)
− 1

2 (𝑔 cosΘ)
(
[2 − 𝑑2

))
d𝑦 (12)122

+
∫ 𝐵𝑟

−𝐵𝑙

∫ [

−𝑑

(
(𝑔 sinΘ) 𝑥 + _𝑢 + `𝑣 + a𝑤 − 1

2

(
𝑢2 + 𝑣2 + 𝑤2

)
+ [𝜙] _𝑥

)
d𝑧d𝑦.123

note that â, ǎ, _̂ and _̌ have been eliminated from the list of unknowns. In what follows, square124

brackets will refer to vertical averaging; tilde will represent free-surface transverse averaging, and125

an overbar will refer to the same average taken on the non-perturbed free-surface:126

[𝜑] (𝑥, 𝑦, 𝑡) ≑ 1
ℎ (𝑥, 𝑦, 𝑡)

∫ [(𝑥,𝑦,𝑡)

−𝑑 (𝑥,𝑦,𝑡)
𝜑 (𝑥, 𝑦, 𝑧, 𝑡) d𝑧, (13)127

𝜑 (𝑥, 𝑧, 𝑡) ≑ 1
𝐵 (𝑥, 𝑡)

∫ 𝐵𝑟

−𝐵𝑙
𝜑 (𝑥, 𝑦, 𝑧 = [ (𝑥, 𝑦, 𝑡) , 𝑡) d𝑦, (14)128

𝜑 (𝑥, 𝑧, 𝑡) ≑ 1
𝐵0 (𝑥)

∫ 𝐵𝑟0

−𝐵𝑙0
𝜑 (𝑥, 𝑦, 𝑧 = 0, 𝑡) d𝑦, (15)129

where 𝐵 (𝑥, 𝑡) = 𝐵𝑙 (𝑥, 𝑡) + 𝐵𝑟 (𝑥, 𝑡) is the surface width and 𝐵0 (𝑥) = 𝐵𝑙0 (𝑥) + 𝐵
𝑟
0 (𝑥) its value in130

the absence of wave (Figure 2), the rest water level being 𝑧 = 0. Applying the first two averages131

defines the section-average:132

⟨𝜑⟩ (𝑥, 𝑡) ≑ 1
𝐴 (𝑥, 𝑡)

∫
𝐴

𝜑 (𝑥, 𝑦, 𝑧, 𝑡) d𝑦d𝑧 = [̃𝜑] (𝑥, 𝑡) , (16)133
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where 𝐴 (𝑥, 𝑡) is the wetted area:134

𝐴 (𝑥, 𝑡) ≑
∫ 𝐵𝑟

−𝐵𝑙
ℎ (𝑥, 𝑦, 𝑡) d𝑦 = 𝐵 (𝑥, 𝑡) ℎ̃ (𝑥, 𝑡) . (17)135

Like the bank sides, 𝐴 and 𝐵 explicitly depend on the free surface elevation [ (𝑥, 𝑦, 𝑡). At rest, the136

section is denoted as 𝐴0 (𝑥) = 𝐵0 (𝑥) 𝑑 (𝑥), with 𝑑 (𝑥) as the rest width-averaged depth.137

Further, we impose the potential as constant on the whole channel cross section, i.e. 𝜙 =138

⟨𝜙⟩ (𝑥, 𝑡). This suggests that the longitudinal velocity and its conjugate obey the same rule:139

𝑢 = ⟨𝑢⟩ (𝑥, 𝑡) and _ = ⟨_⟩ (𝑥, 𝑡), so that (12) reads140

L = ⟨𝜙⟩
(∫ 𝐵𝑟

−𝐵𝑙
ℎ𝑡d𝑦 +

∫ 𝐵𝑟

−𝐵𝑙
(⟨_⟩ ℎ)𝑥 d𝑦

)
(18)141

−1
2 (𝑔 cosΘ)

∫ 𝐵𝑟

−𝐵𝑙

(
[2 − 𝑑2

)
d𝑦 + 𝐴

(
(𝑔 sinΘ) 𝑥 + ⟨_⟩ ⟨𝑢⟩ − 1

2 ⟨𝑢⟩2
)

142

+
∫ 𝐵𝑟

−𝐵𝑙

∫ [

−𝑑

(
`𝑣 + a𝑤 − 1

2

(
𝑣2 + 𝑤2

))
d𝑧d𝑦.143

However, since ℎ vanishes on the banks, the Leibnitz’ rule gives144

∫ 𝐵𝑟

−𝐵𝑙
ℎ𝑡d𝑦 =

(∫ 𝐵𝑟

−𝐵𝑙
ℎd𝑦

)
𝑡

= 𝐴𝑡 , (19)145 ∫ 𝐵𝑟

−𝐵𝑙
(⟨_⟩ ℎ)𝑥 d𝑦 =

(
⟨_⟩

∫ 𝐵𝑟

−𝐵𝑙
ℎd𝑦

)
𝑥

= (𝐴 ⟨_⟩)𝑥 ,146

therefore147

L = ⟨𝜙⟩ (𝐴𝑡 + (𝐴 ⟨_⟩)𝑥) − 1
2 (𝑔 cosΘ)

∫ 𝐵𝑟

−𝐵𝑙

(
[2 − 𝑑2

)
d𝑦 (20)148

+𝐴
(
(𝑔 sinΘ) 𝑥 + ⟨_⟩ ⟨𝑢⟩ − 1

2 ⟨𝑢⟩2
)

149

+
∫ 𝐵𝑟

−𝐵𝑙

∫ [

−𝑑

(
`𝑣 + a𝑤 − 1

2

(
𝑣2 + 𝑤2

))
d𝑧d𝑦.150

In what follows, we will use the Lagrangian (20) to derive Serre-like equations for arbitrary cross-151

sectional channels.152
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One dimensional Saint-Venant equations153

Westart by checking that the Lagrangian (20) yields the one-dimensional Saint-Venant equations154

in arbitrary cross-sectional channels when no additional condition is imposed, as it does in two155

dimensions on a flat bed, as explained by (Clamond and Dutykh 2012). The Serre equations156

studied later are an extension of the Saint-Venant equations, which are relevant for non linear but157

non dispersive waves.158

The variations of L with respect to ⟨𝜙⟩ , ⟨𝑢⟩ and ⟨_⟩ give159

𝛿L
𝛿 ⟨𝜙⟩ = 𝐴𝑡 + (𝐴 ⟨_⟩)𝑥 , (21)160

𝛿L
𝛿 ⟨𝑢⟩ = 𝐴 (⟨_⟩ − ⟨𝑢⟩) , (22)161

𝛿L
𝛿 ⟨_⟩ = 𝐴

(
− ⟨𝜙⟩𝑥 + ⟨𝑢⟩

)
, (23)162

(integration by parts of ⟨𝜙⟩ (𝐴 ⟨_⟩)𝑥 have been used to calculate the last line). Cancelling the above163

lines shows that the flow is potential while ⟨_⟩ = ⟨𝑢⟩ = ⟨𝜙⟩𝑥 , and (21) is the continuity equation:164

𝐴𝑡 + (𝐴 ⟨𝑢⟩)𝑥 = 0. (24)165

Cancelling the variation of L with respect to 𝑣, `, 𝑤, a (which remain unknown functions) leads to166

∫ 𝐵𝑟

−𝐵𝑙

∫ [

−𝑑
(𝑣𝛿` + (` − 𝑣) 𝛿𝑣 + 𝑤𝛿a + (a − 𝑤) 𝛿𝑤) d𝑧d𝑦 = 0, (25)167

regardless of the variations 𝛿`, 𝛿𝑣, 𝛿a and 𝛿𝑤, which gives ` = 𝑣 = a = 𝑤 = 0. Hence, under the168

present assumptions the flow is purely longitudinal: dispersive waves, which rely on the existence169

of vertical velocity, will require more than the present approach. Finally, cancelling the variation170

of L with respect to [ necessitates writting the variation of the cross sectional area:171

𝛿𝐴 = 𝛿

∫ 𝐵𝑟

−𝐵𝑙
ℎd𝑦 =

∫ 𝐵𝑟

−𝐵𝑙
𝛿[d𝑦, (26)172
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which holds because ℎ vanishes on the banks. The same reasoning is used to calculate the variation173

of the integral of [2 − 𝑑2 in (20). Using integration by parts, we obtain174

(
− ⟨𝜙⟩𝑡 − 1

2 ⟨𝑢⟩2 + (𝑔 sinΘ) 𝑥
) ∫ 𝐵𝑟

−𝐵𝑙
𝛿[d𝑦 − (𝑔 cosΘ)

∫ 𝐵𝑟

−𝐵𝑙
[𝛿[d𝑦 = 0. (27)175

This being true for all variations 𝛿[, we find176

⟨𝜙⟩𝑡 + 1
2 ⟨𝑢⟩2 + (𝑔 cosΘ) [ = (𝑔 sinΘ) 𝑥. (28)177

As a conclusion, we have [ = [̃: the free surface elevation does not depend on 𝑦 (it is invariant178

along the channel width), and (26) reads179

𝐴[̃ = 𝐵. (29)180

Taking the gradient of (28) leads to the momentum equation:181

⟨𝑢⟩𝑡 + ⟨𝑢⟩ ⟨𝑢⟩𝑥 + (𝑔 cosΘ) [̃𝑥 = 𝑔 sinΘ. (30)182

Using the continuity equation (24), one can write it in the well-known conservative form:183

(𝐴 ⟨𝑢⟩)𝑡 +
(
𝐴 ⟨𝑢⟩2 + (𝑔 cosΘ) 𝐼

)
𝑥
= (𝑔 sinΘ) 𝐴 + (𝑔 cosΘ) 𝐽, (31)184

where we made use of the following definitions:185

𝐼 (ℎ) ≑ 1
2

∫ 𝐵𝑟

−𝐵𝑙
ℎ2d𝑦 = 1

2𝐵ℎ̃
2, (32)186

𝐽 (ℎ) ≑
∫ 𝐵𝑟

−𝐵𝑙
ℎ𝑑𝑥d𝑦 = 𝐵ℎ̃𝑑𝑥 , (33)187
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(which gives 𝐼𝑥 = 𝐴[̃𝑥 + 𝐽, using (29)). We observe that188

(𝑔 sinΘ) 𝐴 + (𝑔 cosΘ) 𝐽 = 𝑔
∫ 𝐵𝑟

−𝐵𝑙
ℎ (sinΘ − 𝑑𝑥 cosΘ) d𝑦 (34)189

is a purely geometrical source term, modeling the effects of global (sinΘ) and local (𝑑𝑥 cosΘ)190

bed slope along the longitudinal axis. The above equations are classical and widely used in191

understanding channel flows as long as the pressure remains almost hydrostatic, i.e., for long waves192

or breaking bores. Additional terms will allow modeling weakly dispersive (i.e., shorter) waves in193

what follows.194

Arbitrary cross sectional Serre equations195

As shownby (Clamond andDutykh 2012) in two dimensions on a flat bed, the Serre equations are196

obtained from the same Lagrangian than the Saint-Venant equations, by prescribing the kinematic197

free surface boundary condition through the conjugate velocity field. This requires an Ansatz for198

the vertical velocity and one for its conjugate field. Following (Clamond and Dutykh 2012), we set199

𝑤 =
𝑧 + 𝑑
[ + 𝑑 �̂�, (35)200

a =
𝑧 + 𝑑
[ + 𝑑 â, (36)201

where �̂� (𝑥, 𝑦, 𝑡) and â (𝑥, 𝑦, 𝑡) are their values on the free surface, and we impose â = [𝑡 + ⟨_⟩ [𝑥 +202

ˆ̀[𝑦. the Lagrangian (20) now becomes203

L = ⟨𝜙⟩ (𝐴𝑡 + (𝐴 ⟨_⟩)𝑥) − 1
2 (𝑔 cosΘ)

∫ 𝐵𝑟

−𝐵𝑙

(
[2 − 𝑑2

)
d𝑦 (37)204

+𝐴
(
(𝑔 sinΘ) 𝑥 + ⟨_⟩ ⟨𝑢⟩ − 1

2 ⟨𝑢⟩2
)
+

∫ 𝐵𝑟

−𝐵𝑙

∫ [

−𝑑

(
`𝑣 − 1

2𝑣
2
)

d𝑧d𝑦205

+
∫ 𝐵𝑟

−𝐵𝑙
ℎ

(
1
3
(
[𝑡 + ⟨_⟩ [𝑥 + ˆ̀[𝑦

)
�̂� − 1

6 �̂�
2
)

d𝑦.206

In dispersive channel waves and bores, it is known that the free surface elevation depends on207

the transverse direction 𝑦 (Peregrine (1969), Treske (1994), Teng and Wu (1997)). However, in208
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the present study we will neglect this phenomenon, which is not compatible with our Ansätze209

(35)–(36). Therefore, if we further ignore transverse variations of all quantities of interest, i.e.210

[ = [̃, ˆ̀ = ˜̀̂, �̂� = ˜̂𝑣, �̂� = ˜̂𝑤, this gives211

L = ⟨𝜙⟩ (𝐴𝑡 + (𝐴 ⟨_⟩)𝑥) − 1
2 (𝑔 cosΘ)

∫ 𝐵𝑟

−𝐵𝑙

(
[̃2 − 𝑑2

)
d𝑦 (38)212

+𝐴
©«

(𝑔 sinΘ) 𝑥 + ⟨_⟩ ⟨𝑢⟩ − 1
2 ⟨𝑢⟩2

+1
3

(˜̀̃̂�̂� + ([̃𝑡 + ⟨_⟩ [̃𝑥) ˜̂𝑤 − 1
2

(̃
�̂�

2 + ˜̂𝑤2)) ª®®¬ .213

Cancelling the variation of this Lagrangian with respect to ⟨𝜙⟩ and ⟨𝑢⟩ gives ⟨_⟩ = ⟨𝑢⟩ and214

𝐴𝑡 + (𝐴 ⟨𝑢⟩)𝑥 = 0, as above. Cancelling the variations with repect to ˜̀̂, ˜̂𝑣, ˜̂𝑤 and ⟨_⟩ leads to215

˜̀̂ = ˜̂𝑣 = 0, (39)216 ˜̂𝑤 = [̃𝑡 + ⟨𝑢⟩ [̃𝑥 , (40)217

⟨𝜙⟩𝑥 = ⟨𝑢⟩ + 1
3 [̃𝑥

˜̂𝑤. (41)218

Therefore, the transverse velocity and its conjugate cancel out and the kinematic boundary condition219

at the free surface is satisfied as expected. On the other hand, the flow is no longer potential, as220

shown by (41). The variation of L with respect to [̃ gives221

⟨𝜙⟩𝑡 + 1
2 ⟨𝑢⟩2 + (𝑔 cosΘ) [̃ = (𝑔 sinΘ) 𝑥 − 1

3

(
ℎ̃

(˜̂𝑤𝑡 + ⟨𝑢⟩ ˜̂𝑤𝑥) + ⟨𝑢⟩ ˜̂𝑤[̃𝑥 − 1
2
˜̂𝑤2)

. (42)222

Taking its gradient with (40)–(41) and applying a few manipulations leads to223

⟨𝑢⟩𝑡 + ⟨𝑢⟩ ⟨𝑢⟩𝑥 + (𝑔 cosΘ) [̃𝑥 = 𝑔 sinΘ − 1
3

((
ℎ̃

(˜̂𝑤𝑡 + ⟨𝑢⟩ ˜̂𝑤𝑥))
𝑥
+ [̃𝑥

(˜̂𝑤𝑡 + ⟨𝑢⟩ ˜̂𝑤𝑥)) . (43)224

On the other hand, with (29) we have225

𝐴𝑥 ℎ̃ = 𝐴[̃𝑥 + ℎ̃
∫ 𝐵𝑟

−𝐵𝑙
𝑑𝑥d𝑦, (44)226
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which allows for writing the conservative form of the momentum equation (43) as follows:227

(𝐴 ⟨𝑢⟩)𝑡 +
(
𝐴 ⟨𝑢⟩2 + (𝑔 cosΘ) 𝐼 + 1

3𝐴ℎ̃
(˜̂𝑤𝑡 + ⟨𝑢⟩ ˜̂𝑤𝑥))

𝑥
(45)228

= (𝑔 sinΘ) 𝐴 − (𝑔 cosΘ) 𝐽 + 1
3 ℎ̃

(˜̂𝑤𝑡 + ⟨𝑢⟩ ˜̂𝑤𝑥) ∫ 𝐵𝑟

−𝐵𝑙
𝑑𝑥d𝑦.229

As for the Saint-Venant equations, the right-hand side vanishes on a flat bed. Equation (45) is a230

Serre-like momentum equation generalised to arbitrary cross section channels. We see that the231

additional termswith respect to the section-averaged Saint-Venant momentum equation (31) depend232

on the vertical velocity at the free surface, thus on the non-hydrostaticity of the pressure field. With233

the above findings, the Lagrangian (38) is simplified to234

L ([̃, ⟨𝑢⟩) = 𝐴
(
−1

2 (𝑔 cosΘ)
(
ℎ̃ − 2𝑑

)
+ (𝑔 sinΘ) 𝑥 + 1

2 ⟨𝑢⟩2 + 1
6 ([̃𝑡 + ⟨𝑢⟩ [̃𝑥)2

)
. (46)235

The Lagrangian being time-independent, Noether’s theorem states the conservation of an energy236

in the absence of external forcing, i.e., when the bed is horizontal and fixed. A general energy237

conservation equation stems from (43) and (45) along with the continuity equation, by noting that238

𝐴𝑡 = 𝐵[̃𝑡 +
∫ 𝐵𝑟

−𝐵𝑙
𝑑𝑡d𝑦, (47)239

𝐼𝑡 = 𝐴[̃𝑡 +
∫ 𝐵𝑟

−𝐵𝑙
ℎ𝑑𝑡d𝑦. (48)240

After a few manipulations, we obtain

(
𝐴

(
1
2 ⟨𝑢⟩2 + 1

6
˜̂𝑤2) + 1

2 (𝑔 cosΘ) ([̃2 − 𝑑2)
)
𝑡

(49)

+
(
𝐴 ⟨𝑢⟩

(
1
2 ⟨𝑢⟩2 + 1

6
˜̂𝑤2 + (𝑔 cosΘ) [̃ + 1

3 ℎ̃
(˜̂𝑤𝑡 + ⟨𝑢⟩ ˜̂𝑤𝑥)))

𝑥

= (𝑔 sinΘ) 𝐴 ⟨𝑢⟩ − (𝑔 cosΘ)
∫ 𝐵𝑟

−𝐵𝑙
ℎ𝑑𝑡d𝑦 − 1

3 ℎ̃
(˜̂𝑤𝑡 + ⟨𝑢⟩ ˜̂𝑤𝑥) ∫ 𝐵𝑟

−𝐵𝑙
𝑑𝑡d𝑦.

In what follows, consider special cases where the channel is straight, flat and prismatic (Θ = 𝑑𝑥 =241
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𝑑𝑡 = 0). Under these assumptions, (45) simplifies and the final system, with the continuity equation242

and (40), is243

𝐴𝑡 + (𝐴 ⟨𝑢⟩)𝑥 = 0, (50)244

(𝐴 ⟨𝑢⟩)𝑡 +
(
𝐴 ⟨𝑢⟩2 + 1

2𝑔𝐵ℎ̃
2 + 1

3𝐴ℎ̃
(˜̂𝑤𝑡 + ⟨𝑢⟩ ˜̂𝑤𝑥))

𝑥
= 0, (51)245 ˜̂𝑤 = [̃𝑡 + ⟨𝑢⟩ [̃𝑥 , (52)246

with the following energy conservation law:

(
𝐴

(
1
2 ⟨𝑢⟩2 + 1

6
˜̂𝑤2) + 1

2𝑔𝐵([̃
2 − 𝑑2)

)
𝑡

(53)

+
(
𝐴 ⟨𝑢⟩

(
1
2 ⟨𝑢⟩2 + 1

6
˜̂𝑤2 + 𝑔[̃ + 1

3 ℎ̃
(˜̂𝑤𝑡 + ⟨𝑢⟩ ˜̂𝑤𝑥)))

𝑥
= 0.

Equations (50)–(52) and (53) reduce to the ordinary Serre equations on a flat bed (see, e.g.,247

(Clamond et al. 2017) for the rectangular channel section.248

TRAVELLING WAVES IN UNIFORM CHANNELS249

Weare now interested in a family ofwaves that is sometimes encountered in channel engineering:250

travelling waves, i.e., that propagate with a constant celerity with a constant shape. Consider a251

wave travelling in a channel satisfying the assumptions that led to the system (50)–(52). We seek252

for all quantities as functions of b ≑ 𝑥 − 𝑐𝑡, 𝑐 being the unknown celerity. Defining 𝑈 ≑ ⟨𝑢⟩ − 𝑐,253

(52) reads ˜̂𝑤 = 𝑈[̃′ and the other two equations read254

(𝐴𝑈)′ = 0, (54)255 (
𝐴𝑈 (𝑈 + 𝑐) + 1

2𝑔𝐵ℎ̃
2 + 1

3𝐴ℎ̃𝑈 (𝑈[̃′)′
)′

= 0, (55)256

the prime denoting the derivation with respect to b. We will now investigate the solutions of the257

latter system.258
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General solution259

Integrating (54) and (55) once gives260

𝐴𝑈 = −
(
1 − �̄�0

)
𝐴0𝑐, (56)261

𝐴𝑈 (𝑈 + 𝑐) + 1
2𝑔

(
𝐵ℎ̃2 − 𝐵0𝑑2

)
+ 1

3𝐴ℎ̃𝑈 (𝑈[̃′)′ = �̄�1, (57)262

where �̄�0, �̄�1 are two constants that vanish in the absence of waves. Their values will determine263

the type of wave at stake. Observing that 𝐴′ = 𝐵[̃′ and ℎ̃ = 𝐴
𝐵
, the second term in (57), after264

multiplication by 𝐴′

𝐴2 , is integrated as follows:265

∫ (
𝐵ℎ̃2 − 𝐵0𝑑2

) 𝐵

𝐴2 d[̃ =

∫
ℎ̃2

ℎ̃2
d[̃ + 𝐵0𝑑2

𝐴
. (58)266

We now define the dimensionless free surface elevation and channel section as267

N ≑
[̃

𝑑
, (59)268

A (N) ≑ 𝐴

𝐴0
.269

After manipulations, it is found that270

∫ N

0

ℎ̃2 (𝑛)
ℎ̃2 (𝑛)

d𝑛 = 2N + 1
𝑑

(
𝑑2

𝑑
− ℎ̃2 (N)
ℎ̃ (N)

)
=
𝑑2

𝑑
2 −

�̃�2 (N)
𝑑

2 − N2

𝑑 (N)
𝑑

+ N
, (60)271

𝑛 being a dummy variable. We now substitute 𝑈 from (56) into (57), multiply the latter by 𝐴′

𝐴2 and272

integrate once more. Using (60), we obtain the free surface slope (squared) as a function of the273

free surface elevation:274

1
3

(
dN
db

)2
= 1 − 2𝐶0A (N) + 𝐶1A2 (N) − 𝐶2

F 2
0
A (N)

©«
𝑑2

𝑑
2 − A (N)

�̃�2 (N)
𝑑

2 − N2

𝑑 (N)
𝑑

+ N

ª®®¬ , (61)275
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𝐶0, 𝐶1 being two constants linked to �̄�0, �̄�1, and 𝐶2 ≠ 0 another constant, while F0 is a Froude276

number:277

F0 ≑
𝑐√︃
𝑔𝑑

. (62)278

The latter ordinary differential equation can be written in separate form to give the general implicit279

solution as integral:280

𝑥 − 𝑐𝑡
𝑑

= ± 1√
3

∫
dN√√√√

1 − 2𝐶0A (N) + 𝐶1A2 (N) − 𝐶2
F 2

0
A (N) ©« 𝑑2

𝑑
2 − A (N)

𝑑2 (N)
𝑑

2 −N2

𝑑 (N)
𝑑

+N
ª®¬
. (63)281

This is a 4–parameter family of solutions, which can in principle be integrated for a given cross282

section, i.e., for particular values of 𝑑, 𝑑2 and particular formulae for A (N) , 𝑑 (N) , 𝑑2 (N). It is283

worth noting that the latter two integrals involve negative values of 𝑑 (𝑥, 𝑦, 𝑡), for −𝐵𝑙 ⩽ 𝑦 < 𝐵𝑙0284

and 𝐵𝑟0 < 𝑦 ⩽ 𝐵
𝑟 (see Figure 3 as an illustration).285

A family of solitary waves is found for (𝐶0, 𝐶1, 𝐶2) = (1, 1, 1). In this case, setting dN/db = 0 at286

the wave crest gives the solitary wave celerity 𝑐𝑠 versus the dimensionless wave amplitude N∗:287

𝑐𝑠√︃
𝑔𝑑

=

√√√√
A (N∗) ©« 𝑑2

𝑑
2 − A (N∗)

𝑑2 (N∗)
𝑑

2 −N∗2

𝑑 (N∗)
𝑑

+N∗

ª®¬
A (N∗) − 1

. (64)288

For a rectangular section, the usual results are recovered: we have A (N) = 1 + N , 𝑑 (N) = 𝑑,289

𝑑2 (N) = 𝑑2
and (64) gives290

𝑐𝑠√︃
𝑔𝑑

=
√

1 + N∗, (65)291

according to Russell’s experimental findings and Boussinesq’s and Rayleigh’s classical theories292

(see, e.g. Carter and Cienfuegos (2011)). This result, however, is less accurate than Teng and Wu’s293

Boussinesq-type model (1992), according to Daily and Stephans’ experiments (Daily and Stephans294
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1952). On the other hand, (63) now reads295

𝑥 − 𝑐𝑠𝑡
𝑑

= ± 1√
3

∫
𝑑N

N
√︃

1 − 1
F 2

0
(1 + N)

, (66)296

which is integrated to give the well-known solitary wave of the Serre equations (Serre 1953b):297

N = N∗sech2
©«
√︂

3
(
F 2

0 − 1
)

2F0

𝑥 − 𝑐𝑠𝑡
𝑑

ª®®®®¬
, (67)298

N∗ ≑ F 2
0 − 1. (68)299

Upper bound of the solitary wave amplitude300

For practical reasons, it is interesting to predict an upper bound of wave elevation. As explained301

by Hager and Hutter (1984), this can be deduced from the hydraulic head. From the energy302

conservation equation (53), the head in the present model is given by303

𝐻 = 1
2𝑔 ⟨𝑢⟩

2 + 1
6𝑔

˜̂𝑤2 + [̃ + 1
3𝑔 ℎ̃

(˜̂𝑤𝑡 + ⟨𝑢⟩ ˜̂𝑤𝑥) . (69)304

In the case of progressive waves, using ˜̂𝑤 = 𝑈[̃′ gives the head in the moving frame (where the305

wave is steady) as306

𝐻 = [̃ + 1
2
𝑐2
𝑠

𝑔

(
𝐴0
𝐴

)2 (
1 + 1

3

(
2ℎ̃[̃′′ − [̃′2

))
. (70)307

The second derivative [̃′′ is deduced by differentiating (61). With the above definitions, lengthy308

but straightforward manipulations yields the head in the following simple form309

𝐻 = 1
2F

2
0 𝑑, (71)310

confirming that the head is conserved. Now, following Hager and Hutter (1984), consider a solitary311

wave. The head in the moving frame must obviously satisfy 𝐻 ≥ [̃∗, which is the width-averaged312
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depth at the wave crest. Equation (71) thus yields313

1
2F

2
0 (N∗) ⩾ N∗. (72)314

The Froude number being linked to the wave amplitude N∗ by (64), this gives an implicit315

equation for the upper bound of the solitary wave amplitude N∗
𝑐 :316

𝑑2

𝑑
2 − A

(
N∗
𝑐

) �̃�2(N∗
𝑐 )

𝑑
2 − N∗2

𝑐

𝑑 (N∗
𝑐 )

𝑑
+ N∗

𝑐

=
2N∗

𝑐

(
1 − A

(
N∗
𝑐

) )2

A (N∗
𝑐 )

. (73)317

Above the critical amplitude N∗
𝑐 , waves should be unstable and break. However, as pointed out by318

Hager and Hutter (1984) instability may occur for smaller amplitudes, the above criterion being319

sufficient but not necessary. For the rectangular section (73) gives N∗
𝑐 = 1, thus F0 =

√
2: the320

solitary wave amplitude cannot exceed the rest water depth, in agreement with Hager and Hutter321

(1984).322

Trapezoidal cross section323

Still following Hager and Hutter (1984), we now investigate the trapezoidal cross-sectional

case, the most frequent in hydraulic civil engineering. Call 𝑏 the width of the flat, horizontal part

of the bed, ℎ0 the rest depth above the latter and 𝑚 = cot \ the bank slope (Figure 3), all quantities

of interest can be written as functions of the following parameters:

𝛽 = 𝑚
ℎ0
𝑏

∈
[
−1

2 , +∞
)
, (74)

𝛼 =
𝛽 (𝛽 + 1)
(2𝛽 + 1)2 ∈

(
−∞, 1

4
]
. (75)

For a solitary wave, equation (63) reads324

𝑥 − 𝑐𝑠𝑡
𝑑

= ± F0√
3

∫
dN

N
√︂
F 2

0 (1 + 𝛼N)2 −
(
1 + N + 𝛼N2) (

1 + 4
3𝛼N

) , (76)325
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and must be integrated by numerical means (the quadrature method is explained in the Supplemen-326

tary Materials). Figure 4 shows three solitons with 𝛼 = 0.25 (triangular cross section) and wave327

amplitude N∗ = 0.1, 0.2, 0.3.328

In practice, the above variables (F0,N) may be replaced by Hager and Hutter (1984)’s notation

( 𝑓 = 𝑄2

𝑔𝑏2ℎ3
0
, 𝑦 = ℎ

ℎ0
), where 𝑄 is the flowrate far upstream in the moving frame. They are linked to

the present variables by

𝑓 =
(1 + 𝛽)3

1 + 2𝛽
F 2

0 , (77)

𝑦 = 1 + 1 + 𝛽
1 + 2𝛽

N . (78)

Cancelling the denominator in (76) gives the Froude number versus the wave amplitude as329

F 2
0 =

(
1 + N∗ + 𝛼N∗2) (

1 + 4
3𝛼N

∗
)

(1 + 𝛼N∗)2 , (79)330

which is also obtained from (64). Using (77)–(78) this can also be written331

𝑓 = (1 + 𝛽)2 𝑦
∗ (1 + 𝛽𝑦∗) (2𝛽 + 3 + 4𝛽𝑦∗)

3 (𝛽 + 1 + 𝛽𝑦∗)2 . (80)332

This is plotted on Figure 5, compared with Hager and Hutter (1984)’s model (their Figure 5; their333

model is summarised in the Supplementary Materials). One can see that the present model is close334

to Hager and Hutter (1984)’s; in particular, both models give, for small amplitude waves335

𝑓 =
(𝛽 + 1)3

2𝛽 + 1
+
(𝛽 + 1)2 (

10𝛽2 + 10𝛽 + 3
)

3 (2𝛽 + 1)2 (𝑦∗ − 1) +𝑂
(
(𝑦∗ − 1)2

)
. (81)336

Equation (73), giving the upper bound of the solitary wave amplitude, now reads337

N∗3
𝑐 + 5

2𝛼
N∗2
𝑐 + 3 − 4𝛼

2𝛼2 N∗
𝑐 − 3

2𝛼2 = 0, (82)338
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with solution339

N∗
𝑐 = Ψ (𝛼) +

2
3𝛼 + 7

36𝛼2

Ψ (𝛼) − 5
6𝛼
, (83)340

where341

Ψ (𝛼) =
(

5
108𝛼3 − 1

12𝛼2 +
√︂
− 8

27𝛼3 − 109
432𝛼4 − 1

12𝛼5 − 1
192𝛼6

)1/3

. (84)342

Hager and Hutter (1984) explain how their model allows for writing an upper bound of the wave343

elevation above the bed 𝑦∗𝑐 from the considerations repeated in the previous section. They do not344

exhibit all their formulae, but it is noteworthy that their model simplifies to345

𝑓 (𝑦∗)
2 (1 + 𝛽)2 ⩾ 𝑦

∗ − 1, (85)346

which is exactly equation (72) of the present model (that we proved above being valid for all347

cross-sectional shapes). However, Hager and Hutter (1984) obtained a different relation between348

the amplitude and the Froude number. With our model, (73) gives, for the trapezoidal section, an349

implicit equation connecting the upper bound of 𝑦∗, denoted as 𝑦∗𝑐, with the corresponding value350

of 𝑓 :351

2 𝑓
(
𝑦∗3
𝑐 + 2𝑦∗2

𝑐 − 3𝑦∗𝑐 − 3
)
+
√︁

2 𝑓 (𝑦∗𝑐 − 1)𝑦∗𝑐
(
𝑦∗𝑐 + 2

) (
4𝑦∗𝑐 − 5

)
+2𝑦∗𝑐

(
2𝑦∗𝑐 + 1

) (
𝑦∗𝑐 − 1

)2
= 0. (86)352

The above equation is a second order polynomial in
√︁
𝑓 , giving the bold solid line on Figure353

5 (only values of 𝑦∗ larger than 1 are represented, i.e., positive waves). The rectangular section354

case ( 𝑓 , 𝑦∗𝑐) = (2, 2) is recovered, while the asymptotic 𝑦∗𝑐 value for large 𝑓 (large 𝛽) is 0.4605.355

Therefore, the maximum solitary wave amplitude in very wide and shallow channels with bank356

slopes is bounded by [̃∗𝑐 (𝛽 −→ +∞) = 0.4605ℎ0 (while [̃∗𝑐 (𝛽 = 0) = ℎ0 in a rectangular section,357

as a reminder). The intersection of the curve (86) with the axis 𝑓 = 1 is given by 𝛽 = −0.288 and358

𝑦∗𝑐 = 1.986. The same Figure shows the critical wave elevation in Hager and Hutter (1984) (the359

detailed computations are summarized in the Supplementary Materials).360
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Cnoidal waves of moderate amplitude361

Contrary to the case of rectangular section, in general the implicit solution (63) cannot be solved362

for the surface elevationN . Trapezoidal cross sections, for example, lead to a fifth order polynomial363

under the square root (equation (76)), making it impossible to solve it using elliptic integrals. In364

the rest of this work we consider waves whose amplitude is not too large, so that A (N) , 𝑑 (N)365

and 𝑑2 (N) can be with good accuracy Taylor-expanded as functions of N . We first write366

A (N) ≈ 1 + N + 1
2𝜏N

2 + 1
3𝛾N

3 + 1
4YN

4, (87)367

where 𝜏, 𝛾 and Y are constants depending on the channel cross sectional shape. To be precise,368

denoting 𝑀 ≑ cot \𝑙 + cot \𝑟 where \𝑙 , \𝑟 are the left-bank and right-bank interior angles with the369

free surface in the rest state (see Figure 2), we define370

𝜏 ≑
𝑀𝑑

𝐵0
, (88)371

which is twice the inverse of the dimensionless average bank slope, but will be referred to as the372

’bank slope’ in what follows. Similarly, 𝛾 is an average, dimensionless bank curvature in the rest373

state. We obtain374

𝑑 (N) ≈ 𝑑

(
1 − 𝜏N + (𝜏2 − 1

2𝜏 − 𝛾)N
2 − (𝜏3 − 1

2𝜏
2 − 2𝛾𝜏 + 2

3𝛾 + Y)N
3
)
, (89)375

𝑑2 (N) ≈ 𝑑2
(
1 − 𝜏N + (𝜏2 − 𝛾)N2 + (2𝜏𝛾 − 𝜏3 − Y + 1

3𝜏𝛿)N
3
)
, (90)376

with 𝛿 ≑ 𝑑
2/𝑑2 as a shape factor of the cross section, and subsequently:377

𝑑2

𝑑
2 − A (N)

�̃�2 (N)
𝑑

2 − N2

𝑑 (N)
𝑑

+ N
≈ N2 + 2

3𝜏N
3. (91)378
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Equation (63) is thus approximated by379

b

𝑑
≈ ± 1

√
3Λ

∫
dN√︁
P (N)

, (92)380

with the following definitions for the polynomial P (N) and the constant Λ:381

P (N) ≑ − (N − N1) (N − N2) (N − N3) = 𝑃 −𝑄N + 𝑆N2 − N3; (93)382

Λ ≑ 2
3𝛾𝐶0 − (𝜏 + 2

3𝛾)𝐶1 + (1 + 2
3𝜏)

𝐶2

F 2
0
, (94)383

and384

𝑃 ≑ N1N2N3 =
1
Λ

(1 − 2𝐶0 + 𝐶1) , (95)385

𝑄 ≑ N1N2 + N1N3 + N2N3 =
2
Λ

(𝐶0 − 𝐶1) ,386

𝑆 ≑ N1 + N2 + N3 =
1
Λ

(
−𝜏𝐶0 + (1 + 𝜏)𝐶1 −

𝐶2

F 2
0

)
.387

The roots of P (N) are ordered as follows: N3 < N2 < N1. With the classical variable change388

(see, e.g., Korteweg and de Vries 1895, Violeau 2022) N = N2 + (N1 − N2) cos2 Ψ we obtain a389

family of cnoidal waves, and Λ is rewritten as a function of 𝑃,𝑄, 𝑆, 𝜏, 𝛾:390

N = N2 + (N1 − N2) cn2
(

1
2

√︁
3Λ (N1 − N3)

𝑥 − 𝑐𝑡
𝑑

| 𝑚
)
, (96)391

𝑚 ≑
N1 − N2
N1 − N3

,392

Λ =
1 − 1

3𝜏

1 +
(
1 − 1

3𝜏
)
𝑃 +

(
1 + 1

6𝜏 −
1
3𝛾 +

1
3𝜏

2
)
𝑄 +

(
1 + 2

3𝜏
)
𝑆

.393

where cn denotes Jacobi’s elliptic cosine (Abramowitz and Stegun 1965). The wave length is394

𝐿 =
4𝐾 (𝑚)√︁

3Λ (N1 − N3)
, (97)395
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with 𝐾 the complete elliptic integral of the first kind (Abramowitz and Stegun 1965). As expected,396

we still have four degrees of freedom: N1,N2,N3 (or 𝑃,𝑄, 𝑆) and 𝑐. Note that the parameter397

Y defined in (87) has cancelled out, though it was necessary to obtain the above solution to the398

given order. Similarly, 𝛿 does not appear any more in the result, the only two parameters relative399

to the shape of the cross section being the dimensionless mean bank slope and curvature at rest,400

𝜏 and 𝛾. The rectangular section case (𝜏 = 𝛾 = 0) gives Λ = F −2
0 and F0 =

√
1 + 𝑃 +𝑄 + 𝑆 =401 √︁

(1 + N1) (1 + N2) (1 + N3), in agreement with (El et al. 2006) (their equation (9)) as well as402

(Favrie and Gavriluk 2006).403

Note that the approach proposed in the present section and the next one, i.e., expanding the wave404

elevation up to a certain order, makes the present solution weakly non-linear, while the original405

equations where fully non-linear.406

Soliton of moderate amplitude407

We now investigate the case of solitary waves of moderate amplitude, i.e., (𝐶0, 𝐶1, 𝐶2) =408

(1, 1, 1), for which (94) shows that the channel bank curvature 𝛾 disappears from the model409

equations. Equations (64), (87) and (91) give the celerity of the solitary wave as a function of the410

bank slope 𝜏 and wave amplitude N∗:411

𝑐𝑠√︃
𝑔𝑑

≈ 1 + 1
2

(
1 − 1

3𝜏
)
N∗, (98)412

in agreement with Fenton (1973) (his equation (4.6)). Note that Teng andWu (1997)’s Boussinesq-413

type model, also investigated in Teng (2000), reads (after simplification and with our notations):414

𝑐𝑠√︃
𝑔𝑑

=
1 + N∗

N∗
(
1 + 1

2𝜏N∗
)√√ 1

2𝜏N∗2 (1 + N∗) + (𝜏 − 2) (N∗ − (1 + N∗) ln (1 + N∗))
1 + 2

3N∗ − 1
3𝛾N∗2

, (99)415

rendering (98), when expanded to the first order with respect to the wave amplitude. Additionally,416

Winckler and Liu (2015)’s formula (4.5b) leads to the same conclusion provided their coefficient417

𝛾 (with a different meaning than the present one) is always negative, which is proved from its418
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definition (see Jouy et al. 2023).419

The implicit solution (63) then gives420

𝑥 − 𝑐𝑠𝑡
𝑑

≈ ± F0√
3

∫
dN

N
√︂
F 2

0 − 1 −
(
1 + 2

3𝜏 − F 2
0 𝜏

)
N
, (100)421

generalising the case of the rectangular section (66). From (100) it is easy to see that F 2
0 > 1 is422

required, since the quantity under the square root must be positive. This is also in agreement with423

Fenton (1973). The solution to (100) is identical to the rectangular cross section case (67), with424

N∗ =
F 2

0 − 1
1 + 2

3𝜏 − F 2
0 𝜏
, (101)425

rendering (68) in the rectangular cross section case. From (67) and (101), we also obtain the426

wavenumber 𝑘𝑠:427

𝑘𝑠𝑑 = 1
2

√√√ (3 − 𝜏) N∗

1 +
(
1 + 2

3𝜏
)
N∗

≈ 1
2

√︁
(3 − 𝜏) N∗, (102)428

which, once more, agrees with Fenton’s equation (4.7) (Fenton (1973)), but also with Peters (1968)429

and Peregrine (1968). Winckler and Liu (2015)’s equation (4.5a) contains more information on the430

channel cross section shape through their coefficient 𝛾.431

Equation (101) shows that the solitary wave amplitude can be negative if432

𝜏 >
3

3F 2
0 − 2

=
3 (1 + 𝜏N∗)

1 + 3N∗ . (103)433

Substituting (101) into (103) and rearranging, we obtain the condition for the negative soliton as434

follows:435

𝜏 > 3, (104)436

as stated by Peregrine (1968) from different considerations.437

As an illustration, consider the case of a channel with trapezoidal section, i.e., 𝑀 = 2𝑚 and438
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𝜏trapezoid = 2𝛼 from the definition (88) (recall 𝛼 is defined by (74)–(75), giving 𝜏rectangle = 0).439

Figure 4 shows the solution (67), (101) for various values of 𝛼 and wave amplitude N∗. One can440

see that the moderate amplitude solution is a good approximation of the true solution (76) obtained441

by numerical integration, as long as the dimensionless amplitude satisfies N∗ ≲ 0.1. For the442

triangular cross-sectional case (𝛼 = 1
4 ), our equations (98) and (102) give the ratios of moderate443

amplitude solitary wave celerities and wavelengths _𝑠, respectively:444

𝑐𝑠,triangle

𝑐𝑠,rectangle
≈

1 + 5
12N

∗

1 + 1
2N∗

≈ 1 − 1
12N

∗, (105)445

_𝑠,triangle

_𝑠,rectangle
≈

√︄
3 − 𝜏rectangle
3 − 𝜏triangle

=

√︃
6
5 ≈ 1. 0954. (106)446

Teng (2000) shows that Teng andWu (1997)’s model agrees that the wavelength on a triangular-447

section channel should be larger than that in a rectangular section, but no analytical formula is448

given. Teng’s Figure 3 is qualitatively in agreement with the present Figure 6, showing the free449

surface elevation at a given time in both channels with the present model, when the dimensionless450

amplitude N∗ = 0.3. The same kind of behavior is reported by Winckler and Liu (2015)’s Figure451

4. On the other hand, Teng and Wu (1997) found a higher wavelength than the present model for452

the triangular case, typically 1.3 times the wavelength in the rectangular channel for N∗ = 0.3.453

They findings are supported by laboratory measurements, but their experimental soliton is of poor454

quality and should not be considered as a reference. High quality experimental solitary waves in455

channels of non-rectangular cross sections are still missing in the current literature.456

Teng (2000) also investigates a triangular section with vertical walls above the rest free surface,457

showing a different behaviour than with the rectangular and triangular sections. Our model does458

not provide such a prediction, since for any cross section with vertical walls we have 𝐴 = 𝐴0 + 𝐵0[̃,459

hence A (N) = 1 + N ; moreover, both integrals in (14) and (15) are calculated with the same460
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bounds, therefore 𝑑 (N) = 𝑑 and 𝑑2 (N) = 𝑑2, and the general travelling wave solution reduces to461

𝑥 − 𝑐𝑡
𝑑

= ±
∫

dN√︂
3
[
1 − 2𝐶0 (1 + N) + 𝐶1 (1 + N)2 + 𝐶2

F 2
0
(1 + N) N2

] , (107)462

as for a rectangular section. To circumvent this issue, it would be necessary to build more advanced463

governing equations accounting for the bottom kinematic boundary condition in the Lagrangian464

(37), which requires a non-zero transverse velocity, thus a free surface that varies along the channel465

width as in Teng and Wu (1997) and Winckler and Liu (2015).466

Application: undular bore’s leading wave467

The leading wave of an Undular bore is known to behave like a solitary wave (El et al. 2006,468

Violeau 2022). In a trapezoidal channel, equation (79) should thus be valid for linking the leading469

wave amplitude N∗ and the upstream Froude number F0. Sandover and Taylor (1962) performed470

undular bores experiments in a channel of trapezoidal cross-section with variable slope angle,471

and discuss the variability of the leading wave amplitude; they conclude that this is an effect of472

the cross-sectional shape, thus of the slope angle \ defined in Figure 3. They made their data473

dimensionless using the rest water depth ℎ0 (while the present study proves that the mean water474

depth at rest 𝑑 =
1+𝛽
1+2𝛽 ℎ0 is more relevant). With this correction, Figure 7 shows that equation475

(79) agrees with Sandover and Taylor (1962)’s experiments for various slope angles and channel476

flowrates, confirming that the present model is relevant to describe the influence of the cross-section477

shape on the dynamics of dispersive waves.478

Conclusions479

The variety of circumstances were dispersive, non linear waves occur in channels makes it necessary480

to propose alternatives to the classical channel, section-averaged, Saint-Venant equations, which481

fail in predicting all situations where the vertical component of the velocity field makes the pressure482

non-hydrostatic. While Boussinesq-type models remain weakly non-linear, the present approach is483

fully non-linear, though restricted to weakly dispersive waves and wave trains.484
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The variational method proposed by Clamond and Dutykh (2012) proved to be efficient in485

finding a system of Serre equations for arbitrary cross-sectional channels, given by (24), (40)486

and (45), the derivation being significantly easier than it would be by using the more traditional487

asymptotic expansion approach as in Debyaoui and Ersoy (2020). The global family of travelling488

waves (63) including solitary waves with celerity (64) are formally written for arbitrary shape489

of the cross section through the bottom/bank elevation 𝑑 (𝑦). Hager and Hutter (1984)’s method490

allows writing an upper bound of the wave elevation as a function of the Froude number, and the491

present theory agrees, up to the first order, with Hager and Hutter (1984)’s model for trapezoidal492

cross sections. For waves of moderate amplitude, a simplification of the proposed model, closer493

to the Boussinesq approach, is able to predict the main wave characteristics as functions of the494

channel dimensionless bank slope 𝜏, and curvature 𝛾. The solitary wave of moderate amplitude495

is of particular interest, the proposed model giving the celerity and wave number as functions of496

𝜏 in agreement with well-established results of the existing literature. Peregrine’s negative-soliton497

criterion for 𝜏 is also recovered to the leading order.498

The data available in the literature regarding travelling waves in non-rectangular cross-sectional499

channels being scarce and ofmodest quality, it was not possible to propose a quantitative application500

of the presentmodel in documented realistic cases. On the contrary, waveswith non-uniformcelerity501

like undular bores have been extensively studied in flumes (i.e., Favre 1935 and Treske 1994), but502

their complete theoretical analysis would require a particular treatment based on a modulation503

theory, which was not possible within the extent of the present work. Modeling these bores, as504

well as more complex situations in practical engineering applications, would benefit from a space-505

time numerical integration of the proposed governing equations. Numerical scheme based on the506

classical Serre–Green–Naghdi have already been successfully used in this context (Chassagne et al.507

2019, Biswas et al. 2021), giving interesting clues for the numerical treatment of the proposed508

equations.509

It is noteworthy that the model proposed herein was based on some strong assumptions. One510

of the most important is the uniformity of the free surface elevation along the channel (or river)511
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width. This makes it impossible to predict situations were the free surface experiences a transverse512

curvature, as it has been observed in non-rectangular cross-sectional channels (Peregrine 1968,513

Treske 1994). In such cases, the wave celerity is non-uniform along the width and waves easily514

break near the banks, leading to various specific phenomena (Chassagne et al. 2019, Violeau 2022).515

The present model thus paves the way for more sophisticated theoretical developments, including a516

more advanced model accounting for the bed kinematics boundary condition, as well as transverse517

velocity and free surface variation. Such an approach would allow treating the variabiliy of the518

free surface across the channel width. Whitham’s modulation theory, recently investigated in the519

framework of the Serre–Green–Naghdi equations (El et al. 2006, Tkachenko et al. 2020), may also520

be used to extend the present model to the prediction of channel dispersive shock waves, including521

the complete above-mentioned Favre waves, as well as tidal bores.522

From the analysis of the results of the present model, it can be concluded that non-hydrostatic523

models, either weakly non-linear like Boussinesq models, or fully non-linear like Serre models,524

are not a luxury but a necessity. As demonstrated by the application example depicted in the last525

section, with the present model the amplitude of the leading soliton of Favre waves in hydropower526

channels can be predicted as a function of the bank slope with a fairly good accuracy. Such a527

prediction could not be achieved with the non-linear shallow water (Saint-Venant) equations, which528

predict a hydraulic jump for all upstream Froude numbers. The leading wave of Favre dispersive529

wave trains having an amplitude close to twice the corresponding hydraulic jump, the improvement530

due to non-hydrostatic models is of prime importance for flooding safety and waterworks design.531
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NOTATION532
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The following symbols are used in this paper:533

[𝜑] = vertical average of 𝜑;

𝜑 = width-average of 𝜑;

𝜑 = width-average of 𝜑 in rest state;

⟨𝜑⟩ = section-average of 𝜑;

�̂� = free surface value of 𝜑;

�̌� = bottom value of 𝜑;

𝐴 = channel cross section (m2);

𝐴0 = channel cross section at rest (m2);

A = dimensionless channel cross section (–);

𝐵 = channel width (m);

𝐵0 = channel width at rest (m);

𝐵𝑙 = channel left bank distance (m);

𝐵𝑟 = channel right bank distance (m);

𝐵𝑙0 = channel left bank distance at rest (–);

𝐵𝑟0 = channel right bank distance at rest (–);

𝑐, 𝑐𝑠 = wave celerities (m/s);

𝑑 = bottom depth (m);

F0 = Froude number (–);

𝑔 = gravity acceleration (m2/s);

ℎ = water depth (m);

𝑘𝑠 = soliton wave number (s−1);

ℒ = Lagrangian (m5/s);

L = Lagrangian density (m3/s2);

N = dimensionless free surface elevation (–);

N∗ = dimensionless wave amplitude (–);

𝑡 = time (s);

u = (𝑢, 𝑣) = horizontal velocity field (m/s);

534
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𝑤 = vertical velocity field (m/s);

x = (𝑥, 𝑦) = horizontal coordinates (m);

𝑧 = vertical coordinate (m);

𝛼, 𝛽 = shape factors of trapezoidal channel (–);

𝛾 = dimensionless bank curvature (–);

[ = free surface elevation (m);

Θ = mean bottom angle (rad);

\ = slope angle of a trapezoidal channel (rad);

_ = (_, `) = horizontal conjugate velocity field (m/s);

_𝑠 = soliton wave length (m);

a = vertical conjugate velocity field (m/s);

𝜏 = dimensionless bank slope (–); and

𝜙 = velocity potential (m2/s).

535
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Fig. 1. View of the channel of the Sisteron dam (EDF, France). Favre waves are propagating
upstream after gate closure. Photo EDF/CIH.
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Fig. 2. Notation: prismatic channel with uniform free surface across the width.
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Fig. 3. Notation: the trapezoidal cross sectional case. The rest water depth 𝑑 (𝑦) is considered
positive when the bed elevation is below the rest free surface; it it thus negative in the side gray
triangles.
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Fig. 4. Solitary wave with 𝛼 = 0.25 (triangular cross section) and wave amplitude N∗ =

0.1, 0.2, 0.3. (—) numerical integration of of (76); (- - -) equations (67) and (101).
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Fig. 5. Variation of the wave elevation 𝑦∗ with the Froude number squared 𝑓 in a trapezoidal
channel for various values of 𝛽; (—) present model (80); (- - -) Hager and Hutter’s model (see
Supplementary Materials, (S6)). The thick lines show the critical wave amplitude 𝑦∗𝑐 ( 𝑓 ) given by
(86) and (S8)–(S9), with the same convention.
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Fig. 6. Numerical integration of the solitary wave solution (76) with amplitude N∗ = 0.3; (—-)
rectangular channel section (𝜏 = 0); (- - -) triangular section (𝜏 = 1

2 ).
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Fig. 7. Amplitude of the leading soliton of an undular bore as a function of the Froude number.
Both quantities are based on the initial water depth ℎ0 to allow comparison with data. Solid lines:
equation (79); symbols: experiments. The channel section is trapezoidal as in Figure 3, with
different values of the slope angle: \ = 90◦ (black, rectangular section), 60◦ (orange), 45◦ (blue)
and 30◦ (red).
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