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Serre equations in channels and rivers of arbitrary cross section

A variational approach is used to derivate a set of Serre equations for fully nonlinear, dispersive waves in channels of arbitrary cross-section. A family of travelling waves is found, as well as the relation between amplitude and celerity of solitary waves. An upper bound is proposed for the solitary wave amplitude as a function of the Froude number in trapezoidal cross-sectional canals, showing good agreement with an existing theory. For waves of moderate amplitude, cnoidal waves result with a soliton limit; the latter waves and their properties (celerity, wave number) are written as functions of the channel bank slope and channel bank curvature. The theoretical findings are in agreement with well-established results of the literature, in particular with more recent Boussinesq-type theories. A validation is proposed against existing experimental data.

INTRODUCTION

Aim of present work

Dispersive, non linear waves can occur in rivers and channels in many circumstances, like vessel wave wakes, waves due to ship lock or hydropower dam operations, to cite a few. Weakly dispersive, non linear wave trains, also referred to as undular bores, take place under various conditions like tidal bores [START_REF] Chanson | Tidal Bores, Aegir, Eagre, Mascaret, Pororoca: Theory and Observations[END_REF] or Favre waves [START_REF] Favre | Etude théorique et expérimentale des ondes de translation dans les canaux découverts[END_REF]. Understanding and modelling the behavior of these channel waves are thus necessary to the engineering design of river waterworks, canal operations or maintenance. Of particular interest is the example of Favre waves, due to rapid gate closure in hydropower stations (see Figure 1). These wave trains propagate far upstream with 1

Violeau, March 17, 2023 little dissipation or damping, as evidenced by on-site tests [START_REF] Violeau | Contribution to the theory of undular bores. a journey around the Kortewegde Vries equation[END_REF]) and laboratory models [START_REF] Treske | Undular bores (Favre waves) in open channels. Experimental studies[END_REF]. They can cause unexpected loads or floods along an extended part of the channel banks. The issue of dam break prediction is also at stake, recent numerical models showing that their numerical simulation benefit from dispersive wave models (see e.g. [START_REF] Mohapatra | Two-dimensional analysis of dam-break flow in a vertical plane[END_REF][START_REF] Mohapatra | Numerical solution of Boussinesq equations to simulate dam-break flows[END_REF] for an illustration with a Boussinesq-type model). Flow over weirs are also concerned, as demonstrated by [START_REF] Castro-Orgaz | Shallow flows over curved beds: Application of the Serre-Green-Naghdi theory to weir flow[END_REF]. More generally, for all channel dispersive, non linear waves, both the theory and the numerical modeling (and, to less extent, the design of scale models) require building relevant systems of equations.

In the context of the physical understanding and numerical modeling of non-linear, dispersive water waves, the Serre equations (Serre 1953a[START_REF] Serre | Contribution à l'étude des écoulements permanents et variables dans les canaux[END_REF], also celebrated as the Serre-Green-Naghdi or Su-Gardner equations (Green et al. 1974, Su and[START_REF] Su | KdV equation and generalizations. Part iii. Derivation of the Korteweg-de Vries equation and Burgers equation[END_REF], have the advantage of being fully non-linear (through only weakly dispersive), contrary to the family of Boussinesqtype models. The Serre equations have been the subject of further extensions, including twodimensional flow on arbitrary bottoms (Green andNaghdi 1976, Seabra-Santos et al. 1987). Only few papers (to the author's knowledge) refer to an extension of the Serre equations to channel flows with arbitrary channel cross section. A recent attempt was made by [START_REF] Debyaoui | Generalised Serre-Green-Naghdi equations for open channel and for natural river hydraulics[END_REF] using the traditional asymptotic expansion method, leading to a complex formulation after long computations.

More generally, non-linear, dispersive waves in channels of arbitrary cross section have been the topic of limited publications so far, the prominent theoretical works being those by [START_REF] Peters | Rotational and irrotational solitary waves in a channel with arbitrary cross section[END_REF], [START_REF] Peregrine | Long waves in a uniform channel of arbitrary cross-section[END_REF], [START_REF] Fenton | Cnoidal waves and bores in uniform channels of arbitrary cross-section[END_REF], and more recently [START_REF] Teng | Effects of channel cross-sectional geometry on long wave generation and propagation[END_REF] and [START_REF] Winckler | Long waves in a straight channel with non-uniform crosssection[END_REF]. All these authors propose Boussinesq-like models and derive some propagation properties of classical wave families, i.e. cnoidal and solitary waves. In all these works the effect of the channel cross-sectional shape on these waves is primarily governed by the channel bank slope. As for numerical models of dispersive waves in arbitrary cross section channels, the Serre-Green-Naghdi equations are mostly considered, which requires a two-dimensional model [START_REF] Chassagne | Dispersive and dispersivelike bores in channels with sloping banks[END_REF][START_REF] Biswas | Modeling positive surge propagation in open channels using the Serre-Green-Naghdi equations[END_REF]).

2 [START_REF] Violeau | View of the channel of the Sisteron dam (EDF, France). Favre waves are propagating upstream after gate closure[END_REF] The present work aims at establishing simple, one-dimensional Serre-like equations for arbitrary cross-section channels with limited mathematical calculations. For this purpose, consider the variational approach by [START_REF] Clamond | Practical use of variational principles for modeling water waves[END_REF]. After building these equations we exhibit some families of travelling waves whose properties are successfully compared with those from the existing literature. The plan of the paper is as follows: after summarising Clamond and Dutykh's method (2012) in the next section, a first part is dedicated to the construction of an appropriate wave Lagrangian, which is then applied to channel flow to derive the Saint-Venant equations, then the newly proposed Serre model. In a second part we study travelling waves emerging from this model, with a focus on moderate amplitude waves for which a quantitative study is possible.

Clamond and Dutykh's wave Lagrangian

We consider [START_REF] Clamond | Practical use of variational principles for modeling water waves[END_REF]'s variational approach, where they build shallow water wave equations from a variational approach for a potential, incompressible flow. To this purpose, they consider Luke's wave Lagrangian (1967):

ℒ = ∫ 𝑡 ∫ x L𝑑xd𝑡, (1) 
L = - ∫ 𝜂 -𝑑 𝑔𝑧 + 𝜙 𝑡 + 1 2 |∇𝜙| 2 + 1 2 𝜙 2 𝑧 d𝑧, (2) 
where subscripts refer to partial derivatives. The flow potential is denoted as 𝜙, the vertical coordinate is treated separately from the horizontals x = (𝑥, 𝑦) 𝑇 and ∇ (•) = (•) x . Time is denoted as 𝑡, and the sea (or river, etc.) bottom is at 𝑧 = -𝑑 (x, 𝑡) while 𝑧 = 𝜂 (x, 𝑡) represents the free surface elevation, so that the local water depth is ℎ = 𝜂 + 𝑑. [START_REF] Luke | A variational principle for a fluid with a free surface[END_REF] showed how the variation of the above Lagrangian leads to the equations of a free surface, incompressible potential flow. [START_REF] Clamond | Practical use of variational principles for modeling water waves[END_REF] proposed to modify Luke's Lagrangian (1)-( 2) to yield a relaxed form. To do so, they explicitely introduced the velocity (u, 𝑤) (with horizontal and vertical components u and 𝑤), as well as the potential flow condition (u, 𝑤) = (∇𝜙, 𝜙 𝑧 ), prescribed by a field of Lagrange 

L = φ𝜂 𝑡 + φ𝑑 𝑡 -1 2 𝑔 𝜂 2 -𝑑 2 (3) - ∫ 𝜂 -𝑑 1 2 |u| 2 + 1 2 𝑤 2 + 𝜆 • (∇𝜙 -u) + 𝜈 (𝜙 𝑧 -𝑤) d𝑧,
where the term 𝑔𝑧 was integrated explicitely, while 𝜙 𝑡 was integrated by parts. In (3) and everywhere in this paper, we denote by φ = 𝜑 (𝑧 = 𝜂) and φ = 𝜑 (𝑧 = -𝑑) the values of an arbitrary field 𝜑 at the surface and the bottom, respectively. The resulting Lagrangian contains more unknowns but allows for more flexibility, hence the name of relaxed Lagrangian. Equation ( 3) is once more modified by the use of the following identities which assume vanishing fields for infinite values of the coordinates:

∫ x ∫ 𝜂 -𝑑 𝜆 • ∇𝜙d𝑧dx = ∫ x ∫ 𝜂 -𝑑 (∇ • (𝜙𝜆) -𝜙∇ • 𝜆) d𝑧dx, (4) 
then

∫ x ∫ 𝜂 -𝑑 ∇ • (𝜙𝜆) d𝑧dx = ∫ x ∇ • ∫ 𝜂 -𝑑 𝜙𝜆𝑑𝑧 -φ λ • ∇𝜂 -φ λ • ∇𝑑 dx (5) = - ∫ x φ λ • ∇𝜂 + φ λ • ∇𝑑 dx,
and finally

∫ 𝜂 -𝑑 𝜈𝜙 𝑧 𝑑𝑧 = ν φ -ν φ - ∫ 𝜂 -𝑑 𝜈 𝑧 𝜙d𝑧. (6) 
With ( 3) to (6), we obtain Clamond and Dutykh's Lagrangian:

L = φ 𝜂 𝑡 + λ • ∇𝜂 -ν + φ 𝑑 𝑡 + λ • ∇𝑑 + ν -1 2 𝑔 𝜂 2 -𝑑 2 (7) + ∫ 𝜂 -𝑑 𝜆 • u + 𝜈𝑤 -1 2 |u| 2 -1 2 𝑤 2 + 𝜙 (∇ • 𝜆 + 𝜈 𝑧 ) d𝑧.
Note that the surface and bottom potentials, φ and φ, are now the Lagrange multipliers of the kinematic boundary conditions of these two boundaries, applied to the conjugate velocity field (𝜆, 𝜈), while 𝜙 is the multiplier associated to the incompressibility condition of the latter field.
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General considerations

We consider a channel or river of weak curvature, so that a one-dimensional approach is relevant.

For the sake of generality we allow the bed/banks to be mobile, to account for sediment mobility, landslide, seism, etc. We assume the bed to have an average upstream-downstream slope of angle Θ with the horizontal, and place ourselves in a frame where the longitudinal axis 𝑥 is inclined with the same angle, which allows accounting for the effects of a local bed slope 𝑑 𝑥 (see Figure 2).

This amounts to changing 𝑔 for 𝑔 cos Θ, a horizontal driving force being added to the momentum equation. Extending Clamond and Dutykh's method to this framework is done by reducing the space integration of the Lagrangian to the 𝑥 axis:

ℒ = ∫ 𝑡 ∫ 𝑥 Ld𝑥d𝑡, (8) 
while the Lagrangian density L is the integral of ( 7) on the transverse horizontal axis 𝑦, with the above-mentioned modifications:

L = ∫ 𝐵 𝑟 -𝐵 𝑙 φ 𝜂 𝑡 + λ𝜂 𝑥 + μ𝜂 𝑦 -ν + φ 𝑑 𝑡 + λ𝑑 𝑥 + μ𝑑 𝑦 + ν -1 2 (𝑔 cos Θ) 𝜂 2 -𝑑 2 d𝑦 (9) + ∫ 𝐵 𝑟 -𝐵 𝑙 ∫ 𝜂 -𝑑 (𝑔 sin Θ) 𝑥 + 𝜆𝑢 + 𝜇𝑣 + 𝜈𝑤 -1 2 𝑢 2 + 𝑣 2 + 𝑤 2 +𝜙 𝜆 𝑥 + 𝜇 𝑦 + 𝜈 𝑧 d𝑧d𝑦
where 𝑦 = -𝐵 𝑙 (𝑥, 𝑡) and 𝑦 = 𝐵 𝑟 (𝑥, 𝑡) denote the transverse coordinates of the left and right banks, respectively; they both depend on the free surface elevation on banks. We decomposed the horizontal velocity and its conjugate field as u = 𝑢e 𝑥 + 𝑣e 𝑦 and 𝜆 = 𝜆e 𝑥 + 𝜇e 𝑦 .

As explained by [START_REF] Clamond | Practical use of variational principles for modeling water waves[END_REF], prescribing appropriate Ansätze for the velocity components and prescribing various kinds of boundary conditions in their Lagrangian allows finding various wave model equations. First, the Lagrangian (9) simplifies by assuming the potential to be 5
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∫ 𝐵 𝑟 -𝐵 𝑙 μ𝜂 𝑦 + μ𝑑 𝑦 + ∫ 𝜂 -𝑑 𝜇 𝑦 d𝑧 d𝑦 = ∫ 𝐵 𝑟 -𝐵 𝑙 ∫ 𝜂 -𝑑 𝜇d𝑧 𝑦 d𝑦 (10) = ∫ 𝜂 -𝑑 𝜇d𝑧 𝑦=𝐵 𝑟 𝑦=-𝐵 𝑙 = 0, -ν + ν + ∫ 𝜂 -𝑑 𝜈 𝑧 d𝑧 = 0. ( 11 
)
To establish (10), we used Leibnitz' integration rule, noting that 𝜂 + 𝑑 = ℎ = 0 for 𝑦 = -𝐵 𝑙 and 𝑦 = 𝐵 𝑟 . With the above two equations, we obtain

L = ∫ 𝐵 𝑟 -𝐵 𝑙 [𝜙] ℎ 𝑡 + λ𝜂 𝑥 + λ𝑑 𝑥 -1 2 (𝑔 cos Θ) 𝜂 2 -𝑑 2 d𝑦 (12) + ∫ 𝐵 𝑟 -𝐵 𝑙 ∫ 𝜂 -𝑑 (𝑔 sin Θ) 𝑥 + 𝜆𝑢 + 𝜇𝑣 + 𝜈𝑤 -1 2 𝑢 2 + 𝑣 2 + 𝑤 2 + [𝜙] 𝜆 𝑥 d𝑧d𝑦.
note that ν, ν, λ and λ have been eliminated from the list of unknowns. In what follows, square brackets will refer to vertical averaging; tilde will represent free-surface transverse averaging, and an overbar will refer to the same average taken on the non-perturbed free-surface:

[𝜑] (𝑥, 𝑦, 𝑡) ≑ 1 ℎ (𝑥, 𝑦, 𝑡) 

∫ 𝜂(𝑥,
∫ 𝐵 𝑟 0 -𝐵 𝑙 0 𝜑 (𝑥, 𝑦, 𝑧 = 0, 𝑡) d𝑦, ( 15 
)
where 𝐵 (𝑥, 𝑡) = 𝐵 𝑙 (𝑥, 𝑡) + 𝐵 𝑟 (𝑥, 𝑡) is the surface width and 𝐵 0 (𝑥) = 𝐵 𝑙 0 (𝑥) + 𝐵 𝑟 0 (𝑥) its value in the absence of wave (Figure 2), the rest water level being 𝑧 = 0. Applying the first two averages defines the section-average: Like the bank sides, 𝐴 and 𝐵 explicitly depend on the free surface elevation 𝜂 (𝑥, 𝑦, 𝑡). At rest, the section is denoted as 𝐴 0 (𝑥) = 𝐵 0 (𝑥) d (𝑥), with d (𝑥) as the rest width-averaged depth.

⟨𝜑⟩ (𝑥, 𝑡) ≑ 1 𝐴 (𝑥,
Further, we impose the potential as constant on the whole channel cross section, i.e. 𝜙 = ⟨𝜙⟩ (𝑥, 𝑡). This suggests that the longitudinal velocity and its conjugate obey the same rule: 𝑢 = ⟨𝑢⟩ (𝑥, 𝑡) and 𝜆 = ⟨𝜆⟩ (𝑥, 𝑡), so that (12) reads

L = ⟨𝜙⟩ ∫ 𝐵 𝑟 -𝐵 𝑙 ℎ 𝑡 d𝑦 + ∫ 𝐵 𝑟 -𝐵 𝑙 (⟨𝜆⟩ ℎ) 𝑥 d𝑦 (18) -1 2 (𝑔 cos Θ) ∫ 𝐵 𝑟 -𝐵 𝑙 𝜂 2 -𝑑 2 d𝑦 + 𝐴 (𝑔 sin Θ) 𝑥 + ⟨𝜆⟩ ⟨𝑢⟩ -1 2 ⟨𝑢⟩ 2 + ∫ 𝐵 𝑟 -𝐵 𝑙 ∫ 𝜂 -𝑑 𝜇𝑣 + 𝜈𝑤 -1 2 𝑣 2 + 𝑤 2 d𝑧d𝑦.
However, since ℎ vanishes on the banks, the Leibnitz' rule gives

∫ 𝐵 𝑟 -𝐵 𝑙 ℎ 𝑡 d𝑦 = ∫ 𝐵 𝑟 -𝐵 𝑙 ℎd𝑦 𝑡 = 𝐴 𝑡 , (19) 
∫ 𝐵 𝑟 -𝐵 𝑙 (⟨𝜆⟩ ℎ) 𝑥 d𝑦 = ⟨𝜆⟩ ∫ 𝐵 𝑟 -𝐵 𝑙 ℎd𝑦 𝑥 = ( 𝐴 ⟨𝜆⟩) 𝑥 , therefore L = ⟨𝜙⟩ ( 𝐴 𝑡 + ( 𝐴 ⟨𝜆⟩) 𝑥 ) -1 2 (𝑔 cos Θ) ∫ 𝐵 𝑟 -𝐵 𝑙 𝜂 2 -𝑑 2 d𝑦 (20) +𝐴 (𝑔 sin Θ) 𝑥 + ⟨𝜆⟩ ⟨𝑢⟩ -1 2 ⟨𝑢⟩ 2 + ∫ 𝐵 𝑟 -𝐵 𝑙 ∫ 𝜂 -𝑑 𝜇𝑣 + 𝜈𝑤 -1 2 𝑣 2 + 𝑤 2 d𝑧d𝑦.
In what follows, we will use the Lagrangian (20) to derive Serre-like equations for arbitrary crosssectional channels.
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One dimensional Saint-Venant equations

We start by checking that the Lagrangian (20) yields the one-dimensional Saint-Venant equations in arbitrary cross-sectional channels when no additional condition is imposed, as it does in two dimensions on a flat bed, as explained by [START_REF] Clamond | Practical use of variational principles for modeling water waves[END_REF]. The Serre equations studied later are an extension of the Saint-Venant equations, which are relevant for non linear but non dispersive waves.

The variations of L with respect to ⟨𝜙⟩ , ⟨𝑢⟩ and ⟨𝜆⟩ give

𝛿L 𝛿 ⟨𝜙⟩ = 𝐴 𝑡 + ( 𝐴 ⟨𝜆⟩) 𝑥 , (21) 
𝛿L 𝛿 ⟨𝑢⟩ = 𝐴 (⟨𝜆⟩ -⟨𝑢⟩) , ( 22 
) 𝛿L 𝛿 ⟨𝜆⟩ = 𝐴 -⟨𝜙⟩ 𝑥 + ⟨𝑢⟩ , (23) 
(integration by parts of ⟨𝜙⟩ ( 𝐴 ⟨𝜆⟩) 𝑥 have been used to calculate the last line). Cancelling the above lines shows that the flow is potential while ⟨𝜆⟩ = ⟨𝑢⟩ = ⟨𝜙⟩ 𝑥 , and ( 21) is the continuity equation:

𝐴 𝑡 + ( 𝐴 ⟨𝑢⟩) 𝑥 = 0. ( 24 
)
Cancelling the variation of L with respect to 𝑣, 𝜇, 𝑤, 𝜈 (which remain unknown functions) leads to

∫ 𝐵 𝑟 -𝐵 𝑙 ∫ 𝜂 -𝑑 (𝑣𝛿𝜇 + (𝜇 -𝑣) 𝛿𝑣 + 𝑤𝛿𝜈 + (𝜈 -𝑤) 𝛿𝑤) d𝑧d𝑦 = 0, (25) 
regardless of the variations 𝛿𝜇, 𝛿𝑣, 𝛿𝜈 and 𝛿𝑤, which gives 𝜇 = 𝑣 = 𝜈 = 𝑤 = 0. Hence, under the present assumptions the flow is purely longitudinal: dispersive waves, which rely on the existence of vertical velocity, will require more than the present approach. Finally, cancelling the variation of L with respect to 𝜂 necessitates writting the variation of the cross sectional area: which holds because ℎ vanishes on the banks. The same reasoning is used to calculate the variation of the integral of 𝜂 2 -𝑑 2 in (20). Using integration by parts, we obtain

𝛿 𝐴 = 𝛿 ∫ 𝐵 𝑟 -𝐵 𝑙 ℎd𝑦 = ∫ 𝐵 𝑟 -𝐵 𝑙 𝛿𝜂d𝑦, (26) 
-⟨𝜙⟩ 𝑡 -1 2 ⟨𝑢⟩ 2 + (𝑔 sin Θ) 𝑥 ∫ 𝐵 𝑟 -𝐵 𝑙 𝛿𝜂d𝑦 -(𝑔 cos Θ) ∫ 𝐵 𝑟 -𝐵 𝑙 𝜂𝛿𝜂d𝑦 = 0. ( 27 
)
This being true for all variations 𝛿𝜂, we find

⟨𝜙⟩ 𝑡 + 1 2 ⟨𝑢⟩ 2 + (𝑔 cos Θ) 𝜂 = (𝑔 sin Θ) 𝑥. ( 28 
)
As a conclusion, we have 𝜂 = η: the free surface elevation does not depend on 𝑦 (it is invariant along the channel width), and ( 26) reads

𝐴 η = 𝐵. (29) 
Taking the gradient of ( 28) leads to the momentum equation:

⟨𝑢⟩ 𝑡 + ⟨𝑢⟩ ⟨𝑢⟩ 𝑥 + (𝑔 cos Θ) η𝑥 = 𝑔 sin Θ. ( 30 
)
Using the continuity equation ( 24), one can write it in the well-known conservative form:

( 𝐴 ⟨𝑢⟩) 𝑡 + 𝐴 ⟨𝑢⟩ 2 + (𝑔 cos Θ) 𝐼 𝑥 = (𝑔 sin Θ) 𝐴 + (𝑔 cos Θ) 𝐽, (31) 
where we made use of the following definitions:

𝐼 (ℎ) ≑ 1 2 ∫ 𝐵 𝑟 -𝐵 𝑙 ℎ 2 d𝑦 = 1 2 𝐵 ℎ 2 , ( 32 
) 𝐽 (ℎ) ≑ ∫ 𝐵 𝑟 -𝐵 𝑙 ℎ𝑑 𝑥 d𝑦 = 𝐵 ℎ𝑑 𝑥 , (33) 
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(which gives 𝐼 𝑥 = 𝐴 η𝑥 + 𝐽, using ( 29)). We observe that 

(𝑔 sin Θ) 𝐴 + (𝑔 cos Θ) 𝐽 = 𝑔 ∫ 𝐵 𝑟 -𝐵 𝑙 ℎ (sin Θ -𝑑 𝑥 cos Θ) d𝑦 (34)

Arbitrary cross sectional Serre equations

As shown by [START_REF] Clamond | Practical use of variational principles for modeling water waves[END_REF] in two dimensions on a flat bed, the Serre equations are obtained from the same Lagrangian than the Saint-Venant equations, by prescribing the kinematic free surface boundary condition through the conjugate velocity field. This requires an Ansatz for the vertical velocity and one for its conjugate field. Following [START_REF] Clamond | Practical use of variational principles for modeling water waves[END_REF], we set

𝑤 = 𝑧 + 𝑑 𝜂 + 𝑑 ŵ, ( 35 
) 𝜈 = 𝑧 + 𝑑 𝜂 + 𝑑 ν, (36) 
where ŵ (𝑥, 𝑦, 𝑡) and ν (𝑥, 𝑦, 𝑡) are their values on the free surface, and we impose ν = 𝜂 𝑡 + ⟨𝜆⟩ 𝜂 𝑥 + μ𝜂 𝑦 . the Lagrangian (20) now becomes

L = ⟨𝜙⟩ ( 𝐴 𝑡 + ( 𝐴 ⟨𝜆⟩) 𝑥 ) -1 2 (𝑔 cos Θ) ∫ 𝐵 𝑟 -𝐵 𝑙 𝜂 2 -𝑑 2 d𝑦 (37) +𝐴 (𝑔 sin Θ) 𝑥 + ⟨𝜆⟩ ⟨𝑢⟩ -1 2 ⟨𝑢⟩ 2 + ∫ 𝐵 𝑟 -𝐵 𝑙 ∫ 𝜂 -𝑑 𝜇𝑣 -1 2 𝑣 2 d𝑧d𝑦 + ∫ 𝐵 𝑟 -𝐵 𝑙 ℎ 1 3 𝜂 𝑡 + ⟨𝜆⟩ 𝜂 𝑥 + μ𝜂 𝑦 ŵ -1 6 ŵ2 d𝑦.
In dispersive channel waves and bores, it is known that the free surface elevation depends on the transverse direction 𝑦 [START_REF] Peregrine | Solitary waves in trapezoidal channels[END_REF], [START_REF] Treske | Undular bores (Favre waves) in open channels. Experimental studies[END_REF], [START_REF] Teng | Effects of channel cross-sectional geometry on long wave generation and propagation[END_REF]). However, in 10 Violeau, March 17, 2023

the present study we will neglect this phenomenon, which is not compatible with our Ansätze ( 35)-( 36). Therefore, if we further ignore transverse variations of all quantities of interest, i.e.

𝜂 = η, μ = μ, v = v, ŵ = ŵ, this gives L = ⟨𝜙⟩ ( 𝐴 𝑡 + ( 𝐴 ⟨𝜆⟩) 𝑥 ) -1 2 (𝑔 cos Θ) ∫ 𝐵 𝑟 -𝐵 𝑙 η2 -𝑑 2 d𝑦 (38) +𝐴 (𝑔 sin Θ) 𝑥 + ⟨𝜆⟩ ⟨𝑢⟩ -1 2 ⟨𝑢⟩ 2 + 1 3 μ v + ( η𝑡 + ⟨𝜆⟩ η𝑥 ) ŵ -1 2 v2 + ŵ2
.

Cancelling the variation of this Lagrangian with respect to ⟨𝜙⟩ and ⟨𝑢⟩ gives ⟨𝜆⟩ = ⟨𝑢⟩ and 𝐴 𝑡 + ( 𝐴 ⟨𝑢⟩) 𝑥 = 0, as above. Cancelling the variations with repect to μ, v, ŵ and ⟨𝜆⟩ leads to

μ = v = 0, ( 39 
) ŵ = η𝑡 + ⟨𝑢⟩ η𝑥 , (40) 
⟨𝜙⟩ 𝑥 = ⟨𝑢⟩ + 1 3 η𝑥 ŵ. (41) 
Therefore, the transverse velocity and its conjugate cancel out and the kinematic boundary condition at the free surface is satisfied as expected. On the other hand, the flow is no longer potential, as

shown by ( 41). The variation of L with respect to η gives

⟨𝜙⟩ 𝑡 + 1 2 ⟨𝑢⟩ 2 + (𝑔 cos Θ) η = (𝑔 sin Θ) 𝑥 -1 3 h ŵ𝑡 + ⟨𝑢⟩ ŵ𝑥 + ⟨𝑢⟩ ŵ η𝑥 -1 2 ŵ2 . ( 42 
)
Taking its gradient with ( 40)-( 41) and applying a few manipulations leads to

⟨𝑢⟩ 𝑡 + ⟨𝑢⟩ ⟨𝑢⟩ 𝑥 + (𝑔 cos Θ) η𝑥 = 𝑔 sin Θ -1 3 h ŵ𝑡 + ⟨𝑢⟩ ŵ𝑥 𝑥 + η𝑥 ŵ𝑡 + ⟨𝑢⟩ ŵ𝑥 . ( 43 
)
On the other hand, with (29) we have

𝐴 𝑥 h = 𝐴 η𝑥 + h ∫ 𝐵 𝑟 -𝐵 𝑙 𝑑 𝑥 d𝑦, ( 44 
) 11 Violeau, March 17, 2023
which allows for writing the conservative form of the momentum equation ( 43) as follows:

( 𝐴 ⟨𝑢⟩) 𝑡 + 𝐴 ⟨𝑢⟩ 2 + (𝑔 cos Θ) 𝐼 + 1 3 𝐴 h ŵ𝑡 + ⟨𝑢⟩ ŵ𝑥 𝑥 (45) = (𝑔 sin Θ) 𝐴 -(𝑔 cos Θ) 𝐽 + 1 3 h ŵ𝑡 + ⟨𝑢⟩ ŵ𝑥 ∫ 𝐵 𝑟 -𝐵 𝑙 𝑑 𝑥 d𝑦.
As for the Saint-Venant equations, the right-hand side vanishes on a flat bed. Equation ( 45) is a

Serre-like momentum equation generalised to arbitrary cross section channels. We see that the additional terms with respect to the section-averaged Saint-Venant momentum equation ( 31) depend on the vertical velocity at the free surface, thus on the non-hydrostaticity of the pressure field. With the above findings, the Lagrangian ( 38) is simplified to

L ( η, ⟨𝑢⟩) = 𝐴 -1 2 (𝑔 cos Θ) h -2 d + (𝑔 sin Θ) 𝑥 + 1 2 ⟨𝑢⟩ 2 + 1 6 ( η𝑡 + ⟨𝑢⟩ η𝑥 ) 2 . ( 46 
)
The Lagrangian being time-independent, Noether's theorem states the conservation of an energy in the absence of external forcing, i.e., when the bed is horizontal and fixed. A general energy conservation equation stems from ( 43) and ( 45) along with the continuity equation, by noting that

𝐴 𝑡 = 𝐵 η𝑡 + ∫ 𝐵 𝑟 -𝐵 𝑙 𝑑 𝑡 d𝑦, ( 47 
)
𝐼 𝑡 = 𝐴 η𝑡 + ∫ 𝐵 𝑟 -𝐵 𝑙 ℎ𝑑 𝑡 d𝑦. ( 48 
)
After a few manipulations, we obtain

𝐴 1 2 ⟨𝑢⟩ 2 + 1 6 ŵ2 + 1 2 (𝑔 cos Θ) ( η2 -𝑑 2 ) 𝑡 (49) + 𝐴 ⟨𝑢⟩ 1 2 ⟨𝑢⟩ 2 + 1 6 ŵ2 + (𝑔 cos Θ) η + 1 3 h ŵ𝑡 + ⟨𝑢⟩ ŵ𝑥 𝑥 = (𝑔 sin Θ) 𝐴 ⟨𝑢⟩ -(𝑔 cos Θ) ∫ 𝐵 𝑟 -𝐵 𝑙 ℎ𝑑 𝑡 d𝑦 -1 3 h ŵ𝑡 + ⟨𝑢⟩ ŵ𝑥 ∫ 𝐵 𝑟 -𝐵 𝑙 𝑑 𝑡 d𝑦.
In what follows, consider special cases where the channel is straight, flat and prismatic (Θ = 𝑑 𝑥 = 12 Violeau, March 17, 2023

𝑑 𝑡 = 0). Under these assumptions, (45) simplifies and the final system, with the continuity equation and ( 40), is

𝐴 𝑡 + ( 𝐴 ⟨𝑢⟩) 𝑥 = 0, ( 50 
)
( 𝐴 ⟨𝑢⟩) 𝑡 + 𝐴 ⟨𝑢⟩ 2 + 1 2 𝑔𝐵 ℎ 2 + 1 3 𝐴 h ŵ𝑡 + ⟨𝑢⟩ ŵ𝑥 𝑥 = 0, ( 51 
) ŵ = η𝑡 + ⟨𝑢⟩ η𝑥 , (52) 
with the following energy conservation law:

𝐴 1 2 ⟨𝑢⟩ 2 + 1 6 ŵ2 + 1 2 𝑔𝐵( η2 -𝑑 2 ) 𝑡 (53) + 𝐴 ⟨𝑢⟩ 1 2 ⟨𝑢⟩ 2 + 1 6 ŵ2 + 𝑔 η + 1 3 h ŵ𝑡 + ⟨𝑢⟩ ŵ𝑥 𝑥 = 0.
Equations ( 50)-( 52) and ( 53) reduce to the ordinary Serre equations on a flat bed (see, e.g., [START_REF] Clamond | Conservative modified Serre-Green-Naghdi equations with improved dispersion characteristics[END_REF]) for the rectangular channel section.

TRAVELLING WAVES IN UNIFORM CHANNELS

We are now interested in a family of waves that is sometimes encountered in channel engineering:

travelling waves, i.e., that propagate with a constant celerity with a constant shape. Consider a wave travelling in a channel satisfying the assumptions that led to the system (50)-( 52). We seek for all quantities as functions of 𝜉 ≑ 𝑥 -𝑐𝑡, 𝑐 being the unknown celerity. Defining 𝑈 ≑ ⟨𝑢⟩ -𝑐, (52) reads ŵ = 𝑈 η′ and the other two equations read

( 𝐴𝑈) ′ = 0, ( 54 
)
𝐴𝑈 (𝑈 + 𝑐) + 1 2 𝑔𝐵 ℎ 2 + 1 3 𝐴 h𝑈 (𝑈 η′ ) ′ ′ = 0, ( 55 
)
the prime denoting the derivation with respect to 𝜉. We will now investigate the solutions of the latter system.
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General solution

Integrating ( 54) and ( 55) once gives

𝐴𝑈 = -1 -C0 𝐴 0 𝑐, (56) 
𝐴𝑈 (𝑈 + 𝑐) + 1 2 𝑔 𝐵 ℎ 2 -𝐵 0 𝑑 2 + 1 3 𝐴 h𝑈 (𝑈 η′ ) ′ = C1 , (57) 
where C0 , C1 are two constants that vanish in the absence of waves. Their values will determine the type of wave at stake. Observing that 𝐴 ′ = 𝐵 η′ and h = 𝐴 𝐵 , the second term in (57), after multiplication by 𝐴 ′ 𝐴 2 , is integrated as follows:

∫ 𝐵 ℎ 2 -𝐵 0 𝑑 2 𝐵 𝐴 2 d η = ∫ ℎ 2 h2 d η + 𝐵 0 𝑑 2 𝐴 . ( 58 
)
We now define the dimensionless free surface elevation and channel section as

N ≑ η 𝑑 , (59) 
A (N ) ≑ 𝐴 𝐴 0 .
After manipulations, it is found that

∫ N 0 ℎ 2 (𝑛) h2 (𝑛) d𝑛 = 2N + 1 𝑑 𝑑 2 𝑑 - ℎ 2 (N ) h (N ) = 𝑑 2 𝑑 2 - 𝑑 2 (N ) 𝑑 2 -N 2 d (N ) 𝑑 + N , (60) 
𝑛 being a dummy variable. We now substitute 𝑈 from ( 56) into (57), multiply the latter by 𝐴 ′ 𝐴 2 and integrate once more. Using (60), we obtain the free surface slope (squared) as a function of the free surface elevation:

1 3 dN d𝜉 2 = 1 -2𝐶 0 A (N ) + 𝐶 1 A 2 (N ) - 𝐶 2 F 2 0 A (N ) 𝑑 2 𝑑 2 -A (N ) 𝑑 2 (N ) 𝑑 2 -N 2 d (N ) 𝑑 + N , (61) 
14 Violeau, March 17, 2023 𝐶 0 , 𝐶 1 being two constants linked to C0 , C1 , and 𝐶 2 ≠ 0 another constant, while F 0 is a Froude number:

F 0 ≑ 𝑐 √︃ 𝑔𝑑 . ( 62 
)
The latter ordinary differential equation can be written in separate form to give the general implicit solution as integral:

𝑥 -𝑐𝑡 𝑑 = ± 1 √ 3 ∫ dN 1 -2𝐶 0 A (N ) + 𝐶 1 A 2 (N ) -𝐶 2 F 2 0 A (N ) 𝑑 2 𝑑 2 -A (N ) 𝑑 2 ( N) 𝑑 2 -N 2 d ( N) 𝑑 +N . ( 63 
)
This is a 4-parameter family of solutions, which can in principle be integrated for a given cross section, i.e., for particular values of 𝑑, 𝑑 2 and particular formulae for A (N ) , d (N ) , 𝑑 2 (N ). It is worth noting that the latter two integrals involve negative values of 𝑑 (𝑥, 𝑦, 𝑡), for -𝐵 𝑙 ⩽ 𝑦 < 𝐵 𝑙 0 and 𝐵 𝑟 0 < 𝑦 ⩽ 𝐵 𝑟 (see Figure 3 as an illustration).

A family of solitary waves is found for (𝐶 0 , 𝐶 1 , 𝐶 2 ) = (1, 1, 1). In this case, setting dN /d𝜉 = 0 at the wave crest gives the solitary wave celerity 𝑐 𝑠 versus the dimensionless wave amplitude N * :

𝑐 𝑠 √︃ 𝑔𝑑 = A (N * ) 𝑑 2 𝑑 2 -A (N * ) 𝑑 2 ( N * ) 𝑑 2 -N * 2 d ( N * ) 𝑑 +N * A (N * ) -1 . ( 64 
)
For a rectangular section, the usual results are recovered: we have

A (N ) = 1 + N , d (N ) = 𝑑, 𝑑 2 (N ) = 𝑑 2
and (64) gives

𝑐 𝑠 √︃ 𝑔𝑑 = √ 1 + N * , (65) 
according to Russell's experimental findings and Boussinesq's and Rayleigh's classical theories (see, e.g. [START_REF] Carter | The kinematics and stability of solitary and cnoidal wave solutions of the serre equations[END_REF]). This result, however, is less accurate than 

𝑥 -𝑐 𝑠 𝑡 𝑑 = ± 1 √ 3 ∫ 𝑑N N √︃ 1 -1 F 2 0 (1 + N ) , (66) 
which is integrated to give the well-known solitary wave of the Serre equations [START_REF] Serre | Contribution à l'étude des écoulements permanents et variables dans les canaux[END_REF]:

N = N * sech 2 √︂ 3 F 2 0 -1 2F 0 𝑥 -𝑐 𝑠 𝑡 𝑑 , (67) 
N * ≑ F 2 0 -1. ( 68 
)

Upper bound of the solitary wave amplitude

For practical reasons, it is interesting to predict an upper bound of wave elevation. As explained by [START_REF] Hager | Approximate treatment of plane channel flow[END_REF], this can be deduced from the hydraulic head. From the energy conservation equation ( 53), the head in the present model is given by

𝐻 = 1 2𝑔 ⟨𝑢⟩ 2 + 1 6𝑔 ŵ2 + η + 1 3𝑔 h ŵ𝑡 + ⟨𝑢⟩ ŵ𝑥 . (69) 
In the case of progressive waves, using ŵ = 𝑈 η′ gives the head in the moving frame (where the wave is steady) as

𝐻 = η + 1 2 𝑐 2 𝑠 𝑔 𝐴 0 𝐴 2 1 + 1 3 2 h η′′ -η′2 . (70) 
The second derivative η′′ is deduced by differentiating (61). With the above definitions, lengthy but straightforward manipulations yields the head in the following simple form

𝐻 = 1 2 F 2 0 𝑑, (71) 
confirming that the head is conserved. Now, following [START_REF] Hager | Approximate treatment of plane channel flow[END_REF] The Froude number being linked to the wave amplitude N * by ( 64), this gives an implicit equation for the upper bound of the solitary wave amplitude N * 𝑐 :

𝑑 2 𝑑 2 -A N * 𝑐 𝑑 2 (N * 𝑐 ) 𝑑 2 -N * 2 𝑐 d (N * 𝑐 ) 𝑑 + N * 𝑐 = 2N * 𝑐 1 -A N * 𝑐 2 A (N * 𝑐 ) . ( 73 
)
Above the critical amplitude N * 𝑐 , waves should be unstable and break. However, as pointed out by [START_REF] Hager | Approximate treatment of plane channel flow[END_REF] instability may occur for smaller amplitudes, the above criterion being sufficient but not necessary. For the rectangular section (73) gives N * 𝑐 = 1, thus F 0 = √ 2: the solitary wave amplitude cannot exceed the rest water depth, in agreement with [START_REF] Hager | Approximate treatment of plane channel flow[END_REF].

Trapezoidal cross section

Still following [START_REF] Hager | Approximate treatment of plane channel flow[END_REF], we now investigate the trapezoidal cross-sectional case, the most frequent in hydraulic civil engineering. Call 𝑏 the width of the flat, horizontal part of the bed, ℎ 0 the rest depth above the latter and 𝑚 = cot 𝜃 the bank slope (Figure 3), all quantities of interest can be written as functions of the following parameters:

𝛽 = 𝑚 ℎ 0 𝑏 ∈ -1 2 , +∞ , (74) 
𝛼 = 𝛽 (𝛽 + 1) (2𝛽 + 1) 2 ∈ -∞, 1 4 . ( 75 
)
For a solitary wave, equation (63) reads

𝑥 -𝑐 𝑠 𝑡 𝑑 = ± F 0 √ 3 ∫ dN N √︂ F 2 0 (1 + 𝛼N ) 2 -1 + N + 𝛼N 2 1 + 4 3 𝛼N , ( 76 
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and must be integrated by numerical means (the quadrature method is explained in the Supplementary Materials). Figure 4 shows three solitons with 𝛼 = 0.25 (triangular cross section) and wave amplitude N * = 0.1, 0.2, 0.3.

In practice, the above variables (F 0 , N ) may be replaced by [START_REF] Hager | Approximate treatment of plane channel flow[END_REF]'s notation

( 𝑓 = 𝑄 2 𝑔𝑏 2 ℎ 3 0 , 𝑦 = ℎ ℎ 0 )
, where 𝑄 is the flowrate far upstream in the moving frame. They are linked to the present variables by

𝑓 = (1 + 𝛽) 3 1 + 2𝛽 F 2 0 , (77) 
𝑦 = 1 + 1 + 𝛽 1 + 2𝛽 N . ( 78 
)
Cancelling the denominator in (76) gives the Froude number versus the wave amplitude as

F 2 0 = 1 + N * + 𝛼N * 2 1 + 4 3 𝛼N * (1 + 𝛼N * ) 2 , ( 79 
)
which is also obtained from (64). Using ( 77)-( 78) this can also be written

𝑓 = (1 + 𝛽) 2 𝑦 * (1 + 𝛽𝑦 * ) (2𝛽 + 3 + 4𝛽𝑦 * ) 3 (𝛽 + 1 + 𝛽𝑦 * ) 2 . ( 80 
)
This is plotted on Figure 5, compared with [START_REF] Hager | Approximate treatment of plane channel flow[END_REF]'s model (their Figure 5; their model is summarised in the Supplementary Materials). One can see that the present model is close to [START_REF] Hager | Approximate treatment of plane channel flow[END_REF]'s; in particular, both models give, for small amplitude waves

𝑓 = (𝛽 + 1) 3 2𝛽 + 1 + (𝛽 + 1) 2 10𝛽 2 + 10𝛽 + 3 3 (2𝛽 + 1) 2 (𝑦 * -1) + 𝑂 (𝑦 * -1) 2 . ( 81 
)
Equation ( 73), giving the upper bound of the solitary wave amplitude, now reads

N * 3 𝑐 + 5 2𝛼 N * 2 𝑐 + 3 -4𝛼 2𝛼 2 N * 𝑐 - 3 2𝛼 2 = 0, ( 82 
) 18 Violeau, March 17, 2023
with solution

N * 𝑐 = Ψ (𝛼) + 2 3𝛼 + 7 36𝛼 2 Ψ (𝛼) - 5 6𝛼 , ( 83 
)
where

Ψ (𝛼) = 5 108𝛼 3 - 1 12𝛼 2 + √︂ - 8 27𝛼 3 - 109 432𝛼 4 - 1 12𝛼 5 - 1 192𝛼 6 1/3 .
(84) [START_REF] Hager | Approximate treatment of plane channel flow[END_REF] explain how their model allows for writing an upper bound of the wave elevation above the bed 𝑦 * 𝑐 from the considerations repeated in the previous section. They do not exhibit all their formulae, but it is noteworthy that their model simplifies to

𝑓 (𝑦 * ) 2 (1 + 𝛽) 2 ⩾ 𝑦 * -1, ( 85 
)
which is exactly equation ( 72) of the present model (that we proved above being valid for all cross-sectional shapes). However, [START_REF] Hager | Approximate treatment of plane channel flow[END_REF] 

2 𝑓 𝑦 * 3 𝑐 + 2𝑦 * 2 𝑐 -3𝑦 * 𝑐 -3 + √︁ 2 𝑓 (𝑦 * 𝑐 -1)𝑦 * 𝑐 𝑦 * 𝑐 + 2 4𝑦 * 𝑐 -5 +2𝑦 * 𝑐 2𝑦 * 𝑐 + 1 𝑦 * 𝑐 -1 2 = 0. (86)
The above equation is a second order polynomial in √︁ 𝑓 , giving the bold solid line on Figure 

Cnoidal waves of moderate amplitude

Contrary to the case of rectangular section, in general the implicit solution ( 63) cannot be solved for the surface elevation N . Trapezoidal cross sections, for example, lead to a fifth order polynomial under the square root (equation ( 76)), making it impossible to solve it using elliptic integrals. In the rest of this work we consider waves whose amplitude is not too large, so that A (N ) , d (N )

and 𝑑 2 (N ) can be with good accuracy Taylor-expanded as functions of N . We first write

A (N ) ≈ 1 + N + 1 2 𝜏N 2 + 1 3 𝛾N 3 + 1 4 𝜀N 4 , ( 87 
)
where 𝜏, 𝛾 and 𝜀 are constants depending on the channel cross sectional shape. To be precise, denoting 𝑀 ≑ cot 𝜃 𝑙 + cot 𝜃 𝑟 where 𝜃 𝑙 , 𝜃 𝑟 are the left-bank and right-bank interior angles with the free surface in the rest state (see Figure 2), we define

𝜏 ≑ 𝑀 𝑑 𝐵 0 , (88) 
which is twice the inverse of the dimensionless average bank slope, but will be referred to as the 'bank slope' in what follows. Similarly, 𝛾 is an average, dimensionless bank curvature in the rest state. We obtain

d (N ) ≈ 𝑑 1 -𝜏N + (𝜏 2 -1 2 𝜏 -𝛾)N 2 -(𝜏 3 -1 2 𝜏 2 -2𝛾𝜏 + 2 3 𝛾 + 𝜀)N 3 , ( 89 
) 𝑑 2 (N ) ≈ 𝑑 2 1 -𝜏N + (𝜏 2 -𝛾)N 2 + (2𝜏𝛾 -𝜏 3 -𝜀 + 1 3 𝜏𝛿)N 3 , (90) 
with 𝛿 ≑ 𝑑 2 /𝑑 2 as a shape factor of the cross section, and subsequently:

𝑑 2 𝑑 2 -A (N ) 𝑑 2 (N ) 𝑑 2 -N 2 d (N ) 𝑑 + N ≈ N 2 + 2 3 𝜏N 3 . (91) 20 Violeau, March 17, 2023
Equation ( 63) is thus approximated by

𝜉 𝑑 ≈ ± 1 √ 3Λ ∫ dN √︁ P (N ) , (92) 
with the following definitions for the polynomial P (N ) and the constant Λ:

P (N ) ≑ -(N -N 1 ) (N -N 2 ) (N -N 3 ) = 𝑃 -𝑄N + 𝑆N 2 -N 3 ; (93) Λ ≑ 2 3 𝛾𝐶 0 -(𝜏 + 2 3 𝛾)𝐶 1 + (1 + 2 3 𝜏) 𝐶 2 F 2 0 , (94) 
and

𝑃 ≑ N 1 N 2 N 3 = 1 Λ (1 -2𝐶 0 + 𝐶 1 ) , ( 95 
) 𝑄 ≑ N 1 N 2 + N 1 N 3 + N 2 N 3 = 2 Λ (𝐶 0 -𝐶 1 ) , 𝑆 ≑ N 1 + N 2 + N 3 = 1 Λ -𝜏𝐶 0 + (1 + 𝜏)𝐶 1 - 𝐶 2 F 2 0 .
The roots of P (N ) are ordered as follows:

N 3 < N 2 < N 1 .
With the classical variable change (see, e.g., Korteweg and de Vries 1895, Violeau 2022) N = N 2 + (N 1 -N 2 ) cos 2 Ψ we obtain a family of cnoidal waves, and Λ is rewritten as a function of 𝑃, 𝑄, 𝑆, 𝜏, 𝛾:

N = N 2 + (N 1 -N 2 ) cn 2 1 2 √︁ 3Λ (N 1 -N 3 ) 𝑥 -𝑐𝑡 𝑑 | 𝑚 , (96) 
𝑚 ≑ N 1 -N 2 N 1 -N 3 , Λ = 1 -1 3 𝜏 1 + 1 -1 3 𝜏 𝑃 + 1 + 1 6 𝜏 -1 3 𝛾 + 1 3 𝜏 2 𝑄 + 1 + 2 3 𝜏 𝑆 .
where cn denotes Jacobi's elliptic cosine [START_REF] Abramowitz | Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables[END_REF]. The wave length is

𝐿 = 4𝐾 (𝑚) √︁ 3Λ (N 1 -N 3 ) , ( 97 
) 21 Violeau, March 17, 2023
with 𝐾 the complete elliptic integral of the first kind [START_REF] Abramowitz | Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables[END_REF]. As expected, we still have four degrees of freedom: N 1 , N 2 , N 3 (or 𝑃, 𝑄, 𝑆) and 𝑐. Note that the parameter 𝜀 defined in (87) has cancelled out, though it was necessary to obtain the above solution to the given order. Similarly, 𝛿 does not appear any more in the result, the only two parameters relative to the shape of the cross section being the dimensionless mean bank slope and curvature at rest, 𝜏 and 𝛾. The rectangular section case (𝜏 = 𝛾 = 0) gives Λ = F -2 0 and

F 0 = √ 1 + 𝑃 + 𝑄 + 𝑆 = √︁ (1 + N 1 ) (1 + N 2 ) (1 + N 3 )
, in agreement with [START_REF] El | Unsteady undular bores in fully nonlinear shallowwater theory[END_REF]) (their equation ( 9)) as well as [START_REF] Favrie | A rapid numerical method for solving Serre-Green-Naghdi equations describing long free surface gravity waves[END_REF].

Note that the approach proposed in the present section and the next one, i.e., expanding the wave elevation up to a certain order, makes the present solution weakly non-linear, while the original equations where fully non-linear.

Soliton of moderate amplitude

We now investigate the case of solitary waves of moderate amplitude, i.e., (𝐶 0 , 𝐶 1 , 𝐶 2 ) =

(1, 1, 1), for which (94) shows that the channel bank curvature 𝛾 disappears from the model equations. Equations ( 64), ( 87) and ( 91) give the celerity of the solitary wave as a function of the bank slope 𝜏 and wave amplitude N * :

𝑐 𝑠 √︃ 𝑔𝑑 ≈ 1 + 1 2 1 -1 3 𝜏 N * , (98) 
in agreement with [START_REF] Fenton | Cnoidal waves and bores in uniform channels of arbitrary cross-section[END_REF] (his equation (4.6)). Note that Teng and Wu (1997)'s Boussinesqtype model, also investigated in [START_REF] Teng | Boussinesq solution for solitary waves in uniform channels with sloping walls[END_REF], reads (after simplification and with our notations):

𝑐 𝑠 √︃ 𝑔𝑑 = 1 + N * N * 1 + 1 2 𝜏N * 1 2 𝜏N * 2 (1 + N * ) + (𝜏 -2) (N * -(1 + N * ) ln (1 + N * )) 1 + 2 3 N * -1 3 𝛾N * 2 , (99) 
rendering (98), when expanded to the first order with respect to the wave amplitude. Additionally, [START_REF] Winckler | Long waves in a straight channel with non-uniform crosssection[END_REF]'s formula (4.5b) leads to the same conclusion provided their coefficient 𝛾 (with a different meaning than the present one) is always negative, which is proved from its 22 Violeau, March 17, 2023 definition (see [START_REF] Jouy | A numerical model of channel Favre waves[END_REF].

The implicit solution (63) then gives

𝑥 -𝑐 𝑠 𝑡 𝑑 ≈ ± F 0 √ 3 ∫ dN N √︂ F 2 0 -1 -1 + 2 3 𝜏 -F 2 0 𝜏 N , (100) 
generalising the case of the rectangular section (66). From (100) it is easy to see that F 2 0 > 1 is required, since the quantity under the square root must be positive. This is also in agreement with [START_REF] Fenton | Cnoidal waves and bores in uniform channels of arbitrary cross-section[END_REF]. The solution to ( 100) is identical to the rectangular cross section case (67), with

N * = F 2 0 -1 1 + 2 3 𝜏 -F 2 0 𝜏 , (101) 
rendering ( 68) in the rectangular cross section case. From ( 67) and ( 101), we also obtain the wavenumber 𝑘 𝑠 :

𝑘 𝑠 𝑑 = 1 2 (3 -𝜏) N * 1 + 1 + 2 3 𝜏 N * ≈ 1 2 √︁ (3 -𝜏) N * , (102) 
which, once more, agrees with Fenton's equation (4.7) [START_REF] Fenton | Cnoidal waves and bores in uniform channels of arbitrary cross-section[END_REF]), but also with [START_REF] Peters | Rotational and irrotational solitary waves in a channel with arbitrary cross section[END_REF] and [START_REF] Peregrine | Long waves in a uniform channel of arbitrary cross-section[END_REF]. [START_REF] Winckler | Long waves in a straight channel with non-uniform crosssection[END_REF]'s equation (4.5a) contains more information on the channel cross section shape through their coefficient 𝛾.

Equation ( 101) shows that the solitary wave amplitude can be negative if

𝜏 > 3 3F 2 0 -2 = 3 (1 + 𝜏N * ) 1 + 3N * . (103) 
Substituting ( 101) into ( 103) and rearranging, we obtain the condition for the negative soliton as follows:

𝜏 > 3, (104) 
as stated by [START_REF] Peregrine | Long waves in a uniform channel of arbitrary cross-section[END_REF] from different considerations.

As an illustration, consider the case of a channel with trapezoidal section, i.e., 𝑀 = 2𝑚 and 23 Violeau, March 17, 2023

𝜏 trapezoid = 2𝛼 from the definition (88) (recall 𝛼 is defined by ( 74)-( 75), giving 𝜏 rectangle = 0).

Figure 4 shows the solution (67), ( 101) for various values of 𝛼 and wave amplitude N * . One can see that the moderate amplitude solution is a good approximation of the true solution (76) obtained by numerical integration, as long as the dimensionless amplitude satisfies N * ≲ 0.1. For the triangular cross-sectional case (𝛼 = 1 4 ), our equations ( 98) and ( 102) give the ratios of moderate amplitude solitary wave celerities and wavelengths 𝜆 𝑠 , respectively:

𝑐 𝑠,triangle 𝑐 𝑠,rectangle ≈ 1 + 5 12 N * 1 + 1 2 N * ≈ 1 -1 12 N * , (105) 
𝜆 𝑠,triangle 𝜆 𝑠,rectangle

≈ √︄ 3 -𝜏 rectangle 3 -𝜏 triangle = √︃ 6 5 ≈ 1. 0954. ( 106 
)
Teng (2000) shows that [START_REF] Teng | Effects of channel cross-sectional geometry on long wave generation and propagation[END_REF]'s model agrees that the wavelength on a triangularsection channel should be larger than that in a rectangular section, but no analytical formula is given. Teng's Figure 3 

𝑥 -𝑐𝑡 𝑑 = ± ∫ dN √︂ 3 1 -2𝐶 0 (1 + N ) + 𝐶 1 (1 + N ) 2 + 𝐶 2 F 2 0 (1 + N ) N 2 , ( 107 
)
as for a rectangular section. To circumvent this issue, it would be necessary to build more advanced governing equations accounting for the bottom kinematic boundary condition in the Lagrangian (37), which requires a non-zero transverse velocity, thus a free surface that varies along the channel width as in [START_REF] Teng | Effects of channel cross-sectional geometry on long wave generation and propagation[END_REF] and [START_REF] Winckler | Long waves in a straight channel with non-uniform crosssection[END_REF].

Application: undular bore's leading wave

The leading wave of an Undular bore is known to behave like a solitary wave [START_REF] El | Unsteady undular bores in fully nonlinear shallowwater theory[END_REF][START_REF] Violeau | Contribution to the theory of undular bores. a journey around the Kortewegde Vries equation[END_REF]. In a trapezoidal channel, equation ( 79) should thus be valid for linking the leading wave amplitude N * and the upstream Froude number F 0 . [START_REF] Sandover | Cnoidal waves and bores[END_REF] performed undular bores experiments in a channel of trapezoidal cross-section with variable slope angle, and discuss the variability of the leading wave amplitude; they conclude that this is an effect of the cross-sectional shape, thus of the slope angle 𝜃 defined in Figure 3. They made their data dimensionless using the rest water depth ℎ 0 (while the present study proves that the mean water depth at rest 𝑑 = 1+𝛽 1+2𝛽 ℎ 0 is more relevant). With this correction, Figure 7 shows that equation (79) agrees with [START_REF] Sandover | Cnoidal waves and bores[END_REF]'s experiments for various slope angles and channel flowrates, confirming that the present model is relevant to describe the influence of the cross-section shape on the dynamics of dispersive waves.

Conclusions

The variety of circumstances were dispersive, non linear waves occur in channels makes it necessary to propose alternatives to the classical channel, section-averaged, Saint-Venant equations, which fail in predicting all situations where the vertical component of the velocity field makes the pressure non-hydrostatic. While Boussinesq-type models remain weakly non-linear, the present approach is fully non-linear, though restricted to weakly dispersive waves and wave trains.
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The variational method proposed by [START_REF] Clamond | Practical use of variational principles for modeling water waves[END_REF] proved to be efficient in finding a system of Serre equations for arbitrary cross-sectional channels, given by ( 24), ( 40) and ( 45), the derivation being significantly easier than it would be by using the more traditional asymptotic expansion approach as in [START_REF] Debyaoui | Generalised Serre-Green-Naghdi equations for open channel and for natural river hydraulics[END_REF]. The global family of travelling waves (63) including solitary waves with celerity (64) are formally written for arbitrary shape of the cross section through the bottom/bank elevation 𝑑 (𝑦). The data available in the literature regarding travelling waves in non-rectangular cross-sectional channels being scarce and of modest quality, it was not possible to propose a quantitative application of the present model in documented realistic cases. On the contrary, waves with non-uniform celerity like undular bores have been extensively studied in flumes (i.e., [START_REF] Favre | Etude théorique et expérimentale des ondes de translation dans les canaux découverts[END_REF][START_REF] Treske | Undular bores (Favre waves) in open channels. Experimental studies[END_REF]), but

their complete theoretical analysis would require a particular treatment based on a modulation theory, which was not possible within the extent of the present work. Modeling these bores, as well as more complex situations in practical engineering applications, would benefit from a spacetime numerical integration of the proposed governing equations. Numerical scheme based on the classical Serre-Green-Naghdi have already been successfully used in this context [START_REF] Chassagne | Dispersive and dispersivelike bores in channels with sloping banks[END_REF][START_REF] Biswas | Modeling positive surge propagation in open channels using the Serre-Green-Naghdi equations[END_REF], giving interesting clues for the numerical treatment of the proposed equations.

It is noteworthy that the model proposed herein was based on some strong assumptions. One of the most important is the uniformity of the free surface elevation along the channel (or river) 26 [START_REF] Violeau | View of the channel of the Sisteron dam (EDF, France). Favre waves are propagating upstream after gate closure[END_REF] width. This makes it impossible to predict situations were the free surface experiences a transverse curvature, as it has been observed in non-rectangular cross-sectional channels [START_REF] Peregrine | Long waves in a uniform channel of arbitrary cross-section[END_REF][START_REF] Treske | Undular bores (Favre waves) in open channels. Experimental studies[END_REF]). In such cases, the wave celerity is non-uniform along the width and waves easily break near the banks, leading to various specific phenomena [START_REF] Chassagne | Dispersive and dispersivelike bores in channels with sloping banks[END_REF][START_REF] Violeau | Contribution to the theory of undular bores. a journey around the Kortewegde Vries equation[END_REF]).

The present model thus paves the way for more sophisticated theoretical developments, including a more advanced model accounting for the bed kinematics boundary condition, as well as transverse velocity and free surface variation. Such an approach would allow treating the variabiliy of the free surface across the channel width. Whitham's modulation theory, recently investigated in the framework of the Serre-Green-Naghdi equations [START_REF] El | Unsteady undular bores in fully nonlinear shallowwater theory[END_REF][START_REF] Tkachenko | Hyperbolicity of the modulation equations for the Serre-Green-Naghdi model[END_REF], may also be used to extend the present model to the prediction of channel dispersive shock waves, including the complete above-mentioned Favre waves, as well as tidal bores.

From the analysis of the results of the present model, it can be concluded that non-hydrostatic models, either weakly non-linear like Boussinesq models, or fully non-linear like Serre models, are not a luxury but a necessity. As demonstrated by the application example depicted in the last section, with the present model the amplitude of the leading soliton of Favre waves in hydropower channels can be predicted as a function of the bank slope with a fairly good accuracy. Such a prediction could not be achieved with the non-linear shallow water (Saint-Venant) equations, which predict a hydraulic jump for all upstream Froude numbers. The leading wave of Favre dispersive wave trains having an amplitude close to twice the corresponding hydraulic jump, the improvement due to non-hydrostatic models is of prime importance for flooding safety and waterworks design. 

  is a purely geometrical source term, modeling the effects of global (sin Θ) and local (𝑑 𝑥 cos Θ) bed slope along the longitudinal axis. The above equations are classical and widely used in understanding channel flows as long as the pressure remains almost hydrostatic, i.e., for long waves or breaking bores. Additional terms will allow modeling weakly dispersive (i.e., shorter) waves in what follows.

  obtained a different relation between the amplitude and the Froude number. With our model, (73) gives, for the trapezoidal section, an implicit equation connecting the upper bound of 𝑦 * , denoted as 𝑦 * 𝑐 , with the corresponding value of 𝑓 :
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  (only values of 𝑦 * larger than 1 are represented, i.e., positive waves). The rectangular section case ( 𝑓 , 𝑦 * 𝑐 ) = (2, 2) is recovered, while the asymptotic 𝑦 * 𝑐 value for large 𝑓 (large 𝛽) is 0.4605. Therefore, the maximum solitary wave amplitude in very wide and shallow channels with bank slopes is bounded by η * 𝑐 (𝛽 -→ +∞) = 0.4605ℎ 0 (while η * 𝑐 (𝛽 = 0) = ℎ 0 in a rectangular section, as a reminder). The intersection of the curve (86) with the axis 𝑓 = 1 is given by 𝛽 = -0.288 and 𝑦 * 𝑐 = 1.986. The same Figure shows the critical wave elevation in Hager and Hutter (1984) (the detailed computations are summarized in the Supplementary Materials). 19 Violeau, March 17, 2023

  is qualitatively in agreement with the present Figure6, showing the free surface elevation at a given time in both channels with the present model, when the dimensionless amplitude N * = 0.3. The same kind of behavior is reported by[START_REF] Winckler | Long waves in a straight channel with non-uniform crosssection[END_REF]'s Figure4. On the other hand,[START_REF] Teng | Effects of channel cross-sectional geometry on long wave generation and propagation[END_REF] found a higher wavelength than the present model for the triangular case, typically 1.3 times the wavelength in the rectangular channel for N * = 0.3.They findings are supported by laboratory measurements, but their experimental soliton is of poor quality and should not be considered as a reference. High quality experimental solitary waves in channels of non-rectangular cross sections are still missing in the current literature.[START_REF] Teng | Boussinesq solution for solitary waves in uniform channels with sloping walls[END_REF] also investigates a triangular section with vertical walls above the rest free surface, showing a different behaviour than with the rectangular and triangular sections. Our model does not provide such a prediction, since for any cross section with vertical walls we have 𝐴 = 𝐴 0 + 𝐵 0 η, hence A (N ) = 1 + N ; moreover, both integrals in (14) and (15) are calculated with the same 24 Violeau, March 17, 2023 bounds, therefore d (N ) = 𝑑 and 𝑑 2 (N ) = 𝑑 2 , and the general travelling wave solution reduces to

Fig. 1 .Fig. 2 .Fig. 3 .Fig. 4 .Fig. 5 .Fig. 6 .Fig. 7 .

 1234567 Fig. 1. View of the channel of the Sisteron dam (EDF, France). Favre waves are propagating upstream after gate closure. Photo EDF/CIH.

  

  [START_REF] Hager | Approximate treatment of plane channel flow[END_REF]'s method allows writing an upper bound of the wave elevation as a function of the Froude number, and the present theory agrees, up to the first order, with[START_REF] Hager | Approximate treatment of plane channel flow[END_REF]'s model for trapezoidal cross sections. For waves of moderate amplitude, a simplification of the proposed model, closer to the Boussinesq approach, is able to predict the main wave characteristics as functions of the channel dimensionless bank slope 𝜏, and curvature 𝛾. The solitary wave of moderate amplitude is of particular interest, the proposed model giving the celerity and wave number as functions of

𝜏 in agreement with well-established results of the existing literature. Peregrine's negative-soliton criterion for 𝜏 is also recovered to the leading order.

[START_REF] Violeau | View of the channel of the Sisteron dam (EDF, France). Favre waves are propagating upstream after gate closure[END_REF] 
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