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Chaos transition in Periodically Driven Oscillators: A Time domain
description

C. Tannous

Université de Brest, Lab-STICC, CNRS-UMR 6285, F-29200 Brest, FRANCE

(Dated: March 29, 2023)

We develop a time-domain approach for the transition to Chaos in several periodically driven
oscillators by direct integration of first-order ordinary differential equations (ODE) or functional
map systems, their discrete-time counterparts. Our theoretical evaluations can be used to make
detailed comparisons with experimental measurements in selected oscillating systems starting from
the simple mechanical pendulum to electrical circuits: Duffing, Linsay, Testa et al. , Colpitts,
then to Ikeda opto-electronic setup ... We discuss various types and origins of Chaos in these
driven oscillators using bifurcation notions and tying them to some physical properties of their
essential components such as Varactor Diodes in RLD (Resistance, Inductance and Diode) circuits
or bistable laser excited circular cavities...

PACS numbers: 02.60.Cb, 05.45.Ac, 05.45.Pq, 02.90.+p, 05.40.-a
Keywords: Numerical simulation; solution of equations, Low-dimensional Chaos, Numerical simulations of
chaotic systems, Fluctuation phenomena, random processes, noise, and Brownian motion
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I. INTRODUCTION

Oscillators and their transition to Chaos are described starting from the basic mechanical pendulum to tackle
continuous time electrical oscillators comprising some non-linear RLD circuits (Resistance, Inductance and a Diode
playing the role of a capacitance) as well as the Coplitts oscillator.

Discrete time oscillators described by maps (also called difference equations) are also described such as the logistic,
intermittent and the Ikeda maps describing interactions between a laser excited cavity electric field and a non-linear

https://orcid.org/0000-0002-9293-1763
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Fig.1: Basic oscillator circuit with a crystal resonator, amplifier and feedback through a non-linear element.

Kerr dielectric.

Conditions for oscillating and routes to Chaos are also both described.

A. Oscillation criteria

An oscillator requires a resonator with amplification A and feedback β (see fig. 1). A resonator could be a crystal
or an RLD circuit.

The fundamental condition of oscillation is the Barkhausen criterion shown in fig. 1 and described below.

Oscillatory behavior is induced by an instability (pole in the response when Aβ = 1), however we need phase
opposition between two key voltages Vβ and VA (Amplifier and feedback voltages) at all times in the circuit.

Sign alternating (phase delay of ±π between Vβ and VA) with equal amplitudes lead to oscillatory behavior and
general Barkhausen condition |Aβ| = 1.

The simple Barkhausen rule with amplification and linear feedback is not enough to warrant oscillation in presence
of noise. We must introduce a non-linear element in the circuit providing a general Barkhausen rule embodying
non-linearity.

Thus an oscillator consists of a resonator with three additional components:

1. Amplifier

2. Feedback circuit

3. Non-linear element

Another form of the Barkhausen criterion might be rephrased below with two components A and β as stated
previously with a slight modification:

1. Amplifier

2. Feedback circuit containing at least one non-linear element.

B. Mechanical device displaying Chaos

When a pendulum is driven by a periodic force F cos(ωt) with ω, the angular resonance frequency having a large
amplitude, it undergoes stationary erratic oscillations signaling the onset of Chaos.
Let us apply Euler-Lagrange method to the simple pendulum [1] problem depicted in fig. 2 with θ the generalized
coordinate.
The kinetic energy is T = 1

2m(ṙ)2 with velocity ṙ = `θ̇eθ. The derivation with respect to time of some physical
quantity such as the geometrical position r is denoted by ṙ = dr

dt .
Thus T = 1

2m`2(θ̇)2 whereas the potential energy is V = mg`(cos θ − 1) when its origin is chosen at z = `.
The Lagrangian is L = T − V and Euler-Lagrange equation is:
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Fig.2: Simple pendulum with attachment force fA and gravitational force g applied to mass m. Center of mass
position G yields OG = r = `er and its velocity ṙ = `θ̇eθ where eθ, er are unit vectors perpendicular to each other.

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0, θ̈ +

g

`
sin θ = 0 (1)

The second time derivative of θ is denoted by θ̈ = d2θ
dt2 .

The above equation of motion can be retrieved with the traditional torque method (see fig. 2) by writing:

Jθ̈y = r × (fA + mg) = r ×mg = −mg` sin θy (2)

where J = m`2 is the moment of inertia of the mass m with respect to a massless rod attachment point O and y
is a unit vector perpendicular to pendulum plane as shown in fig. 2.

In presence of damping γ opposed to velocity and excitation with a harmonic force F cos(ωt)eθ where
ω =

√
m− γ2/4 is the angular resonance frequency, the equation of motion is transformed into:

Jθ̈ = F` cos(ωt)−mg` sin(θ)− γ`θ̇ (3)

The pendulum shows regular oscillations when small F excitation amplitudes are used as displayed in fig. 2.
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Fig.3: (Left) Pendulum oscillations with a timestep given by h = 1
50 (2π/ω) where ω =

√
m− γ2/4. The excitation

amplitude is small (F`/J) = 0.1. (Right) Chaotic pendulum behavior with a large excitation amplitude (F`/J) = 2.

Mathematically, all non-linear dynamical systems with more than two degrees of freedom, display chaotic behavior
whereas discrete-time maps with only a single degree of freedom can display chaotic behavior. The pendulum possess
two degrees of freedom: θ and θ̇, thus one expects chaotic behavior for large amplitude excitation as displayed in fig.3.



4

C. Transition routes to Chaos

Many time-dependent or dynamical systems such as mechanical (pendulum...), electronic circuits, lasers, chemical
reactions, periodically stimulated cardiac cells, turbulence in fluids and gases display Chaotic behavior characterized
by sensitivity to initial conditions, apparent stationary random behavior with short-term predictability and long-time
unpredictability.

Landau was the first to describe in (1944, 1959) the transition to Chaos from the Fluid Mechanics point of view.
In the Turbulence chapter of his Fluid Mechanics book [2] he described it as due to a succession of the appearance of
different periods until the fluid velocity spectrum looked like white noise.

Landau considered fluid time turbulence as the limit of an infinite sequence of instabilities each of which displaying
a new frequency. Later, Newhouse, Ruelle and Takens [3] showed that after only two instabilities at the third step [1],
the trajectory becomes attracted to a bounded region of phase space into which trajectories initially close, increase
exponentially their mutual distance, making continuously orbit change to reach a chaotic state.
These phase space regions are called strange attractors possessing a self-similar fractal structure embodying
geometrical sensitivity to initial conditions, with display of apparent random behavior and implying short-term
predictability but long-time unpredictability.

It is believed there are essentially three routes to Chaos [1] based on the notion of bifurcation.
A bifurcation is understood as follows [4]:

Consider an nth-order continuous-time system described by a system of first-order ODE:

dxi

dt
= fi(x1, x2...;α), i = 1...n (4)

with a parameter α ∈ R and xi, fi, i = 1...n are n dimensional variables and functions. As α changes, the limit sets of
the system also change. Limit sets are defined by the ensemble of geometrical objects to which the continuous-time
system evolve when time t →∞.
Typically, one expects a small change to produce small quantitative change in a limit set. For instance, slightly
varying α could change the position of a limit set in the same fashion, and if the limit set is not an equilibrium
point, its shape or size could also change. Moreover it is possible that a small change in α may cause a limit set to
undergo a qualitative change. This is called a bifurcation meaning alteration of stability and is similar somehow to a
paradigm shift.

Several types of bifurcations are described in the main text and in the Appendix.

The three routes to Chaos are:

1. Pitchfork bifurcation with infinite cascade of period doublings with universal scaling parameters

2. Tangent bifurcation with Intermittent transition to Chaos

3. Hopf bifurcation with three bifurcations leading eventually to a strange attractor with a self-similar fractal
structure

Let us detail below each bifurcation case.

1. Pitchfork bifurcation and the Logistic Map

Pitchfork bifurcation was pioneered by Feigenbaum [5] and is observed in driven non-linear oscillators, optical
instabilities Rayleigh-Bénard experiments (see Appendix) and Chemical Oscillations.

Maps are the discrete time version of continuous time systems described by arrays of first-order ODE’s much like
digital filters when compared to their analog counterparts. Maps are also called difference equations.

Let us consider the following recursion xn+1 = axn(1 − xn). It is a one-dimensional map with a single degree of
freedom xn and appeared for the first time in 1845 by P. F. Verhulst [1] to simulate the growth of some species
population on some bounded piece of land.
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The number of species xn+1 in year n + 1 is proportional to the previous year number xn and to the surface of
land reduced proportionally to xn, implying xn+1 = axn(1 − xn) where the parameter a depends on the species
reproduction rate, available resources in the piece of land and other environmental parameters.
Another example is a bank savings account with a self-limiting rate of interest [6]. Consider a deposit amount of z0

growing with an interest rate r such that zn+1 = (1 + r)zn where n is a discrete time index.
This relation when iterated in time with index n leads to zn+1 = (1 + r)n+1z0 leading to unlimited capital gain.
If a banker wants to limit gain, one possibility is to reduce the rate of interest proportionally to zn, substituting
r0(1− zn

zmax
) to r. Consequently the capital develops according to zn+1 = (1 + r0(1− zn

zmax
))zn which is equivalent to

the logistic map with: a = 1 + r0, xn = r0
(1+r0)

zn

zmax
.

The main property of the logistic map is its limit value called a fixed point when time or index n →∞. The fixed
point x∗ is such that when n → ∞ xn+1 → x∗ and xn → x∗ yielding from x∗ = ax∗(1 − x∗) x∗ = 1 − 1/a if we
assume that x∗ 6= 0.

What is also peculiar about the logistic map is that it possesses interesting behavior when a is changed.
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Fig.4: Fixed point, limit cycle or single period, period doubling, quadrupling, octupling and finally chaotic behavior
of the logistic map when a= 2.9, 3.1, 3.46, 3.56, 3.58 and 3.92 respectively. All iterations start from 0.1 and the

number of periods is indicated by the number of rectangular dense trajectories with a darker color.

Remark on Chaos and non-linear systems
Actually it is surprising to get from a non-linear system, period doubling, period quadrupling... since a non-linear
system is supposed to transform a frequency into its higher harmonics.
If we have, for instance, a signal of the form x(t) = sin ωt and take its square x2(t) we end up with 2ω since
cos 2ωt = 1 − 2 sin2 ωt = 1 − x2(t), whereas period doubling leads to ω/2, a sub-harmonic and same with period
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quadrupling that leads to ω/4 another sub-harmonic.

Generation of harmonics and subharmonics of a given frequency is important in Music synthesis, signal processing
and Telecommunication in areas such as modulation, demodulation, multiplexing, demultiplexing [7]...

2. Tangent bifurcation and Intermittency

Tangent bifurcation was pioneered by Pomeau and Manneville [8] and is observed in Lasers, Chemical reactions,
Josephson junctions and Rayleigh-Bénard experiments (see Appendix).

Intermittency [9] arises commonly in systems where the transition from periodic to chaotic behavior takes place by
a saddle-node bifurcation (see Appendix). Intermittency is almost a periodic motion interrupted by irregular bursts.
Time interval between bursts is a random variable, despite the fact the underlying system is deterministic.

As an example, let us consider a dynamical system described by a variable x(t) a function of time t, that varies
almost periodically smoothly for some time interval followed by anarchic bursts as for instance, the Farey map:

xn+1 = f(xn), f(x) =

{
x

(1−x) x ∈ [0, 1/2]
(1−x)

x x ∈ (1/2, 1]
(5)

It displays intermittency with episodes of smooth or laminar motion and bursty or random behavior as in fig. 5.
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x0 = 0.0088878 illustrates the sensitivity to initial conditions well known in chaotic systems, implying that any

minute change in the value of x0 results in a totally different series.

According to Pomeau and Manneville [8], three types of intermittency described by maps are possible depending
on the action of some control parameter ε. Other types exist such as On-Off and Spatio-Temporal [1].

Type I intermittency originates from saddle-node bifurcation and can be explained in a straightforward way with
maps. Let us consider the following 1D map having a bifurcation point x = 0:

xn+1 = ε + xn + ax2
n (6)

The saddle point occurs through a sign change of parameter ε. When ε > 0 there is no fixed point x∗ since there is
no real solution to x∗ = ε + x∗ + a[x∗]2 whereas when ε < 0 the solution is x∗ =

√
−ε/a.

For positive but small ε, a narrow tunnel exists between the map function ε + xn + ax2
n and the main diagonal

xn+1 = xn. There are episodes of stable behavior (laminar phase) followed by bursts (chaotic phase) and the
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mean length of the laminar phase scales as 1/
√

ε. When ε decreases, a saddle-node bifurcation occurs with a stable
fixed-point attractor at −

√
−ε and an unstable fixed point at

√
−ε.
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Fig.6: Map xn+1 = ε + xn + +ax2
n behavior as a function of iterations with a = 0.5 and ε = 0.025 with the starting

point x0 = −1. Remarkably, despite the fact, the iterates trajectory might be stopped by the tangency of the main
diagonal to the parabola ε + xn + ax2

n around x = 0, it proceeds by squeezing itself through the tunnel and emerges
afterwards much like a quantum mechanical wave-function traveling across a barrier.

3. Hopf bifurcation and Opto-electronics

Hopf bifurcation [1] was pioneered by Ruelle-Takens-Newhouse [3] and is observed in non-linear conductors, Taylor
and Rayleigh-Bénard experiments (see Appendix) as well as in optically bistable systems.
It occurs when a complex-conjugate pair of eigenvalues of an equilibrium point pass through the imaginary axis,
thereby creating a limit cycle or closed orbit (see Appendix).

Numerous non-linear optic or opto-electronic devices have been suggested as models that can exhibit chaotic be-
haviour. There are at least three possibilities:

1. Chaos might me generated with a single non-linear discrete (in time) recursion but needs at least two first-order
differential equations that are continuous in time. The dynamics of class-B single-mode lasers is ruled by two
first-order differential equations. Waveguide lasers are generally used for single longitudinal or transverse-mode
operation; by modifying slightly the resonator configuration to achieve multi-transverse mode emission Chaos
becomes observable. It is due in this case to the non-linear interaction of two transverse modes when the cavity
length is driven slightly away from the stable operation.

2. Increasing the non-linearity giving birth to Solitons beyond a certain limit above which Soliton propagation is
no longer sustainable. Practically, this is done through pumping of the non linear medium with a train of pulses
AUsol with Usol a soliton whose amplitude A is increased from one run to the next until propagation failure.

3. The non-linearity might be tuned between radiation emitted or scattered by the medium (Optical fiber for
instance) and the pump, when its level exceeds some threshold.

A first route to Chaos is the interaction between the electric field complex envelope and a non-linear medium in a
bistable circular cavity called the Ikeda model [10].

Ikeda [10] viewed the non-linear absorbing medium as an ensemble of two-level atoms placed in a ring cavity (see
fig. 7) and subjected to a constant light excitation. When the total length of the cavity is large enough, the optical
system undergoes a time-delayed feedback destabilizing its steady state output. Ikeda derived from a plane-wave
model a set of Differential-Delay equations (DDE) on the basis of the following assumptions:
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1. Saturable absorption is ignored.

2. The response time of the non-linear medium is much faster than the cavity round trip time ∆t.

3. The non-linear interaction between the medium and the Electric field is of the non-linear Kerr type (The
refractive index of the non-linear medium varies with the square of the Electric field amplitude).

In order to simplify Ikeda plane-wave model, Moloney et al. [11] derived from it a complex non-linear recursion
map (i2=-1):

En+1(t, x) = a + REn(t, x) exp i(φ− p/(1 + |En(t, x)|2)) (7)

Non−linear dielectric

Laser light

Mirror 1

Mirror 3Mirror 4

Mirror 2

Fig.7: Four mirror ring cavity resonator interacting with a Kerr non-linear dielectric medium.

En(t, x) is the Electric Field Complex Envelope at the n-th pass in the cavity (If ∆t is the trip time round the
cavity, we define instant t as t = n∆t) at position x along the line crossing the cavity between Mirrors 1 and 2. a is
a dimensionless input amplitude, R is the reflectivity of the mirrors, φ is the laser empty-cavity detuning factor and
p is proportional to linear absorption.

The bifurcation analysis is based on the behavior of a complex map function recursion [10] of the form
zn+1 = g(zn) where zn = En(t, x) is the electric field complex envelope and g(z) a complex function given by:
g(z) = a + Rz exp i(φ− p/(1 + |z|2)).

The map recursion stability can be analyzed exactly as a function of parameters a,R, φ, p like any set of real maps
(see Appendix and Ref. [10]) by transforming the complex map into a 2D real map with z = x + iy we get:

xn+1 = a + R[xn cos An − yn sinAn]
yn+1 = R[xn sinAn + yn cos An] (8)

with An = φ− p/(1 + x2
n + y2

n).

The fixed point is given by z∗ = g(z∗) yielding the system:

|g(z∗)− a| = R|g(z∗)|

cos
(

p

1 + |g(z∗)|2
− φ

)
=

1
2R

(
1 + R2 − a2

|g(z∗)|2

)
(9)

At z = z∗, the eigenvalues λ1, λ2 of the Jacobian are given by:

λ1 = R(−D −
√

D2 − 1), λ2 = R(−D +
√

D2 − 1)

D = − p|g(z∗)|2

(1 + |g(z∗)|)2
sin

(
p

1 + |g(z∗)|2
− φ

)
− cos

(
p

1 + |g(z∗)|2
− φ

)
(10)
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From the 2D real map, we get a Jacobian determinant equal to det[J ] = R2 < 1, since the reflectivity R < 1 and
consequently λ1λ2 < 1.

Bifurcation requires that an eigenvalue cross the unit circle given by |λ| = 1.
Thus we have three possibilities [10]:

1. Saddle-node bifurcation: λ1 = 1 and the other λ2 = R2, since the Jacobian determinant is det[J ] = λ1λ2 = R2.

2. Period-doubling bifurcation: λ1 = −1 and λ2 = −R2.

3. Hopf bifurcation: The eigenvalues form a complex-conjugate pair and have to cross the unit circle |λ| = 1.
However, they cannot since R < 1 violates the unit circle radius condition.

The bifurcation scenario was found by Moloney [11] who showed that the Ikeda map has two distinct period
doubling routes to Chaos and that some periodic cycles, can suddenly occur through a tangent bifurcation as in
intermittency to undergo afterwards a period doubling cascade resulting into a strange attractor depicted in Fig. 8.

This scenario is indeed the most frequently favored in ring cavity resonators. Nevertheless when feedback delay
in bistable ring cavity resonators becomes arbitrary and we move away from the assumptions previously stated in
section I.C.3, Hopf bifurcation regains interest (see for example Ref. [12]).

The second route is a CO2 waveguide laser using a non standard configuration of the resonator in order to
obtain multi-transverse mode operation. Starting from a mirror setup where two modes have a stable coexistence,
tiny variations of the cavity length drive the system in the chaotic regime by increasing competition between the
transverse modes.

The third Chaos route in Opto-electronics is to exploit our knowledge of Solitons through the use of the generalised
(with exchanged space x and time t variables) Non-Linear Schrödinger equation (NLSE) containing a controllable
non-linearity function E(t, x)S(|E(t, x)|2):

i
∂E(t, x)

∂x
+

1
2

∂2E(t, x)
∂t2

+ E(t, x)S(|E(t, x)|2) = 0 (11)

Note that in the standard Schrödinger equation the imaginary term is related to a first-order time derivative
whereas in the generalised NLSE, it involves rather a first-order spatial derivative.

The control function is a linear function of |E(t, x)|2 in the ordinary non-linear Kerr case (Medium refractive index
varies with the square of the Electric field amplitude). Here it is a smooth function that starts linearly then varies
smoothly to saturation as a function of |E(t, x)|2. When the non-linear medium described by the NLSE is pumped
with a train of soliton pulses AUsol, the recursion equation for the Electric field complex envelope En becomes:

En(t, x = 0) = AUsol(t, x = 0) + BEn(t, x = L) (12)

where L is the cavity length, n is a pass through the cavity and B is a real number representing mirror losses
impacting the cavity output En(t, x = L).
After each pass through the cavity a soliton pump pulse is added. The recursion eq. 12 becomes chaotic when
the pumping amplitude A is increased beyond a cutoff value. The final scenario is Stimulated Brillouin Scat-
tering (SBS), an important scattering phenomenon in Optical Fibers. It is due to a peculiar type of distributed
optical feedback in the fiber and give rise to a positive shift in the input light frequency (Stokes emission phenomenon).

A single-mode fiber can be used to generate SBS above given threshold pump conditions. The non-linear interaction
between the pump and the Stokes emission can be tuned in order to give rise to Chaos. The dynamic instability in
the fiber is strong and the light intensity (in forward and back-scattering directions) undergoes large fluctuations
with modulating depths approaching 100%.

When Chaos is encountered through detection or direct generation (whether high level of pumping or some
other large amplitude signal are used) we ought to coerce it into smoother behavior. This is extremely useful in
repeater-less long distance communications where the signal to noise ratio should be increased while, simultaneously
a smooth behaviour of the signal is required. The control of a chaotic signal is based on the following observation.



10

Chaos arises from the existence of many unstable periodic orbits that are dense on a strange attractor.

In other words, Chaos arises from the impossibility of the system to settle into a well defined smooth periodic
state (i.e. a single characteristic period) for some long enough interval of time. Instead, the system starts in a given
state and switches into another one after a small time interval because of the instability. The high density of vicinal
periodic states makes the transition easy from one state to another neighboring one.

In order to control the time dependence of the system and force it into a given state with a specific period one
needs to probe the local dynamics and estimate from it the local sensitivity of the dynamics with respect to some
accessible parameter.

That procedure can be achieved with the algorithm developed by Ott, Grebogi and Yorke [13] and for an illustration
of the control method, we extend Ikeda recursion eq. 7, to obtain:

En+1(t, x) = an + REn(t, x) exp i(φ− p/(1 + |En(t, x)|2)) (13)

where an ∈ R plays the role of a control parameter. In fact, an represents the amplitude of the light pulse penetrating
the cavity at time index n. When an = 1, ∀n, the system settles into the chaotic state and the time variation of En(t, x)
inside the cavity is governed by the map g(z) = a + Rz exp i(φ − p/(1 + |z|2)) with a = 1, R = 0.9, φ = 0.4, p = 6.0
leading to the Attractor of Fig. 8.
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Fig.8: (Left) Real and Imaginary part of En(t, x) the electric field Complex envelope inside a circular cavity versus
time. (Right) Attractor revealing its fractal self-similar nature with correlation dimension ν = 2.6.

II. DRIVEN NON-LINEAR RLD OSCILLATOR

In this section, we describe first, the non-linear RLD circuit described by Linsay [14] and its critique regarding the
origin of Chaos in that circuit.

A periodically driven non-linear RLD circuit is represented by the second-order ODE (Ordinary Differential Equa-
tion):

LQ̈ + RQ̇ + f(Q) = V0 cos(ωt) (14)

where Q is the time t dependent charge and f(Q) is a non-linear function of Q, V0 the excitation voltage am-
plitude and ω the excitation angular frequency. In a simple RLD circuit f(Q) = Q/C where C is a simple capacitance.
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A. Duffing oscillator

A general non-linear RLD circuit can be obtained by substituting the circuit capacitance with a reverse biased
diode yielding a charge dependent junction capacitance C(Q) resulting into a voltage Vc(Q) = f(Q) = Q/C(Q).

The Duffing [15] oscillator is a particular case embodying a cubic non-linearity f(Q) = aQ + bQ3 where a, b are
constants.

dQ

dt
= I

L
dI

dt
= −aQ− bQ3 −RI + V0 cos(ωt) (15)

All parameters are normalized for ease of comparison between the Oscillatory and chaotic regimes.
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Fig.9: (Left) The Duffing system is driven to oscillation with parameters a = −1, b = 1 and
L = 1, R = 0.22, V0 = 0.1, ω = 1. The charge Q(t) oscillates in a very regular fashion after a short transient

behavior. (Right) When the excitation amplitude is increased to V0 = 0.3 the charge response Q(t) becomes chaotic.

B. Linsay RLD oscillator

Linsay [14] claimed the time-dependent solution of the ODE 14 is easily obtained through the transformation into
a system of two differential equations depending on I, Q variables:

dQ

dt
= I

L
dI

dt
= V0 sin(ωt)−RI − Vc(Q) (16)

This system is in fact severely ill-conditioned [16] and a better way to tackle it, is to consider instead the variables
Vc, I by evaluating the time derivative of Vc. The mathematical difficulty originates from the non-trivial relationship
between Q and Vc, since: Q = C(Vc)Vc where C(Vc) = C0

(1+Vc/φ)γ . C0 is the zero-bias junction capacitance whereas φ

and γ are intrinsic voltage scale and exponent proper to the diode.

For instance, the varactor diode 1N5470A used by Linsay [14] and fabricated by Teledyne Crystalonics has the
characteristics: C0= 81.8 pF, φ= 0.6 V and γ=0.44.

The excitation drive has angular frequency ω = 2πf0 where f0 is 1.78 MHz, the resonance frequency of the RLD
circuit with R= 180 Ω and L=100 µH, given by:

f0 =
1

2π
√

LC0 −R2/4L2
(17)

Nevertheless, after performing the algebra we get the Vc, I system:
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C0
dVc

dt
= I(1 + Vc/φ)(γ+1)

L
dI

dt
= V0 sin(ωt)−RI − Vc (18)

This system is no longer ill-conditioned and can be integrated by a fourth order Runge-Kutta method [16]. When
the drive amplitude V0=1V, the results are given below in fig. 10:
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Fig.10: Oscillatory behavior of the variables Vc(t), I(t) when the drive amplitude is relatively small V0=1 V.

Increasing the amplitude to 3V ,5V and finally 7V yields period doubling, tripling and quintupling versus time as
displayed below, in fig. 11:

C. Testa et al. RLD oscillator

Testa et al. [17] while testing Linsay results, opted for a lower resonance frequency (∼ 90 kHz) and a different
type of diode in the RLD circuit.
The varactor diode (type 1N953 supplied by TRW Company), has the junction capacitance characteristics: C0= 300
pF, φ= 0.6 V and γ=0.5.

The RLD circuit is driven by the source V0 sin(ωt) where ω = 2πf0 with f0 the resonance frequency of the RLD
circuit. f0 is 93 kHz from the RLD circuit characteristic elements given by C0= 300 pF, R= 28 Ω and L=100 mH.

The RLD circuit becomes a driven anharmonic oscillator exhibiting period doubling, period tripling and quintupling
and chaotic behavior.

D. Chaos and varactor diode switching properties

Hunt et al. [18] disagreed with the above works by Linsay [14] and Testa et al. [17] on the non-linear RLD circuit
since both groups attributed period doubling and Chaos to the non-linearity introduced by the voltage-dependent
capacitance of the varactor diodes 1N5470A and 1N953 respectively.
In fact, Linsay [14] redid Chaos measurements, replacing the 1N5470A varactor with an 80 pF capacitor in parallel
with a 1N4154 diode possessing the same resonance frequency f0 =1.78 MHz. Nonetheless, the 1N4154 diode setup
did not show up bifurcation leading him to assert that the non-linear junction capacitance was indeed the Chaos trigger.

Hunt et al. [18] pointed out that another property of those particular 1N5470A and 1N953 diodes was respon-
sible for this peculiar behavior: both have large reverse recovery time in the 100-200 ns range. This was even
confirmed by the fact 1N4154 diode having a very short reverse recovery time in the 2-4 ns range did not display Chaos.

Reverse recovery occurs when a forward conducting diode is quickly switched off [19], and the stored charges
develop a transient reverse current flow at high reverse voltage.

Ordinary diodes have a reverse recovery time [19] due to charge storage effects, after forward conduction, before
they become non-conducting. Typical reverse recovery times are in the 150-200 ns range such as varactor diodes
1N5470A and 1N953 whereas fast recovery diodes with times in the 20-30 ns or even 2-3 ns range are used extensively
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Fig.11: Period doubling, tripling and quintupling behavior of the variables Vc(t), I(t) when the drive amplitude
V0= 3V ,5V and 7V respectively. It is remarkable to observe a smooth variation of the voltage Vc(t) and a noisy I(t)

containing different periods of oscillation.
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Fig.12: Oscillatory behavior of the variables Vc, I with time when the drive amplitude V0=1 V.

in high-speed switching particularly in power systems. This is why a diode can be used as a fast soft-recovery rectifier
because fast implies it turns off quickly (< 30 ns), and soft means that this operation is not abrupt but somehow
very smooth in order to avoid producing large inductive spikes [19], when current transits to non-conduction state
(recall V = LdI/dt).

On the other hand, Schottky diodes do not have stored charge [19] and therefore no reverse recovery delay. Schottky
clamping prevents transistor saturation, which otherwise causes a turn-off delay.

Hunt et al. [18] argued that both a finite forward bias voltage and a finite reverse recovery time are required for
the particular diode resonator to exhibit chaotic behavior. Moreover they neglected the capacitance variation of the
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Fig.13: Period doubling, tripling and quintupling behavior of the variables Vc, I with time when the drive
amplitude V0= 3V ,5V and 7V respectively. As in the Linsay case, we observe a smooth variation of the voltage

Vc(t) but a variation of I(t) containing somehow less noise than the Linsay case. In addition, the variation of I(t) is
similar to a relaxation oscillator with a noisy-slow episode followed by a sharp-fast episode.

Varactor.

In order to achieve their goal, they assumed that the diode will behave as an ideal diode with the following added
characteristics:

1. There is a finite forward bias voltage Vf . The diode will not conduct until the forward voltage drop reaches Vf

and the voltage drop remains at Vf as long as the diode conducts.

2. When the voltage drop is less than Vf , the diode does not conduct but acts as a capacitor with fixed capacitance.

3. When the current through the diode is driven through zero, the diode does not shut off immediately, but
continues to conduct for a time equal to the reverse recovery time τRR.

While it is known that τRR depends on various factors such as the forward current and reverse voltage amplitudes,
they chose a simple functional relationship to describe τRR:

τRR = τm(1− exp(−|Im|/Ic)) (19)

where |Im| is the most recent maximum forward current magnitude, and τm and Ic are parameters which describe
the characteristics of the particular diode used.

In fact, charge storage time makes an important part of τRR and is given by:
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τS ≈ τRR ln(1 + Im/IR) (20)

where IR is the reverse current through the diode during the storage phase.

This combined reverse-recovery-storage time approach allowed them to find an exact analytical solution to the
Chaos transition problem.

In order to check Hunt [18] work, Mariz de Moraes and Anlage [20] explored Chaos transition in several RLD
circuits while exploiting the properties of several types of diodes relating directly, resonance frequency f0 to reverse
recovery time τRR.

They found that when f0 ∼ 100/τRR, Chaos transition disappears altogether (see Table 1).
This brings an additional deeper meaning to the appearance of Chaos:
”It is the coupling between the resonance frequency f0 and 1/τRR that brings about Chaos” and when they are
uncoupled (in other words f0 � 1/τRR) Chaos is not possible. Another point of view of this argument came from
the 1N4154 diode used by Linsay who had a very short τRR in the 2-4 ns range with a resonance frequency f0 of
1.78 MHz leading us to the opposite limiting case: f0 � 1/τRR.

Combining both arguments, whether we have f0 � 1/τRR or f0 � 1/τRR no Chaos is expected since resonance
and charge storage mechanisms are uncoupled whereas when f0 ∼ 1/τRR Chaos is possible since coupling between f0

and τRR is optimally high.

Diode τRR (ns) C0 (pF) Results with Results with Results with

f0 ∼ 1/τRR f0 ∼ 10/τRR f0 ∼ 100/τRR

1N5400 7000 81 Period doubling and Period doubling and No period doubling

Chaos Chaos nor Chaos

1N4007 700 19 Period doubling and Period doubling and No period doubling

Chaos Chaos nor Chaos

1N5475B 160 82 Period doubling and No period doubling No period doubling

Chaos nor Chaos nor Chaos

NTE610 45 16 Period doubling and Period doubling No period doubling

Chaos under some conditions nor Chaos

Table 1: Period doubling and Chaos in driven RLD circuits with four different diodes. The reverse-recovery time
τRR is given along with the zero-bias junction capacitance C0. The resonant frequencies f0 were changed by

adjusting the L value in the RLD circuit, while R was fixed at 25 Ω. In comparison, the varactor diode 1N5470A
used by Linsay [14] has C0= 81.8 pF with τRR in the 100-200 ns, whereas Testa et al. [17] diode is 1N953 with C0=

300 pF and τRR in the 100-200 ns as well. Adapted from Ref. [20].

Mariz de Moraes and Anlage [20] argument regarding Chaos transition in RLD circuits is that reverse recovery is
indeed an essential effect producing Chaos in the sinusoidally driven RLD circuit.
However, both the reverse recovery and nonlinear capacitor models have memory built into them through a charge
storage mechanism.

This led them to conclude that it is not useful to single out either the effect of nonlinear junction capacitance or
reverse recovery time on minority carriers as the cause of Chaos, since both have similar effects on circuit dynamics.
Moreover the reverse recovery time in real diodes is a strongly nonlinear function of forward-bias current, impacting
frequency response, and dc bias.

III. COLPITTS OSCILLATOR

Now we move away from the RLD oscillator to replace the diode by a transistor and using two ordinary capacitors
C1 and C2 with an inductance as a tuning resonator in order to describe the Colpitts circuit into its oscillatory or
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chaotic modes, Thus, the Colpitts circuit, consists of a transistor providing amplification, in a feedback loop containing
a parallel LC1C2 circuit operating as a bandpass filter to select the resonance frequency.
This is in fact a common-base Colpitts circuit, the voltage across C2 being applied to the base-emitter junction of the
transistor, as some feedback to stabilize oscillations.
In a common-collector version, the voltage across C1 provides feedback. The frequency of oscillation is approximately
the resonant frequency of the LC circuit, which is the series combination of C1 and C2 in parallel with the inductor:

f0 =
1

2π
√

L C1C2
C1+C2

(21)

The actual frequency of oscillation will be slightly lower due to junction capacitances and resistive loading of the
transistor.

A. Simple Colpitts oscillator

Let us consider the circuit of fig. 14:
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Fig.14: (left) Simple Colpitts oscillator and equivalent transistor circuit (right) with I0 the constant current source,
IS the transistor saturation current and RE the emitter variable resistor.

The state-space equations for the circuit are:

C1
dVC1

dt
= −αfE(−VC2) + IL

C2
dVC2

dt
= (1− α)fE(−VC2) + IL − I0

L
dIL

dt
= −VC1 − VC2 −RIL + VCC (22)

where fE is the driving-point characteristic of the emitter non-linear resistor of the transistor. It can be expressed
in the form IE = fE(VBE) = fE(−VC2) which may be represented mathematically by a piece-wise linear system
for the transistor emitter current:

IE = I0
VBE − Vth

VT
, VBE ≥ Vth (forward active case), IE = 0, VBE < Vth (cut-off case) (23)

where Vth is the threshold voltage: Vth = kBT [ln(αIS/I0)− 1] and IS the saturation current.

This originates from the fact, the emitter current is given by: IE = Is

[
e

VBE
kBT − 1

]
resulting into fE(VC) = Ise

− VC
kBT

when VC � kBT .
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Kennedy [21] et al. evaluated the phase diagram in terms of two parameters g∗, Q where g∗ is the open loop gain
such that the Barkhausen condition id g∗ = 1 and the quality factor Q = Lω/R where ω = 2πf0. They found that
oscillatory behavior implies g∗ < 1 whereas chaotic behavior implies g∗ > 10.

In order to find the detailed time dependence of system 22 we use order-4 Runge-Kutta method of integration [16].
Oscillatory behavior with f0 = 97.84 kHz is displayed in fig. 15.
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B. Chaotic Colpitts oscillator

Driving the Colpitts oscillator into a chaotic regime entails using different circuit parameters and initial conditions.

Chaotic response is displayed below in fig. 16:

−100

−80

−60

−40

−20

 0

 20

 0  2000  4000  6000  8000  10000

v 1
(t

)

n

−10

 0

 10

 20

 30

 40

 50

 60

 0  2000  4000  6000  8000  10000

v 2
(t

)

n

−2

−1.5

−1

−0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  2000  4000  6000  8000  10000

i L
(t

)

n

Fig.16: Chaotic response of the Colpitts circuit. The voltages v1(t), v2(t) are across the corresponding capacitors
and iL(t) is the current intensity across the inductor. C1 = 54.nF, C2 = 54. nF and L = 98.µH, R = 40Ω and g∗ =

20.

APPENDIX A: Saddle-Node Bifurcation

Saddle-node bifurcation occurs when fixed points are created or destroyed by changes of a control parameter. A
simple example of a saddle-node bifurcation is given by the first-order system:
ẋ = r + x2 where r is a parameter. When r is negative, there are two fixed points given by ẋ = 0, or r + x2 = 0
whose solutions are x1,2 = ±

√
−r implying that r should be negative for real valued fixed points as displayed in fig. 17.

When r < 0 the parabola r + x2 cuts the x axis at two fixed points x1,2 = ±
√
−r that coalesce into a single fixed

point at x∗ = 0 when r = 0. Finally when r > 0, there are no fixed points since x1,2 = ±
√
−r become imaginary.

In order to tackle stability, there are two cases to consider:
1- Discrete time or map function case: xn+1 = f(xn) where x, f are real scalars or vectors.
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2- Continuous time or ODE system case: ẋ = f(x) where x, f are real scalars or vectors.

Stability analysis is obtained from exploring the neighborhood of the fixed point x∗ = f(x∗) in the discrete case or
ẋx=x∗ = 0 in the continuous case.
In the map case, xn+1 = f(xn), should be expanded around the fixed point x∗ = f(x∗). This yields
x∗ + εn+1 = f(x∗ + εn) ≈ f(x∗) + εn( df

dx )x∗ . Thus εn+1 = aεn with a = ( df
dx )x∗ the amplification factor. We

deduce that the fixed point is attractive (stable) if |a| ≤ 1 and repulsive (unstable) if |a| > 1.

In the ODE system case ẋ = f(x), we linearize the system, evaluate the Jacobian matrix given that in the general
case x = (x1, x2, ...):

∂(ẋ1, ẋ2, ẋ3...)
∂(x1, x2, x3...)

(A1)

and extract its eigenvalues whose signs at the respective fixed points determine stability.

In the discrete map case xn+1 = f(xn), x = (x1, x2, ...),f = (f1, f2, ...) we linearize the map to evaluate the
Jacobian matrix elements Jij as:

Jij =
(

∂fi

∂xj

)
(A2)

and extract its eigenvalues whose signs at the respective fixed points determine stability.

Applying the above to r < 0 we obtain λ1,2 = 2x1,2 with x1,2 = ±
√
−r, thus λ1 = −

√
−r negative, consequently

x1 is stable whereas λ2 =
√
−r is positive implying x2 is unstable.
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Fig.17: Saddle-node bifurcation viewed in the phase plane ẋ, x for the system ẋ = r + x2. When r < 0 there are
two fixed points x∗ = ±

√
−r collapsing into a single point x∗ = 0 when r = 0, to finally absence of fixed points when

r > 0.

Note: A straightforward criterion to tell whether a 1D function map f(x) is chaotic or not is given by a negative
sign of the Schwarzian derivative [1]:

Sf(x) =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

, f ′ =
df

dx
, f ′′ =

d2f

dx2
, f ′′′ =

d3f

dx3
(A3)

For instance in the case of the logistic map, Sf(x) is negative over the entire interval [0, 1].

APPENDIX B: Hopf bifurcation

Hopf bifurcation occurs when a stable fixed point becomes unstable under the action of a control parameter µ. Let
us start from some two-dimensional system with a fixed point. If the fixed point is stable, the eigenvalues λ1, λ2 must
both lie in the left half-plane Reλ < 0.
Since the λ’s satisfy a quadratic equation with real coefficients, there are two possible cases: either the eigenvalues
are both real and negative or they are complex conjugates. In order to destabilize the fixed point, we need one or
both of the eigenvalues to cross into the right half-plane Reλ > 0 as µ varies.
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1. Supercritical Hopf Bifurcation

Consider a physical system that settles down to equilibrium with exponentially damped oscillations. If we
suppose the decay rate depends on a control parameter µ, it becomes slower and slower and finally changes to
growth at a critical value µc where the equilibrium state will lose stability. In many cases the resulting motion is a
small-amplitude, sinusoidal, limit cycle or closed orbit oscillation about the former steady state. Then the system is
considered to have experienced a supercritical Hopf bifurcation.

A supercritical Hopf bifurcation occurs when a stable spiral, in phase space, changes into an unstable spiral
surrounded by a small, nearly elliptical limit cycle. Hopf bifurcations can occur in phase spaces of any dimension
n 6= 2, nonetheless, we restrict ourselves to two dimensions.

A simple example of a supercritical Hopf bifurcation is given by the following continuous time first-order ODE 2D
system [9]:

ṙ = µr − r3,

θ̇ = ω + br2 (B1)

There are three parameters: µ controls the stability of the fixed point at the origin, ω gives the frequency of
infinitesimal oscillations, and b determines the dependence of frequency on amplitude for larger amplitude oscillations.

When µ < 0, the origin r = 0 is a stable spiral whose sense of rotation depends on the sign of ω. For µ = 0 the
origin is a stable spiral. When µ > 0 there is an unstable spiral at the origin and a stable circular limit cycle at
r =

√
µ.

2. Subcritical Hopf Bifurcation

Type II intermittency and Lorenz system behavior are due to a subcritical Hopf bifurcation. Following the super-
critical case, an example of a subcritical Hopf bifurcation is given by the following continuous time first-order ODE
2D system [9]:

ṙ = µr + r3 − r5,

θ̇ = ω + br2 (B2)

The difference between the previous system by eqs. (B1) and the current given by eqs. (B2) is that the cubic term
r3 now drives the phase-space trajectories away from the origin unlike the supercritical case.

3. Degenerate Hopf Bifurcation

An example is given by the damped pendulum

Jθ̈ = F` cos(ωt)−mg` sin(θ)− γ`θ̇ (B3)

As we change the damping γ from positive to negative, the fixed point at the origin changes from a stable to an
unstable spiral. However at γ = 0 we do not have a true Hopf bifurcation because there are no limit cycles on either
side of the bifurcation.

This case typically arises when a non-conservative system suddenly becomes conservative at the bifurcation point.
The fixed point becomes a nonlinear center, rather than the weak spiral required by a Hopf bifurcation.

4. Hopf bifurcation and the Lorenz system

The Rayleigh-Bénard experiment mimics interaction between the Sun and an approximately flat Earth atmosphere
in order to understand weather and model climate. Coupling of the Navier-Stokes equations with thermal convection,
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it is a 2D problem describing thermal convection between two parallel horizontal plates at different temperatures
sandwiching a fluid representing the atmosphere.
The Lorenz system is derived from a modal expansion of the Oberbeck-Boussinesq approximation with an additional
truncation of the Fourier-Galerkin expansion [22].
The system is obtained as:

ẋ = σ(y − x)
ẏ = ρx− y − xz

ż = xy − βz (B4)

with σ, β, ρ ≥ 0. σ corresponds to Prandtl number, β is a geometric parameter and ρ is the Rayleigh number in
units of the critical Rayleigh number [22].

These equations describe a dissipative dynamical system for all values of ρ, σ and β because the divergence of the
flow field (or the ODE system) is always negative [22].
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Fig.18: (Left) x(t), y(t), z(t) time series with parameters σ = 16, β = 4, ρ = 45.92 and timestep equal to 0.03.
(Right) 3D Lorenz butterfly attractor using a timestep equal to 0.005 for orbit smoothness.

The eigenvalues are evaluated as usual, by linearizing the system B4 to obtain the Jacobian matrix

∂(ẋ, ẏ, ż)
∂(x, y, z)

=

 −σ σ 0
−ρ− z −1 −x

y x −β

 (B5)

whose characteristic polynomial is:
P (λ) = −λ3 − (β + σ + 1)λ2 − 1

2 (2σ(ρ− z)− 2x2 + β2 + 1 + σ2)− (β + σ + 1)2)λ + ρβ(σ − z − 1)− σx(x + y)
We infer that when 0 < ρ < 1, only one stable fixed point exists x∗ = y∗ = z∗ = 0,

However when ρ > 1 we get three fixed points:

x∗ = y∗ = ±
√

β(ρ− 1) , z∗ = ρ− 1, (B6)

For ρ > 1, fixed point x∗ = y∗ = z∗ = 0 is unstable, whereas fixed points given by eq. B6 are stable if 0 < σ < β +1.
However, if σ > β + 1, fixed points B6 are unstable when ρ > σ(σ + β + 3)/(σ − β − 1) and a strange attractor as in
fig.18 appears.
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A pitchfork bifurcation occurs at ρ = 1, and if σ > β + 1, a subcritical Hopf bifurcation occurs at
ρ = σ(σ + β + 3)/(σ − β − 1).

It can be proven that σ(σ + β + 3)/(σ − β − 1) > 1 for any available β when σ > β + 1.
The attractor is the set of points in phase space that can be arrived at when time t → +∞ starting from some

arbitrary initial condition at t = 0.
The two fundamental properties of strange attractors are:

• it is invariant under the evolution.

• the distance of any solution from it vanishes as t → +∞.

• They possess a fractal self-similar geometry.

The second property simply means that if the solution is initially outside the attractor, it will reach it when t → +∞
and stays on it once inside.
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