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Unobstrusive Smartphone-based Oxygen Saturation Measurement Using a
Meta-Region Of Interest

Firmin Kateu®*, Gentian Jakllari®, Emmanuel Chaput?

AIRIT, Toulouse INP, CNRS, Université de Toulouse, 2 Rue Charles Camichel, Toulouse, 31000, France

Abstract

We present SmartPhOx, a pure camera-and-flashlight smartphone-based pulse oximetry solution. We build
on the ratio-of-ratios (RR) method and linear regression, an elegant approach resting on the Beer-Lambert
law and landing itself to efficient smartphone implementations. However, its implementations without spe-
cialized hardware have so far proved to be unsuitable for clinical use, in particular due to the instability of
the RR measurements. We use an empirical study to shed light on the reasons why and propose using the
very RR measurements to filter RR measurements — a new paradigm we call the Meta-Region of interest
(Meta-ROI). We design a complete-system architecture, including a novel data structure for storing and RR
values in the time and space dimensions and an efficient algorithm for identifying Meta-ROI. Results from
an Android implementation of SmartPhOx with the participation of 37 volunteers show that it is the first
pure camera-and-flashlight solution to meet the FDA requirement for Root Mean Square Error (RMSE).

Keywords: Pulse oximetry, SpO,, Mobile health, Ratio-of-ratios, Beer-Lambert law

1. Introduction

... A vast majority of Covid pneumonia patients I met had remarkably low oxygen saturations at triage

— seemingly incompatible with life — but they were using their cellphones as we put them on monitors.’
8Ly D y 8 )Y p

What if their cellphones could have measured their oxygen saturation, how many of these patients would
have seeked timely medical help and avoided intubation?
As the world is gripped by the COVID-19 pandemic, terms like oxygen saturation (SpO;) and silent

hypoxia! — the condition in which a patient still feels well but their SpO, is dangerously low [47] — have
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entered the mainstream. The pulse oximeter, the once-obscure fingertip device allowing home monitoring
of the blood oxygen levels, has emerged as an important tool in fighting COVID-19, drawing attention to
the science and technology behind it — and raising the question of whether it can be reinvented for the era
of pervasive computing.

The idea of pulse oximetry — the non-invasive monitoring of oxygen saturation using the so-called
ratio-of-ratios (RR) method — dates back to 1935 [33]]. Scientifically it rests on the Beer-Lambert law
stating that a light going through a thin body part, like a finger or earlobe, will be impacted by its thickness
and concentration — the latter including oxygen saturation. Using two light beams of specific wave lengths
and the fact that at different points of the cardiac cycles only oxygen saturation-related factors change, as
we show in detail in Section [2] it is possible to manipulate the Beer-Lambert law through two consecutive
ratios to remove non-oxygen saturation factors, like the medium thickness. The results is a relation between
a ratio-of-ratio (RR) of light measurements and the SpO, — the ratio-of-ratios (RR) method [21]]. The first
pulse oximeter was developed in the “70s [44] and today a wide range of pulse oximeters can be found off-
the-shelf [40, 37} [12] 25, 4]]. Nevertheless, dedicated hardware adds extra burden and, as the silent hypoxia
cases due to COVID-19 have revealed [47], often people are not aware their oxygen level needs monitoring.

Increasingly in people’s hands and with advanced sensing, computing and communicating capabilities,
the smartphone is seen as a building block of pervasive computing and key enabler of the digital health-
care [48] 18l 23 27]. Researchers have proposed smartphone-based pulse oximetry solutions predating the
COVID-109 crisis. [43]] was among the first to apply the RR method for estimating SpO, using smartphones.
A user places the finger over the flashlight — serving as the source of light — and the camera. Acquiring the
photoplethysmogram (PPG) signal from processing the resulting video allows RR of light measurements
and the estimation of SpO,. However, its accuracy is below the FDA clearance threshold [3]. The funda-
mental reason is that it uses linear regression for implementing the RR method. Unfortunately, the PPG
signal, and thus the RR measurements, can be unstable due to finger movements and pressure changes [[10].
To address this issue, [[11, [32] integrate into the RR measurements the camera quantum efficiency. While
improving accuracy, this is information to which only manufacturers have access. PhO, [[10] proposes at-
taching to the smartphone camera a custom-made device mounted with two chromatic filters, each allowing
a precise wavelength to pass. The result is a system allowing SpO, predictions with accuracy meeting
the FDA clearance threshold. Nevertheless, the custom-built hardware add-on, while manufactured with

the help of 3D printing, limits its large-scale application. Recently, dedicated oxygen monitoring sensors



are being integrated in smartwatches [22], and some high-end smartphone models [1]. While accurate,

such solutions leave out large sections of users with older smartphone models, particularly in developping

countries.

In this paper, we introduce SmartPhOx, a smartphone-based pulse oximetry system meeting the FDA
clearance threshold [3]] for accuracy while relying only on the standard smartphone camera and flashlight.
To achieve this, we start by first designing and conducting an empirical study aimed at shedding light on
the underlying reasons behind the inaccuracy of pure camera-and-flashlight solutions. The data shows that
focusing on primary factors — the quality of the PPG signal [39] [32] [11] or identifying the right region on
the video [[16, 43]], known as the region of interest (ROI) — is misleading. We find that signals of excellent
quality can still lead to unstable RR measurements. Focusing on a particular area of the video frame, such
as the center, does not help either. In light of these results, we argue for a shift in approach. We propose
foregoing the primary factors and instead leveraging the RR measurement values themselves for identifying
stable RR measurements.

Using RR measurements to essentially filter RR measurement leads to the idea of Meta-Region of
Interest — Meta-ROI, the key innovation underpinning SmartPhOx. However, transforming the Meta-ROI
idea into a complete system solution running on off-the-shelf smartphones raises several challenges. First,
using RR measurements to filter RR measurements requires defining what is a good RR. Second, once the
good RR defined, we need an approach for automatically identifying the good RR values using camera
videos as input and the processing capabilities of off-the-shelf smartphones. In short, we address these
challenges by introducing a new data structure for RR measurements, we refer to as the RR Map, and
two approaches representing different tradeoffs in terms of complexity and accuracy in computing SpOs.
The first approach relies on a simple linear regressor and therefore needing more stable RR measurements.
The second approach use of a convolutional neural network (CNN) on the whole RR map in order to take
advantage of the spatial redundancy.

Throughout this paper, we make the following contributions:

e We show that the primary factors for filtering ratio-of-ratios measurements are misleading. We shed light
on the reasons why and introduce Meta-ROI — a new paradigm for identifying good RR measurements
(Section [3).

e We introduce a new data structure for RR measurements, the RR Map, that enables the definition of good

RR values (time-and-space consistent) (Section [5)). Leveraging it, we develop an efficient algorithm for



identifying Meta-ROI (Section [6).

e We design SmartPhOx, a complete-system architecture leveraging the concept of Meta-ROI for smartphone-
base pulse oximetry (Section [4)).

e We introduce a convolutional neural network (CNN) architecture designed to extract relevant spatial
features and regress SpO; from the entire RR map, using thus all the information available. We use it to
design SmartPhOx v2, a complete-system architecture for measuring SpO,.

e We implement the two versions of SmartPhOx as a standalone Android application and evaluate them
with data collected from 37 volunteers. The results show that SmartPhOx is the first pure camera-
and-flashlight smartphone-based solution to meet the FDA requirement for Root Mean Square Error
(RMSE) [3]. Furthermore, the evaluation shows a trade-off between complexity and accuracy of the
two SmartPhOx versions, with the CNN version offering better accuracy at the cost of more complexity

(Section[9) .

2. Primer on the ratio-of-ratios (RR) method

In this section, we introduce the ratio-of-ratios (RR) method widely used for smartphone-based pulse

oximetry [43}[11}[32] 9] 10, [16] and adopted by SmartPhOx.

2.1. Theoretical underpinning

The RR method for measuring SpO, rests on the law of Beer-Lambert describing the attenuation of light

as a function of the traversed material. Mathematically: (1) = Ip(1) exp‘f(/l)pd

, where I(A) is the incident
light intensity, e(1), the absorptivity for the wavelength A, p, the medium concentration and, d, the path
length through the medium. The equation can be expressed in a form landing itself to practical systems for
estimating SpO;. Let us start by expressing it at the two extremes of the cardiac cycle : in diastole, where

d = dpin, and systole, where d = d,,q..Let 1;(1) and I5(1) denote the corresponding /(A) values. Taking the

logarithm of their ratio, we get:

I()
1,(D)

While more pratical, Eq. @), requires measuring d,,;, and d,,,,. To relax this requirement, we can use

L(A) = In( ) = (dmin — dmax)-(602(/l)p02 + eHh(/l)pr) (1)

the ratio of two values corresponding to two different wavelengths, A, and A;:

L(41)

_— 2
L(17) @

Ady =
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PO, tPH),

—hence the name ratio-of-ratios. Recognizing that S p02 = , where po, and py, denote the oxygen-

saturated and oxygen-unsaturated hemoglobin, respectively, and dividing the numerator and denominator

of Eq.2[by po, + pn,. we get

€n, (A1) — €n,(A2)RRy, 4,

S p02 = .
P = e0,(1) — e, (A2)RRy, 1, + €11, A1) — €0,(A1)

3)

2.2. Ratio-of-ratios on smartphones using linear regression
Equation (3)) cannot be implemented on off-the-shelf smartphones without knowledge of all the coeffi-

cients. However, studies [35, 143]] have shown that it can be approximated using a linear model as follows:

SpO2 =AXRR(A1,)+ B 4)

This equation enables the implementation of the ratio-of-ratio method on any smartphone using linear
regression. RR values are measured empirically and used to train a linear regression model for estimating

the coefficients A and B.

2.2.1. Measuring RR values on smartphones

oW
14()

the absorbance of the blood changes lightly from systole to diastole. As a result, RR(4;, A;) measurements

The RR expression, Eq. li can be simplified by introducing 6(1) = I4(1) — 1;(1). Indeed is small —

can be made using

o(d1)
1;(11)

RR(A1, A2) = ;uzl) . (5)
Li(22)

This approximation is significant since measuring systolic and diastolic intensities per se is not necessary

anymore. We measure instead a base (constant) intensity DC,, = I;(1;) and variations AC,, = 6(1;) over

this baseline, significantly simplifying the implementation.

3. Smartphone pulse oximetry : Challenges and opportunities

Unlike dedicated pulse oximeters, smartphones use a flashlight covering a wide spectrum (400-800nm
[10]) and a high resolution three-channel bitmap camera. Measuring oxygen saturation using a smartphone
requires carefully applying the ratio-of-ratios method introduced in Section on a video sequence. It

involves measuring RRE| values using Equation [5| followed by linear regression for estimating the A and B

2For simplicity we write RR instead of RR(1;, 1,).
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Figure 1: Experimental setup

coefficients of Equation 4] Therefore, the challenge in accurately estimating SpO, using a smartphone lies

in how the RR are measured, both during training and inference.

3.1. Baseline approach for measuring RR

The baseline approach for measuring RR, the basis of most works on this topic [43] [16]], starts
with a video of the subject’s finger placed over the camera and flashlight. The average intensity of each
channel for every video frame is collected resulting in three photoplethysmogram (PPG) signals, one for
each channel. The AC/DC ratio is then calculated for each signal: taking as AC the amplitude of the
oscillations of the PPG signal, and as DC the baseline of the signal. Taking as 4, the red channel and A, the

green (or blue) channel, the RR is finally obtained using Equation 5]

3.2. Analyzing the baseline approach

The objective of this section is not a thorough and large-scale analysis of the baseline approach for
measuring RR. It is instead to introduce the simplest test case capable of shedding light on the complexities
of the RR measurements on a smartphone and their underlying reasons.

Experiment: We design and conduct a controlled experiment using the setup depicted in Fig. [T] with
three different users exhibiting healthy and stable SpO, levels (around 99%). Each user sits in a comfortable
position and places their hand on a table with the palm facing up. The user’s middle finger is placed
on the camera of a OnePlus 7T smartphone running a custom application collecting video data, while
the index finger is connected to a CMS-50E Pulse Oximeter[40] for establishing the ground truth (more
details in Section[8.3). We train the linear regression model using the SpO, variation protocol presented in

Section[8.2] and test it while SpO, is naturally constant.
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Figure 2: SpO, measurements using the ratio-of-ratio (RR) method on three different users exhibiting SpO, around 99%. The
RR values vary significantly (Fig. 2a)) even if the ground truth SpO, remains constant throughout the experiment — making linear

regression extremely challenging. The result is a significant amount of errors in the predicted SpO, values (Fig. @ Fig. .

Results: Fig. 2] plots the RR values, predicted SpO, and the prediction errors for all three users. Fig.[2a]
shows that while the SpO, levels are constant throughout the experiment the RR values are highly unstable.
This results casts serious doubts on the feasibility of using Equation 4] for estimating SpO, on smartphones
— no values for the A and B coefficients could associate the RR values observed in Fig. [2a]to the same SpO»
value. It is therefore no surprise that Fig.|2b|and Fig. [2c|show highly erroneous SpO, predictions.

Implication or the case for consistent RR: This section’s test study shows that the ratio-of-ratios
method can be undermined by inconsistent RR measurements. Therefore, the smartphone-based pulse
oximetry challenge reduces to the challenge of consistent RR measurements. Qualitatively, we refer to RR

measurements as consistent if for a given SpO; level the RR measured using a smartphone are similar.

3.3. The quest for consistent RR values

The baseline approach being highly inaccurate due to highly unstable RR values, different approaches
have been proposed for acquiring better RR values. Certain approaches have proposed custom add-on
hardware [[10] filtering the flash light to allow only a precise wavelength. Aiming for solutions without
hardware add-on, other approaches have focused on the primary factors behind the RR values. The RR
being measured off the PPG signal, most focus has been on the PPG signal quality [39, 32} [11]] while some
focus on a particular region of the frame [16}43]]. In the following, we investigate the approaches requiring

no hardware add-on.

3.3.1. The curious case of the PPG signal quality
With the RR a function of the PPG signal, a reasonable direction is to first acquire a good quality signal

before applying the RR method. We investigate this approach empirically:
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Figure 3: PPG signals off which three RR values of Fig. are computed. The signals are very similar in terms of frequency and
heart rate evaluation — highest peak around the actual heart rate frequency (72 bpm), with spectrum having very similar shape and

Ok.r values. Nevertheless, the respective RR values are very different, as is the quality of the SpO, prediction.

Methodology: To evaluate the relation between signal quality and RR consistency, we look back at the
data of Fig.[2] We select three RR values — two among those leading to erroneous SpO, predictions and
one among those leading to the accurate SpO,— and analyze the respective PPG signals. Since the source
of the PPG signal is the cardiac activity, we use O, in our analysis, a metric quantifying the purity of
a signal related to cardiac activity [36]. Specifically, Ok, (s) = %, where FFT is the Fast
Fourier Transform and, Py, the perfect sine wave with frequency corresponding to the heart rate.

Results: Fig. [3|shows that the RR values under consideration are computed off excellent PPG signals.
The respective red and green channel signals exhibit their highest peaks around the ground truth heart rate

(72 bpm). The Q..+ values of all signals are nearly perfect. Nevertheless, the RR values are highly different.

More important, two of the RR values lead to erroneous SpO; predictions.
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Figure 4: RR Map at two time instances, t;,t, of the same video collected while SpO, is constant and equal to 98%. i, and j denote

the image cell indices.

Implication: While involving only three RR values, the data demonstrates that excellent PPG signals
can lead to highly different RR and SpO, prediction — even if the ground truth SpO, is constant. As a result,
the signal quality can be a poor proxy for consistent RR values. In Sec. [3.4] we provide an intuition as to

the reasons behind this finding.

3.3.2. Location, location, location — and a new (RR) map

Instead of using PPG signal quality, an alternative approach is to simply use the central region of the
image for all RR calculations and SpO, predictions [16} 43]]. The intuition being that lighting conditions
should be more uniform in this area, leading to consistent RR values.

Methodology: To evaluate the physical location-based approaches, we introduce what we refer to as
the RR Map. The input frame is divided into cells and for every cell a PPG signal and an RR value are
computed — the set of all the cell RR values of a particular video input constitutes its RR Map.

Results: Fig. [ shows the RR Map at two different time instances of the data of Fig.[2] The data leads
to two main observations: First, RR values from a specific region (central or not) can be highly inconsistent
— they vary significantly in time and space even if the ground truth SpO, is constant. Focusing on cells
from the central region — (6,5), (8,5) and (8,4) — shows that the respective RR values are very different.
Furthermore, they vary significantly from one time instance to the other. A second observation is that RR
values from physically-distant cells can be consistent. Zooming in on cells (1,9), (13,4) shows that their

respective RR values are very similar and remain stable from one time instance to the other.



Implications: The RR Map values of cells (6,5), (8,5) and (8,4) underline the difficulty of reliable SpO,
predictions using a fixed region of the frame in particular, and a physical region in general. On the other
hand, the fact that the physically distant cells, (1,9), (13.4), have similar and stable RR values is leveraged

in Section [3.5]for introducing a new way of selecting consistent RR values.

3.4. RR (in)consistency — the underlying reasons

The model based on Beer-Lambert’s law has some limitations. It assumes that monochromatic light rays
pass completely through the finger and are reflected specularly back to the camera, ignoring the complex
phenomena of scattering and refraction. Light rays arriving at the camera sensor undergo an optical path
that is subject to these phenomena, including intermediary reflections inside the finger, and whose impact
can depend on the smoothness of the incidence region and the angle of incidence. It is as if each pixel of the
camera is subject to rays following different virtual paths through the finger, producing different RR values
for the same SpO,.

Furthermore, the temporal volatility of the RRs can be explained by the fact that these virtual paths
change, depending on the disturbance generated by the micro-movements of the finger. Some paths are
however more stable than others: the paths for which the overall configuration of the finger surface, the
camera and the flash do not change much, despite the micro movements. The Meta-Region of Interest

introduced in section [3.5|is aimed at identifying the more stable paths.

3.5. A way forward : The Virtual Sensor Array

In this work, we propose a new way to deal with the camera output in the context of smartphone-
based oximetry; The idea is to consider each portion of the image as the output of a small independent
SpO; sensor, placed on top of the corresponding finger part (See Fig. [5). Thus, from a single large-area
sensor, we move to an array of smaller sensors producing independent but correlated data. This proposal is
motivated by the reasons behind the spatial and temporal instability of the RR across the frame, presented in
section[3.4] Indeed, while the finger is not perfectly flat and never applied with the same pressure, there must
be regions of the fingers for which the light pathways are similar. These regions need not be contiguous
in time and space. The intuition is supported empirically by the RR Map of Fig. 4] showing cells (1,9)
and (13,4), non-contiguous in space, produce similar RR values. The challenge, however, is automatically
identifying the regions leading to consistent RR values. Primary factors, the focus of previous works are

shown to fail: PPG signal quality is shown to be a poor proxy; the areas with consistent RR values are not

10
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necessarily contiguous, excluding an approach based on a particular physical area. We propose to forego
using primary factors and to rely on the the RR values themselves to identify good RR values. Using RR
values to essentially filter RR values leads to the idea of Meta-Region of Interest — Meta-ROI, the central
element of SmartPhOx v1. Turning this idea into a robust smartphone-based solution raises several scientific
and system challenges, which we detail and address in the following sections [} [5]and [6]

However, such a solution implies throwing away a significant part of the RR in the RR map. This is a
waste, since even if they are inconsistent with each other, they remain dependent on the SpO,. Thus, we
investigate in a second phase a way to combine efficiently all the RR of the RR map, in order to use all the
available information and to reach a better accuracy. For this, we designed a convolutional neural network,
trained on the RR map to deduce the SpO,. This second version of the solution, called SmartPhOx v2, is

presented in sections[7} Finally, we analyse the trade-off between the two solutions in section (9.7}

4. SmartPhOx system overview

Fig.[6]shows a high-level depiction of SmartPhOx’s architecture. It comprises three modules:

11



1. Hardware: The SpO, measurement starts with the subject placing the finger on the smartphone flashlight
and camera.

2. Data sensing: The smartphone camera generates a video during the measurement session. Section [3]
introduces methods for customizing the video recording and transforming the data into the RR Map.

3. Algorithms: Section[f|formalizes the notion of consistent RR values and introduce an algorithm that take
as input the RR Map and identifies the Meta-ROI. The latter is used for estimating SpO, using the ratio-
of-ratio method described in Section Section [/| introduces an alternative approach for identifying

consistent information from the RR Map and regress to the SpO; using neural networks.

5. Data — RR Map Construction

5.1. Data sensing

The first step in SmartPhOx is recording a video session while the user places the finger on the smart-
phone flashlight and camera. Selecting its duration involves satisfying two constraints. It needs to be long
enough to allow the calculation of several RR values for identifying time-consistent RR values. And, a
single RR calculation requires a few seconds of PPG signal [4315]. Let w denote the PPG signal length for
a single RR calculation and Z the number of consecutive RR values necessary for training and prediction.
SmartPhOx calculates RR values using a sliding window of size w. Thus, the video session duration is

T =Z+w -1 seconds.

5.2. RR Map computation

Once a video consisting of 30 X T 3-channel (Red, Green, Blue) frames is obtained, the frame surface is
divided into X X Y cells. The choice of X and Y represents a tradeoff. Higher values translate to more cells
and a finer the segmentation of the frame, enabling a more precise selection of the RR values. However,
this leads to smaller individual cells with less data on their surface, making their RR more sensitive to noise
induced by the camera acquisition chain. We evaluate this trade-off in Section[9] To compute the RR of a

cell from the PPG signal, recall from Sec.[2.2{that RR ~ Ay /Dey

ACy, /DTy, Using the green and red PPG signals as

A1 and A, of each cell, we compute its RR by selecting as AC the standard deviation of the filtered signal,
and as DC the average of the raw signal.

For every cell, (x,y), x € {1,2, ..., X}, y € {1,2, ..., Y}, we obtain a vector

RRUY) = rrgx’y ), rr;x’y), s rr(Zx’y) (6)

12



where Z is the number of RR values computed over the window 7. Therefore, the RR Map can be seen as
a set of X X Y, Z-dimension vectors, with X X Y denoting the space dimension and Z, the time dimension.

For the rest of the paper, we use the terms cell and Z-dimension vector interchangeably.

6. Meta-ROI Algorithm

The basic premise of our work, as developed in Section [3] is that accurately estimating SpO, requires
consistent RR values. In this section, we formalize the notion of consistency and introduce an algorithm for

identifying the most consistent RR values — the Meta-ROI.

6.1. Space-time consistency in the RR Map

To formalize the notion of RR consistency, first introduced qualitatively in Section we draw on
the empirical study of Section [3] and the cluster analysis. With the data showing RR values vary across
frame regions and time, we define consistency in space and time. By construction, the RR Map includes
the space and time dimension. Therefore, we consider RR cells to be consistent if they belong to the same
cluster produced by a clustering algorithm applied on the RR Map. The clusters themselves are considered

time-consistent regions. Formally:

Definition 1 (Space-time consistency). Let S = {S,S2,..., Sk} be a clustering of the RR Map cells. Two
cells are considered consistent in space and time if they belong to the same cluster in S. The clusters

{S1,52,...,8%} are referred to as space-time consistent regions.

6.2. Meta-ROI algorithm

In this section, we address the challenge of identifying the best among the space-time consistent RR Map
regions. Referred to as the the meta-region of interest (Meta-ROI), it includes the RR values SmartPhOx’s
linear regression model will eventually associate with a particular SpO, value.

A straightforward solution could be to approach this challenge as fundamentally a clustering problem
and simply use an efficient heuristic for k-means. However, owing to its origins as a quantization tech-
nique [34]], there is no simple way to choose the k parameter. More important, our objective is not to reduce
the dimensionality of the RR Map but rather to identify the Meta-ROI.

Our solution to this two-pronged problem is a divide-and-conquer approach. We first address the chal-
lenge of identifying the best among the space-time consistent RR Map regions, assuming the k parameter is

known. Subsequently, we focus on addressing the challenge of identifying the k parameter.
13



Algorithm 1: Meta-ROI algorithm
Input: RR_MAP[X][Y][Z]

Output: The meta region of interest, Meta_Roi
1 for K :=2 to K_MAX do
2 Centroids[K][Z] = k_.means (RR_MAP, K);
3 Compute DB(Centroids[K]), using Eq.;

4 if DB;, < minimum_DB then

5 minimum_DB = DB;

6 fori:=1to K do

7 L Calculate cv(Centroids[i]) using Eq.;
8 Meta_Roi = cluster with minimum cv;

9 return Meta_Roi;

To identify the best space-time consistent region, we introduce a new consistency metric. The metric
needs to satisfy two requirements. It needs to quantify the consistency of a given cell cluster. Moreover, it
needs to allow a meaningful comparison of the k clusters with different numerical values so as to identify
the Meta-ROI. To meet these requirements, we use the coefficient of variation. It measures the dispersion
of a population, allowing to quantify the consistency of a given cluster. And it is normalized, enabling a fair

comparison between different clusters. Specifically:

Definition 2 (Consistency metric). Let S = {S1,S2,...,S¢} be a clustering of the RR Map cells and C =
{C1, Cy, ..., Ci} the respective set of the Z-dimension centroids. The time-consistency metric of a cluster, S ;,

is defined as the coefficient of variation of its centroid vector, o(C;):

|

V4
o(S)) 1 1

cvi=——== 4|z ) (Ci;—w)*> x — (7N
Hi z ; Hi

1

z
1
where p; = 7 ; Ci..

Identifying the best value of the parameter & is a decades-old problem [13| 28] with no simple solution.

The naive approach of iterating over different values of k until the consistency metric of Definition |2| is

14



minimized would not work as it could converge to trivial, single-cell clusters. To strike a balance between
space-time consistency and region size, we couple the consistency metric with the Davies-Bouldin (DB)
index [13]], one of the classic validity indices for analysing clustering. Unlike its main alternative, the
silhoute [28]] index, which is focused on the cluster density, largely addressed by the consistency metric, the

DB index rewards the creation of distinct clusters. Mathematically,

k
1 di+d'
DB = %;maxj#( i /), (8)

with k the number of clusters, d;(d;), the average (Euclidean) distance of all cells in cluster i( ) from its
centroid, and d;; the distance between the centroids of clusters i and j.

The consistency metric and the DB index pave the way for our algorithm for identifying the Meta-ROI
(sketched in Algorithm[T). It proceeds by making consecutive calls to a k-means algorithm with increasing
values of the parameter k (lines 1, 2) up to a limit of K. MAX. Since the DB index is smallest for well-
distinct clusters, the algorithms looks to minimize it (line 4). Every time a clustering with a smaller DB
index is identified, the consistency metric is used for identifying the best cluster (line 5). The algorithm
returns the most consistent cluster of the clustering with the smallest DB index as the Meta-ROI. A key
parameter of Algorithm|I]is obviously the K_-MAX. In our experiments, the smallest DB index was reached

with k between 2 and 6, so we set the default value of K. MAX conservatively to 10.

6.3. Illustration

To illustrate the impact of the Meta-ROI algorithm, we circle back to the data of Fig. [2|(Section[3.2). In
the interest of clarity, we zero in on one of the users (user 2).

Fig.[7]plots the RR values over the experiment time and the corresponding SpO, prediction error against
the ground truth. The data shows that the meta-ROI algorithm meets its objective of identifying consistent
RR values (Fig. [7a)). It leads a significant improvement in absolute prediction error when compared to the

baseline approach (Fig.[7b). In Section[9] we conduct a thorough performance evaluation of our system.

7. Exploiting the spatial redundancy

The space-time consistent region obtained after the clusuring described in section [6.1] are all of them
affected by the SpO,, since their corresponding light rays goes through blood. Indeed, each consistent

region exhibits a correlation with the SpO,, as can be seeing in Fig. [§] Using the RR produced by the
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Meta-ROI alone to train the linear regressor ensures that only the best data are retained, but implies some
loss of information. Indeed, we lose the RR value of some cells, as well as the relative values of more or
less neighbouring cells. In this section, we examine whether it is possible to avoid such a loss. Answering
this question raises two challenges. The first (a) is how to efficiently extract all the information contained in
the RR map, and the second (b) is how to adapt the regression model with the new input data thus obtained.

In the next section, we present how we address these two challenges, leading to a second version of our

system, called SmartPhOx v2.

7.1. What regression model for SmartPhOx v2?

To address the dual challenge presented above, we propose to train a Convolutional Neural Network
(CNN) to learn the appropriate regression function from the RR map to the SpO,. The CNN has already
been used to infer the SpO, [16], but directly from the raw PPG signals. This method is less efficient
because PPG signals contain mostly SpO, independent information. They are indeed more influenced by
skin colour, lighting and heart rate. The use of a CNN on the RR map has the advantage of focusing the
regressor on the ratio of ratios, which are directly correlated to the SpO,. The RR map also contains physical
information in the form of the correlation between the cells. Indeed, the physical distance between the areas
of the finger corresponding to each cell is closely related to the difference in path lengths of the light rays
reaching these cells. The exact correlation is difficult to model but can be captured by a carefully designed
neural network. Finally, the neural network can derive a more robust regression function for estimating the
SpO» from the RR than that derived from Lambert’s law, which suffers from many simplifying assumptions.

The overview of SmartPhOx v2 is depicted in Fig. [9]
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Figure 8: After recording the SpO, and the RR map during a user’s breath-holding session, we show here the evolution of the RR
of the centroid of each cluster with respect to the SpO,. The Pearson correlation between the RR and the SpO; is also shown in
brackets. We notice that not only the Meta-ROI is correlated with the SpO,, but also all the other cells, represented here by the

centroid of the cluster to which they belong.

7.2. Neural Network Architechture for SpO; estimation

Unlike the previous version of SmartPhOx which used only one RR value —the Meta-ROI RR- to esti-
mate SpO», the neural network of SmartPhOx v2 is designed to take as input all the RR values available in
the RR map, thus encompassing as much information as possible. In addition to the RR map, we add the
AC map and the element-to-element ratio of the DC map of the two colour channels. This corresponds to
an input data of size X X Y X 4. The intuition behind these additions is that by observing the relative change
in intensity of a cell across these 4 maps, the network would be able to identify cells more influenced by
noise than by SpO,.

The architecture of our 2D convolutional neural network is shown in Figure It consists of two con-
volution blocks stacked together. A convolution block consists of three convolutional layers each followed

by a batch normalization layer to facilitate learning convergence, and a max pooling layer to reduce in-
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Figure 9: SmartPhOx v2 System Architecture.

Table 1: Neural network hyperparameters investigated.

Number of Conv blocks 1,2

Number of conv layers per block | 1,2,3

Kernel size 3,5
Number of filters per conv 10, 16, 20
Dropout rate 0.1,0.2,0.3

put dimensions. The number of convolutional layers in each convolution block as well as the number of
convolution blocks are studied as hyperparameters. A dropout layer is superimposed on the ensemble to
avoid overfitting, with a dropout rate of 10%. The last layer is the output neuron, which corresponds to the
SpO,. The activation functions used are the exponential linear unit (ELU) for the convolutional layers, and
the identity function for the output neuron. We use a cross validated grid search process to find the best
combination of hyperparameters. The space of investigated hyperparameters is presented in Tab.[I] We also
use early stopping and L2 norm regulariser on the convolutional layers to avoid overfitting. We optimise

our model in mini-batches using adaptive momentum (ADAM)[29].

8. Implementation and dataset

8.1. Implementation

We implemented the two version of SmartPhOx as standalone Android application. The signal process-
ing component is implemented using the IIRJ library [41]]. The k—mean clustering is implemented in Java.

The Deep learning part is implemented in TensorFlow with Keras interface and ported to the mobile as a
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Figure 10: SmartPhOx v2 CNN architechture with best hyperparameters.

Table 2: SmartPhOx v1 implementation parameters.

w 10s

T 15s

RR Map Z-dimension | 6

RR Map cell size 94 x 56 px

Video resolution 1260 x 720 px

tflite [46] model with float32 precision. Table 2] shows the default parameter values used in the implemen-
tation of SmartPhOx v1 (we evaluate the impact of these values on the performance of SmartPhOx v1 in
Section [0.2)). Table [3] shows the processing times of key processing bloc of SmartPhOx on off-the-shelf

smartphones.

8.2. SpO; variation protocol

Ideally, we would test SpO, on subjects suffering from hypoxia, especially COVID-19 patients but in the
current context it proved infeasible. Therefore, we have developed a protocol for inducing the oxygen level
variation in healthy volunteers. The protocol starts with breathing normally for the first 30 s followed by a
stop-n-go process of breathing/holding their breath, exhaling/holding their breath. The objective is to induce
a gradual decrease and increase of SpO;, thus generating a richer set of values. In particular, the volunteer
is asked to take a deep breath and then hold it until starting to feel discomfort, then (b) exhale, followed by

holding the breath until feeling discomfort again. At this point the SpO, reaches its low point, typically in
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Table 3: SmartPhOx processing time on various phones. SmartPhOx v1 overall processing time is the sum of the first two columns,

while SmartPhOx v2 overall processing time is the sum of the first and the last.

RR Map computation | Meta-ROI algorithm | CNN inference | Total (v1/v2)
OnePlus 8t 27 ms 30 ms 13 ms 57 ms /40 ms
Oneplus 7T | 30 ms 32 ms 17 ms 62 ms [ 47 ms
Huawei P30 | 57 ms 86 ms 15 ms 143 ms /72 ms

the mid-to-high 80’s (%). To raise SpO, gradually, the volunteer is asked to take a few consecutive short

breaths, each followed by holding until discomfort, returning gradually to a normal breathing pattern.

8.3. Data collection procedure

To collect the evaluation data, we followed the procedure illustrated in Fig.|I| The volunteer is asked to
sit in a chair with their hand resting on the table. A pulse oximeter (CMS50E) is clipped on their index finger
while the back camera of the smartphone is placed on the middle finger. The person is then asked to apply
the SpO, variation procotocol, described in Section The average duration of each SpO, measurement

session is 3 min.

Ground truth. To acquire the ground truth data, we use the off-the-shelf CMS50E pulse oximeter[40],
which allows measurement of SpO; in the range of 35%-99% with a resolution of 1% [31]]. It is an FDA
approved device, widely used in literature for heart rate or SpO, monitoring [24]].

As the oximeter is placed on the index finger while the smartphone on the middle finger, a question
arising is whether it is valid to collect the ground truth on a different finger than the one SmartPhOx is
using. To address it, we perform experiments with two oximeters placing one in each of the index and the
middle finger. We then apply a T-test on the collected data to evaluate the null hypothesis that the pairwise
difference between recordings of both fingers has a mean equal to zero at the 5% significance level. The
test failed to reject the null hypothesis (p-value = 0.6669 > 0.05), providing support for using readings from

index finger as ground truth while SmartPhOx is collecting measurements on the middle finger.

8.4. Data set
The data set is summarized in Table ] We evaluate SmartPhOx on 37 participants and using three

different smartphones, OnePlus 8T, OnePlus 7T and Huawei P30 Lite. Both Oneplus phones use a Sony

30ur experiments are in agreement with the ethics defined in the Helsinki Declaration [14].
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Table 4: Data set summary

18 - 60
Age
Average: 30.31; Std: 12.37
Male: 27,
Gender
Female: 10

Fitzpatrick phototyping scale | 1:3, I1:20, III: 3, IV: 2, V: 2, VI. 7

85% - 99%
Average: 95.8%; Std: 3%

Oxygen level

- 8 I Oneplus 8t
7 I Oneplus 7t
[IHuawei P30 Lite
6 |
)
&
-
2 L
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Figure 12: Root Mean Square Error (RMSE) by phone
Figure 11: CDF of the absolute prediction error.
model.

IMX586 as main camera sensor, while the Huawei a Sony IMX600y. Their focal lengths are 26mm, 26mm
and 28mm, and their apertures f/1.7mm, f/1.6mm and f/1.8mm, respectively. To address concerns regarding
racial bias in SpO, measurements, especially as it regards Black patients [45]], our study includes volunteers

with different skin pigmentation, as classified by the Fitzpatrick phototyping scale [20]].

9. Evaluation results

In this section, we perform a careful evaluation of both version of SmartPhOx, aimed at understanding
their overall performance, the impact of key system parameters and experimental settings, and finally their

utilization of system resources.
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Figure 13: Raw SpO, results for 6 participants.

9.1. Overall SpO; prediction performance

Methodology: SmartPhOx is evaluated using leave-one-out cross validation, with data from 24, 12

and 1 users for train, validation and test sets, respectively. The ground truth is acquired as described in

Section [8.3] We compare SmartPhOx v1’s meta-ROI with the following approaches for selecting the RR

values :

Full-frame: Adopted by several works[39] [32] [10] [11]], it uses the entire frame as the region of interest.
The PPG signals are constructed by stacking in time the average value of every frame for the correspond-
ing channel. The RR values are then computed from the resulting PPG signals.

Central-ROI: It involves using the central 50x50 pixels of the frame [[16}43]]. The intuition behind this
approach is that the central part of the image should be least impacted by movement or ambient light, and
therefore the most stable.

Max-AC: It involves using the cell producing the largest value of the green channel AC [30]. The idea
is that blood has a bigger impact on a PPG signal with a large pulse, making it, theoretically, of better

quality.

For each approaches, we trained a linear regressor to estimate the SpO, from the RR extracted. Finally, we
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Figure 14: SmartPhOx v2 Raw SpO; results for 6 participants.

also add SmartPhOx v2 in the comparison.

Results: Figures[IT]and[I2]plots the CDF (Fig.[TI)) and the Root Mean Square Error (RMSE) (Fig. [12))
of the SpO, prediction of all the considered baseline approaches. To put the results into context, Fig.
includes the FDA RMSE clearance threshold for pulse oximeters [3]]. The data shows the two versions of
SmartPhOx having the best performance. The median prediction error for SmartPhOx v1 and SmartPhOx
v2 are respectively 1.75 % and 1.4 %, against 2.2% for the second-best method. The RMSE data paints a
similar picture, with SmartPhOx v1 and SmartPhOx v2 delivering an RMSE of 3.04 % and 2.43 % versus
3.77, 4.84, 4.43% for Central-ROI, Max-AC and Full-Frame, respectively. Most important, both version of
SmartPhOx are the only approach to meet the FDA RMSE requirement for pulse oximeterﬂ

For a look into the raw data, Fig [13| shows the SpO, values reported by all methods during a testing
session. In the interest of clarity, we show the data for 6 users. As the subjects are following the SpO;
varying protocol, their levels drop from the healthy values of around 99% to under 90%. The data shows
SmartPhOx v1 is capable of predicting the ground truth the best, which is in line with the analysis of Fig.

Regarding SmartPhOx v2, in Fig. [I4 we show raw SpO, prediction for six different participant. Inter-

estingly, we can notice that sometimes SmartPhOx v2 is even capable of predicting a drop of SpO, before

*Obviously, this result does not imply FDA clearance, a process beyond the scope of this work.
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Figure 15: SmartPhOx statistical analysis.

Table 5: SmartPhOx v1 vs PhO,. The data for PhO; as reported in [10] .

PhO,[10] SmartPhOx
Number of Subjects 6 37
Skin pigmentation Asian: 4, White: 2 | Fitzpatrick I-VI
SpO2 range 81 % - 99 % 85-99 %
RMSE N/A 3.04 %
Mean Absolute error, Std Absolute error | 2.5 %, 1.62% 2.31%, 1.96%
Absolute error, 80" percentile 3.5% 3.83 %
Hardware add-on Yes No

the pulse oxymeter does.

9.2. Statistical analysis of the SmartPhOx performance

We conduct a one-tailed T-test on SmartPhOx’s prediction errors observed in the experiments of Sec-
tion In particular, the statistical test is aimed at answering the question of whether SmartPhOx’s pre-
diction error is on average lower than a given value, x. Towards this, we perform a one-tailed T-test over the
set of SmartPhOx’s prediction errors for various values of x. Fig.[15shows the p-value for different values
of x. The data shows that the probability of SmartPhOx v1’s average prediction error being above a given
x drops below 0.05 for x = 2.39, and below 0.005 for x = 2.43. Regarding SmartPhOx v2, the threshold x

corresponding to theses probabilities are respectively 1.91 and 1.95.
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9.3. Comparison with a complete-system solution

In this section, we aim at contextualizing the performance of SmartPhOx vl by comparing it with
PhO; [[10], a state-of-the-art system using the ratio-of-ratios (RR) method. We also compare SmartPhOx v2
with a state-of-the-art system using relying on Deep Learning.

Methodology: With a full-fledged, in-house implementation of PhO, being infeasible due to its using a
custom-built hardware add-on, we compare with results reported in [10]]. For SmartPhOx, we use the same
data set and training/validation/testing protocol as in Section@

Results: Table[5|compares the performance evaluation of SmartPhOx with that of PhO,. It shows that
SmartPhOx’s 80™ percentile of the absolute prediction error is very close to that reported for PhO, (no
RMSE values are reported in [10]).

Implication: The results show that the meta-ROI approach of identifying regions with consistent RR
values introduced by SmartPhOx can relax the requirement for custom-built hardware.

We also compared SmartPhOx v2 with the CNN proposed by [16]. We implemented their CNN and
trained it using the same training strategy as of SmartPhOx v2. We want to evaluate if training a neural
network to predict SpO; from the RR map — which is basically what SmartPhOx v2 does — is better than
training the neural network using raw PPG input. Figure. [16]plots the RMSE and the median absolute error
of both methods. The data shows that SmartPhOx v2 outperforms all the other methods. The RMSE and
median error drop from 3.3% and 1.8%, respectively, for [16]’s CNN to 2.4% and 1.4 % when using Smart-
PhOx v2. In addition, it is interesting to note that SmartPhOx v2 provides a slightly better performance
(3.03% and 1.75% vs 3.3% and 1.8%, respectively) when compared to applying CNN on the raw PPG data.
This underscores the benefit of the virtual sensor array principle, as both SmartPhOx’s algorithm take into
account the difference between signals of different areas of the frame while the CNN was not capable of

accurately predicting the relationship of the PPG signal from a fixed region of the frame with the SpO,.

9.4. Sensitivity analysis
In this section, we evaluate SmartPhOx v1’s performance as function of its key parameters. The RR
Map being fundamental to its functionality, we focus on the RR Map cell size — defining the map’s X, Y

dimensions — and the RR Map Z-dimension.

9.4.1. Sensitivity to RR Map cell size
We vary the RR Map cell size from 32 X 18 px to 256 x 144 px. For our implementation using a

1260 x 720 px video (Table[2), this corresponds to an X, Y dimension ranging from 5 x 5 to 40 X 40.
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Figure 16: SmartPhOx v1 and SmartPhOx v2 vs the CNN proposed by [16]. Training the neural network on the RR map leads to

better results when compared to training a CNN on the raw PPG signals.
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Results: Fig.[[7]reveals a binary behaviour. For large cell sizes ( 256 x 144 px, 128 x 72 px), the X, Y
dimension of the RR Map (5 x 5, 10 X 10) is too coarse grained for SmartPhOx v1’s meta-ROI algorithm
to identify highly consistent meta-region of interests. However, once the cell size is 96 X 54 px or smaller
the RMSE drops below the FDA clearance threshold. Thus, SmartPhOx v1 uses 96 x 54 px by default. We
do not evaluate the performance of the CNN of SmartPhOx v2 as a function of cell size, since different cell
size essentially means different input size and, thus, need a different neural network size. Hence, comparing

the performance of different Neural Networks on different input would give no pertinent information.

9.4.2. Sensitivity to the size of Z-dimension

Fig. [I8] depicts the performance of SmartPhOx vl in terms of RMSE as function of the RR Map Z-
dimension size. The data shows the importance of time consistency, embodied by the Z-dimension, in
selecting the best meta-region of interest. When Z = 1, essentially eliminating the time dimension, the

RMSE is well above the FDA clearance. As the Z-dimension increases, the performance of SmartPhOx v1
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Figure 19: Varying experimental conditions.

improves significantly to meet the FDA requirement. Further, the data shows that once a time-consistent
meta-region is identified, increasing the Z-dimension brings no additional gain. As a result, SmartPhOx v1

uses Z = 6 as the default value.

9.5. Varying experimental settings

In this section, we evaluate the impact of two key experimental parameters in the performance of Smart-
PhOx v1 and SmartPhOx v2: finger on which it measures SpO;, and ambient lightning.

Methodology: With the help of seven of our volunteers, we run both versions of SmartPhOx with the
smartphone placed successively on the middle, ring and little finger. In a second step, we successively both
versions of SmartPhOx in a completely dark room, with the smartphone on the middle finger. We use two
settings for the dark room conditions: in one — Dark room — we use the regressor trained with the main data
set.

Results: Figure [[9a shows a similar error for all fingers — RMSE of 2, 2.16, 2.41%, respectively for
SmartPhOx v2 and 2.8, 2.9 3.1% for SmartPhOx v1- suggesting that both version of SmartPhOx are robust
to the finger selection. In Fig.[I9b| We do observe a higher RMSE when using the pinky finger, which may
be due to the fact that it is the smallest finger, making the light distribution over its surface more sensitive
to random movements.

Fig. [I9b]|shows that testing SmartPhOx v1 or SmartPhOx v2 in a completely dark room does not signif-

icantly alter its performance.

9.6. System resources utilization

We evaluate SmartPhOx v1’ and SmartPhOx v2’s utilization of CPU, memory and energy by using

Android Profiler [[15] and report the results in Table[6] The intrinsic multiprocessing nature of the mobile
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Figure 20: The performance of the two versions of SmartPhOx with respect to the training set size, for the same fixed test set.
SmartPhOx v1 needs less data to achieve a Root Mean Squared Error below the FDA limit but, given enough training data,

SmartPhOx v2 is more accurate.

phone operating systems makes it very challenging to measure the exact energy consumption of a given ap-
plication. Thus, we show the percentage of time Android Profiler reports SmartPhOx’s energy consumption
as being Light (L), Medium (M) or Heavy (H). The data shows that all SmartPhOx’s version utilization of

resources are limited, especially in terms of energy consumption.

9.7. SmartPhOx vl vs SmartPhOx v2: The trade off

Exploiting spatial redundancy by using CNN significantly improves the accuracy of SmartPhOx v2
compared to SmartPhOx v1 as can be seen in figure[12]and table[3] However, CNNs are more complex. For
instance, training a simple linear regressor requires negligible time compared to training a CNN. In addition,
with SmartPhOx v2 we need to collect much more training data to achieve reasonable accuracy compared
to SmartPhOx v1. This trade-off between complexity and accuracy is illustrated in Figure The data
shows that SmartPhOx v1 needs half as much training data as SmartPhOx v2 to see its accuracy reach the
FDA limit. It is also noticeable that the memory demand of SmartPhOx v2 is higher (table[6). This reduces
its deployability, especially on memory-limited devices, such as older versions of smartphones, which are

still widely used in developing countries.

10. Related work

Prior works on pulse oximetry can be grouped into two major categories: a) Works and systems using

dedicated hardware dating back to the 1930s, b) More recent works built around the smartphone.
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SmartPhOx vl SmartPhOx v2

Energy Energy
. Memory . Memory
Device CPU (%) (% of time) Device CPU (%) (% of time)
(MB) (MB)

[L/M/H] [L/M/H]
Oneplus 7t 24 176.9 90/10/0 Oneplus 7t 23 205 92/8/0
Oneplus 8t 23 189.3 87/13/0 Oneplus 8t 23 198 90/10/0
Huawei P30 Lite | 26 298.7 95/5/0 Huawei P30 Lite | 27 320 93/7/0

Table 6: SmartPhOx’s resource utilization.

(a) Dedicated hardware: A pulse oximeter is a small portable device for noninvasive monitoring of
a person’s oxygen saturation in the blood. The idea dates back to 1935 [33], with the first pulse oximeter
oximeter based on the ratio of red and infrared light absorption developed in the *70s [44]. Today, pulse
oximetry remains an active area of research and development, leading to a plethora of devices that can be
attached to the fingertip [40, 37, [12], earlobe [25| 38]], forehead [4, |6, [19], trachea [7]] and ring type [26]
products. Despite the easy access to pulse oximeters, dedicated hardware can be impractical in everyday
life, not least because, as the COVID-19 pandemic revealed, often people are not aware their oxygen level
needs monitoring.

(b) Smartphone-based sensing: Recognizing smartphones as powerful sensing devices already in peo-
ple’s hands, researchers have proposed harnessing their capabilities for vital signs monitoring 8, 23| [27].
In the particular case of oxygen saturation, [43] was among the first to apply the ratio-of-ratios method for
estimating SpO, using a smartphone. The RR values are computed over a 50x50px region of interest (ROI)
at the centre of the frame. However, as our experiments showed, computing RR values off a particular
physical frame area can lead to inaccurate SpO; values. To address this issue, [[11}32] integrate into the RR
calculation the camera quantum efficiency, which represents the sensitivity of each channels (red, green,
blue) of the image produced by the camera to the different wavelengths of the input light. While accurate,
these solutions require knowledge of the camera quantum efficiency — something to which only manufac-
turers have access. PhO; [[10] proposes to attach to the smartphone camera a custom-made device mounted
with two chromatic filters, each allowing a precise wavelength to pass. The result is a system allowing SpO»
predictions with very good accuracy. Nevertheless, the custom-built hardware add-on, while manufactured
with the help of 3D printing, limits its large-scale application. Recently, dedicated oxygen monitoring sen-

sors are being integrated in smartwatches [22| |42} 2], and some high-end smartphone models [18, [17, [1].
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While very accurate, such solutions leave out a large section of users who have older smartphone models,
particularly in developping countries. SmartPhOx, on the other hand, requires no custom hardware and can

work on essentially any smartphone currently in people’s hands.

11. Conclusion and discussion

We presented SmartPhOx, a smartphone-based pulse oximetry solution requiring no custom hardware.
Using a carefully designed empirical study to inform our work, we identified the limitations of current
approaches and introduced the notion of Meta-ROI. We transformed the Meta-ROI concept into a complete-
system solution capable of running on a smartphone A carefully performance evaluation using an Android
implementation of SmartPhOx and involving 37 healthy volunteers showed that it is the first smartphone-
base pulse oximetry solution to meet the FDA requirement for Root Mean Square Error (RMSE) without
needing custom hardware. Beyond that, we propose to consider the image acquired via the smartphone
camera as the output of an array of independents sensors. This allows us to propose in a second version
of the algorithm, SmartPhOx v2, a solution that exploits a deep learning architecture carefully designed
to extract redundant information from the resulting array of RR, thus gaining in accuracy. Finally, we
propose a comparison between the two proposed algorithms. From this, it appears that SmartPhOx v2 is
recommended for recent equipment with a large memory, while SmartPhOx v1 is to be preferred for old
equipment limited in this respect.

This work has its limitations. Additional cycles of engineering and testing will be necessary before it
can fully meet the strict FDA requirements. In particular, SmartPhOx’s evaluation needs to be extended to
include non-healthy subjects. FDA requires testing in the SpO, range of 70% to 100%, while in healthy

subjects on which we could evaluate SmartPhOx our protocol could not induce SpO; below the low 80s.
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