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Exploring Mental Prototypes by an Efficient Interdisciplinary
Approach: Interactive Microbial Genetic Algorithm

Sen Yan, Catherine Soladié, Renaud Seguier
CentraleSupélec, IETR, UMR CNRS 6164, Rennes, France

Abstract— Facial expression-based technologies have flooded
our daily lives. However, most technologies are limited to
Ekman’s basic facial expressions and rarely deal with more
than ten emotional states. This is not only due to the lack of
prototypes for complex emotions but also the time-consuming
and laborious task of building an extensive labeled database.
To remove these obstacles, we were inspired by a psychophys-
ical approach for affective computing, so-called the reverse
correlation process (RevCor), to extract mental prototypes
of what a given emotion should look like for an observer.
We proposed a novel, efficient, and interdisciplinary approach
called Interactive Microbial Genetic Algorithm (IMGA) by
integrating the concepts of RevCor into an interactive genetic
algorithm (IGA). Our approach achieves four challenges: online
feedback loop, expertise-free, velocity, and diverse results.
Experimental results show that for each observer, with lim-
ited trials, our approach can provide diverse mental pro-
totypes for both basic emotions and emotions that are not
available in existing deep-learning databases. Our work is
available at https://yansen0508.github.io/Interactive-Microbial-
Genetic-Algorithm/.

I. INTRODUCTION

Facial expressions (FEs) are a natural and universal means
of conveying social information [7]. Nowadays, FE-based
technologies are ubiquitous, such as facial expression ma-
nipulation technologies in TikTok, Instagram, Zoom, or
other social media [32], and automatic facial expression
recognition technologies in social robots [21]. However, there
are still major challenges. First, most FE-based systems are
based on the prototypes defined by Ekman et al., which
are supposed to be universally perceived by humans [8],
[10]. However, the universality of Ekman’s prototypes is now
being challenged by a growing number of psychologists [16],
[27], [1]. This indicates that there may be many prototypes
for one emotional label. Moreover, most systems can only
deal with six basic facial expressions: happiness, sadness,
anger, disgust, fear, and surprise. Yet, as research in cognitive
science covers, there are more than 4000 labels of emotions
[29]. To address more critical domains such as psychother-
apy or the service industry, machine learning applications
should develop tools to describe, understand or detect more
emotions in real life. For instance, one can imagine training
such as self-confidence before a job interview or dealing
with anxiety in a therapeutic context [12]. Nowadays, most
computer science tools require a large amount of reliable
labeled data. Although some databases exist for some specific
emotions, e.g., compound emotions [11], they are far from
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the 4000 emotional labels [29]. Indeed, creating such a
database comes with many concerns: lack of labeled data
(e.g., self-confidence), requiring expertise for some labeling
tasks, and time-consuming and labor-intensive human anno-
tations.

To tackle these challenges, we propose a different way
of thinking from the traditional machine learning process.
We get inspired by the psychophysical reverse correlation
(RevCor) process, typically employed for affective comput-
ing in psychology [23], [3]. Based on data-driven methods,
RevCor is used to extract the mental prototypes of what a
given basic or non-basic emotion should look like for an
observer (or called participant). Yet, RevCor has imperfec-
tions that should be solved to be largely applied in various
scenarios, e.g., a digital coach for the online interview and
a digital mirror treating psychiatric disorders of emotion.
First, RevCor is based on the assumption that there is one,
and only one, mental prototype for one affective state that
exists in one or a group of observers. This unicity can
be questioned. Moreover, each observer needs to perform
massive trials randomly generated by domain experts. Time-
consuming experiments lead to user fatigue, and the reliance
on expertise also hinders expansion to other areas.

Hence, a system that aims to extract mental prototypes
should fulfill the following requirements. 1) The system
should find prototypes that are not limited to basic emotions.
The emotion prototypes that are not available in existing
deep-learning databases should also be found. 2) The entire
process should not require expert knowledge. 3) The system
should consider user fatigue [15], [2], which means no longer
than 15 minutes. 4) For one emotion, the system should
obtain multiple prototypes, thus being closer to reality.

In this paper, we created an efficient interdisciplinary
approach called IMGA for Interactive Microbial Genetic
Algorithm (illustrated in Fig. 1) that meets the mentioned
requirements. The first originality of our approach is that we
integrated the psychophysical reverse correlation (RevCor)
process into the interactive genetic algorithm (IGA). The
strengths of this integration are as follows. 1) Online
feedback loop. Unlike the traditional RevCor that gener-
ates massive trials randomly, in our approach, based on
the observer’s feedback, automatically updated trials can
contain more valuable information (closer to the mental
prototypes of observers). 2) Expertise-free. Everyone can
use our approach to extract their own mental prototypes of
a given emotion. The categories of emotions are not limited
to those provided in existing deep-learning databases. Our979-8-3503-4544-5/23/$31.00 ©2023 IEEE



Fig. 1. Framework of our interactive microbial genetic algorithm (IMGA). An efficient interdisciplinary approach integrates the psychophysical reverse
correlation process (RevCor) into an interactive genetic algorithm (IGA). For the genetic algorithm module within IGA, we adopt the microbial genetic
algorithm (MGA) that can obtain various mental prototypes and accelerate the system’s convergence. To monitor the convergence of the system and evaluate
the quality of the entire population with limited trials, we add a population evaluation module. We also add a constraint automaton to limit the manipulation
of facial expressions and to determine the termination of the system. For the tool to generate different facial expressions, we employ GANimation [26]
(marked by “GAN”) controlled by facial action units [9].

approach only requires the observer’s perception (i.e., sub-
jective judgment) rather than the observer’s expertise (e.g.,
no expert knowledge in affective computing, psychology,
or certified FACS coders [9]). 3) Velocity. The number of
trials required for mental prototype computations is thereby
reduced. 4) Diverse results. For one emotion, IMGA can
provide multiple mental prototypes to each observer. This is
closer to reality. The second originality of our approach is
that within IGA, we adopt the microbial genetic algorithm
(MGA) [14] to increase the converging speed of the system.
The third originality of our approach is that, differing from
the traditional genetic algorithm that needs to acquire the
fitness values of all individuals, we added a population
evaluation module that evaluates the quality of the entire
population with limited trials. In addition, we added a three-
state constraint automaton to gradually increase the number
of activated facial action units (AUs) [9] for each face and
determine the process’s termination.

II. RELATED WORKS

Nowadays, defining and understanding facial expression
prototypes can be done via the psychophysical reverse cor-
relation process (RevCor). We overview the related work
using RevCor for mental prototype computation. Then, we
overview interactive genetic algorithms (IGA) for optimizing
the system based on subjective judgments.

A. Psychophysical reverse correlation process

According to observers’ judgments of a large quantity of
randomly-varied stimuli, RevCor is able to reverse-engineer
what perceptual representations subtend these judgments [3].
This process is widely used in cognitive science to study
the perception of faces [16], [33], [5], speech [25], [4], and
bodies [17], [22]. In an influential example, Jack et al. [16]
randomly generated 4800 trials. Each trial consists of one
dynamic facial animation created by a 3D morphing tool

[33]. In the perceptual experiment, 15 Western Caucasian
and 15 East Asian observers were asked to categorize the an-
imations into six basic emotion categories. For each cultural
group, after collecting all feedback, the authors aggregated
one mental representation corresponding to each emotion
and concluded that these representations were not culturally
universal.

It is less efficient for one observer to perform numerous
trials and obtain one mental prototype. Indeed, a speech
intonation study using RevCor indicated that for some tasks,
researchers could have reached the same precision with fewer
trials [4]. An online feedback loop can be more efficient
in updating trials containing more valuable information by
iteration. Hence, interactive genetic algorithms (IGA) can be
a good idea.

B. Interactive genetic algorithm

IGA optimizes the system to fit the user preference
based on subjective judgments [30]. The process of IGA is
similar to the traditional genetic algorithm (GA). Yet, the
main difference is that the fitness function is the subjective
judgments of users rather than a mathematically objective
fitness function. IGA is widely used in several areas: ge-
ology [24], design [19], [31], [28], and image processing,
such as image retrieval [6], [20] and 3D facial animations
[13]. To the best of our knowledge, there is no literature
using IGA to manipulate AUs for affective computing. Like
RevCor, IGA considers subjective judgments, but contrary
to RevCor, it can offer multiple solutions. Hence, RevCor
can be embedded into an IGA system to generate more user-
preferred trials closer to the mental prototypes, thus reducing
the workload of human observers and obtaining multiple
mental prototypes.

Since an elitist GA can converge fast [18], we adopted
the microbial genetic algorithm (MGA) [14] as the GA
module within IGA. To the best of our knowledge, MGA



has never been employed in an interactive system. We
named our approach interactive microbial genetic algorithm
(IMGA), which is a novel process integrating RevCor into
an MGA-based IGA. Such an approach not only improves
the efficiency of RevCor but also brings multiple mental
prototypes.

III. METHODOLOGY

Fig. 1 describes our IMGA process. Similar to the tradi-
tional Genetic Algorithm (GA), it is an iterative process that
repeats four steps: Population (initialization in Section III-
A and update in Section III-E), Selection (in Section III-B),
Crossover (in Section III-C), and Mutation (in Section III-
D). For the glossary of our IMGA, the individuals are facial
expressions that evolved by iteration. The population in each
iteration is called a generation. The entire system, especially
the interaction between the human (observer) and the ma-
chine (GA system), is detailed by a video demonstration1.

A. Population: initialization

We can employ any tool to generate facial expressions
defined by low-level attributes. Here, we choose GANima-
tion [26] controlled by facial action units (AUs) [9], i.e.,
the low-level attributes. This module can manipulate facial
expressions with a relatively fine control. Thus, more facial
expressions can be produced by different combinations of
AU, regardless of whether these expressions belong to a
certain type of emotion or not. In this procedure, GANi-
mation (thereafter, Gan) takes as input a colored image of
the actor’s face s (e.g., captured with an emotionally neutral
expression) and a n-dimensional binary vector v of AUs to
create a deformed face (i.e., individual): I = Gan(s,v).

GANimation is capable of manipulating n=16 AUs from
the list µ={1,2,4,5,6,7,9,10,12,14,15,17,20, 23,25,26}.
We define as v=[λ1, ...,λn], the binary AU vector where
each component λi represents the activation (λi = 1) or
deactivation (λi=0) of AUµ[i] (the ith element in the AU list
µ). For instance, λ3=1 represents that AU4 (brow lowerer)
is activated, λ9 =0 represents that AU12 (lip corner puller)
is deactivated. See the literature [9] for a complete list of
AUs.

While GANimation can, in principle, simultaneously acti-
vate AUs, activating too many AUs typically create visual
artifacts. Moreover, the state-of-the-art (SOTA) facial ex-
pression prototypes of Ekman et al. [9] indicate that most
facial expressions have between 3 and 5 AUs activated.
Therefore, we initialize the individuals by activating 3 AUs:
∀v,∑16

i=1 λi=c, where c=3. There can be C3
16 = 560 possible

AU vectors V ={v1,v2, ...,v560}. Based on the actor’s face s,
we randomly choose N out of the 560 AU vectors to initialize
a population of N individuals. Fig.1 displays some examples
of individuals from the initial population.

1https://youtu.be/GwvC2u9r01o

B. Selection

Selection has two parts: the perceptual experiment of
RevCor and the population evaluation module.

Perceptual experiment. In the perception experiment, we
group the population of N individuals into N/2 pairs. Note
that each pair of individuals is displayed only once for each
iteration. In each trial of the perceptual experiment, a pair of
individuals is displayed. Observers are asked to choose which
individual best corresponds to the target expression (e.g.,
“which of these two faces looks happier?”). Note that each
observer conducts N/2 trials for each generation. According
to the answer from the observer, each pair of individuals are
annotated by “winner” and “loser”. Next, we use the set of
N/2 winners (W ) and the set of N/2 losers (L) to evaluate
the quality of the current generation.

Population evaluation. In the traditional GA, the com-
puter can easily assign each individual a fitness value and
rank all individuals from the best fit to the worst fit based on a
mathematical fitness function. With the winner-loser strategy,
N(N−1)/2 trials are required to rank the individuals. In our
case, since the fitness function is the subjective judgments
of observers, we cannot afford so many trials. That is why
we only get N/2 trials, and we add a population evaluation
module to evaluate the entire population.

For the population evaluation module (pop eva of Fig. 1),
we compute the similarity between the losers in the previ-
ous generation and the current generation, so-called inter-
population similarity (inter pop), and the similarity between
winners and losers in the current generation, so-called intra-
population similarity (intra pop).

pop eva = α.inter pop+β .intra pop (1)

inter pop = corr(H[Lg],H[Lg−1]) (2)

intra pop = corr(H[Wg],H[Lg]) (3)

α and β are positive constants. The similarity is computed
by the Pearson correlation corr(·, ·). H[·] represents the
histogram that counts how many times each AU (from the
list µ) occurs in the corresponding set. Wg and Lg denote
the AUs of winners W and losers L in the gth generation,
respectively. When the inter-population similarity increased,
we can infer that there were fewer changes between the
successive generations. When the intra-population similarity
increased, we can infer that the losers became closer to
the winners. Overall, we maximize pop eva to ensure the
convergence of the system.

C. Crossover

Three-state constraint automaton. Here, we add the
three-state constraint automaton to gradually increase the
number of activated AUs from 3 to 5 during the crossover.
Details are shown in Constraint of Fig. 1. The entire pop-
ulation goes through three restricted states: initially 3-AU
activation state, then 4-AU activation state, and finally 5-AU
activation state (denoted by “3 AUs”, “4 AUs”, and “5 AUs”),
and three thresholds are given as [T 1,T 2,T 3] accordingly.



The population is initialized by activating only 3 AUs for
each individual, i.e., c=3 defined in Section III-A. During
the first state, i.e., 3-AU activation state, each individual can
not have more than c AUs activated after the crossover. Once
pop eva exceeds the first threshold, i.e., T 1, the system goes
to the next state, i.e., 4-AU activation state. Accordingly, the
threshold is updated to T 2 and c=4 for the 4-AU activation
state. As shown in Constraint of Fig. 1, the procedures in the
following states are similar to that in the 3-AU activation
state. Finally, the system stops when pop eva exceeds the
last threshold, i.e., T 3.

Infection. The infection operator is the same as the
literature of MGA [14], i.e., uniform infection. The binary
AU vector of the loser is infected by that of the winner.
Thus, each element in the binary AU vector of the loser
can be replaced by the corresponding element of the winner
(illustrated in Fig. 1). The crossover rate is defined by cr. If
the loser after the infection has more than c AUs activated,
we randomly deactivate the excess. Note that the AU vectors
of winners are unchanged, and the AU vectors of losers after
infection are named Loser cr in Fig. 1.

D. Mutation

The mutation operator is the same as the literature on
MGA [14], i.e., bit mutation. As shown in Fig. 1, each
element of Loser cr has the same mutation rate mr to change
its binary value. Note that due to the infection and the
mutation, individuals can have or less than 3 AU activated,
even though they are allowed to have more than 3 AU
activated.

E. Population: update

In order to keep the size of the population unchanged, we
only replace AU vectors of the losers with their offspring and
keep the winners unchanged. In our approach, we employ the
same tool, i.e., GANimation, to create the next generation by
the updated low-level attributes, i.e., AU vectors.

IV. EXPERIMENTS

The goal of our experiments is to validate our approach
that can efficiently generate multiple prototypes correspond-
ing to a given emotion, even a complex emotion. We first list
the implementation details of our process in Section IV-A,
then detail the experimental protocol in Section IV-B, and
finally analyze the evolution of the population in Section
IV-C.

A. Implementation details

GANimation model. We use the code of GANimation
[26] released by its authors. All settings are unchanged.

GA parameter settings. We took the suggestion from the
original literature on MGA [14]: cr = 0.5 and mr = 0.03.
The other GA parameters, i.e., the population size N, the
constants α , β (defined in Eq. 1), and the thresholds for
the three-state constraint automaton, were calibrated empiri-
cally. For this purpose, we simulated perceptual experiments
by replacing the real observers shown in Fig. 1 with an

automatic facial expression recognition system. According
to the simulations, we set the population size as N = 20,
the constants of population evaluation α = 0.5,β = 0.5,
and thresholds of the three-state constraint automaton as
[T 1=0.9,T 2=0.9,T 3=0.95].

B. Experimental protocol

Observer demography. To validate our approach, we
decided to recruit 12 observers since related works proposing
new tools for perceptual experiments recruited a limited
number of participants, from 8 to 12 [33], [4]. The 12
observers we recruited are adults (mean age: 34.7 yo) from
five cultural groups: Algeria (1), China (1), Brazil (1), France
(8), and Russia (1). Only two of the 12 observers have
experience in affective computing, whereas nobody is a
certified coder in Facial Action Coding System [9]. Each
observer signed informed consent, and the experimental data
were anonymous.

Perceptual experiment. To illustrate the efficiency of
our approach, we chose three basic emotions (happiness,
sadness, and anger) that existed in deep-learning databases
and one complex emotion (confidence) that is not avail-
able in existing deep-learning databases. Each of the 12
observers participated in four different experimental tasks
to find his/her mental prototypes of happiness, sadness,
anger, and confidence. In each task, the question is fixed
and unique. For example, “Which of these two faces looks
happier?” The order of the four experimental tasks was
counterbalanced among observers, and all experimental tasks
used the same actor’s photograph. Based on the three-state
constraint automaton, the experimental task was automati-
cally terminated. However, if the population has evolved for
50 generations, we forcibly stopped the current experimental
task. Between the experimental tasks, observers had a 5-
minute rest. All experiments were conducted in a quiet room
in the laboratory, using a custom computer graphic interface
from PsychoPy.

C. Results: evolution of the population

For all experimental results, we can observe the gradual
evolution of the population. Fig.2 illustrates this evolution
through the experimental results of anger from observer#4.
In Fig.2(a), we monitored the individuals according to the
first, second, and third frequently occurring AUs and pre-
sented the representative prototypes. Fig.2(b) illustrates the
corresponding values computed by the population evaluation
module.

The AUs related to the observer’s mental prototypes
survived, while unrelated AUs gradually disappeared.
Based on the subjective judgment from observer #4 on
“which of these two faces looks angrier?” AU9 was the
most frequently occurring AU in the last generation. AU25
and AU4 were the second and the third. They are more
relevant than the other AUs to anger for this observer. If
we look at the evolution from the first to the last generation,
we observe that the related AUs (AU9, AU25, and AU4)
spread throughout the population, and the individuals without



(a) Evolution of the population (b) Population evaluation

Fig. 2. Experimental results of anger from observer #4. 2(a) left: evolution of the population over generations. The x-axis represents the generation
number of the population. The y-axis represents the individuals of the current population. The legend lists 8 classes of individuals based on the activation
or deactivation (marked by “/”) of the related AUs (AU9, AU25, and AU4). For instance, “9, /25, 4” (blue) denotes all the individuals who had AU9 and
AU4 activated and had AU25 deactivated. 2(a) right: three representative prototypes, i.e., the individuals with the same AU vectors in the last generation,
where A: AU7, AU9, AU25; B: AU9, AU25; C: AU4, AU9, AU25. 2(b): Population evaluation. We draw the curves of the similarities computed by the
population evaluation module. The vertical dotted lines in 2(a) and 2(b) indicate changing the constraint in the 12th and the 17th generation.

the related AUs activated were gradually eliminated (the
gray area of Fig. 2(a)). Therefore, more individuals with the
related AUs activated appeared in subsequent trials.

The related AUs combined with each other. As the
experiment proceeded, we noticed the growths of the green,
red and blue areas and the disappearance of the other areas.
This indicates that observer #4 prefers to combine AU9 with
AU4 and/or AU25 than the other AUs. During the 3-AU
activation state, the system gradually converged. Indeed, 18
of 20 individuals had AU9 activated in the 12th generation.
At the end of the experiment, 100% of the population had
AU9 activated (green, red, and blue areas), 90% of the
population had the combination of AU9 and AU25 (green
and red areas), 75% of the population had the combination
of AU9 and AU4 (red and blue areas), and 65% of the
population had activated both AU4, AU9, and AU25 (red
area).

Fig. 2(b) reflects the convergence of the system by illus-
trating the similarities computed by the population evaluation
module. Our approach considers not only the inter-population
similarity but also the intra-population similarity. During the
3-AU activation state, the system gradually converged. Once
changing the constraint, the system searched for results in
a broader space and then converged again. That is why the
curves dropped and re-converged during the 4-AU activation
state and the 5-AU activation state. See the video demonstra-
tion for extra information: 1) the AU histograms of winners’
and losers’ AUs in the previous and the current generations,
2) winners and losers of the current generation and 3) the
computer graphic interface for the experiments.

We define the representative prototypes as the individ-
uals with the same AU vectors in the last generation. In
Fig. 2(a), there are three different representative prototypes
of anger from observer #4 denoted by “A” (2 individuals),
“B” (2 individuals), and “C” (8 individuals). Next, we
quantitatively and subjectively evaluate the representative
prototypes.

(a) Happiness (b) Sadness

(c) Anger (d) Confidence

Fig. 3. Proportion of each AU in the representative prototypes. For the
basic emotions, some AUs reveal universality.

V. EVALUATIONS AND COMPARISON

For each emotion category, we collected all representative
prototypes of observers. In this section, first, we analyze
representative prototypes from two perspectives: action units
(in Section V-A) and prototypes (in Section V-B). Second,
we present our subjective evaluation process (in Section V-
C and Section V-D) for two purposes: 1) to validate that
our representative prototypes can reflect observers’ mental
prototypes and 2) to subjectively compare with the SOTA
prototypes. Third, we discuss the efficiency by comparing
our approach with the related works using RevCor for
affective computing (in Section V-E).

A. Quantitative evaluation: Action units

Our IMGA-generated prototypes are compatible with
state-of-the-art prototypes. Our findings indicate all rep-
resentative prototypes generally convey similar emotional
expressions. Fig. 3 presents the proportion of each AU
that appears in our representative prototypes. We find all
AUs from SOTA prototypes [9], [33] in our representative
prototypes, except AU43 (eyes closed) for sadness and AU16
(lower lip depressor) for anger. Note that these AUs are
not included in the list of editable AUs µ by GANimation
aforementioned in Section III-A. To consult the AUs of



(a) Happiness (b) Sadness

(c) Anger (d) Confidence

Fig. 4. The proportion of prototypes that have different numbers of AUs
activated. There is a discrepancy between basic emotions and confidence.

SOTA prototypes, please see the literature [9], [33].
Within the scope of basic emotions, some AUs reveal

universality. Some common AUs can be found in the
representative prototypes of basic emotions. In Fig. 3, for
happiness, 100% of representative prototypes have AU12
(lip corner raiser) activated. For sadness, more than 80% of
representative prototypes have AU1 (inner brow raiser) and
AU15 (lip corner depressor) activated. For anger, 83% of rep-
resentative prototypes have AU9 (nose wrinkler) activated.
For confidence, the proportions of AUs are not as prominent
as those in the basic emotions: 57.7% of representation
prototypes have AU12 (lip corner raiser) activated, and
50% of representative prototypes have AU7 (lid tightener)
activated.

There is a discrepancy between basic emotions and
confidence in terms of the number of activated AUs. Fig. 4
summarizes the proportion of prototypes that have different
numbers of AUs activated. Typically, most representative
prototypes of basic emotions have at least 3 AUs activated.
For confidence, although our system initialized with the
constraint of 3-AU activation, approximately 50% of the
representative prototypes have less than 3 AUs activated.

B. Quantitative evaluation: Prototypes

The diversity of mental prototypes not only exists
within observers, but also between observers. Table I
indicates a great variety of prototypes. From 12 observers,
we obtained 31, 24, 24, and 26 different representative
prototypes of happiness, sadness, anger, and confidence. On
average, multiple representative prototypes are acquired per
observer. This indicates the diversity of mental prototypes
within observers. Furthermore, only a small proportion of
these different representative prototypes coexist in at least
two observers. Most representative prototypes are different
between observers. It can also indicate the diversity of the
mental prototypes between observers. Given that neither the
SOTA prototypes of Ekman et al. [9] (except sadness) nor Yu
et al. [33] could be found in our representative prototypes,
this implies that the SOTA prototypes need to be refined.
The number of prototypes should be enlarged.

TABLE I
NUMBER OF DIFFERENT REPRESENTATIVE PROTOTYPES IN ALL

OBSERVERS. AMONG THESE DIFFERENT REPRESENTATIVE PROTOTYPES,
WE ALSO LIST THE PROPORTION OF COEXISTING PROTOTYPES BETWEEN

DIFFERENT OBSERVERS.

H Sa A C
Number of proto 31 24 24 26

Proportion 22.6% 25% 16.7% 15.4%

TABLE II
PROPORTION OF OBSERVERS WHO STILL CHOOSE AT LEAST ONE OF

THEIR REPRESENTATIVE PROTOTYPES. WE COMPUTE THE

CORRESPONDING BASELINE BY RANDOM SELECTIONS.

H Sa A C
Ours 83.3% 75% 66.7% 66.7%

Baseline 41.6% 44.3% 39.7% 42.2%

(a) Happiness (b) Sadness

(c) Anger (d) Confidence

Fig. 5. We display the top-5 most selected prototypes by the 12 observers.
The names of the prototypes are marked in yellow. There is no state-of-the-
art prototype appearing in the top-5 prototypes.

TABLE III
EXPERIMENT TIME (IN MINUTES) OF OUR APPROACH.

Happiness Sadness Anger Confidence
mean 11.1 12.4 8.6 11.3
std 3.8 3.6 2.9 3.3

C. Subjective evaluation: Protocol and measurements

Here, we present our subjective evaluation. We asked the
same 12 observers to participate in the subjective evaluation.
The subjective evaluation process was divided into four tasks
corresponding to the four facial expressions: happiness, sad-
ness, anger, and confidence. In each task, we created an eval-
uation set including all representative prototypes of observers
and the SOTA prototypes [9], [33] (except confidence, for
which no SOTA prototype is available). All prototypes in
each evaluation set were presented in shuffled order. In the
tasks of happiness, sadness, anger, and confidence, observers
were asked to select five faces that were the happiest / saddest
/ angriest / most confident, respectively.

We applied two measurements for the subjective evalu-
ation. First, we count the proportion of observers who still
choose at least one representative prototype of theirs. Second,
in more detail, we ranked the representative prototypes from
the most selected prototype to the least selected prototype
by the 12 observers.



TABLE IV
COMPARISON BETWEEN OUR IMGA AND THE RELATED WORKS USING REVERSE CORRELATION PROCESS FOR AFFECTIVE COMPUTING [33], [16],

[5], [25], [4]. WE LIST IN THE FIRST COLUMN: THE STIMULI CATEGORY, THE REVERSE CORRELATION PARADIGM, THE NUMBER OF AFFECTIVE

STATES, THE NUMBER OF TRIALS PERFORMED BY ONE OBSERVER FOR ALL AFFECTIVE STATES, THE NUMBER OF TRIALS PERFORMED BY ONE

OBSERVER FOR ONE AFFECTIVE STATE AND THE NUMBER OF MENTAL PROTOTYPES FOR ONE OBSERVER.

IMGA Yu et al. [33] Jack et al. [16] Chen et al. [5] Ponsot et al. [25] Burred et al. [4]
stimuli face face face face speech speech

paradigm 2-AFC 7-AFC 7-AFC 3-AFC 2-AFC 2-AFC
states 4 6 6 2 2 1

trials/obs 2400 4800 3600
trials/obs/state 330 (400) (800) (1800) ∼700 700

proto/obs multiple single single single single single

D. Subjective evaluation: Results

Most observers still selected at least one of their
mental prototypes. Table II lists the proportion of observers
who still choose at least one representation prototype of
theirs. The baseline is derived from random selections of
each evaluation task. Compared with the baselines, a larger
proportion of observers still selected at least one of their
representative prototypes. This can indicate that our represen-
tative prototypes can reflect the observers’ mental prototypes.

Observers less preferred state-of-the-art prototypes.
We first sorted all the prototypes according to the proportion
selected by observers. Then, we displayed the top-5 proto-
types with the highest proportions in Fig. 5. We noticed that
there is no SOTA prototype appearing in the top-5 prototypes
of the three basic emotions.

E. Comparison with related works using RevCor: Efficiency

First, we present the experiment time of our approach.
Then, in order to discuss the efficiency, we compare the
experiment time and the number of mental prototypes for
each observer between our IMGA and the related works
using RevCor for affective computing.

Converging speed of our IMGA. In Table III, we
present the duration for observers to perform the perceptual
experiments. On average, observers performed the perceptual
experiments on anger faster than the experiments on the other
facial expressions. By calculating the average time for all
perceptual experiments, it takes about 10.8 minutes (with
330 trials) for an observer to obtain mental prototypes using
our IMGA.

Comparison with related works. Since all the related
works did not provide the experiment time, we compared
the number of trials for the perceptual experiment. Table
IV illustrates the results of the related work using RevCor,
three for facial expression and two for speech. Due to the
different paradigms, the numbers of trials are presented in
two different ways, i.e., “trials/obs” and “trials/obs/state”.
By comparing our IMGA (“330”) with the works using the
two-alternative forced choice (2-AFC) paradigm, (“∼700”,
and “700” for [25], and [4]), our work reduced the number
of required trials (per observer, for one affective state) by
approximately a factor of two.

We cannot directly compare with the works [33], [16], [5]
that employed different paradigms, since “trials/obs/state” is

unknown in the original literature. By calculating “trials/obs”
/ “number of affective states” to compare these works
(“(400)”, “(800)”, and “(1800)” for [33], [16], and [5]) with
ours (“330”), our approach still needs fewer trials than these
works.

In summary, compared with related works using RevCor,
our approach has two strengths. First, our approach shrinks
the experiment time. Second, only our approach can obtain
multiple mental prototypes for each observer.

VI. CONCLUSION

In this paper, we proposed an efficient interdisciplinary
approach: Interactive Microbial Genetic Algorithm (IMGA).
Such an interdisciplinary approach that integrated the psy-
chological reverse correlation process (RevCor) into an in-
teractive genetic algorithm (IGA) efficiently explored diverse
mental prototypes in a broader range of facial expressions
(basic emotion and non-basic emotion) for each observer.
Our IMGA considered real-time feedback from observers
to update subsequent trials. Differing from the traditional
genetic algorithm, we added a population evaluation module
to evaluate the quality of the entire population with limited
trials and a three-state constraint module to limit the manip-
ulation of facial expressions and determine the termination
of the system.

Compared with the SOTA prototypes [9], [33], we observe
that the diversity of mental prototypes exists not only within
observers but also between observers. Thus, the prototypes
of a given emotion should be enlarged. Furthermore, our
approach can extract the emotions that are not available in
existing deep-learning databases. Compared with the related
works using RevCor [33], [16], [5], [25], [4], our approach
is more efficient at two-fold: faster and obtaining multiple
mental prototypes. However, the limitation of the related
works and our IMGA is that all the stimuli are unimodal.
Multimodal stimuli (e.g., video and audio) should be em-
ployed to enrich affective computing studies in the future.
Another limitation comes from the facial-expression manipu-
lation tool we chose. Indeed, GANimation [26] provides only
16 editable AUs. In the future, GANimation can be replaced
by the other facial-expression-manipulation tool that can edit
more AUs.

Overall, we hope our approach can pave the way for
further scientific studies not only in cognitive science but also



in computer science, such as non-basic emotion recognition
(for lack of labeled databases) using mental prototypes. We
also expect this approach can be customized for audiences
in different application domains, e.g., a digital coach for
the online interview and a digital mirror treating psychiatric
disorders of emotion.
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