
HAL Id: hal-04050508
https://hal.science/hal-04050508

Submitted on 22 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Framework for Generating Large Data Sets for
Fatigue Damage Prognostic Problems

Anass Akrim, Christian Gogu, Thomas Guillebot De Nerville, Paul Strahle,
Brondon Waffa Pagou, Michel Salaün, Rob Vingerhoeds

To cite this version:
Anass Akrim, Christian Gogu, Thomas Guillebot De Nerville, Paul Strahle, Brondon Waffa Pagou,
et al.. A Framework for Generating Large Data Sets for Fatigue Damage Prognostic Problems. 2022
IEEE International Conference on Prognostics and Health Management (ICPHM), Jun 2022, Detroit
(Romulus), United States. pp.25-33, �10.1109/ICPHM53196.2022.9815692�. �hal-04050508�

https://hal.science/hal-04050508
https://hal.archives-ouvertes.fr


A Framework for Generating Large Data Sets for
Fatigue Damage Prognostic Problems
Anass Akrim†‡, Christian Gogu‡, Thomas Guillebot de Nerville†, Paul Strähle†,

Brondon Waffa Pagou‡, Michel Salaün†, and Rob Vingerhoeds†
†ISAE-SUPAERO, Université de Toulouse,

10 Avenue Edouard Belin, 31400 Toulouse, France
Email: {anass.akrim, michel.salaun, rob.vingerhoeds}@isae-supaero.fr

‡Institut Clément Ader (UMR CNRS 5312) INSA/UPS/ISAE/Mines Albi,
Université de Toulouse, 3 rue Caroline Aigle, 31400 Toulouse, France

Email: {anass.akrim, christian.gogu}@gmail.com

Abstract—Prognostics and Health Management (PHM) relies
on the availability of large amounts of data for a given system
and allows to analyse this data and to draw conclusions as to
the health state of the system, the identification of faults and
failures, as well as the calculation of the remaining useful life
time. Often, it is expected that this data is labelled, i.e. that
the data has been pre-analysed and that for each data point an
exact information is available as to what it is about, when it
was measured, etc. In reality, this is not always easy and this
labeled data is not always available. For example, on aerospace
structures, complete labeled data until the end of their lifetime
are not usually available. This may hamper for example the use
of Deep Learning (DL) techniques for Predictive Maintenance,
as they rely on the availability of large amounts of labeled sensor
data. In this paper a framework and associated code1 is proposed
to generate high dimensional data sets for a realistic fatigue
damage prognostics problem, representative of fatigue cracks
propagation in aeronautical fuselage panels. With this data, DL
techniques can be trained, and we will illustrate this with a case
study involving several of the most commonly used DL models
to address failure prognostics.

Index Terms—Prognostics and Health Management (PHM),
Remaining Useful Life (RUL), Fatigue Damage Prognostics
Problem (FDPP), Synthetic Dataset, Deep Learning.

I. INTRODUCTION

Prognostics and Health Management (PHM) is a field of
research and application, making use of past and present
available information of an equipment in order to detect
its degradation, diagnose its faults, predict and manage its
failures [1]. Fatigue damage is defined as one of the major
life-limiting factors for many structural components subjected
to variable loadings in service (e.g. aircrafts during flight) [2].
Fatigue is the cause of various failure modes in aerospace,
develops gradually and progressively grows to a critical size
acrit, leading to structural or system failure. The operating
time before failure is commonly referred to as Remaining
Useful Life (RUL) [3]. Fatigue monitoring and potential early
identification of critical cracks approaching the critical size
acrit is a major challenge, with great potential in terms of
improving the operational efficiency through the development
of predictive maintenance strategies. Hence, prediction of

1See https://github.com/ansak95/FrameworkFDPP

fatigue life in structures is necessary, becoming one of the
main issues in the field of operational safety.

Among Prognostics approaches, Data-Driven models have
gained more and more attention in the PHM community,
especially the latest Machine Learning (ML) techniques
(notably Deep Learning (DL) techniques) [4]–[6]. DL has
become a major and rapidly growing research direction,
redefining state-of-the-art performances in a wide range of
areas in recent years [7]. As more data becomes available in
the engineering domain, there is a recent surge of interest in
using Deep Learning in Prognostics and Health Management
[8]. However, their effectiveness depends on the quantity and
quality of available labeled data, which is generally difficult
to acquire and often can be a time-consuming and expensive
investment. Indeed in PHM, faults are rare and structures
can be replaced before reaching failure; in Prognostics
tasks, a label can constitute the RUL at each time step of
measurements. Hence, data scarcity is becoming one of the
most important challenges in PHM [9], [10], rendering it
difficult to evaluate and compare the latest DL models in the
research field.

Several PHM researchers have already attempted to address
this challenge, proposing realistic synthetic data sets that
have been collected and made publicly available by NASA’s
Prognostic Center of Excellence, such that for turbofan
engines [3], bearings [11], batteries [12], etc. The reader may
refer to [13] for more details on commonly used synthetic
data sets in PHM. Although these open source data sets
have been widely successful among the PHM community,
to the best of the authors’ knowledge, little to no research
has directly aimed at proposing and making available an
open source framework for generating large data sets specific
to fatigue damage prognostic problems. Virkler et al. [14]
proposed a fatigue crack growth dataset for fatigue damage
prognostic problems, allowing several PHM researchers to
evaluate data-driven approaches on it [15], [16]. However,
the proposed datasets consist only of time series of structural
crack length data and, according to [13], indirect sensory



measurements (e.g. vibration, acoustic emissions, strains,
etc.) are not provided, making it difficult to transfer to real
life case applications where there is no direct access to crack
length data but increasing amounts of indirect sensor data
may instead be available.

In order to stimulate research on the applicability of the
latest deep learning models to fatigue damage prognostics,
notably in the aerospace domain, while awaiting real in service
data, our paper proposes a framework and software code for
synthetically generating large training data sets for a realistic
fatigue damage prognostics problem (FDPP), simulating crack
propagation in a fuselage panel, where the indirect sensory
measurements correspond to mechanical strains. The crack
growth is simulated based on Paris-Erdogan’s crack growth
model [17] and we consider strain data at various position
(i.e. synthetic strain gauges) as output that will be used as
sensor data. Due to the synthetic nature of this data set, it is
possible to significantly vary the size of the training data sets,
which may be particularly relevant for some deep learning
approaches. The authors believe that the proposed framework
and software code can help facilitate the development of deep
learning algorithms for prognostic applications, and make
them more easily transferable to real world applications. As
illustration, some of the most common deep learning models
have been applied to the generated data sets, including
Recurrent Neural Network (RNN), Long short-term memory
(LSTM), Gated Recurrent Unit (GRU), 1D-Convolutional
Neural Network (CNN), and Temporal Convolutional
Network (TCN), and we notably investigated the variation of
the methods’ performance with increasing labeled training
data. All codes, both for the generation of the synthetic
datasets and for the training of all the models are publicly
available on https://github.com/ansak95/FrameworkFDPP.

The remainder of the paper is organized as follows. Section
II describes the chosen approach to generate a synthetic data
set simulating the crack growth in the considered structures.
The degradation model used to generate the data set is pre-
sented in this section as well. Section III illustrates a realistic
case study in order to investigate the applicability of DL meth-
ods in a prognostics problem based on a generated synthetic
data set. Section III-A describes the data set generated. Section
III-B presents the deep learning-based models investigated to
illustrate this study and details the proposed RUL estimation
strategy. The proposed metric for performance evaluation, used
to rank the models investigated, are presented in this section
as well. Section III-C presents and analyzes the results of
the investigated deep learning-based approaches in this study.
Finally, Section IV concludes the paper and identifies some
research perspectives.

II. FRAMEWORK

The proposed framework seeks to generate synthetic data
sets of mechanical strain data (i.e. virtual strain gauges),

simulating the crack growths in structures based on the Paris-
Erdogan model. These synthetic data sets will be composed
of labeled data, i.e. measurement sequences of structures until
failure, where the label is the RUL of the structure at each
time step of the strain measurements.

A. Simulation of the crack growth : a theoretical approach

1) Crack growth model: Fatigue crack propagation is mod-
eled by the Paris-Erdogan’s law [18]

da

dk
= C(∆σ

√
πa)m (1)

where a is the half crack size, k is the number of
loading cycles, C and m are the empirical parameters of the
Paris-Erdogan’s law, and ∆σ is the difference between the
minimum σmin and maximum σmax far field stress.

This law will be used to simulate the crack growth in the
current setting to give the crack length at a given number of
cycles, which will in turn be used to generate the deformation
data on which the data-driven models will be trained. To get
the crack length after k cycles, the analytical solution to Paris-
Erdogan’s law from [19] provided in Eq. 2 will be used.

ak =
[
kC

(
1− m

2

) (
∆σ

√
π
)m

+ a
1−m

2
0

] 2
2−m

(2)

where a0 is the initial crack length.

The critical crack size acrit that causes structural failure can
be calculated by the empirical formula in Eq. (3).

acrit = (
KI

∆σ
√
π
)2 (3)

where KI is a conservative estimate of the fracture
toughness in Mode I crack loading [20].

2) Strain fields around the fatigue crack: In order to
obtain the strain field around the crack, we work under the
assumption of a finite crack in an infinite plate under Mode
I crack loading [20], assuming ∆σ = σmax − σmin with
σmin = 0 MPa. In practice, the infinite plate assumption
implies that the crack size must be much smaller than the
size of the plate, which is typically verified for structures
such as fuselage panels. A figure of a crack of length 2a and
a loading of σmax is given in Figure 1.

To calculate the displacements around the crack, a complex
variable formulation along with a Westergaard approach is
used [18], [20], [21]. In a Cartesian coordinate system (x, y),
a complex variable z is introduced :

z = x+ iy (4)

The Airy stress function ϕ used in this approach is defined
such that :



Fig. 1. Crack of length 2a in a plate under Mode I loading

ϕ = σmax

√
z2 − a2 − σmaxz + const. (5)

ϕ′ =
σmaxz√
z2 − a2

− σmax (6)

ϕ′′ =
σmax√
z2 − a2

− σmaxz
2

(z2 − a2)
3
2

(7)

The stresses in a plane stress state, which is assumed here,
can then be expressed as

σ11 = ℜ(ϕ′)− yℑ(ϕ′′) (8)
σ22 = ℜ(ϕ′) + yℑ(ϕ′′) + σmax (9)
σ12 = −yℜ(ϕ′′) (10)

where ℜ(.) and ℑ(.) are respectively the real part and the
imaginary part of a complex number.

The corresponding strain state for this stress state are given
by Hooke’s law [22], which can be written under the plane
stress assumption as :

ε11 =
1

E
(σ11 − νσ22) (11)

ε22 =
1

E
(−νσ11 + σ22) (12)

ε12 =
1 + ν

E
σ12 (13)

ε33 =
−ν

E
(σ11 + σ22) (14)

where E and ν are the elastic parameters, respectively
Young’s modulus and Poisson’s ratio. A typical normal
strains state is shown in Fig. 2.

Finally, the strain measurements ε of a strain gauge placed
at the position (x, y) with an angle θ between the x-axis and
the strain gauge measurements direction are given by Eq. 15.

ε = ε11 cos(θ)
2 + ε22 sin(θ)

2 + 2ε12 cos(θ) sin(θ) (15)

Fig. 2. Example normal strains state for a crack of length 2a

B. Generation Algorithm

All data sets composed of strain measurements are gener-
ated using the previously defined crack growth model and, for
initialization, each structure n is defined by three parameters
that vary from structure to structure within the data set :
the initial crack length a0,n, and the two material parameters
Cn and mn generating the crack growth. Note that in this
paper, we consider that C is distributed following a log-normal
law, and logC and m are assumed to follow a multivariate
distribution with a linear correlation coefficient ρ, based on the
literature [23], [24]. The steps of the numerical implementation
of the data set creation are summarized below, illustrated in
Fig. 3:

1) For the nth structure (n = 1, ..., N), draw the samples of
initial crack size and the Paris-Erdogan’s law parameters
respectively : a0,n ∼ N (µa0

, σa0
) and (mn, logCn) ∼

N (µm, σm, µlogC , σlogC , ρ).
2) Using the crack growth model described in Section

II-A1, propagate the crack size of the nth structure until
it reaches the critical crack size acrit. Every ∆k cycles
until failure, compute and collect the strain measure-
ments at the ng strain gauge positions according to Eq.
15.

In order to train prognostics models based on this strains
dataset we also need the RUL at each cycle. For the nth

structure at cycle k, the remaining useful life RULn,k can
be computed such that RULn,k = kcrit − k (where kcrit is
the number of cycles for the crack to reach the critical size,
such that akcrit

= acrit). An illustration of three generated
sequences (i.e. three strain gauges) for a single structure until
failure is given in Fig. 4.

III. ILLUSTRATION

In this section, an illustration of the framework, the gener-
ated data sets and the use of Deep Learning (DL) techniques
for the estimation of the Remaining Useful Lifetime (RUL) is
provided.

A. Data Set

Starting from the analytical setup described in the previous
section, a synthetic data set is generated containing the
variations of the strains at ng = 3 positions in the plate
as a function of the number of cycles. This setup can



Fig. 3. Flow chart of the strain gauge sequence generation.

Fig. 4. Strain values time series corresponding to a sensor sample generated.
In this illustration, three strain gauges are placed at the following positions
(x,y) : (3,14), (14,14) and (25,14) mm.

be seen representative of real experiments under fatigue
loading where the strain state is monitored at three strain
gauge positions. The strain data, or measurement sequences,
are obtained until the critical crack size acrit is reached.
In this experiment, an Aluminum alloy 7075-T6 plate
was considered, which is typical of aeronautic structures.
The elastic parameters considered are Young’s modulus
E = 71.7GPa and Poisson’s ratio ν = 0.33 (assumed to
be constant at their nominal values). The critical crack size
acrit that causes structural failure can be calculated by the
empirical formula in Eq. (3), in which KI = 19, 7 MPa

√
m

and ∆σ = σmax − σmin = 78, 6 MPa with σmin = 0 MPa
in this work.

In this series of numerical experiments, it is assumed
that the initial crack position is at the origin of the (x, y)
reference frame and that the crack is along the x direction.
Furthermore, it is assumed that the strain gauges are placed at
an angle θ = 45° with x-axis, so they are sensitive to both ϵ11

and ϵ22 strains. The ng = 3 strain gauges are placed at the
following positions (x,y) : (3,14), (14,14) and (25,14) mm.
Considering that the evolution of the changes from one cycle
to another are small, it was decided to collect the data every
∆k = 500 cycles. Fig. 4 illustrates an instance of sequences
generated for a single structure until failure.

In the following illustration, artificial experiments are set
up in order to acquire a training, validation and testing data
set. The validation set is used to monitor and optimize the
models hyperparameters during the training phase; the testing
set is used to evaluate the performance of the trained models
as a held-out data set that has not been used prior, either for
training the model or tuning the model hyperparameters. For
training, data sets of various sizes NT1 = 100, NT2 = 500,
NT3

= 1000 structures are generated, while for validation a
set of NV = 100 structures is generated, and for testing, a
set of NTest = 100 structures is generated. Each structure
n is defined by three parameters that vary from structure to
structure within the data set (i.e. the initial crack length a0,n,
Cn and the exponent mn), such that :

1) a0 varies following a Gaussian law with a mean of 1 ·
10−3[m] and a coefficient of variation (Cv) of 0.125,
such that Cv(a0) =

σa0

µa0
, where the Gaussian is truncated

to avoid negative values.
2) C is distributed following a log-normal law with a

geometric mean equal to 1 · 10−10 and a geometric
standard deviation such that the exponential of the upper
and lower bounds of the 95% confidence interval for
logC have a ratio of 8 · 103, which is consistent with
the data from [25].

3) Finally, m is distributed following a Gaussian law such
that the bounds of the 95% confidence interval are 2 and
4, as suggests [18] and is again roughly consistent with
[25]. Again, the distribution is truncated at the lower end
at 0 so that m cannot become negative.



Parameter Denotation Type Value Unit
Elastic parameters
Young’s modulus E Deterministic 71.7 GPa
Poisson’s ratio ν Deterministic 0.33 -
Strain field parameters
Maximum stress intensity σmax Deterministic 78, 6.106 Pa
Fracture toughness KI Deterministic 19, 7.106 Pa

√
m

Strain gauges
Number of gauges placed ng Deterministic 3 -
Position of the gauges placed (xi, yi)i=1,..,ng Deterministic (3, 14), (14, 14), (25, 14) mm
Angle of the gauges placed θ Deterministic 45 deg
Initialization parameters
Initial crack size a0 Gaussian distribution N (µa0 , σa0 ) m
Mean of a0 µa0 Deterministic 1.10−3 m
Standard deviation of a0 σa0 Deterministic 0, 125.10−3 m
Paris-Erdogan’s law parameters (m, logC) Multivariate Gaussian distribution N (µm, σm, µlogC , σlogC , ρ) -
Mean of m µm Deterministic 3, 5 -
Standard deviation of m σm Deterministic 0, 125 -
Mean of C µC Deterministic 1.10−10 -
Standard deviation of C σC Deterministic 5.10−11 -
Correlation coefficient of m and logC ρ Deterministic −0.996 -
Generated data set
Number of training structures (NT1 , NT2 , NT3 ) Deterministic (100, 500, 1000) -
Number of validation structures NV Deterministic 100 -
Number of testing structures Ntest Deterministic 100 -
Data collection interval ∆k Deterministic 500 -

TABLE I
PARAMETERS FOR NUMERICAL STUDY.

For the material studied in this paper (i.e. alluminum alloys),
m and logC are assumed to follow a multivariate distribution
with a negative correlation coefficient of ρ = −0.996 [26].
The parameters of this numerical case study are summarized
in Table I.

B. Methodology

In this section, an overview of some Deep Learning
methods commonly used in prognostics is provided, followed
by a description of the problem considered in this paper and
the way these methods were implemented on it.

1) Deep Learning in Prognostics: Deep Learning has
shown multiple times to provide good results when applied
to RUL prediction [9], [27]. Among the deep learning tech-
niques, we can enumerate two widely used algorithms in the
prognostics field :

• Recurrent Neural Networks
• Convolutional Neural Networks
Both will be briefly introduced below.

a) Recurrent Neural Networks: The most common
type of Deep Learning model for Time Series Forecasting
are Recurrent Neural Networks (RNN) [28]. The algorithm
remembers its input due to an internal memory, which
makes it well suited for problems that involve sequentially
evolving data. Good results have been obtained by applying
RNNs to a variety of problems in non-PHM fields, such as
speech recognition or language modeling [29]–[31]. Due to
their ability to capture time-dependent relationships, RNNs
have achieved interest among PHM researchers as well,
especially given the sequential nature of the sensor data in

the prognostics field (e.g. sensors data).

However, standard RNNs are limited to looking back
only a few steps due to the vanishing gradient or exploding
gradient problem (see for example [32], [33]). To address
this issue, Long Short-Term Memory (LSTM) networks were
proposed, and have established themselves as one of the
most used Deep Learning model types in many fields and
especially in Natural Language Processing (NLP) [34]. More
recently, LSTM networks have also grown in popularity and
have been used by several researchers in the PHM community
[9]. One of the major drawbacks of LSTM concerns their
relatively high computational cost and memory requirement
for training [35]. A slightly simplified variation of the LSTM
is the Gated Recurrent Unit (GRU), introduced by Cho et al.
[36], gaining in popularity in recent years due to its relative
simplicity [37]. In [38], results showed GRU model could
achieve competitive results with a better training performance
than LSTM for RUL estimation.

b) Convolutional Neural Networks: Convolutional
Neural Networks (CNN) concern a specific type of deep
neural network inspired by the organization of neurons in
the visual cortex. Presented by LeCun et al. in 1998 [39],
CNNs achieved significant success in many research and
industry fields including computer vision, natural language
processing and speech recognition [40], [41]. Input data
for CNNs are usually 2-dimensional (e.g. height and width
pixels for images) so to learn abstract spatial features. Li
et al. [42] investigated how a 2D-DeepCNN model can be
used in prognostics and remaining useful life prediction.
1D-CNNs have also been introduced to the analysis of time



sequences in RUL estimation. The key difference between
1D-CNN, 2D-CNN and 3D-CNN is the dimensionality and
management of the input data and how the feature detector
(or filter) slides across the data. In this paper, only 1D-CNNs
will be considered due to the format of our data sets (Time
Series). Indeed, the application of the CNN architecture to
time series prediction aims to exploit the filters’ feature
extraction capability demonstrated in image classification, and
CNNs are easier to train than recurrent neural networks due
to the implementation of convolutional rather than recursive
operations, allowing improved numerical efficiency. However,
note that CNNs were initially introduced as a classifiers [39],
thus more suitable for classification problems than regression
problems in sequence modeling (i.e. for RUL estimation
problems that have been essentially considered as regression
problems so far).

According to [43], sequence modeling was synonymous
with recurrent networks for most deep learning practitioners
until 2018. Bai et al. [43] introduced a novel CNN architecture
for sequence modeling, using dilated causal convolution to
preserve the causal order of the input time series : Temporal
Causal Networks (TCN). Their results showed that the TCN
outperformed the standard recurrent neural networks (RNN,
LSTM and GRU) in most Sequence Modeling Tasks (better
performances on ten tasks out of eleven). Among PHM
researchers, Liu et al. [44] proposed a TCN model for RUL
prediction of rolling bearings based on raw vibration data. In
their paper, results confirmed that the proposed model is able
to outperform generic recurrent architectures such as LSTM
and GRU in sequence modeling. Moreover, the authors showed
that offline training of the proposed model is almost four
times faster than an LSTM network. Indeed, according to
Bai et al. [43], the TCN has several advantages that make
it superior to the Recurrent Neural Networks (RNN, LSTM,
GRU), specifically :

• better control of the model’s memory size with a flexible
receptive field size (stacking more dilated causal convo-
lutional layers, using larger dilation factors, or increasing
the filter size);

• a backpropagation path different from the one used by
recurrent neural networks, which allows to avoid the
exploding/vanishing problem.

2) Problem statement: In this paper, the RUL prediction
problem is considered as a multivariate time-series-related
regression problem and, as illustration, the five most com-
monly used deep learning-based algorithms in Time Series
Forecasting (RNN, LSTM, GRU, 1D-CNN and TCN) have
been applied to the generated data set.

In the training phase, a sliding window approach is used.
At each time-step t, the input of the predictive model cor-
respond to the current and past measures, such that Xt :=
(xt−nw+1, . . . , xt) ∈ Rng x nw where ng is the number of
strain gauges and thus of time series and nw is the length

of the sliding window; the output of the predictive model is
a point-wise estimation of the RUL of the structure at time
t, denoted ˆRULt ∈ R. Note that each training structure is
composed of S samples (sliding windows of size nw) with
S = nT − nw, nT the number of timesteps in the sequence.

After training, the models are evaluated on the testing set
composed of Ntest different structures, and for each structure
a unique RUL estimation is performed at a time t∗n. For each
structure n ∈ {1, . . . , Ntest}, the parameter t∗n is randomly
drawn such that t∗n ∼ kncrit × U([0, 33; 0, 9]), where kncrit is
the cycle of failure for the n-th structure. In plain words, this
means that we carry out a test prediction for the RUL at a
time t∗n which is drawn uniformly between 33% and 90% of
the sequence’s length. Hence, the input data for the model is
Xt∗n

= (xt∗n−nw+1, . . . , xt∗n
) ∈ Rng x nw and the output of

the model is ˆRULt∗n
∈ R.

3) Training and Evaluation: For the recurrent neural
networks, the input data is pre-processed using a min-max
scaler before being fed into the models. Fig. 5 shows an
example of how the time series data of the strain gauges from
a single structure are processed, and gives an illustration of
recurrent neural networks architecture used in this work.

Fig. 5. Brief illustration of recurrent neural networks (RNN, LSTM and GRU)
architectures. ng corresponds the number of gauges placed (i.e. number of
time series), and nw to the window size.

The first layer of the 1D-CNN’s architecture is a
normalization layer. The architecture of the 1D-CNN models
is illustrated in Fig. 6.

The input data is not pre-processed for the TCN model
and we have kept the same architecture as presented in [45],
illustrated in Fig. 7.

Given that the RUL estimation problem is considered as
a regression problem, we aim to minimize a mean squared
error loss LMSE during the training phase, and the mean
absolute percentage error (MAPE) metric is used to evaluate
the performance of the investigated models such that :



Fig. 6. Brief illustration of convolutions neural networks (1D-CNN) archi-
tecture. ng corresponds the number of gauges placed (i.e. number of time
series), and nw to the window size.

Fig. 7. Architecture of a residual block of TCNs introduced in [45]. A TCN
is a stack of k residual blocks, each composed of two 1D-CNN layers (same
hyperparameters as illustrated in Fig. 6) with a dilation factor d followed by
a weight normalization layer used for regularization [46].

LMSE =
1

S

S∑
i=1

(RULi − ˆRULi)
2 (16)

MAPE =
1

S

S∑
i=1

|RULi − ˆRULi

RULi
| ∗ 100 (17)

where S is the number of samples with ˆRUL. being the
prediction and RUL. the target value.

In the training phase, our strategy consists of a
hyperparameters optimization stage using a Grid Search
algorithm [47], followed by a Fine-tuning stage. During the
Fine-tuning stage, we use the Adam optimizer with default
parameters and we decrease the learning rate incrementally :
we sequentially try the learning rates 10−3, 10−4, 10−5 for
a predefined number of epochs, saving the model weights
each time the validation MAPE decreases; the weights of

the best model are loaded each time the learning rate is
lowered. By using this approach, the model in the early
stages of training with a high learning rate is less likely to
get stuck in a local minimum and explores a wider range of
possible configurations. As the training comes closer to an
optimum, the decaying learning rate helps with convergence
and avoiding oscillations around local minima [48].

C. Experiments and Results

Due to the time series nature of the data and the sliding
window procedure (with nw = 30 after some preliminary
experiments), the training sets with NT1

= 100, NT2
= 500

and NT3
= 1000 structures correspond to respectively

10956, 54365 and 108452 training samples. The validation
set is processed in the same way : NV contains 100
validation structures thus 10937 samples. For testing, a set
of NTest = 100 structures is used, hence composed of 100
samples since only one RUL estimation is performed per
structure.

For the recurrent neural networks, the optimization strategy
was applied on 100, 500 and 1000 structures. The optimal
hyperparameters found are summarized in Table II.

Training structures 100 500 1000
Model RNN LSTM GRU RNN LSTM GRU RNN LSTM GRU
Hidden layers 3 2 3 3 2 2 3 2 2
Nodes per layer 32 64 256 32 128 256 32 128 256
Dropout rate 0 0 0 0 0 0 0 0 0

TABLE II
BEST MODELS OF THE RNN, LSTM AND GRU HYPERPARAMETER

OPTIMIZATION FOR 100, 500 AND 1000 TRAINING STRUCTURES

For the 1D-CNN and TCN model the hyperparameter
optimization were again performed on 100, 500 and 1000
training structures, and the optimal hyperparameters found are
summarized in Table III. Note that the dilation factor is set to
d = 6, so that the receptive field is of size 2d−1 = 25 = 32,
thus able to capture relationships over a time sequence of
size nw = 30 in this work, as described in [45].

Training structures 100 500 1000
Convolutional layers 6 2 4
Filters per layer 20 40 25
Kernel size 6 12 9
Dropout rate 0.0 0.0 0.0

(a) Best models of the 1D-CNN.

Training structures 100 500 1000
TCN residual blocks 8 8 8
Filters per layer 30 25 35
Kernel size 2 2 2
Dropout rate 0.0 0.0 0.0

(b) Best models of the TCN.
TABLE III

HYPERPARAMETER OPTIMIZATION FOR 100, 500 AND 1000 TRAINING
STRUCTURES.



As the hyperparameters are optimized, the resulting models
are fine-tuned on the same data set with an adaptative learning
rate to optimize their performance, and then evaluated on 100
structures of the testing data set; for each structure we only
have one sample to evaluate, thus the models are evaluated
on 100 samples. Table IV shows an overview of the achieved
accuracy for all recurrent neural networks (RNN, LSTM and
GRU) and convolutional neural networks (1D-CNN and TCN).

Training structures 100 500 1000
MAPE(%) Val Test Val Test Val Test
RNN 3.5 2.95 2.22 1.54 0.91 0.67
LSTM 0.55 0.65 0.25 1.15 1.50 1.24
GRU 1.72 1.22 0.05 0.02 0.08 0.04
1D-CNN 4.19 3.13 1.06 0.82 0.58 0.54
TCN 2.57 2.35 0.76 0.66 0.77 0.69

TABLE IV
REGRESSION TASK : MAPE (%) OF ALL FINE TUNED RNN (RNN, LSTM

AND GRU) AND CNN MODELS (1D-CNN AND TCN) ON THE
VALIDATION AND TESTING DATA SETS

LSTMs outperformed the other algorithms when trained on
100 structures (0.65% testing MAPE score), while the best
performance in general was achieved by GRU models (0.02%
testing MAPE score when trained on 500 structures, and
0.04% testing MAPE score when trained on 1000 structures).
Indeed, recurrent neural networks (especially GRU) appear
to be the best suited for the regression task in this RUL
estimation problem. Nevertheless, we can see that more
available training data leads to a better performance of the
models and a better identification of the most suitable models
for the problem.

IV. CONCLUSION

In this paper, a framework and code for synthetically
generating high dimensional data sets for a realistic fatigue
damage prognostics problem has been presented. The
proposed framework generates multivariate run-to-failure time
series data for structures subject to fatigue loading, consisting
of synthetic mechanical strain data sets (i.e. synthetic strain
gauges) and associated RUL based on the Paris-Erdogan
crack growth model. The authors believe that the proposed
framework will help facilitate the benchmarking of latest ML
algorithms for fatigue damage prognostics applications, in
particular in the aerospace domain (e.g. fuselage panels).

As illustration, pre-cracked Aluminum alloy 7075-T6 plates
were considered, which are typical of aeronautic structures,
and the applicability of some of the most commonly used
DL models to address failure prognostics (including RNN,
LSTM, GRU, 1D-CNN, and TCN) have been studied.
Without the “flaws” of real world data, good results were
expected and obtained. Indeed, there is no noise in the data
which would not be the case in reality : a gaussian noise
can be added to time series in order to mimic the effect of
aleatoric uncertainties that occur in real world applications.

In next steps, building upon the possibility to “play” with
the initialized parameters, this illustration case study can be
further varied in order to complexify the data set and make it
as realistic as possible.

Furthermore, the authors believe that the use of synthetic
data can improve the prognostic performance of data-driven
models in real-world cases in the absence of training
data or with very limited labeled data, using knowledge
transfer when a model is pre-trained on a large set of
related synthetic data (e.g. Transfer Learning [49], [50]), and
the presented framework might be useful in this aspect as well.

ACKNOWLEDGMENT

This work was partially funded by the French “Occitanie
Region” under the Predict project. This funding is gratefully
acknowledged. This work has been carried out on the
supercomputers PANDO (ISAE-SUPAERO, Toulouse) and
Olympe (CALMIP, Toulouse, project n°21042). Authors are
grateful to ISAE-SUPAERO and CALMIP for the hours
allocated to this project. The authors would like to thank
Christian Thomas Nitschke for his initial input on modelling
the crack growth problem.

REFERENCES

[1] E. Zio, “Prognostics and health management of industrial equipment,”
in Diagnostics and prognostics of engineering systems: methods and
techniques. IGI Global, 2013, pp. 333–356.

[2] A. Vasudevan, K. Sadananda, and N. Iyyer, “Fatigue damage analysis:
Issues and challenges,” International Journal of Fatigue, vol. 82, pp.
120–133, 2016.

[3] A. Saxena, K. Goebel, D. Simon, and N. Eklund, “Damage propagation
modeling for aircraft engine run-to-failure simulation,” in 2008 interna-
tional conference on prognostics and health management. IEEE, 2008,
pp. 1–9.

[4] K. Javed, “A robust & reliable data-driven prognostics approach based
on extreme learning machine and fuzzy clustering.” Ph.D. dissertation,
2014.

[5] K. L. Tsui, N. Chen, Q. Zhou, Y. Hai, and W. Wang, “Prognostics and
health management: A review on data driven approaches,” Mathematical
Problems in Engineering, vol. 2015, 2015.

[6] X.-S. Si, W. Wang, C.-H. Hu, and D.-H. Zhou, “Remaining useful life
estimation–a review on the statistical data driven approaches,” European
journal of operational research, vol. 213, no. 1, pp. 1–14, 2011.

[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” vol. 521, no.
7553, pp. 436–444.

[8] A. Voulodimos, N. Doulamis, G. Bebis, and T. Stathaki, “Recent
developments in deep learning for engineering applications,” vol. 2018,
p. 8141259.

[9] O. Fink, Q. Wang, M. Svensén, P. Dersin, W.-J. Lee, and M. Ducoffe,
“Potential, challenges and future directions for deep learning in prog-
nostics and health management applications,” Engineering Applications
of Artificial Intelligence, vol. 92, p. 103678, 2020.

[10] A. Theissler, J. Pérez-Velázquez, M. Kettelgerdes, and G. Elger, “Predic-
tive maintenance enabled by machine learning: Use cases and challenges
in the automotive industry,” Reliability engineering & system safety, vol.
215, p. 107864, 2021.

[11] P. Nectoux, R. Gouriveau, K. Medjaher, E. Ramasso, B. Chebel-Morello,
N. Zerhouni, and C. Varnier, “Pronostia: An experimental platform for
bearings accelerated degradation tests.” in IEEE International Confer-
ence on Prognostics and Health Management, PHM’12. IEEE Catalog
Number: CPF12PHM-CDR, 2012, pp. 1–8.

[12] B. Saha and K. Goebel, “Battery data set,” NASA AMES prognostics
data repository, 2007.



[13] O. F. Eker, F. Camci, and I. K. Jennions, “Major challenges in prog-
nostics: Study on benchmarking prognostics datasets,” in PHM Society
European Conference, vol. 1, no. 1, 2012.

[14] D. A. Virkler, B. Hillberry, and P. Goel, “The statistical nature of fatigue
crack propagation,” 1979.

[15] A. Ray and S. Tangirala, “Stochastic modeling of fatigue crack dynamics
for on-line failure prognostics,” IEEE Transactions on Control Systems
Technology, vol. 4, no. 4, pp. 443–451, 1996.

[16] A. Abbasi, F. Nazari, and C. Nataraj, “Application of long short-term
memory neural network to crack propagation prognostics,” in 2020
IEEE International Conference on Prognostics and Health Management
(ICPHM). IEEE, 2020, pp. 1–6.

[17] P. Paris and F. Erdogan, “A critical analysis of crack propagation laws,”
vol. 85, no. 4, pp. 528–533.

[18] A. T. Zehnder, Fracture mechanics, ser. Lecture notes in applied
and computational mechanics. London ; New York: Springer Sci-
ence+Business Media, 2012, no. 62, oCLC: ocn755698387.

[19] Y. Wang, C. Gogu, N. H. Kim, R. T. Haftka, N. Binaud, and C. Bes,
“Noise-dependent ranking of prognostics algorithms based on discrep-
ancy without true damage information,” Reliability Engineering &
System Safety, Oct. 2017.

[20] C.-T. Sun and Z. Jin, “The elastic stress field around a crack tip,”
Fracture Mechanics, pp. 25–75, 2012.

[21] A. T. Zehnder and M. J. Viz, “Fracture mechanics of thin plates and
shells under combined membrane, bending, and twisting loads,” Appl.
Mech. Rev., vol. 58, no. 1, pp. 37–48, 2005.

[22] A. F. Bower, Applied mechanics of solids. Boca Raton: CRC Press,
2010, oCLC: ocn277196164. [Online]. Available: solidmechanics.org

[23] J. Benson and D. Edmonds, “Relationship between the parameters c
and m of paris’ law for fatigue crack growth in a low-alloy steel,” Scr.
Metall.;(United States), vol. 12, no. 7, 1978.

[24] M. Cortie and G. Garrett, “On the correlation between the c and m in
the paris equation for fatigue crack propagation,” Engineering fracture
mechanics, vol. 30, no. 1, pp. 49–58, 1988.

[25] G. Sinclair and R. Pieri, “On obtaining fatigue crack growth
parameters from the literature,” International Journal of Fatigue,
vol. 12, no. 1, pp. 57–62, Jan. 1990. [Online]. Available: http:
//linkinghub.elsevier.com/retrieve/pii/014211239090343D

[26] E. H. Niccolls, “A correlation for fatigue crack growth rate,” Scripta
Metallurgica, vol. 10, no. 4, pp. 295–298, Apr. 1976. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/003697487690079X

[27] J. J. Montero Jimenez, S. Schwartz, R. Vingerhoeds, B. Grabot,
and M. Salaün, “Towards multi-model approaches to predictive
maintenance: A systematic literature survey on diagnostics and
prognostics,” vol. 56, pp. 539–557. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0278612520301187

[28] H. Hewamalage, C. Bergmeir, and K. Bandara, “Recurrent neural net-
works for time series forecasting: Current status and future directions,”
International Journal of Forecasting, vol. 37, no. 1, pp. 388–427, 2021.

[29] H. Sak, A. W. Senior, and F. Beaufays, “Long short-term memory
recurrent neural network architectures for large scale acoustic modeling,”
2014.

[30] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in 2013 IEEE international conference
on acoustics, speech and signal processing. IEEE, 2013, pp. 6645–
6649.

[31] K. Yao, G. Zweig, M.-Y. Hwang, Y. Shi, and D. Yu, “Recurrent neural
networks for language understanding,” in INTERSPEECH, 2013.

[32] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE transactions on neural networks,
vol. 5, no. 2, pp. 157–166, 1994.

[33] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in International conference on machine
learning, 2013, pp. 1310–1318.

[34] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah,
M. Johnson, X. Liu, Łukasz Kaiser, S. Gouws, Y. Kato, T. Kudo,
H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young,
J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes,
and J. Dean, “Google’s neural machine translation system: Bridging the
gap between human and machine translation.”

[35] T. Masuko, “Computational cost reduction of long short-term memory
based on simultaneous compression of input and hidden state,” in

2017 IEEE automatic speech recognition and understanding workshop
(ASRU). IEEE, 2017, pp. 126–133.

[36] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[37] R. Rana, “Gated recurrent unit (gru) for emotion classification from
noisy speech,” arXiv preprint arXiv:1612.07778, 2016.

[38] M. Baptista, H. Prendinger, and E. Henriques, “Prognostics in aeronau-
tics with deep recurrent neural networks,” in PHM Society European
Conference, vol. 5, no. 1, 2020, pp. 11–11.

[39] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[40] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of
the recent architectures of deep convolutional neural networks,” arXiv
preprint arXiv:1901.06032, 2019.

[41] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J.
Inman, “1d convolutional neural networks and applications: A survey,”
arXiv preprint arXiv:1905.03554, 2019.

[42] X. Li, Q. Ding, and J.-Q. Sun, “Remaining useful life estimation
in prognostics using deep convolution neural networks,” Reliability
Engineering & System Safety, vol. 172, pp. 1–11, 2018.

[43] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” arXiv
preprint arXiv:1803.01271, 2018.

[44] C. Liu, L. Zhang, and C. Wu, “Direct remaining useful life prediction for
rolling bearing using temporal convolutional networks,” in 2019 IEEE
Symposium Series on Computational Intelligence (SSCI). IEEE, 2019,
pp. 2965–2971.

[45] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” vol.
abs/1803.01271.

[46] T. Salimans and D. P. Kingma, “Weight normalization: A simple repa-
rameterization to accelerate training of deep neural networks,” Advances
in neural information processing systems, vol. 29, 2016.

[47] M. Feurer and F. Hutter, “Hyperparameter optimization,” in Automated
Machine Learning. Springer, Cham, pp. 3–33.

[48] K. You, M. Long, J. Wang, and M. I. Jordan, “How does learning rate
decay help modern neural networks?”

[49] J. C. Paetzold, O. Schoppe, R. Al-Maskari, G. Tetteh, V. Efremov, M. I.
Todorov, R. Cai, H. Mai, Z. Rong, A. Ertuerk et al., “Transfer learning
from synthetic data reduces need for labels to segment brain vasculature
and neural pathways in 3d,” in International Conference on Medical
Imaging with Deep Learning–Extended Abstract Track, 2019.

[50] C. Douarre, R. Schielein, C. Frindel, S. Gerth, and D. Rousseau,
“Transfer learning from synthetic data applied to soil–root segmentation
in x-ray tomography images,” Journal of Imaging, vol. 4, no. 5, p. 65,
2018.


