N

N

Interior transmission problems with coefficients of low
regularity
Georgi Vodev

» To cite this version:

Georgi Vodev. Interior transmission problems with coefficients of low regularity. Inverse Problems
and Imaging , 2025, 19 (1), pp.1-33. hal-04050353

HAL Id: hal-04050353
https://hal.science/hal-04050353v1
Submitted on 29 Mar 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-04050353v1
https://hal.archives-ouvertes.fr

INTERIOR TRANSMISSION PROBLEMS WITH COEFFICIENTS OF LOW
REGULARITY

GEORGI VODEV

ABSTRACT. We obtain parabolic transmission eigenvalue-free regions for both isotropic and
anisotropic interior transmission problems with L coefficients which are Lipschitz near the
boundary. We also suppose that the restrictions of the coefficients on the boundary are C*
smooth with an integer p > 2 and we investigate the way in which the transmission eigenvalue-
free regions depend on pu.

Key words: interior transmission problems, transmission eigenvalues.

1. INTRODUCTION

Let © C R%, d > 2, be a bounded, connected domain with a C> smooth boundary T' = 912,
and consider the interior transmission problem

(Ver(2)V + A2nq(z)ug =0 in Q,
(1.1) (Vea(2)V + A2ng(z))ug =0 in - Q,

U1 = ug, c10,u1 = cadyus on I,
where A € C, Re X > 0, v denotes the Euclidean unit inner normal to I' and ¢j,n; € L*(§),
J = 1,2, are real-valued functions satisfying c;(x) > bg, nj(x) > by for some constant by > 0. We
also suppose that the coefficients are Lipschitz near the boundary. Given a parameter 0 < § < 1,
set Q5 = {z € Q:dist(z,I") < §}. More precisely, we suppose that
(1.2) cj,n; € CHQs), j=1,2,
for some 6. Throughout this paper, given an integer k£ > 1, C* will denote the space of the
functions a such that 0%a € L™ for all multi-indices o with |a| = k.

In this paper we will consider two types of interior transmission problems. The isotropic one
when we have the condition

(1.3) ca(x)=co(z)=1 in Q, ny(z)#no(zr) on T,
and the anisotropic one when we have
(1.4) (c1(z) — ca(2))(er1(z)ny(z) — ca(x)na(z)) #0 on T.

If the equation (1.1) has a non-trivial solution (uj,ug2) the complex number A is said to be
an interior transmission eigenvalue. An important question in the theory of the transmission
eigenvalues is that one of finding conditions on the coefficients that guarantee that the trans-
mission eigenvalues form a discrete set. Various such conditions were found in the papers [1],
[5], [6], [8], [12], the most general ones being those in [8]. It follows from the results in [8] that
under the above conditions the transmission eigenvalues are discrete in both the isotropic and
anisotropic cases, so it is natural to ask if the counting function of these transmission eigenval-
ues admits Weyl asymptotics. Indeed, such asymptotics were obtained in [10], [11] in the case
of C* smooth coefficients, and more recently in [3], [9] for coefficients of very low regularity
1
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but with much worse remainder terms. The proof in [10] relies heavily on the location of the
transmission eigenvalues on the complex plane and the C* regularity of the coefficients is not
essential. Roughly speaking, the result in [10] says that parabolic eigenvalue-free regions imply
Weyl asymptotics with a remainder term depending on the shape of the eigenvalue-free region,
namely, the biger the eigenvalue-free region is, the smaller the remainder term is. In the C'*°
setting, parabolic eigenvalue-free regions were obtained in the papers [14], [15], [16] in both
the isotropic and anisotropic cases. It follows from the results in [14] and [16] that under the
condition (1.3) there are no transmission eigenvalues in the region

(1.5) ImA| > C

for some constant C' > 0. Note that the eigenvalue-free region (1.5) is optimal as shown in
Section 4 of [7]. In the one dimensional case (1.5) was obtained in [13]. In the anisotropic case
it is proved in [16] that under the condition

(1.6) (c1(z) — ea(2))(e1(z)ny(x) — ca(x)ng(z)) <0 on T,
there are no transmission eigenvalues in the region

(1.7) ReA>1, |ImA| > C.

On the other hand, it is proved in [14] that under the condition

(1.8) (c1(z) — c2(2))(c1(x)ni(x) — ca(x)ne(z)) >0 on T,
there are no transmission eigenvalues in the region

(1.9) A >C, [ImA| > CAP/o.

Moreover, if in addition to (1.8) the condition

ci(z) |, cofx)
ni(z) " na(z)
is assumed, it is proved in [16] that there are no transmission eigenvalues in the region

(1.11) IA| > C, [ImA| > Clog |l

Our goal in the present paper is to extend the above results to coefficients having as low
regularity as possible. The eigenvalue-free regions we get are not as big as those in the C'° case,
but they are still parabolic. This fact is important in view of possible applications to obtaining
Weyl asymptotics as in [10]. Our main result is the following

r

(1.10)

)

Theorem 1.1. Suppose that the coefficients satisfy (1.2) and that ¢;|r,n;|r € C*(T") with some
integer p > 2. Then, under the condition (1.3), there exists a constant C' > 2 such that there
are no transmission eigenvalues in the region

(1.12) Al >C, [ImA| > CIAMP (log |A)P?,
where 5
W .
_ _ = - <2d—-1
D1 2,Ua+2d_1, D2 2,Ua+2d_1, Zf M~ )
w42 2

p1 D2 = if 2d—1<pu<4d,

T2 +2d+5 2% +2d+ 5
and p1 = %, p2 =0 if p > 4d. Under the condition (1.6), there are no transmission eigenvalues
in the region

(1.13) A= C, [ImA| > CIAFP (log [A)™, - ReA > CIAITP (log [A])™
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where p1 and po are the same as above, and

__m !
s = optod+2 P uvdrt1
Under the condition (1.8), there are no transmission eigenvalues in the region (1.12) with
7 1 ) 4
_ __ <Zd+1

and p1 = 2, py =0 if p > 3(d +1).

Remark. In fact, the theorem remains valid for all g > 2 not necessairily integers. However,
we prefer assuming that p is integer because this simplifies the exposition significantly.

This result seems to be new even in the radial case when Q = {z € R? : |z| < 1} and ¢; = ¢;(r),
nj = nj(r) depend only on the radial variable r = |z|. Since in this case the restrictions of ¢;
and n; on the boundary are constants, the above theorem implies the following

Corollary 1.2. Suppose that the coefficients c;(r), nj(r) are Lipschitz on the interval [1 — 6, 1]
for some 0 < § < 1. Then, under the condition (1.3), there exists a constant C > 2 such that
there are no transmission eigenvalues in the region

(1.14) Al >C, [ImA| > CAP/S.
Under the condition (1.6), there are no transmission eigenvalues in the region
(1.15) Al >C, [ImA > CNP°, Rel > C|AM/?Fe,

for every 0 < € < 1. Under the condition (1.8), there are no transmission eigenvalues in the
TEGLON

(1.16) Al >C, [ImA > CAPT.

To prove Theorem 1.1 we adapt the methods developed in [14], [15], [16] for C*° smooth
coefficients. In these papers the transmission eigenvalue-free regions were derived from suitable
approximations of the interior Dirichlet-to-Neumann map outside a parabolic neighbourhood
of the real axis. In other words, the problem of finding transmission eigenvalue-free regions
was reduced to that one of finding as good as possible approximation of the interior Dirichlet-
to-Neumann map by a semiclassical pseudodifferential operator (h — ¥YDO) on the boundary
(with a semiclassical parameter h ~ |A|~!) outside as small as possible parabolic neighbourhood
of the real axis. With such an approximation in hands, in order to get the eigenvalue-free
regions, one has to invert a semiclassical pseudodifferential operator whose symbol, say a, can
be camputed explicitly in terms of the restrictions of the coefficients on the boundary and the
principal symbol of the Laplace-Beltrami operator on the boundary. Recall that the boundary
I' can be considered as a compact Riemannian manifold of dimension d — 1 without boundary
with a Riemannian metric induced by the Euclidean one. Then the conditions (1.3) and (1.4)
guarantee that the function a is invertible outside some parabolic neighbourhood of the real
axis. Then to show that the semiclassical pseudodifferential operator Opy,(a) with symbol a is
invertible, one has to make use of some pseudodifferential calculas which are well-known in the
C*° setting. Thus one arrives at the conclusion that the eigenvalue-free regions correspond to the
regions where the Dirichlet-to-Neumann map has a good approximation and where the operator
Opy,(a) is invertible. Therefore, to get as big as possible eigenvalue-free regions one has to find
as good as possible approximation of the interior Dirichlet-to-Neumann map. In the C'°° case
this is done in [14], [15], [16] by constructing semiclassical parametrices for the solutions of the
equation (1.1) near the boundary mod O(h*°). Note that the C'* regularity of the coefficients
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near the boundary is essential in the analysis in these papers. The main difficulty in constructing
such parametrices is that one has to solve the eikonal equation mod O(z$°) and the transport
equations mod O(z3°+h>), where 0 < 21 < 1 is the normal coordinate near the boundary, that
is the distance to I'. This is especially difficult to do when the boundary data is microlocally
supported near the glancing region. Of course, when the coefficients are of low regularity this
analysis does not work any more. In this case we built (see Section 4) a less accurate parametrix
by solving the eikonal equation mod O(x1) and with no need to solve the transport equations.
In other words, our parametrix is the simplest possible in this context. Nevertheless, this leads
to some approximation of the Dirichlet-to-Neumann map, which of course is not as good as in
the C'°° case. Consequently, the eigenvalue-free regions we get by using this approximation are
much smaller than those in the C*° case. In order to make this approach work, however, we need
to use h — YDOs with symbols which are C* smooth with respect to the space variable. To this
end, we develop in Section 2 some pseudodifferential calculas for such operators. In particular,
we find some useful criteria for L? boundedness (see Proposition 2.4) and we also show how to
invert such operators (see Proposition 2.6). Note finally that p = 2 is the lowest regularity that
makes possible the construction of some parametrix.

The paper is organized as follows. In Section 2 we recall some basic properties of the h—¥DOs
with C* symbols concerning the L? boundedness and the composition of two operators. We
then extend these properties to h — WDOs with symbols which are C* smooth with respect to
the space variable. This is done by using a suitable interpolation between symbols which are
L and C* smooth with respect to the space variable. To this end, we establish a criteria for
L? boundedness for h — WDOs with L> symbols (see Proposition 2.3). In Section 3 we prove
a priori estimates which allow us to bound the norm of the difference between the Dirichlet-to-
Neumann map and the parametrix. In Section 4 we build a parametrix for the solutions of the
equation (1.1) near the boundary, which is a finite sum of h—FIOs. We then use it to get the
parametrix for the Dirichlet-to-Neumann map. In Section 5 we improve our parametrix in the
elliptic region in the isotropic case. This allows us to get a better approximation of the Dirichlet-
to-Neumann map in this case. This improvement is crussial in order to get the eigenvalue-free
regions in the isotropic case. In Section 6 we invert the operator Opj(a) with a symbol a as
above outside some parabolic neighbourhoods of the real axis as well as outside some parabolic
neighbourhoods of the imaginary axis when the condition (1.6) is assumed. This gives us the
eigenvalue-free regions. Note that in our case a is C'* smooth with respect to the space variable,
so we need to use the pseudodifferential calculas developed in Section 2.

2. h — ¥DOS WITH SYMBOLS OF LOW REGULARITY

We begin this section by recalling some basic properties of the h — ¥DOs with C°° symbols.
In what follows we will identify the cotangent space T*R%4! with R%~! x R4!. Introduce the
space S¥, k € R, of all functions a(z, &) € C®(RI¥! x R41) satisfying

(2.1) 020a(w,€)| < Cap()* 1

for all multi-indices o and 3, where (€) := (1 + |£]?)Y/2. We define the h — ¥DO with a symbol
a € S* by

Oy ) = byttt [ et )y,

where 0 < h <1 is a semiclassical parameter. Denote by H ],f(Rd_l) the Sobolev space equipped
with the h-semiclassical norm

)

Jull g += || 0P (&)1,
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where || - ||z2 denotes the norm in L2(R4~!). It is well-known that the operator Opy,(a) :
HFRI1) — L2(R471) is bounded for symbols a € S*. In fact, we have a stronger result.

Proposition 2.1. Let a € C®(R4™! x R satisfy

(2:2) 980 a(x,§)| < Cap(©)"

for all multi-indices o and B. Then there exists an integer sq depending only on the dimension
such that we have the bound

la|+18]
(2.3) ”Oph(a)HH}’j—>L2§ Z h—=2"Cqp.
o] +[B|<sq

Proof. Since Opy,(a) = Opy,(al€)™%)O0p,((€)*) and the function a(¢)~" satisfies (2.2) with
k = 0, it suffices to prove (2.3) for kK = 0. In this case, it is easy to see that the norm in the
left-hand side of (2.3) is equal to the norm ||Op;(ap)|| 2, 2, where ap(x,€) = a(h/?2, h1/2¢).
On the other hand, by Theorem 18.6.3 of [4] (see also Theorem 7.11 of [2]) the operator Op, (ay,) :
L? — L? is bounded and

I0pL (@)l enpe S > sup|OfDfan(a,€)]
|l +[B|<sq
which clearly implies (2.3) with k£ = 0. O

We will now use this proposition to prove the following

Proposition 2.2. Let a; satisfy (2.2) with k = 0 and constants C&g, and let ay satisfy (2.2)
)

with constants Cézﬁ. Then we have the bound

10py,(a1)Opy(az) — Opy(ara2)ll gr_, 12

(2.4) g Z h\a1\+\61\;\a2\+\52\Céll)ﬁlcéi)ﬁQ’
lot|+|B1|+]az|+B2|<sy, |1 [+]61]1>1, |az|+]B2]>1
where sl, = 2d + 5+ s4.
Proof. We will use the fact that
Opy,(a1)Opy(az) = Opy,(b),
where A
b(r,§) = 62h<DmDy>a1($,77)@2(ya£)|y:a:,n:§
= (2m) = /R /R L a6 = VPG )az(x — 112G, £)dGrdG,

where we have put D, = —iV,, D, = —iV,. Set ( = ((1,¢2) € R¥*~2 and ¢(¢) = ({1, ().
Clearly,

VCSO = (v41@7 VCQ()O) = (627 Cl)a
so we have |V¢¢| = |¢|. Consider now the function

g(t) = a1 (,& — th'()ag(z — th'?(a,€), 0<t <1,
An easy computation leads to the formulas
g'(t) = —hY2(¢1, Vear (z,€ — th*2¢))as(z — th'/%(, €)
—hY2 (o, Vyas(z — thY2 G, €))ay (2, € — th'/2(y),



6 G. VODEV

g"(t) = Gi(t) + Ga(1),
where

G1 = h(C1, Ve(Gr, Vear(x, & — th'?¢1)))as(w, €)
+1{Ca, ValGa, Vian (3 = th' 2o, €)))n (3, ),
Go = h{Gr. Ve(Gr, Vear (€ = th' %)) (asle — th' /%62, €) — an(a,€))
(o, Vi (Ga. Vs @ = th' G2, €))) (ar (o€ = th2¢1) = an(a, )

+2h{C1, Veay (2, & — th*2(1)) (Co, Vaaa(z — th'/? (s, €)).
Clearly, the function Gy satisfies the bounds

3
la]+18] 1 2
(2:5) 02| 5 (> Ielf > BT ClaCory
=0 o+ Bl=[71+E, |l >1, 8] >1

for all multi-indices v, uniformly in ¢. Observe now that we can write

1
9(1) = 9(0) + ¢'(0) + /0 (1~ t)g" ($)dr,

where

g(O) - al(ma S)GZ('%'7§)7
9’(0) = _h1/2<<ly Vfal(x, £)>(Z2 (x’ 5) - h1/2<<2, V:BQQ(x’ £)>(Z1 (x’ 5)
On the other hand, given any function ¢ € C°°(R%~!), we have the formula

m [ G = v0)
where j = 1,2. Therefore we have
/de—2 ewg/(())dC - R2d—2 6igogl (t)d< =0.
We get from the above formulas
1
(2.6) b—ajay = (2m) 4 / (1—1) / e Go(t)dC L.
0 R2d-2

Let ¢ € C°(R), ¢p(0) =1 for |o| <1, ¢(0) =0 for |o| > 2. We will now bound the integrals

h=Cn) [ eacgaedc

b= (n) [ - o) (chgadc.
By (2.5) with v = 0, we have

|| +18]
(27) Ll < ()" > s eiey!
la+]8]<3, la[>1, [8]>1

uniformly in ¢. To bound the second integral we will integrate by parts. To this end observe
that

Lcei“J = ¥,
where

L = —il¢|2(Vep, V).
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It is easy to see that, given any integer m > 1, the adjoint operator to LE” satisfies

(2.8) (LY QS 1™ > |o2r(©)].

lv|<m

We can now write the integral I in the form

I = (27T)d+1/ (L) (1= ¢)Ga(t)) dC.
R2d-2
Using (2.5) and (2.8) we obtain

—m lo]+18] 1) ~(2)
L < / Cle-md¢ S e el
2| S E ot [q 0,3

loo|+[B]<m+L, |a| 21, [B]>1

la|+]8]
(2.9) <@k - lelyiely!

lo|+181<2d+5, [a[>1,]8]>1
if we take m = 2d + 2. By (2.6), (2.7) and (2.9), we conclude

\al\HﬁQ\ 2
(2.10) 1b— ayas| S (€)* 3 h coCi,
lo1|+]B2]|<2d+5, [a1|>1, |B2|>1

Similarly, given any multi-indices o and 3, we can obtain the bounds

\GH\B\
(€)Fh 210801 (b — aras)]
log [+lag|+81 [+82] 1 2
(211) < > h 2 Carp,Conpr
la [+ oz |+ B1 [+ B2l lal+[B]+2d+5, a1 |+] 81| =1, [z | +[B2]>1
Clearly, the bound (2.4) follows from (2.11) and Proposition 2.1. O

The above definition of the h — ¥DOs makes sense also for symbols a(x, ) which are smooth
only with respect to the variable £ and satisfy

(2.12) |02 a(z,&)| < Co(&)F o
for all multi-indices a, where k € R. For such operators, we will prove the following

Proposition 2.3. Let a satisfy (2.12) and let k' > k. Then we have
(2.13) ”Oph(a)HHk/*)LQ S log(1 + ht Z Ca-

laf<d

Proof. As above, it suffices to prove (2.13) for £/ = 0. Then we have k < 0. Clearly, the
kernel K of the operator Opy,(a) is

K(ay) = (2a) = [ e rdae, e
Rd—1
In view of Schur’s lemma, it suffices to bound from above the integrals

/ K (2, y)|da + / K (. )\dy.
Rd—1 Rd—1

Integrating by parts in the above integral leads to the bounds

O y,) > [ Jozate.6)]de

|a|=d
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S X [ e

|al=d
h
Syl 2. Co
|a|=d
Hence
[ K@wldes [ (Kl
lz—y|=h lz—y|=h
Sh Z Ca/ lw|~dw
la|=d weRI~1:jw|>h
o
shY c [ o5 Y ca
la|=d h lo|=d
We will now bound the kernel for |z —y| < h. Set A = ﬁ > 1. Let the function ¢ be as above

and decompose the kernel as K = Ky + Ky, where

Ky (2, y) = (2mh) =4 / e HEv 0z, €)p(1¢]/A)de.

Rd—-1
An integration by parts leads to the bounds

d—2
g $h () Y [ o Gt o)) de

[z =y Wil

1
gﬁ Z Aa|+2_d/ |0 a(x,€)| d¢

h-
|z —y la|<d—2 1€]<A

< M T gkl / ()1l g

|z —yld—2 o< <A
Bl A+1
S — Z CaAa|+2d/ O_kf|a\+d72d0_
|z -y la|<d—2 0

LAl

Set € = (log(l + h_l))_l. Clearly, there is 0 < hg < 1 such that € < —k for 0 < h < hg, and
hence A*¥ < A=¢. Thus, taking into account that h~¢ = e, we get

1
|K1(z,y)| f,m Z Ca
la]<d—2

for 0 < h < hg. Clearly, for hg < h <1 the above bound still holds with 0 < € <« 1 independent
of h. Hence, in all cases, we have

[ [
T=Y|>

lz—y|<h
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Z Ca/ ’w’fdJrlJredw

o <d—2 weRI—1:jw|<h
Y af s Y o
Ioz\<d 2 lor| <d—2

Similarly, we have

rK2<w,y>15h-d+1<ﬁ) S [, 1o et )1 - 6)el/a) e

lo|=d—1

1
St > Aal+1_d/ |0F a(w,€)| d¢

la|<d—1 1€|>A

SW Z C., A|a\+1 d/ <£>k7\a|d£

la|<d—1 |€1>A
C / k d+1+ed£
ST 2
’m ’ o] <d—1 Rt
k—14e€
S L G
la|<d—1
| y|d 1—e Z C
|a|<d—1

As above, this implies
[ eyl [ |Repldyse! Y ca
lz—y|<h lz—y|<h || <d—1

which clearly completes the proof of (2.13) with &' = 0. O
The logarithmic term in the right-hand side of (2.13) can be removed if some regularity of
the symbol in z is assumed. Indeed, in this case we can decompose a as a sum of a large symbol

which is C*° in x and a small symbol which is L*> in x. Then we can apply (2.3) to the C*°
part and (2.13) to the L* part. More precisely, we have the following

Proposition 2.4. Suppose that a satisfy (2.1) for all multi-indices o and 8 such that |5 < p,
> 1 being integer, and let k' > k. Then we have

lo]+18]
Op (@l e S S B Cus
|| +18]<sa, |B] <

(2.14) +h*Plog(1+h7Y) > Cap
lo|<d, [B|<p

Moreover, if u > sq the second sum in the right-hand side of (2.14) can be removed.
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Proof. Let ¢o € C(RY1), ¢9 > 0, be such that fR‘Fl ¢o(z)dr = 1. Given a parameter
0<t<1, set

e, = [ Gully— )/l dy = [ onlwlale + b, )du

Clearly, the function a; is C*° smooth in x and satisfies (2.1) uniformly in ¢ for all multi-indices
a and (3 such that |3] < u, while for |3] > u+ 1 it satisfies the bounds

(2.15) ‘agagat(x,g)‘ < 1Bl gyh—lal Z Cap-
18’ |=p
The Taylor expansion of the function a(z + tw, ) at t = 0 yields
Rolys
a(x + tw, &) = Z (915 (x + tw, f)|t0+ au (z + tw, §)|e=r
5= 0
-1,
Z Zwﬁaﬁ (x,&) + Zwﬁaﬁ (x +t'w,§)
s=0 % " |Bl=s Iﬁ\ =p

with some 0 < ¢’ < ¢. Clearly, the functions d2a(z + t'w, £) with |8] =  satisfy (2.12) uniformly
in t'w. Therefore, by Proposition 2.3 we have

15] ! -1
(2.16) > |ovn@iat+¢ w’@)HHHQ Slog(l+h™) Y Cags.
|Bl=H | <d,|B|=p
We now apply Proposition 2.1 with a;. In view of (2.15) we get
|| +18]
(217) Opuadlz s S e,

la+[BI<sq, |BI<p

if we take t = /2. Thus, by (2.16) and (2.17), we obtain

10w (@)l 2 S Swry |0 (07a)|

p B1s HF L2
la]+8]
(2.18) +hPlog(1+h7Y) Y Cap+ Y. bz Cap
ol <d, 8= ol +BI<sa, |B1<n

where the first sum in the righ-hand side is zero if ; = 1. It is easy to see now that (2.14) follows
from (2.18) by induction in p. O

We will next extend Proposition 2.2 to h — ¥YDOs with C* smooth symbols, where p > 1 is
integer. We will first prove the following

Proposition 2.5. Let ay satisfy (2.1) with k < 0 for all multi-indices o and 5 such that || < p

with constants C1 %, and let ag satisfy (2.1) for all multi-indices o« and B with constants C'( )
Then we have the bound

|Opy,(a1)Opy(az) — Oph(ala2)”H;;—>L2
S Z h\aﬂﬂﬁﬂ;\az\ﬂﬂz\c(l) 0(2)

a1,B1 " az,B2
lecr[+|B1]+|z|+]B2]<syy |B1|<p, |1 [+]81|>1, [az [ +] B2 >1
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1,81 " a2,B2
|0£1|Sd,‘61|:}L,‘O{2|+‘62‘S8d
2 -1 1) (2)
(2.19) +h#?log(1 4+ h™h) > C 5,Co sy
|1 |[4]az|<d, |B1|=p, B2=0

Let ay satisfy (2.1) with k = 0 for all multi-indices o and  with constants Cgé, and let ag

satisfy (2.1) with k < k' for all multi-indices o and 8 such that |B] < p with constants Cézzg
Then we have the bound

|Opy,(a1)Opy(az) — Oph(a1a2)HH;fgL2
[oq [+1B1 [+l |+]B2] 1) (2)
< > h 2 c),C
~ 1,81 a2,B2
|1 481+ || +[B2| <5ty | B2l <ps [an |41 81121, Jaz [+] B2]>1
log [+181]
TR 10g(1 4+ hY) S e, c®
lat|+]611<54, |a2]<d, | B2|=p
(2.20) +h? log(1 + A1) 3 oV, e,
|1 |+|az|<d, B1=0, | B2|=p

Let ay satisfy (2.1) with k = 0 for all multi-indices o and B with constants ng, and let ay be
independent of the variable & and satisfies

(2.21) 85&2(3:)‘ < C’éz)

for all multi-indices B such that |B| < p. Then we have the bound
0Py (a1)Opp(az) — Opy(araz)ll 2, 12

log [+151 14182l (1)
< 2
~ 2 : h COé1751
let|+|B1|+]B2]<sy, [ |[+]B1[>1, 1<| B2 <pt

/2 falZal (1) ()
(2.22) +hH > htrol) o,
loa [+1B1]<sq, |B2|=p
Proof. We will only prove (2.19) since (2.20) and (2.22) can be obtained in the same way. We

approximate a; by the smooth function a;; as in the proof of Proposition 2.4. Then the Taylor
expansion allows us to write the difference a; — a1 in the form

(2)
Cﬁz

pn—1
(2.23) ap — a1 = Z tsags) + t“ag‘ft),
s=1
where
ags) = Z cgdlay(x,€), 1<s<pu—1,
18|=s

o) =) [ do(ww e (w + tw, dw,
18l=n " F
(s)

Clearly, when 1 = 1 the sum in the right-hand side of (2.23) is zero. We also have that a;”’,
1 <s<p—1,satisfy (2.1) with k£ < 0 for all multi-indices a and 8 such that |5]| < p — s, while
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ag’ft) satisfies (2.12) with k& < 0 uniformly in ¢ for all multi-indices «. In view of (2.23), we can

write
pn—1

(2.24) Op;,(a1)Opy(a2) — Opp(araz) = Ag + Z t* A + " Ay,
s=1

where

Ao = Opy(a1,.)Opy,(az2) — Opy (a1 as),
Ay = Opy (a)Opy(az) — Opy (alVas),
A, = Opy,(a¥)Opy,(az) — Opy,(alas).

We take t = h'/2 and use Proposition 2.2 to bound the norm of the operator Ay. Taking into
account the bounds (2.15), we get

I Aoll s 1
log |1 4+181 [+ |+183] (1) 2)
N Z h : Cal,ﬁl Ca2,52'
et [+]B1]+ 2|+ B2]<sys [B1|<p, fan [+]B1]| 21, [z [+ 82| >1
To bound the norm of the operator A, we will use Propositions 2.1 and 2.3. We get

Al 2 < |[Opa(alf))] Uao)|

oy 0P (@)l g2+ O (@ az

_ 1 lagl+(B2] (9
N log(l th 1) Z Cél)vﬁl Z h Ctgm),ﬁz
l1|<d, |B1|=p |z |+]B2|<sq

-1 1~
+log(1+h7") Z Ca1,510a2752'
ot |+]az|<d, | B1]|=p, B2=0
Now (2.19) follows from the above bounds and (2.24) by induction in . O

k 2
Hh—>L

We will now use the above proposition to prove the following

Proposition 2.6. Let a; satisfy (2.1) with k < 0 for all multi-indices o and 8 such that |B| < p1
with constants Cgé, and let ay satisfy (2.1) with k < k' for all multi-indices o and 8 such that

18| < po with constants Cgé. Then we have the bound

10py,(a1)Opy(az) — Oph(a1a2)||H;fng

log [+181 ool 1ol (1) (2)
< >
< h 2 Cahﬁl Ca2752
ot |+|B1 |+l a2 | +|B2| <), [Bi|<pa, B2 <pa, [ [+B1] > 1, [ |+ B > 1

2 -1 lag|+18a] (1) (2)
+hul/ log(l +h ) Z h—= Cal,ﬁl Ca2752
la1|<d, |B1|=p, laz|+]B2]<sq, |B2|<p2

2 -1 1) (2)
+hl‘1/ log(l +h) Z Cal,ﬁlcaz,ﬁz
| |+|az| <d, |B1|=p1, f2=0

9 1 log [+181] (1) 2)
+hu2/ log(l +h ) Z h—= Cal,ﬁl Ca2752
a1 [+[B81|<sq, |B1]<p1, |az]<d, | B2|=pe2

2 -1 (1) (2)
+h#2/2log(1+h71) Z o, cl
|1 |[+]a2|<d, B1=0, | B2|=p2
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+p2)/2 7142 -1 1) (2)
(2.25) +hlmHn2)/21662(1 4 1) > C5,Con sy
la1|<d, |Bil=p1, |a2|<d, | B2|=p2

Moreover, if ay is independent of the variable & and satisfies (2.21) for all multi-indices  such
that |B| < pa, then we have the bound
10Dy (a1)Opp(az) — Opp(arasz)|l 2, 2

log [+181 [+182] 1) 2)
<
~ Z h ? Ca1,51052
loa [+]B81]+]B2]<sy, [ar|+[B1]>1, [B1|<pa, 1< B2 | <pz

_ 1 2
+h gt +n7ly Y ol of?

a1,61
la1|<d, |B1l=m

\a1\+\51\ 1 2
(2.26) Fhp2/? 3 ol o).
loa [+181]<s4, [B11< 1, | B2|=p2
Proof. The proof is similar to the proof of (2.19) and we keep the same notations replacing
by p1. The only difference is that as is no longer C'*° in x, so we have to bound the norms

of the operators A and A, differently. To bound the norm of Ay we will use Proposition 2.5.
By (2.20), we have

H-AOHH}If’ﬁL?
lag [+15 [ +Hao | +1Bal (1) 2)
N Z h 2 Cal,ﬁlcam&
|t |[+[B1]+ || +|B2|<sys |B1ISpa B2 Spzs [aa [+ B1] 21, |az|+]B2| >1
laq [+181]
+hH2/210g(1+ A1) > e, o
|1 |+B1I<s4, |a2|<d, |B1]<pa, | B2|=p2
+h#2 2 log(1 4+ h) > Ci)5,Com

|1 |[+] 2| <d, B1=0, | B2|=p2
To bound the norm of the operator A,, we will use Propositions 2.3 and 2.4. We get

10Pw(a2)ll e 2 + || Opw (el o)

#1)
A2 < | OPr(a)) e

L?2—L?

-1 (1) lag|+[B2] (2)
Slog(l+nr") > ¢y > T e?,
le|<d, |Br]=pm loa|+[B2|<sq, |B2| <p2

2 1og? -1 (1) (2)
+he P log?(1+ 7 N el Y el
o1 |<d, |B1]=p1 laz|<d, | B2|=p2
-1 1 ~©®
+log(1+hh) > cV,c?, .

|| +]az|<d, [Bi]=p1, B2=0
Now (2.25) follows from the above bounds and (2.24) by induction in p;. The bound (2.26) can
be derived from (2.22) in the same way. 0

It is well-known that one can define h — ¥DOs with C'°° smooth symbols on an arbitrary com-
pact manifold without boundary using the definition on the Euclidean space (e.g. see Chapter
18 of [4]). Roughly speaking, an h — ¥DO on a manifold of dimension d — 1, say I', is a finite
sum of h — UDOs on R*~! with symbols compactly supported in z. In other words, studying
h — ¥DOs on compact manifolds is reduced to studying h — ¥DOs on the Euclidean space with
symbols compactly supported in x. In the same way, we can define h— WDOs on I' with symbols
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of low regularity in . To be more precise, we cover I' by a finite number of open sets Uj,
j=1,...,J, such that

kj:U;j — ﬁj c RI?

are diffecomorphisms. Then we can associate to x; a diffeomorphism

K;: T*U; — T*U; ¢ T*R4 !
such that

Kj(,€) = (kj(x), 'Kj(@)€).
Let ¢; € C*°(U;) be such that ijl Y; = 1. If a is a function on T*T', we can write it in the
form a = ijl aj, where a; = a1j. Define the function a; o lC;l on T*(?j by

(aj o K; ) (s m) = a; (K5 (y,m)).

Then we define the operators Opy,(a; o IC;l) as in the begining of the section. We now define
Opy,(a) in terms of these operators as follows

J J
Opy(a)f = ZZOpm Jouf = >3 (Opulas o ;) (Gef) o 7)) 0 55

j=1¢=1 j=1¢=1

We will say that a € S*(T) if a;o IC]»_1 € Sk for all j. Similarly, we can extend the other classes
of symbols on T*R%~! above to symbols on T*T". It is then clear that the above propositions

extend to h—WDOs on T with the spaces L? and HF replaced by L?(I') and HF(I"), respectively.
To simplify the notations in the formulas that follow, we will omit the diffeomorphisms and will
identify T*Uj with T*Uj.
3. A PRIORI ESTIMATES
In this section we will prove a priori estimates for the solution to the equation

(3.1) { (W*Ve(x)V + zn(z))u =hv in Q,

u=0 on T,

where ¢,n € L*>(Q) are real-valued functions satisfying c(z) > by, n(z) > by for some constant
bg > 0,0 < h < 1 is a semiclassical parameter and z € ZT U Z~, where

t={2eC:|z| =1, +Rez > 0}.
Set # = [Imz|if 2 € Zt and § =1 if 2 € Z~. We will prove the following

Theorem 3.1. Suppose that c,n € C1(Qys) for some 0 < § < 1. Let § > h and let u € H?()
satisfy equation (3.1). Then the function g = hO,ul|r satisfies the estimate

(32) gl 2y S P20 12 0]l 12
Proof. We will first prove the following
Lemma 3.2. We have the estimate

(3.3) lull 71 @y < 7O~ vl L2 0-



INTERIOR TRANSMISSION PROBLEMS 15

Proof. By the Green formula we have

(3.4) (znu — hv,u) 2 ) = <—h2VcVu,u>L2(Q) = /Qc\hVuP.
Taking the imaginary part we get the identity
Imz n1/2uH2 =Im (hv,u)
L2() - » HIL2(Q)
which implies
(3.5) ull 20y < hlTm 2|~ H|v]| 12 (o)

Taking the real part of (3.4) we get

/ c/hVu|? = Rez (nu, u) 2 () — Re (hv, u) 2
Q

(3.6) < (Rez +¢€) (nu,u) pa2q) + O= (1) |01 72 g

for every 0 < e < 1. In particular, (3.6) implies

(3.1 [T S gy + 1201y

By (3.5) and (3.7) we obtain

(3.8) lull g1 () S hIm 2ol r2)-

When |Rez| < 1/2 we have [Imz| > 1/2, so in this case (3.3) follows from (3.8). When

Rez > 1/2 we have |Im z| = 6, so in this case (3.3) again follows from (3.8). When Rez < —1/2
we have # = 1, so in this case (3.3) follows from (3.6) with e = 1/4. O

Let V C R? be a small open domain such that V° := VNT # (). Let (z1,2') € V¥ :=VYNQ,
0< 21 <1, 2" = (29,...,24) € V°, be the local normal geodesic coordinates near the boundary.
In these coordinates the principal symbol of the operator —A is equal to ¢ + r(x,¢’), where
(&1,&') are the dual variables to (z1,2'), and r is a homogeneous polynomial of order two and
satisfies C1|¢/|2 < r < Cy|¢’|? with some constants C1,Co > 0. Therefore, the principal symbol
of the positive Laplace-Beltrami operator on I' is equal to ro(2/,&’) = r(0,27,¢).

Let V1 C V be a small open domain such that V) := VNI’ # (). Choose a function ¢ € C§°(V),
0 <1 <1, such that ©» = 1 on V;. Then the function v’ := ¢u satisfies the equation

(3.9) (R?Ve(x)V + zn)u’ = hv” in Q,
w=0 on T,

where v* = v + h[VeV, Y]u satisfies

(3.10) 10|22 < 10l L2y + [ull 71 (@)-

We will now write the operator —h?*Ve(x)V in the coordinates = (z1,2”). Denote D,, =
—ih0,,;. We can write

(3.11) ~h*Ve(z)V = c(2)D2, + c(z)r(z, Dy) + hR(z,Dy),

where R is a first-order differential operator with L°° coefficients. Denote

@m:/mmcwm:/UW%
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and introduce the function
F(x1) = HDmusz — <T(£C1, -,Dm/)ub,ub>0 + Rez <ﬁ(:c1, .)ul’,ub>0 )
where 71 = ¢~ 'n € C1(Qs). Since u’|,,—o = 0, we have
(3.12) F(0) = HDmub]m:oHZ.

On the other hand,

é

for some constant § > 0, where F’ denotes the first derivative with respect to z1. We will now
bound F(0) from above. To this end we will compute F’(z;) using that u’ satisfies (3.9) together
with (3.11). We have

F'(z1) = —2Re <(D§1 +r —Re zﬁ)ub,axlub> — <(7"/ — Re zﬁ/)ub,ub>
0 0
=2h 'Im <(—h2Vc(x)V +Rezn — hR)w’, clemub>0
_ " _ Re 2t b b
<(7“ ezn )u’,u >0
= 2Im <(vb — ih ™ m zna” — Rub),clemlub>0

- <(r' — Rezi' ), ub>0 .
Hence
1
[F' (@) S B9 IG + 0h7 Y IDL I+ Y DS
=0 lo]<1
Using this estimate together with (3.10), (3.13) and Lemma 3.2 we obtain

d
F(0) < /0 |F'(w1)lde1 S 07|02y + (1+ 607 |lullf g

(3.14) < (07 + B2072) [0l 2a(0y S 1O 0l 220y,
Observe now that
Dmlub|ll¢1=0 = T;ZJO’Dmlu|ml=0a Dm/u|x1=0 =0,

where 1y = 1|,,—o is supported in V° and such that 19 = 1 on V. Therefore, by (3.12) and
(3.14),

190Dz uler=ollg S BY207Y2 0] L2 (0.
which clearly implies
(3.15) 1oglly < RH2072|0]| 2(q).

Since I' is compact, there exist a finite number of smooth functions ¢;, 0 <; <1,i=1,...,1,
such that 1 = Zle ¥; and (3.15) holds with 1y replaced by each ;. Therefore, the estimate
(3.2) is obtained by summing up all such estimates (3.15). 0



INTERIOR TRANSMISSION PROBLEMS 17

4. APPROXIMATION OF THE DIRICHLET-TO-NEUMANN MAP
Given f € HY(T') let u solve the equation
(4.1) { (R®Ve(z)V + zn(z))u=0 in Q,
u=f on T,
where ¢, n, h, z are as in previous section. We define the semiclassical Dirichlet-to-Neumann map
N(h,z) : H{(T) — L*(T")
by
N (h,2)f := —ihd,ulr.

We would like to approximate N'(h,z) by an h — WDO on I similarly to the C* case. To this
end, introduce the function

p(a' €, 2) = \/=ro(a, &) + zng(a’), Tmp >0,
1

where ng = n|r, n := ¢ 'n, and r is the principal symbol of the Laplace-Beltrami operator on
I written in the coordinates (z,¢") € T*T'. Let n € C°°(T*T") be such that n = 1 for ro < Cj,
n = 0 for rg > 2Cy, where Cy > 0 does not depend on h. It is easy to see (e.g. see Lemma 3.1
of [14]) that taking C( big enough we can arrange

(4.2) C10'/2 < |p| < Cy, Tmp > Cslf||p|™" > Cylf)]
for (2/,¢") € suppn, and
(4.3) lp| > Tmp > Cs[¢|

for («,¢’) € supp (1 —n) with some constants C; > 0. In other words, supp (1 —n) is contained
in the elliptic region of the boundary value problem (4.1). Our goal is to prove the following

Theorem 4.1. Let 6 > h*/°. Suppose that c,n € C'(Qs) and g € CH(T') with an integer u > 2.
Then for every f € HY(T') we have the estimate

IN (2, 2) f = Opn () fll 2y S W21 Ny

(4.4) RO (14 12 10g ()0~ ) | gy .

Suppose in addition that ¢ = 1. Then we have the better estimate

(45)  IN(zh)f = Opu(p + ha) fll 2y S hO~2 (1 + B 1og<h—1>9—d—“) 111772y
where ¢ € C*°(T*T") is independent of z, h and the function n.

Proof. We will build a parametrix for the solutions of the equation (4.1). This parametrix
will not be as good as that one built in the C'°° case, but will suffice for the proof of the above
estimates. Let (x1,2’) € VT be the local normal geodesic coordinates near the boundary. Take a
function x € C°(T*T'), 0 < x < 1, such that 7, (supp x) C V°, where 7,/ : T*T' — I" denotes the
projection (2,&’) — 2’. Moreover, we require that either y is of compact support or y € S°(T")
with supp x C supp(1—mn). We will be looking for a parametrix of the solution to equation (4.1)
in the form

U= ¢(w1/5)(27rh)7d+1 //e;il((y'7§'>+%0($7€'72))a(x’5/’ 2 f(y)de dy'
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where ¢ € C§°(R), ¢(t) =1 for |t| < 1/2, ¢(t) = 0 for |t| > 1, 0 < § < 1 being a parameter
independent of h and z. We require that u satisfies the boundary condition u = Op,(x)f on
x1 = 0. We take a = x(2/,¢’). Furhtermore, we choose the phase function in the form

p=—(2',&) +z1p.
Then it is easy to see that  satisfies the following eikonal equation
(4.6) (Op,0) 4 1(x, Vi) — 20(x) = 219,
where |®| is bounded as z; — 0. By assumption, we have
n(z) = no(x') + 17 (z), 7o € CH, 7 € L™,
Furthermore, it is clear that the function r can be written in the form
r(x,¢) = (R(2)¢,¢)
where R is a C* smooth (d — 1) x (d — 1) matrix-valued function. Hence we can write
R(z) = Ro(a') + 21 R*(z)
where Ry = R|;,—¢ and RF are C* smooth functions. Thus we obtain
O = -zt + (RN (2)¢,¢') — 2((Ro(a)) + 21 R¥(2))¢, Varp) + 21 (R(2)Var p, Var ).
Observe now that
(4.7) Varp = (2p) " (=Vuro + 2Vuig) .
Hence we can write the function ® in the form
D =~ + (RU2)E,€) + p (Ro(a') + 51 R (2)E', Varro — 2V i)
+21(20) "2 (R(2)(Varro — 2Vuig), Varre — 2V i)
Observe now that u satisfies the equation
(W*Ve(x)V + zn(z))u = hv,

where the function v is of the form

¥ = (2mh) " / / eh W= Eheimelh A ¢ 2) f(y)dE dy'

— Op, (¢=/"4) 1
where
A= h"te MRV e(2)V + 2n(z)) ((b(xl/é)ei@/ha) .

To compute the function A observe that the operator —V¢V can be written in the coordinates
(x1,2’) in the form

—VeV =¢D2 + ¢(R(x)Dy, D) + (Q(x), D)
where D, = —i0y,, Dy = —iVy, D, = =iV, = (D, Dyr), R is the smooth matrix-valued
function as above, and Q = (Q1,...,Qq4) with scalar-valued functions ; € L>. Denote é =
(Q2,...,Qq). Hence we can write

—h2VeV = ¢D2, + hQy(z)Ds, + ¢ (R(x)Dy, Dy} + h <@(x), D$,> ,

where D,, = hD,,, D,y = hD,. Therefore, the function A can be decomposed as A; +
¢(x1/6) Az, where

Ay = M [hTID2, + Qi (@)D, 91 /9)] (¢/"a)
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= —2ico ' ¢ (x1/8)e /"D, (ei‘p/ha>

—hed 2" (x1/8)a — ihQ16 1/ (z1/6)a
= —2icd ¢/ (21/6) (ady, o + Dy, a)
—hes—2¢" (x1/8)a — ihQ16~ "¢/ (21 /6)a
= —2ic " ¢/ (w1/8)xp — hed 2" (x1/6)x — ihQ16 "¢/ (1/6)x,

and

Ay = —h e ® — 2ic (0, 00p,a + (Vaurp, Vara))

+ica (D2, + (R(z) Dy, D)) ¢ + he (D2, + (R(z)Dyr, D)) a
+Q1 (aaazlﬁ,@ + Dxla) + <é7 Vm/cp> a + <©7 D:B’a>
= —h7lex ® — 2ic(—€ + 21V p, Varx) —iczix (R(x)Vy, Vi) p
—he (R(x)Var, Var) X + Qixp + <@, —&'+ xlvx’p> x —ih <@, V$fx>
= —hler,® + As.

In view of (4.7), the function Az can be written in the form

Az = 2ic(€',Vpx) +iz1p te(Vyrg — 2Vuig, Varx)
—he (R(x)Var, Var) X + Qixp — <@, £’> X —ih <@, Vx’X>

—21(2p) 7! <C§, Vrro — sz/ﬁ0> X — icx1x (R(x)Vyr, Var) p.

The last term can also be expressed in terms of negative powers of p. Indeed, if 2 < £,j < d, we
have

Oz, 0z;p = Ox, ((2;))*1 (—ijro + z@xjﬁo))
= (20) " (=00, 00,70 + 202,00,710) + 27" p~2 (Or,10 — 205,T10) Oa,p
= (2/))_1 (—8”(9ij0 + z@xl&rﬁo) — 2_2p_3 (axj’l“o — z@xﬁo) (amzr(] — Zameﬁo) .
It is easy to see from the above expressions that we have the following

Lemma 4.2. The functions ® and Az are of the form
(4.8) D=0by +byp  taip! (bs + b4p_1) ;

(4.9) Az = bs + hbg + brp + z1p~ " (bs + bop™ " + brop?),

where b; are functions on T*I' independent of h, p and depending on x1 and z. Moreover, each
function b;j is of the form

(410) b] - Z Wj,a(va)Xj,a(x/’g/)gla’
o <€

where ;o are either x or derivatives of x, wjo € L uniformly in z, and 0 < £; < 4. More
precisely, we have 61 =2, by =43 =3, 0y =4, b5 =1, =07 =0, bg =2, lg =3, {19 = 4.

Using this lemma we will prove the following
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Proposition 4.3. Let 0 < 1 < 8. If x is of compact support, there exists a constant C' > 0
such that, given any N > 0 independent of h, we have the estimate

| (0p (197 45) £) (21,)]

L*(T)

(4.11) < (1 + B2 1og(h*1)9*d*ﬂ) 072 CmO FL

If supp x C supp(1 —7), given any 0 < € < 1/2 independent of h, we have the estimate
(4.12) | (0 (2177 45) £) (@1,

—3¢ —1/24€
poaey S IO gy

Proof. Clearly, Xj.o = xjaf'* € C(T*T) is compactly supported if so is x, and Xja €
Slel(r), supp Xj.a C supp(l —n) if x € S°(T"), supp x C supp(1 — 7). In view of Lemma 4.2 we

can write
Oph <eirlp/hA2> = —hilxl Z cwl,aOph (eixlp/hj(vLa)

o <2

—h oy Z cw2,,Opy, (eixlp/hpfliza)

o] <3

—h 't Y cws aOpy, (emp/hpflis,a)

la|<3

~h 0% 37 awr Oy (€772 )

o] <4

+ Z ws,aO0py, (ei“p/h%,a) + hwe,0Opy, (emp/h%ﬁp) + w7,00py, (emp/hPi?,O)

o<1

+r1 Y wsaOpy, <€mp/hﬂfl>zs,a>

lor| <2

+21 Y weaOpy, <€mp/hﬂf2>zg,a>
jal<3

+x1 Z WlO,aOph <emlp/hpi3i10,a) .
|| <4

Hence

|op (emﬂ/hAz)stfj S Y |01 (27 01000 ) /|

(=1 k=t—1 || <k+2

+ 3 [om (¢4 %s0) 1]+ opn (750 1| + Op (27570 o
la|<1

0> Y [om (¢ ) 1]

k=1 |a|<k+1

It is easy to see now that the proposition follows from
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Proposition 4.4. Let k > 0 be an integer or k = —1 and let £ > 0. If x € C°(T*T) is of
compact support, there exists a constant C' > 0 such that, given any N > 0 independent of h,
we have the bound

o (et %))

H, N(D)—L2(D)
(4.13) < xl_fh%*f*%/? <1 + pH/2 log(h71)97d7“> ¢ Cw10/2h.

where k = 0 if k=—1 and k=k if k> 0. If x € SP(T"), suppx C supp(l —n), we have the
bound

(o o (e=antz)

provided p < k+ ¢+ 1.

< hgxl_z,
H}L(F)%lﬁ )

Proof. We will first prove the following

Lemma 4.5. Let k and k be as in Proposition 4.4. Then, there exists a constant C > 0 such
that we have the bounds

(4.15) ‘8385, <emlp/hp*k>‘ < COCH*E/Q*‘O‘Hme*C“O/h on supp1,

(4.16)

0 <em1‘)/hp_k>‘ < Ca\ﬁl\_k_we_cxl‘g‘/h on supp(l —n),
for all multi-indices o and B such that |5| < p.

Proof. Tt follows from Lemma 3.2 of [14] that, if £ > 1 is an integer or kK = —1, we have the
bounds

O 1| —k—2lal-213]
(4.17) Pl on supp1n,

8%0% (pM)| <
¢ ‘ Calp|7*7101 on  supp(1 — ),

for all multi-indices o and 8 such that || < p. By (4.17) together with (4.2) and (4.3) we get
that the function p=*, k > 1 being integer, satisfies the bounds

—

while the function p satisfies
Colp|' 21217281 on supp,

959%p| <
‘ ‘ {Calé’ll""‘ on supp(l —n),

for all multi-indices o and 8 such that |3| < p. Clearly, the bounds (4.18) hold with k = —1,
provided |a| 4 |5| > 1. Therefore, to prove the lemma it suffices to prove the bounds (4.15) and
(4.16) with £ = 0. This in turn follows from Lemma 4.2 of [17], but we will sketch the proof
here for the sake of completeness.

Let us see that the functions

Cap = e~ MOR0], (¢712) o] + 18] = 1, 18] <

C,0~F/2=lel=I8 on  suppn,

4.18
(4.18) Calé'1l on  supp(1 — 1),

(4.19)

satisfy the bounds
oy |al+18]+|a’|+[ 8] 21 \? .
(4.20) ‘80‘/3,07 ‘g <_> |p| -2l +181+a +1871-3)
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on suppn, and

|| +18]+]e’|+]8'|

’ / I J _ N
| D DR € W R
=1

(4.21) o

on supp(l — n), for all multi-indices ¢ and S’ such that |3] + |8'| < p. We will proceed by
induction in |a| + |B|. Let a1 and 1 be multi-indices such that |a;|+ |81] = 1 and observe that

1

Catan g = 05 Ot cap +imih ™ ca 505000 p.

More generally, we have

(4.22) 0 O cavar prs = 05T co g+ imh 1O 00 (Ca,gag/l a5 p> .
By (4.19) and (4.22), it is easy to see that if (4.20) and (4.21) hold for ¢, g, they hold for

Catay,f+8 as well.
Using (4.20) together with (4.2) we obtain

' loe| 48] 21 \J ' B
eww/hcaﬁ(g 3 (m) |p|~2alH181=4) ¢ ~2C021 Alp)
j=1

|48
< S 07|p|2alHBI=) =Cmib/h < glol=|Bl~Crr0/h,
7j=1

Similarly, by (4.21) we obtain

la|+| ] .
iw1p/h ‘ < (ﬂ)] /| =lal+j g =2Cn €| /h < (¢t~ lal g =Carl€|/h
€ Ca,ﬁ ~ Z h ’5 ’ € ~ ‘g ‘ e N
7=1
O
In view of the inequality
6701'19/2h 5 x;fhgeff,
the bound (4.13) follows from Proposition 2.4 and (4.15). Since
e—C’J:1|§’|/h g hﬁxl—qgl‘—{
the bound (4.14) follows from Proposition 2.3 and (4.16). 0

Since the function A; is supported in §/2 < z1 < J, the next lemma is an immediate conse-
quence of Lemma 4.5 with k£ = —1.

Lemma 4.6. For every m > 0 we have the estimates

{Ca,mhmem"' on  suppn,

(4.23)
Camh™[€'|7m1el on  supp(1 —n),

op (<o a,)| <

for all multi-indices o with constants Cq > 0 independent of x1, 0, z and h.
This lemma together with Proposition 2.3 imply the following

Proposition 4.7. Given any N > 0 independent of h, we have the estimate

(4.24) (Oph <emp/hA1) f) (x1, )‘

L2(T) 5 thHH;N(F)-
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Let u satisfy equation (4.1) with u|p = Opp(x)f. Then u — u satisfies equation (3.1) with v
replaced by v. Therefore, taking into account that

—ihOyile,—0 = Ops(pX) 1,
by (3.2) we get the estimate

(4.25) IV (2, h)Opp (x) f — OPh(PX)fHL?(r) S hl/2671/2Hf6HL2(Q)-
On the other hand, Propositions 4.3 and 4.7 imply the following
Lemma 4.8. If x is of compact support, given any N > 0 independent of h, we have the estimate
~ < pl/29-2 w/2 —1\p—d—p B
(4.26) 1Bll 20y S /26 (1 + RM2 log(h1)0 ) 1 ey
If supp x C supp(1 —n), given any 0 < € < 1/2 independent of h, we have the estimate
(4.27) Bl 22) S A2 Fll gy -
Proof. Clearly,

||5||%2(Q) S /;2 HOPh (emlp/hz‘h) fH;(F) dxri + /05 HOph (eixlp/hfb) f‘

Therefore, if x is of compact support, by (4.11) and (4.24), we get

2
d:l?l.
LA(T)

)
1510y S PR, vy /5 o

2 0
+67" (14 W 1og ()0~ ) IF I /0 e 0 dy

2
Sho (14w 10g (D0 ) A v

for every N > 0, which clearly implies (4.26). Similarly, if supp x C supp(l —7), by (4.12) and
(4.24), we get

6 6
H@H%Q(Q) S thHiI;N(F) /5/2 dl'l =+ hliserH?{}lL(F) /0 x1—1+26d1_1 g hlfBerH?{é(F)
which implies (4.27). O

Combining (4.25) with Lemma 4.8 (with € small enough) and taking into account that /2 <
h~1/5_ we obtain the following

Lemma 4.9. If x is of compact support, given any N > 0 independent of h, we have the estimate
(4.28) [N (2, )OPLOOS = OPu(pX) 2y S A0 (1 -+ W2 log(h=)0~ ) ([ £,y .

If supp x C supp(l — ), we have the estimate

(4.29) IV (2, )0 () f = Opr (o) f 1 r2ry S B2 1l -

Since the function 7 can be written as a finite sum of functions y for which (4.28) holds and
the function 1 — 1 can be written as a finite sum of functions x for which (4.29) holds, Lemma
4.9 implies the following
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Proposition 4.10. Given any N > 0 independent of h, we have the estimates

(4.30) IV (2, )Opy(n) f — Opn(pm) fll 21y S ho~—>/? <1 + /2 log(hfl)afdw) Hf”H;N(F)'
and

(4.31) |V (2, h)Opy (1 —n)f — Opy(p(1 — n))fHH(F) S hs/f)HfHH}L(F)'

Clearly, the estimate (4.4) follows from (4.30) and (4.31). To prove the estimate (4.5) we need
to improve (4.31), only, assuming that ¢ = 1. To this end, we have to build a better parametrix
in the elliptic region in this case. This will be carried out in the next section.

5. IMPROVED PARAMETRIX IN THE ELLIPTIC REGION
Our goal in this section is to prove the following
Proposition 5.1. Suppose that c =1 and n € C1(Qys), n|r € C*(T'). Then we have the estimate
(5.1) IV (2,h)Opy (1 =) f = Opy(p(1 =) + hg) fll g2y S AUl s
where g € S°(T') is independent of z, h and the function n.

Then the estimate (4.5) would follow from (4.30) and (5.1). To prove (5.1) we will improve
our parametrix when y € S(I') with suppx C supp(1 — 7). To this end, we choose the phase
function in the form

o =—(2,&) + z1p + 2T 0r + 333,
where the functions o, 03 € S(I') do not depend on x1, z and h, and will be choosen in such

a way that the eikonal equation (4.6) is satisfied with ® = O (14 2%|¢'|?). Furthermore, we
choose the amplitude in the form

2
a = ap + r101 + xjag,

where ag = x, a1 = a1,0 + hay1 with functions a g,a2 € SOT), ai1 € S~YT) independent of
21 and h, and will be choosen in such a way that A3 = O (x%|£’| + hxl). To find o and 3,
observe that the function ® with the new phase can be written in the form

® = 2p(2p3 + 3x103) + 1(2p9 + 3x103)% — 2nf
—2(Ro ()¢, Var(p + 21002 + 27 03))
+21(Ro(2')Var(p + w1902 + 2103), Var (p + 21902 + 2103))
R (2)¢,€') — 201 (RH ()¢, Vs (p + 2102 + 2l 03))

+a (R (@) Vi (p + 2102 + 2103), Var (p + 102 + 27903)).
We need now the following

Lemma 5.2. On supp(l —n) we have the bounds

(52) (9?/85, <p - iré/z) ‘ < Oyl el
(5.3) (:)?/ <p71 +i7°()_1/2)‘ < Calfl‘f?;ﬂa\’
(5.4) ag, (Vm/p— Z~271r0—1/2vx/r0>‘ < Ca‘g/’flf\ah

for all multi-indices o and B such that |5] < 2.



INTERIOR TRANSMISSION PROBLEMS 25

Proof. The bound (5.2) with 5 = 0 follows from the identity

. 1/2 . FTw
p—irg” = ———p5
p+arg

together with (4.19) and the fact that ]p—l—z'ré/z] > Cré/z, C > 0, on supp(1 —n). Since ng € C?,
we can differentiate the above identity with respect to 2’ to get (5.2) with 1 < || < 2 in the
same way. Furthermore, since

p 4 iralp = z'pflrofl/2 <p — 1'7"(1]/2) ,
the bound (5.3) follows from (5.2) and (4.18). Finally, the bound (5.4) follows from the identity
(4.7) together with the bounds (5.3) and (4.18). O
Write the function R as
R¥(z) = Ri(2') + 21 RL (a') + 23R (2),
where Rg, R%, R’ are smooth functions. Then the function ® can be written in the form
® =g+ a1P+ O (1+23¢),

where s "
By = dirg> g — irg P (Ro(a!)!, Vrro) + (RE(a)E, &),
By = 6iry 203 + 43 — 2(Ro(a!)¢, Varips) + (RE ()¢, &)
—(4r0) MRy (2')Varro, Varrg) — irg " *(RE(@)E, Varro).

We now choose the function 9 so that &3 = 0 and the function @3 so that ®; = 0. Clearly, the
functions 9 and 3 are smooth and satisfy the estimates

(5:5) 08005 | < CagleI' 1, =23,

on suppy, for all multi-indices a and S. It is easy to see that (5.5) together with Lemma 5.2
imply the following

Lemma 5.3. For 0 < x1 <9, we have the bounds
(5.6) |08 ®] < Co (14271 P) €'
for all multi-indices o with constants C,, > 0 independent of x1, z and h.
To find the functions a; and as, observe that in this case the function Az is of the form
As = —2i(p + 22102 + 327 ¢3)(a1 + 2z102)
—2i(—&" + 21V (p + 2102 + 2103), Vo (X + 2101 + faz))
—2i(x + 101 + {az)(p2 + T1¢03)
—iz1(x + 2101 + 22a2) (R(2) Ve, Vo) (p + 1109 + 23¢3)
—h(R()V, V) (X + z101 + T7032)
+Q1(x + T1a1 + xias)(p + 2x102 + 32t 03)
+ <@, —& 4+ 21 Vu(p+ m1<p2)> (X + 2101 + 23as)
—ih <@, V(X +z101 + x%a2)> :

Since ¢ = 1, the functions @)1 and @ are smooth, so we can write them in the form

Q1(z) = Quo() + 11Q11(2') + 23Q} (x),
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Q(z) = Qo(x') + 11Q1 () + 23Q° (x),

where all functions are smooth. Hence we can write the function Ag in the form
Az = A370 + $1A3,1 + O (CE%|£/| + h:cl) R
where
1/2 el . . 1/2 ~
A5 = 2152 a1 + 20(€, Vrx) — 2ixes + iQuxry” — (Q.€) x
—h <R0(xl)v:v’7 V:B’> X — th <é7 vl”X> )
1/2 . e —-1/2
A371 = 47“0 ag — diayps + 21<§ ,Vx/a170> + 70 <V;,3/7°0, Vm/X>
—2ixp3 — 2ia1p2 + X (Ro(2' )V, Vr) ro/?
+2xQ10(x") 2 + in,o(xl)TémaLo + iXQLl(CU/)T(l)/Q
—X <@1($,),5,> - <é0($/),§,> aro + i2_1T61/2 <@0($,), Vm/ro> X-
We now choose the function a; so that A3y = 0 and the function ay so that A3, = 0. We get

aro = —irg e V) +irg Py — 127 Qux + 27 g P <@,§’> x € S°(D),

aiq = 2717’071/2 <R0(x/)v$,, er> X+ i2717“071/2 <@, Vx/x> € Sil(I’).
The next lemma follows easily from (5.5) and Lemma 5.2.
Lemma 5.4. For 0 < x1 <9, we have the bounds
(5.7) |08 As| < Co (hay +23)€]) €71
for all multi-indices o with constants Cy > 0 independent of 1, z and h.

Set
p=p+z1p2 +atps = p+ Olan[¢)).
Taking § small enough we can arrange that the inequalities in (4.3) still hold with p replaced
by p for all 0 < 21 < 6. Therefore, the bound (4.16) (with k = 0) holds with ¢*1#/? replaced by
¢1P/M This together with Lemmas 5.3 and 5.4 imply the following

Lemma 5.5. For 0 < x1 <6 and for all 0 < e < 1/2, we have the estimates

(5.8) ‘3?, (eixlﬁ/hA2> < Cah5/2fem1_1/2+e‘g/‘73/2+57|a‘

for all multi-indices o with constants Cy > 0 independent of 1, z and h.

It is easy also to see that the new function A; satisfies the bound (4.23) (on supp(1—n)) with
e1p/h replaced by e1P/h  Hence Proposition 4.7 still holds with e“17/" replaced by eir1p/h,
Therefore, in the same way as in the previous section we can deduce from Lemma 5.5 and
Proposition 2.3 that the function v satisfies the estimate

(5.9) 10l 22y S h(5_35)/2||f||H;1(p)-
We also have
—ihOyi|z,—0 = Opy,(px — ihay) f = Opy,(px — iha1 o) f — ik*Opy(a1,1) f

and the operator Opy,(a11) : H, '(T') — L?(T') is uniformly bounded. Therefore, Proposition 5.1
follows from (3.2) and (5.9).
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6. PROOF OF THEOREM 1.1

We have to show that if A € C belongs to the eigenvalue-free regions in Theorem 1.1, then
the solution (uj,us2) of the equation (1.1) is identically zero. Clearly, it suffices to show that the
function f = ui|r = usg|r is identically zero. We may suppose that [A| > 1. Set h = [A|7! < 1
and z = (hA)2. Clearly, z € ZT if ReA > [Im\| and z € Z~ if [Im \| > Re A, where Z* and
Z~ are as in Section 3. Set § = [Imz| if 2 € ZT and § = 1 if z € Z~. In order to simplify the
notations, in what follows the restrictions of the functions c¢j,n;,n;, j = 1,2, on I' will be again
denoted by c¢;j,nj,n;, respectively. By assumption, we have that they belong to C*(I"). Define
the functions pj;, j = 1,2, by replacing in the definition of p the function n by n;. Denote by
Nj, j = 1,2, the Dirichlet-to-Neumann map introduced in Section 4 associated to (c;,n;), and
set

T(Z, h) = 61N1(Z, h) — C2N2(Z, h)

If A is a transmission eigenvalue, then T'f = 0 on I'. By Theorem 4.1 we get

10pr(c1p1 — c2p2) fll 2y S hg/SHfHH};(F)

(6.1) +ho o/ <1 + hH? 1og(h*1)0*d*“> 1AWz

provided 8 > h?/5 where k = 1 in the anisotropic case and k = —1 in the isotropic case. Set
a1 = (ro +1) "2 (c1p1 + c2p2), a2 = c1p1 — capo.

We will prove now the following

Proposition 6.1. Suppose that 0 satisfes the condition

(6.2) W2 1og(h~ 191/ 2—d=1 < 1,

Then we have the bounds

(6.3) 10Ps(a)ll L2y 2y S 15

(6.4)  [[Opy(a1)Opy(az) — Opy(araz)|l gy 2y S hO™" + S

Proof. Clearly, the functions a; and as are bounded on suppn. Moreover, it follows from
(4.19) and (4.2) that they satisfy the bounds

(6.5)

5?,85,%‘ < gu2-le=18l on  suppn,

for all multi-indices o and f such that |a| + |8 > 1 and |5| < p. On the other hand, since
pj = z’r(l]/Q + (’)(ralﬂ) for ro > 1, we have

ap =i(cy +c2) + (9(7“0_1),

as = ’i(Cl — 02)7’(1]/2 + O(’I“(;l/2), ’Lf k= 1,

ag = 2m —na) = (2i) " z(ny — ng)rofl/2 + (9(7“63/2), if k=-1.
p1+ p2

Set by = i(c1 + c2) and

by — ’i(Cl—Cz) if /{::1,
2T @) e —ne) if k= —1.
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We now decompose the functions a; as follows

where ag»l) = naj;, agg) =b1(1—n) and agg') = by(1 —77)7“’8/2. Then the functions a§2) are supported

on supp(l —n) and a§2) =0(ryh), ag) = O(Tk/%l). Moreover, they satisfy the bounds

(6.6)

86,a§2 ‘ < (¢'y~2 el

(6.7)

8ﬁ,a2 ‘< yh=2-lal

for all multi-indices o and (3 such that |5] < p. These bounds follow from the fact that (5.2)
holds for all 8 such that |3| < u, which in turn can be easily proved by induction in .
We can write

3 3
Opy,(a1)Opy(az) — Opy(araz) Z Z <Oph Opy,(ay®) — Opy (af™ (b)))

2 2
= 3" > (Opa(ai™)0pp(as™) — Opy (ay"a™))

l1=1/42=1

2
Z(oph (1= 1)Opy(as’™) = Opy((1 — n)al™))

2

2 Y (Opa(af™)Op((1 = m)rg’) = Opy (@™ (1 = myr’™))

l1=1
2
+3° [opu(al™).82] Op (1 = myrt?)
l1=1

+by [Opy (1 — 1), ba] Op, (1 — n)rt’?)

b1z (Opy(1 = )Op,((1 = m)ry/*) = Opy((1 = m)?rg’™) ).

Now we apply Proposition 2.6 to the operators in the double sum in the right-hand side, Propo-
sition 2.5 to the operators in the next two sums and Proposition 2.2 to the operator in the last
term. Furthermore, the operator

Opy((1 = m)ry®) : HE(T) = LA(T)
is bounded, while the norm of the commutators
[Op @\, bg] L L2(T) — L*(D)
can be bounded by using (2.26), and the norm of the commutator
Oy (1 = 1), ba] = — [Opy (), ba] - L*(T') — L(T)

can be bounded by using (2.22). Thus, taking into account the bounds (6.5), (6.6) and (6.7),
we arrive at (6.4). The bound (6.3) follows similarly from Propositions 2.1 and 2.4. 0
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Combining Proposition 6.1 with the estimate (6.1) we get
(6.8) 104 (a1a2) fll ey S 021 Fll gt oy + €1 (R O)LF Ly
provided 6 > h?/® and @ satisfies (6.2), where
£ = ho~5/? (1 + 2 1og(h*1)9*d*ﬂ) + W2 log(h~1)g1/2—dn,
Set
(/2 log(h= 1))/ VD i < 2d -1,
01(h) = (W2 1og(n= 1))/ TR ip 9g 1 < < 4d,
R2/5 i > 4d.

It is easy to check that 6 >> 6 implies & < 1 and 6 > h?/5 satisfies (6.2). We would like to
show that for such 6 and h small enough the estimate (6.8) implies f = 0 in the isotropic case.
To do so, we will use the identity

(6.9) (c1p1 + c2pa)(c1pr — copa) = €ipT — c3ps = —(c] — 3)ro + 2(cinn — cany).
So, in the isotropic case (6.9) gives
Opy,(a1az) = z(n1 — n2)Opy, ((7"0 + 1)71/2> .

Recall that in this case we have |ny — ng| > ¢ with some constant ¢ > 0 by assumption. Since

|0y ((ro+1)712) £

ey~ W ez,
the estimate (6.8) implies

(6.10) HfHHgl(r) S h3/5”f”[—[;1(p) + 51HfHHgl(r)-
Taking h and &; small enough we deduce from (6.10) that HfHH;l(F) =0, and hence f =0, as
desired. Hence the region 6 > 0; is an eigenvalue-free region. It is easy to see that this region
corresponds to (1.12) on the A plane.
Consider now the anisotropic case. Then the function
C1M1 — C2N2

2 2
€1 —C

is strictly negative under the condition (1.6) and strictly positive under the condition (1.8).
Moreover, we have m € C*(T"). Set

Ay = (ro+1)(ro — 2m) ™", Ay = (rg +1)"*(rg — zm).
Let 7 = |Imz|if 2 € Z~ and 7 =1 if 2 € Z1. We need now the following

Proposition 6.2. Suppose the condition (1.8) fulfilled. Suppose also that 0 satisfes the condition

(6.11) W2 log(h~1)g~ 47 < 1.

Then we have the bounds

(6.12) 10P4 (A 2(ry—s L2 (r) S 0",

(6.13) 10, (A41)Opy(Az2) — Oy (A1 A) |71 (1) r2(ry S 072 + /2 log(h~ 1)o7 1,

Suppose the condition (1.6) fulfilled. Suppose also that T > h/? satisfes the condition
(6.14) W2 log(h™ )= 1 < 1.
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Then we have the bounds

(6.15) 10Pr (A L2y 2(r) S T

(6.16) 0P, (A1)Opp(Az2) — Oph(Ar )|l iy ry 22 (r) S hr =% 4+ W log(h™)r—47# 1,
Proof. Clearly, the function Ay satisfies the bounds

(6.17) 290 A, ‘ < (g/y1-lel,

for all multi-indices o and f§ such that [8] < u. We would like to find similar bounds for
the derivatives of A;. To this end, observe that we can arrange |ro — zm| > Crg, C' > 0, on
supp(1 — ), provided the constant Cp in the definition of 7 is taken large enough (what we can
do without loss of generality). The function A; satisfies the following

Lemma 6.3. If mRez > 0 we have the bounds

(6.18)

€'171el on supp(1 —n),

for all multi-indices a and 8 such that |B] < p. If mRez < 0 the bounds (6.18) hold with |Im z|
replaced by 1.

Proof. We have

aaﬁAl‘ <{ Im 2|~ =1e=18 on supp,

Iro — zm| > C(rg + 1),
if mRez <0, and
|ro —zm| > C|Imz| on suppn,
Iro — zm| > C|¢€')*> on supp(l —n),
if mRez > 0, where C' > 0 is a constant. The bounds (6.18) can be easily derived from the

above inequalities by induction in || + |3]. O

Decompose the functions A; as follows
- 0]
=>4,
/=1
where A§1) =nA;, A§3) = (1-n) and A;g) =(1- 77)7‘(1]/2. Then the functions A§2) are supported

on supp(1 —7) and A§2) =0(rgh), A;2) = O(ralﬂ). Moreover, it follows from Lemma 6.3 that
they satisfy the bounds

(6.19)

85 A(2 ‘ < —-2— \04|

(6.20) ‘ag,aﬁ AP ‘ < (¢/y~1-lal

for all multi-indices o and 8 such that |8| < p. We can write

Opy, (41)0py(Az) — Opy (A1 42) = ZZ(Oph Y)0p,(45) — Op, (Al A
l1=1/02=1

2 2
=3 3 (Opa(A)0p, (A5 — Op, (A ALD))

l1=1/42=1
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2

3 (Opu((1 = 1)0p (A52) — Opy (1~ )AL
lo=1

2

{4 {4
+ 3" (0pa(A)0pL((1 = m)rg’) = Opy (A1 (1 = m)ry/™))
l1=1

+ (Op(1 = 0P — /) — Opy (1 = ).

Now we apply Proposition 2.6 to the operators in the double sum in the right-hand side, Propo-
sition 2.5 to the operators in the next two sums and Proposition 2.2 to the operator in the last
term. Thus, taking into account the bounds (6.17) and (6.18), we arrive at (6.13) and (6.16).
The bounds (6.12) and (6.15) follow from Propositions 2.1 and 2.4. 0

In view of (6.9) we have Ay = —(c? —c3)ajaz. By assumption, |¢? —c3| > ¢ > 0, so Proposition
6.2 together with the estimate (6.8) imply

(6.21) 0P (A1 42) fll p2ry S hl/5”fHH}1L(F) +E(h, 0, 7)1 f || 2

provided 6 > h%/®, @ satisfies (6.2) and (6.11), and 7 > h'/2, 7 satisfies (6.14), where £ = & if
(1.8) holds, & = &; if (1.6) holds and z € ZT, and € = &5 if (1.6) holds and 2z € Z~, where

£ = ho~ T2 + W2 log(h™H)o 4L,

& = hr 2 + W log(h~ )7 471,
Set
i) — (/2 1og(h=1)) /D e <A@ 4 1),
? W27 > A(d+ 1),

and

L\ V)
ma(h) = (W2 10g(h7")) .

It is easy to check that 6 > 6y implies & < 1 and 6 > h?/7 satisfies (6.2) and (6.11). Similarly,
7> 73 implies & < 1 and 7 > h'/? satisfies (6.14). Since A Ay = (1o + 1)Y/2 and

o (tro+ 1)) ST

s

the estimate (6.21) implies

(6.22) 11l 0y S B2 N oy + ENF Ny -

Taking h and &€ small enough we deduce from (6.22) that HfHH}L(F) = 0, and hence f = 0, as

desired. In other words, the regions 6 > 05 when (1.8) holds, and 6 > 6, and 7 > 73 when (1.6)
holds are eigenvalue-free regions. It is easy to see that these regions correspond to eigenvalue-free
regions in Theorem 1.1 on the A plane.
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