N

N

Migrating the Communication Protocol of Client-Server
Applications
Gabriel Darbord, Benoit Verhaeghe, Anne Etien, Nicolas Anquetil, Anas

Shatnawi, Abderrahmane Seriai, Mustapha Derras

» To cite this version:

Gabriel Darbord, Benoit Verhaeghe, Anne Etien, Nicolas Anquetil, Anas Shatnawi, et al.. Migrating
the Communication Protocol of Client-Server Applications. IEEE Software, 2023, 40 (4), pp.11-18.
10.1109/MS.2023.3263019 . hal-04050310v2

HAL Id: hal-04050310
https://hal.science/hal-04050310v2
Submitted on 17 Jul 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-04050310v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Department: Head
Editor: Name, xxxx@email

Migrating the Communication
Protocol of Client-Server
Applications

G. Darbord
Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

B. Verhaeghe
Berger-Levrault, France

A. Etien
Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

N. Anquetil
Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

A. Shatnawi
Berger-Levrault, France

A. Seriai
Berger-Levrault, France

M. Derras
Berger-Levrault, France

Abstract—As part of a collaboration with Berger-Levrault, an international IT company, we are
working on the migration of client-server applications. To escape legacy technologies and to
evolve towards a “software as a service” model, the company decided to migrate the client side of
its applications to Angular 14 and the server side to Spring Boot. In this paper, we focus on the
migration of client-server communication from RMI and GWT-RPC to the REST architectural style.
We identify issues associated with such a migration and propose a tool-based approach to address
them. The migration involves (1) identifying existing services and exchanged data structures; (2)
migrating the services; (3) migrating the data structures on the new client side; and (4) in some
cases, reducing the amount of exchanged data to address performance issues. We experimented
with our approach on four of the company’s applications currently using RMI or GWT-RPC.

November 2022

B BERGER-LEVRAULT is an international soft-
ware publisher providing management solutions
for citizens, families, elected officials, healthcare
providers, educators, and schools. Its applications
rely on various technologies, some of which are
very old and/or no longer maintained [1], [2]. The
company has been developing software systems
using Java technologies for more than 25 years,
and with Google Web Toolkit (GWT) since its
release. As part of a modernization effort to escape
outdated legacy technologies, the company wants
to migrate its applications to newer technologies.
We are participating in a project to migrate client-
server applications (Swing or GWT) to Angular
(which uses TypeScript) for the client part, and
Spring Boot for the server part. In this paper, we
consider four industrial applications, with sizes
between 300 and 2700 KLOC, and counting
between 500 and 4 400 services. The legacy client-
server Swing application uses Java’s Remote
Method Invocation (RMI) for communication
between the Java Swing client and the Java
server. The legacy GWT applications use the GWT
implementation of Remote Procedure Call (GWT-
RPC) for communication between the Java GWT
client and the Java server. For the new client-server
communication, the company chose to develop
an HTTP API using JavaScript Object Notation
(JSON) to exchange data because these technolo-
gies are widely accepted de facto standards and
are easy to implement in both Angular and Spring
Boot. An HTTP API corresponds to a low level
of REST maturity'. Aiming for a higher level
would have required deeper changes and made the
migration more difficult.

In all of these projects, the server will remain
largely the same with only minor adjustments to
handle the HTTP requests. The client part of the
applications will be migrated to Angular using the
approach proposed in [2] and will not be discussed
here.

In this paper, we focus on the automatic
migration of client-server communication from
the legacy RMI and GWT-RPC to the planned
HTTP API. To design a communication migration
tool, we had to address the following four issues:
(1) identify all the services and Data Exchange

Thttps://martinfowler.com/articles/richardsonMaturityModel.
html

© 2022 IEEE

Published by the IEEE Computer Society

Classes; (ii) adapt how clients invoke server-side
services; (iii) rewrite Data Exchange Classes in a
different language; and (iv) in some cases, we had
to minimize the amount of exchanged data to solve
introduced performance issues. Data Exchange
Classes correspond to the type of data structures
that are transferred between the clients and the
server, and Data Exchange Objects correspond
to their instances. They can be thought of as
Data Transfer Objectsz, but in our case, some
Data Exchange Objects contain behavior: methods
that are more complex than simple accessors. In
addition, for the remainder of this article, the term
“calling convention” will be used to refer to the
manner clients invoke server-side services.

We experimented with our approach on four
applications from Berger-Levrault. We report here
some results of the migrations. This is a work
in progress, and the migrated applications are
still undergoing validation by their respective
development teams. Throughout the process, we
are assisted by static analysis tools, including a
custom linter that helps ensure the quality and
consistency of the code to be migrated.

This experience report is structured as follows:
first, we present the migration context and de-
fine the vocabulary used; then, we describe the
issues encountered in this project; we continue
by describing our solution; and finally, we report
some data from running the tool on four industrial
applications.

Migration Context

A migration approach to completely rewrite
a monolithic GWT application into two separate
projects, a JavaScript client and a Java server,
communicating via a RESTful HTTP API is
proposed in [3]. This approach allows to eliminate
the technical debt in the old application, and create
a client-server architecture with well-designed
services. Berger-Levrault rejected this solution
because it is costly and carries all the usual
risks of software development projects. Instead,
the company opted for an automated migration
that might result in a less optimal application,
but would deliver results faster and at a lower
cost. In this context, understanding the client-
server communication is essential for a successful

Zhttps://martinfowler.com/eaaCatalog/dataTransferObject.html

IT Professional

https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/eaaCatalog/dataTransferObject.html

migration. This section introduces the factors to
consider.

Client-Server Communication refers to the way
both sides of a distributed application interact and
exchange data. To migrate client-server communi-
cation, we must consider the client’s Web Pages,
the Services provided by the server, and the Data
Exchange Objects that are exchanged between
them.

The Pages contain the representation of the
Graphical User Interface (GUI) and the behavioral
code that is executed when the user interacts with
it. Their migration is beyond the scope of this
paper (see for example [2]). These pages display
data obtained from the server’s services.

The Services are server-side constructs that
must also be described in the client to ensure inter-
operability. This enables the connection between
the two parts of the applications. For example,
in a human resources application, an “employee
service” could be used to query employees. Tech-
nologies such as RMI and GWT-RPC in Java use
proxies on the client to transparently manipulate
objects created remotely on the server. When
invoked, a client “service” (actually a service
descriptor) creates a request to the corresponding
server service and waits for the response. When
it receives that response, it passes it back to the
original caller (i.e. a page or another client service
descriptor).

The application client and server exchange data
through what we call Data Exchange Objects. A
service response typically contains one or more
instances of a Data Exchange Class, such as a list
of employees associated with a particular request.

Migration Issues

To automatically migrate client-server commu-
nication from RMI and GWT-RPC to an HTTP
API, the following issues must be addressed:

e All services must be automatically identified,
as well as their calling and receiving locations
in the source code;

e Data Exchange Classes, used to transfer data
to and from services, must also be identified
and their representation converted from Java or
TypeScript to JSON (serialization/deserializa-
tion);

e The service calling convention must be adapted:

November 2022

with RMI and GWT-RPC, the client invokes a
Java method directly, whereas with an HTTP
API in Spring Boot, the client sends an HTTP
request to the server, which is handled by a
controller;

e In addition, we needed to minimize the amount
of exchanged data (payload) in some cases.

Identifying the Services

To migrate the client-server communications,
one must identify all calls to services in the client
and all the definitions of those services in the
server. We will see in a next section that this
step is not difficult in the cases of RMI or GWT-
RPC because they follow specific source code
conventions (class annotation or class inheritance).

Identifying the Data Exchange Classes

The exchanged data must also be considered.
First, one needs to identify what data is being
exchanged, i.e., what classes define Data Exchange
Objects. Then, one must make sure that it can
be serialized and deserialized correctly. RMI and
GWT-RPC technologies rely on a proprietary
binary serialization format that is handled trans-
parently by the frameworks themselves. On the
other hand, REST is typically associated with a
generic and standard serialization format such as
JSON, and data (de)serialization must be handled
explicitly by the developer. This introduces some
difficulties, which we explore in the following
paragraphs.

A Data Exchange Class corresponds to a Type
in Java, TypeScript, or any other language. The
JSON format, which has its own MIME type of
“application/json”, contains only primitive types,
arrays, and dictionaries. JSON primitive types
are string, number, and boolean; JSON arrays
can contain any number of “JSON types”; and
JSON dictionaries are key-value collections where
the keys are strings and the values are “JSON
types”. There is no structural description in JSON
for runtime data. Objects are transferred as field-
name/field-value dictionaries. This is a problem
because dictionaries and objects that are serialized
to JSON have exactly the same format.

Therefore, the serializer and the deserializer
must agree on the structure of the transferred
data beforehand. This is a known issue of “data
format” described in the introduction to inte-

Department Head

gration styles in [4]. Even then, there are still
difficulties in the case of transferring polymorphic
objects. For example, to deserialize a collection of
AbstractEmployee, a deserializer would need
to distinguish instances of FullTimeEmployee
from instances of PartTimeEmployee.

There is also the case of object references.
If a field of a serialized object contains another
object, the latter must be serialized recursively. If
the second object contains a reference back to the
first, this creates a known issue with serializing
objects with circular references.

A final problem is that RMI and GWT-RPC
ignore field visibility. When an object is sent from
the server to the client, the frameworks are able to
serialize all of the object fields, even the private
ones. On the other hand, some modern JSON
libraries, such as Jackson, only (de)serialize fields
with public accessors.

Adapting the Calling Convention

The calling conventions for a service are
different between RMI/GWT-RPC and an HTTP
APL

RMI and RPC invoke a service by executing a
remote class method. On the other hand, modern
RESTHful solutions invoke a service using an HTTP
request comprising a resource locator (the URL)
and an HTTP verb (POST, GET, PUT, DELETE,
etc.’). Therefore, client-side invocations must be
adapted to the conventions of an HTTP APL

Minimize Amount of Exchanged Data

After the initial experiments, we encountered
some performance issues. While evaluating the
performance of a migrated application, we noticed
that the exchange of some messages became
noticeably slower (from near instantaneous, to
tens of seconds). This often happened on pages
displaying a table of objects, where the full objects
are transferred (as described by the Embedded
Entity pattern in [5, p.314]) while only a few fields
are actually displayed. Profiling showed that this
was due to deserialization in the client for multi-
megabyte payloads. This is a known problem with
JavaScript JSON processing libraries, as noted in
previous work on Web front-end migration [6].
Because RMI and GWT-RPC do not have this

3https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

problem, the application developers did not focus
on making smaller payloads.

Migration Process

This paper proposes a process for migrating
client-server communication that addresses all of
the above issues. We describe here our solutions
for (i) identifying the services and Data Exchange
Classes; (ii) adapting the calling conventions of
services; (iii) migrating Data Exchange Classes;
and (iv) pruning Data Exchange Objects for
performance issues.

Services And Data Exchange Classes
Identification

The services are identified using coding con-
ventions, by static analysis of the applications.
In the case of RMI, the framework requires
service classes to implement the Remote inter-
face, and their methods to be able to throw a
RemoteException to be exposed. For GWT-
RPC, service classes are required to implement the
RemoteService interface, and all the public
methods are exposed.

Once a method implementing a service is
identified, its return and parameter types can be
identified as Data Exchange Classes.

Adapt Calling Conventions

In the legacy applications, services are imple-
mented by methods in specific classes (as pre-
viously mentioned). For ease of implementation,
we decided to keep the same convention for the
migrated applications. Thus, each class in a legacy
implementation is migrated as a class in its new
implementation, and each method in RMI or GWT-
RPC is migrated as an HTTP API endpoint. To
simplify the migration, we also use only the HTTP
verb: POST. This results in operating at REST
maturity level one.

On the server side, we automatically generated
wrapper services which make use of Spring Boot,
where they are called controllers. The generated
controller for a methodX will accept HTTP
requests and handle JSON deserialization, then
delegate the execution of the service to the old
methodX. This is illustrated in Figure 1 and
Listing 1.

IT Professional

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

Server /

- POST /ServiceX/methodX _ | __rootess

+ context
s set(context) H
methodX(args)
200 OK kgmmmmmmm et -

X

Figure 1: Wrapping of legacy RMI service into
new Spring controller

@RestController

@PostMapping (path = "/ServiceX",
consumes = "application/json",
produces = "application/json")

public class ServiceXController {

@PostMapping (" /methodX")
public ResultType methodX (
@RequestBody Map<String , Object> args)
throws RemoteException {
/] get arguments from JSON payload
final ArgTypel argl = args.get("argl");
final ArgType2 arg2 = args.get("arg2");

// get other arguments ...
final User _user = args.get("_user");
final ServiceX service = new ServiceX ();

service .setUser (_user);

return

}

service . methodX (argl , arg2, ...);

}

Listing 1: Automatically generated controller with
a methodX API endpoint. The strings “argl”,
“arg2”, etc. represent the argument names of the
old service’s method.

Note that the RemoteException on line 10
is a remnant of the RMI implementation that
required services to be able to throw this excep-
tion. The exception is there because we avoided
modifying the original services, but it will never
be thrown because RMI is no longer used. Another
way to handle it would be to add a try block with
an empty catch statement. If we had not decided
to keep as much of the original code as possible,
we could have refactored the original service to
remove the reference to the RMI interface and not
declare the throwing of the RMI exception.

In the legacy applications, services have a
small context: an object that represents the au-
thenticated user of the application. Our solution
is to use the Context Representation pattern [5,

November 2022

p-96] and embed this small context in each
request as a specific argument (line 15) of the
service invocation. This context is then set in the
ServiceX instance (line 18) before the method
is called.

Data Exchange Class Migration

We discussed earlier that there are several
problems associated with using JSON to transfer
data: no structure description, polymorphic objects,
circular references. We need to use a JSON library
that handles these problems for us. But since the
language is not the same for both communicating
parts, Java on the server side and TypeScript on the
client side, we need compatible libraries so that
exchanged data is understood in the same way by
both. We chose the Jackson library embedded in
Spring Boot for the server side, and the Jackson-js
library, an implementation of the Jackson library
in JavaScript, for Angular.

As described previously, there is also a dif-
ference between serialization mechanisms based
on attributes (ignoring their visibility) or based
on public getters/setters. The Jackson library ac-
cesses attributes through public accessor methods.
Again, because RMI and GWT-RPC give more
freedom, application developers did not strictly
implement all the accessors. We decided that this
was a violation of good programming rules and
programmed it into our (custom made) linter so
that developers should fix all violations before the
migration occurs.

As mentioned above, the Data Exchange
Classes of the original applications sometimes
contained behavioral code. While it is not complex
to automatically migrate the Data Exchange Class
hierarchy and fields from Java to TypeScript, these
methods had to be ignored in the process due to the
difficulty of transpilation. The development teams
will need to reimplement them manually, and again
we use our linter to identify all occurrences of
such methods.

Pruning Data Exchange Objects

The last problem we had to deal with was
the pruning of Data Exchange Objects. This is
necessary when the server sends too much data
to the client, resulting in a noticeable wait while
the client deserializes it.

To solve this problem and reduce the payload

Department Head

size, we use a solution inspired by GraphQL* and
follow the Wish List pattern [5, p.335]. The idea
is to reduce the size of the Data Exchange Objects
returned by the server, by not serializing data that
is ignored by the client. In practice, when the
client performs a request to the server, it adds,
as a parameter, the list of fields of interest in the
returned objects. Note that this list is not shown
in Listing 1 (line 14) for the sake of clarity. Then,
on line 20, before returning it to the client part,
the result of the method call is passed to a special
function along with the list of fields of interest.
This function discards the uninteresting fields so
that they do not clutter the JSON data. Again, for
the sake of clarity, this function call is not shown
in the listing.

GraphQL itself is a comprehensive technology
that would have replaced Spring controllers, and
required substantial changes to the applications’
source code. Therefore, we chose the small
Jackson-AntPathFilter’ project, which provides
the same pruning functionality but makes fewer
assumptions about the host code.

The applications we worked on are all “stan-
dard management applications” (see below). As
such, a large part of the UI displays tables of data.
The cases where pruning was necessary were for
these tables, when the service returns a list of
objects of which only a few fields are actually
displayed. For each displayed table, we identify
the associated service invocation (which collects
the data to display) and we extract the fields that
the table actually requires.

To do this, we used static analysis of the
code, which was facilitated by the fact that the
developers followed code style guidelines.

First, we need to associate a displayed table
with the service that provides its data:

e The table widget is identified because
it is a class that inherits from
AbstractTableWidget;

e We look for the creation of instances of this
class and the use of the setModel (new
ATableModel ()) method, which associates
a model with the widget;

e Table model classes
AbstractTableModel

inherit from
superclass

an
that

“https://graphgl.org/
Shttps://github.com/Antibrumm/jackson-antpathfilter

provides a 1loadData method. We look for
the call to this method in ATableModel
since it usually takes as parameter the
invocation of a service (which will return the
required data).

This tells us which service returns the data
that will be displayed in the table. We must now
identify which fields are actually displayed so that
we can prune the result of the service. To do this,
we look at the constructor of the table widget,
which contains calls to the addColumn method
(see Listing 2). Each parameter of addColumn
is an attribute of interest.

class FolderTableWidget
extends AbstractTableWidget {

public FolderTableWidget() {
addColumn (Folder.class , "date");
addColumn (Folder.class , "city.cityRef");
}
}

Listing 2: Initialization of a Table

This solution is not completely reliable, as
it may sometimes be difficult to track down the
service invocation from the loadData call. When
we are not able to follow a complex data flow
from the call to 1loadData, we insert a “TODO”
comment in the generated code next to this call.
The application developers will have to go back to
the migrated client, to resolve all these comments
by manually tracking down the service invocation
and inserting the list of fields of interest.

Evaluation

We tested our solution on four real industrial
applications. While we manually verified that the
migrated applications do work as intended, they
have not yet been accepted by their respective
development teams.

Table 1: Four applications on which we tested our

approach
KLOC Service Service Data Ex. Legacy
classes methods Classes comm.
appl 1090 323 2991 6705 RMI
app2 2735 448 3355 4611 GWT-RPC
app3 1125 645 4474 5099 GWT-RPC
app4 322 63 534 479 GWT-RPC

Table 1 gives some data about the subject
applications. They are management applications

IT Professional

https://graphql.org/
https://github.com/Antibrumm/jackson-antpathfilter

(financial, customers, human resources). Three of
them are large, with hundreds of service classes (in
the server part), and thousands of service methods
(actual services). Prior to the migration, three of
the applications used GWT-RPC and one used
RMLI.

To evaluate the usefulness of Data Exchange
Object pruning in terms of execution time and
memory consumption, we analyzed two different
web pages. The first contains a seven-column table
widget. It displays three rows after the service
invocation. The second one contains an eight-
column table widget. It displays nine rows after the
service invocation. For each web page, we evaluate
three aspects: the size (in kilobytes) of the message
returned by the server, the time (in milliseconds)
the server spent executing the request and pruning
the result, and the “user time” (in milliseconds)
from before the call to loadData to after it.
This is the time the user waits for the empty
displayed page to load the data. It includes the
call to the service and the time to deserialize the
Data Exchange Object.

Table 2: Time and memory consumption with
and without object pruning (values averaged over
several calls)

Payload Server User
size (Kb) time (ms) time (ms)
no pruning 64 18 1301
Case 1 w/ pruning 39 24 822
Improvement 40% -25% 37%
no pruning 4249 204 12126
Case 2 w/ pruning 83 92 1401
Improvement 98% 55% 89%

Table 2 shows the results of this experiment.
In the first case, the payload size is reduced by
40%, going from 64 Kb to 39 Kb. The server takes
more time due to data pruning (24 ms instead of
18 ms), but the difference is negligible from a
human perspective. The user time decreases from
1301 ms to 822 ms (about 0.5 seconds), which is
a small difference for the end user.

In the second case, the improvement in object
size is huge (98%), going from 4249 Kb to 83 Kb.
The server time is also reduced, going from 204 ms
to 92 ms (55%), probably because there is so much
less data to serialize. The user time decreases
from 12 126 ms to 1401 (89%). This last case is
a concrete example of a service for which the end
user would have to wait more than 10 seconds,

November 2022

which drops to 1.5 seconds after pruning (still
noticeable, but more acceptable).

The overall inferior performance of RESTful
HTTP compared to RPC technologies is causing
some companies to migrate back to RPC [7].
If performance becomes a significant issue in
validating migrations, a more efficient JSON-
compliant solution could be used at the expense
of readability [8].

In summary, we have succeeded in design-
ing a semi-automated tool to migrate services
from legacy RMI/GWT-RPC to a modern Spring
HTTP API. Using Data Exchange Object prun-
ing, we also addressed the performance issue of
(de)serialization.

Conclusion

In this paper, we expose a concrete problem
of client-server communication migration. We
presented an approach to migrate the client-server
communication of applications and applied it to
applications of Berger-Levrault.

Client-server migration is a complex and time-
consuming process that requires careful planning
and execution. To successfully migrate client-
server communications, it is necessary to identify
the technologies and protocols used by the existing
system, as well as any potential roadblocks or
compatibility issues. It is also important to have a
clear understanding of the data exchanged between
the client and server, as well as any dependencies
or interactions between different components of
the system.

We propose to use a semi-automated tool
to identify and update code that is specific to
the legacy system, while leaving more general
code intact. In this context, standardizing the
source code according to coding conventions
can make the migration process smoother and
more efficient. This reduces the manual effort
of discovering and mapping source widgets to
their target counterparts, and it improves the
maintainability of the code.

Finally, it is important to thoroughly test the
migrated system to ensure that it works correctly
and meets the needs of end users.

We provide links at https://github.com/
badetitou/Casino to several importers and gen-
erators that can help migrate applications, and
provide details about our approach.

https://github.com/badetitou/Casino
https://github.com/badetitou/Casino

Department Head

B REFERENCES

1. S.Bragagnolo, N. Anquetil, S. Ducasse, S. Abderrahmane,
and M. Derras, “Analysing Microsoft Access projects:
Building a model in a partially observable domain,” in
International Conference on Software and Systems Reuse
(ICSR’20), ser. LNCS, no. 12541, Dec. 2020.

2. B. Verhaeghe, A. Shatnawi, A. Seriai, A. Etien, N. Anquetil,
M. Derras, and S. Ducasse, “From GWT to Angular: An
experiment report on migrating a legacy web application,”
IEEE Software, 2021.

3. C. Zirkelbach, A. Krause, and W. Hasselbring, “On the
modernization of ExplorViz towards a microservice ar-
chitecture,” in Combined Proceedings of the Workshops
of the German Software Engineering Conference 2018.
CEUR Workshop Proceedings, 2018.

4. G. Hohpe and B. WOOLF, Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions,
ser. The Addison-Wesley Signature Series. Prentice
Hall, 2004. [Online]. Available: http://books.google.com.
au/books?id=dH9zp14-1KYC

5. O. Zimmermann, M. Stocker, D. Libke, U. Zdun, and
C. Pautasso, Patterns for API Design: Simplifying Inte-
gration with Loosely Coupled Message Exchanges, ser.
Addison-Wesley Signature Series (Vernon). Addison-
Wesley Professional, 2022.

6. B. Verhaeghe, A. Shatnawi, A. Seriai, A. Etien, N. Anquetil,
M. Derras, and S. Ducasse, “A hybrid architecture for the
incremental migration of a web front-end,” in Proceedings
of the 17th International Conference on Software Tech-
nologies - ICSOFT, INSTICC. SciTePress, 2022, pp.
101-110.

7. Y. Lee and Y. Liu, “Using refactoring to migrate
REST applications to gRPC,” in Proceedings of the
2022 ACM Southeast Conference, ser. ACM SE
'22. New York, NY, USA: Association for Computing
Machinery, 2022, pp. 219-223. [Online]. Available:
https://doi.org/10.1145/3476883.3520220

8. J. C. Viotti and M. Kinderkhedia, “Benchmarking JSON
BinPack,” ArXiv, vol. abs/2211.12799, 2022.

Gabriel Darbord is a Ph.D. student at the RMoD
Team of Inria Lille - Nord Europe, France. Contact him
at gabriel.darbord@inria.fr.

Benoit Verhaeghe is a research engineer at Berger-
Levrault. Contact him at benoit.verhaeghe@berger-
levrault.com.

Anne Etien is full Professor at the University of Lille,
France. Contact her at anne.etien@inria.fr.

Nicolas Anquetil is assistant Professor at the
University of Lille, France. Contact him at nico-
las.anquetil@inria.fr.

Anas Shatnawi is a senior research engineer at
Berger-Levrault, 34470 Pérols, France. Contact him at
anas.shatnawi@berger-levrault.com.

is a senior research
and development engineer at Berger-Levrault,
34470 Pérols, France. Contact him at
seriai.abdelrahmene@gmail.com.

Abderrahmane Seriai

Mustapha Derras is research director at Berger-
Levrault. Contact him at mustapha.derras@berger-
levrault.com.

IT Professional

http://books.google.com.au/books?id=dH9zp14-1KYC
http://books.google.com.au/books?id=dH9zp14-1KYC
https://doi.org/10.1145/3476883.3520220

	Migration Context
	Migration Issues
	Identifying the Services
	Identifying the Data Exchange Classes
	Adapting the Calling Convention
	Minimize Amount of Exchanged Data

	Migration Process
	Services And Data Exchange Classes Identification
	Adapt Calling Conventions
	Data Exchange Class Migration
	Pruning Data Exchange Objects

	Evaluation
	Conclusion
	REFERENCES
	Biographies
	Gabriel Darbord
	Benoît Verhaeghe
	Anne Etien
	Nicolas Anquetil
	Anas Shatnawi
	Abderrahmane Seriai
	Mustapha Derras

