
HAL Id: hal-04050310
https://hal.science/hal-04050310v1

Submitted on 29 Mar 2023 (v1), last revised 17 Jul 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Migrating the Communication Protocol of Client-Server
Applications

Gabriel Darbord, Benoît Verhaeghe, Anne Etien, Nicolas Anquetil, Mustapha
Derras

To cite this version:
Gabriel Darbord, Benoît Verhaeghe, Anne Etien, Nicolas Anquetil, Mustapha Derras. Migrating the
Communication Protocol of Client-Server Applications. IEEE Software, In press. �hal-04050310v1�

https://hal.science/hal-04050310v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Department: Head
Editor: Name, xxxx@email

Migrating the Communication
Protocol of Client-Server
Applications

G. Darbord
Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

B. Verhaeghe
Berger-Levrault, France

A. Etien
Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

N. Anquetil
Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

M. Derras
Berger-Levrault, France

Abstract—As part of a collaboration with Berger-Levrault, an international IT company, we are
working on the migration of client-server applications. To escape legacy technologies and to
evolve towards a “software as a service” model, the company decided to migrate the client side
of its applications to Angular 14 and the server side to Spring Boot. In this paper, we focus on
the migration of client-server communication from RMI and GWT-RPC to the REST architectural
style. We identify issues associated with such a migration and propose a tool-based approach to
address them. The migration involves (1) identifying existing services and exchanged data
structures; (2) migrating the services; (3) migrating the data structures on the new client side;
and (4) in some cases, reducing the amount of exchanged data to address performance issues.
We experimented with our approach on four of the company’s applications currently using RMI
or GWT-RPC.

BERGER-LEVRAULT is an international soft-
ware publisher providing management solutions
for citizens, families, elected officials, healthcare
providers, educators, and schools. Its applications

rely on various technologies, some of which are
very old and/or no longer maintained [1], [2]. The
company has been developing software systems
using Java technologies for more than 25 years,
and with Google Web Toolkit (GWT) since its

IT Professional Published by the IEEE Computer Society © 2022 IEEE 1

Department Head

release. As part of a modernization effort to
escape outdated legacy technologies, the company
wants to migrate its applications to newer tech-
nologies. We are participating in a project to mi-
grate client-server applications (Swing or GWT)
to Angular (which uses TypeScript) for the client
part, and Spring Boot for the server part. In this
paper, we consider four industrial applications,
with sizes between 300 and 2 700 KLOC, and
counting between 500 and 4 400 services. The
legacy client-server Swing application uses Java’s
Remote Method Invocation (RMI) for commu-
nication between the Java Swing client and the
Java server. The legacy GWT applications use
the GWT implementation of Remote Procedure
Call (GWT-RPC) for communication between the
Java GWT client and the Java server. For the
new client-server communication, the company
chose to develop an HTTP API using JavaScript
Object Notation (JSON) to exchange data because
these technologies are widely accepted de facto
standard and is easy to implement in both Angular
and Spring Boot. An HTTP API corresponds to a
low level of REST maturity1. Aiming for a higher
level would have required deeper changes and
made the migration more difficult.

In all of these projects, the server will remain
largely the same with only minor adjustments to
handle the HTTP requests. The client part of the
applications will be migrated to Angular using
the approach proposed in [2] and will not be
discussed here.

In this paper, we focus on the automatic
migration of client-server communication from
the legacy RMI and GWT-RPC to the planned
HTTP API. In order to design a communication
migration tool, we had to address the following
four issues: (i) identify all the services and Data
Exchange Classes; (ii) adapt how clients invoke
server-side services; (iii) rewrite Data Exchange
Classes in a different language; and (iv) in some
cases, we had to minimize the amount of ex-
changed data to solve introduced performance
issues. Data Exchange Classes correspond to
the type of data structures that are transferred
between the clients and the server, and Data
Exchange Objects correspond to their instances.

1https://martinfowler.com/articles/richardsonMaturityModel.
html

They can be thought of as Data Transfer Objects2,
but in our case some Data Exchange Objects
contain behavior: methods that are more complex
than simple accessors. In addition, for the remain-
der of this article, the term “calling convention”
will be used to refer to the manner clients invoke
server-side services.

We experimented with our approach on four
applications from Berger-Levrault. We report here
some results of the migrations. This is a work
in progress, and the migrated applications are
still undergoing validation by their respective
development teams. Throughout the process, we
are assisted by static analysis tools, including a
custom linter that helps ensure the quality and
consistency of the code to be migrated.

This experience report is structured as fol-
lows: first, we present the migration context and
define the vocabulary used; then, we describe the
issues encountered in this project; we continue
by describing our solution; and finally, we report
some data from running the tool on four industrial
applications.

Migration Context
A migration approach to completely rewrite

a monolithic GWT application into two separate
projects, a JavaScript client and a Java server,
communicating via a RESTful HTTP API is
proposed in [3]. This approach allows to eliminate
the technical debt in the old application, and cre-
ate a client-server architecture with well-designed
services. Berger-Levrault rejected this solution
because it is costly and carries all the usual
risks of software development projects. Instead,
the company opted for an automated migration
that might result in a less optimal application,
but would deliver results faster and at a lower
cost. In this context, understanding the client-
server communication is essential for a successful
migration. This section introduces the factors to
consider.

Client-Server Communication refers to the
way both sides of a distributed application inter-
act and exchange data. To migrate client-server
communication, we must consider the client’s
Web Pages, the Services provided by the server,

2https://martinfowler.com/eaaCatalog/dataTransferObject.html

2 IT Professional

https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/eaaCatalog/dataTransferObject.html

and the Data Exchange Objects that are ex-
changed between them.

The Pages contain the representation of the
Graphical User Interface (GUI) and the behav-
ioral code that is executed when the user interacts
with it. Their migration is beyond the scope of
this paper (see for example [2]). These pages
display data obtained from the server’s services.

The Services are server-side constructs that
must also be described in the client to ensure
interoperability. This enables the connection be-
tween the two parts of the applications. For
example, in a human resources application, an
“employee service” could be used to query em-
ployees. Technologies such as RMI and GWT-
RPC in Java use proxies on the client to transpar-
ently manipulate objects created remotely on the
server. When invoked, a client “service” (actually
a service descriptor) creates a request to the
corresponding server service and waits for the
response. When it receives that response, it passes
it back to the original caller (i.e. a page or another
client service descriptor).

The application client and server exchange
data through what we call Data Exchange Ob-
jects. A service response typically contains one
or more instances of a Data Exchange Class, such
as a list of employees associated with a particular
request.

Migration Issues
To automatically migrate client-server com-

munication from RMI and GWT-RPC to an HTTP
API, the following issues must be addressed:

• All services must be automatically identified,
as well as their calling and receiving locations
in the source code;

• Data Exchange Classes, used to transfer data
to and from services, must also be identified
and their representation converted from Java
or TypeScript to JSON (serialization/deserial-
ization);

• The service calling convention must be
adapted: with RMI and GWT-RPC, the client
invokes a Java method directly, whereas with
an HTTP API in Spring Boot, the client sends
an HTTP request to the server, which is han-
dled by a controller;

• In addition, we needed to minimize the amount

of exchanged data (payload) in some cases.

Identifying the Services
To migrate the client-server communications,

one must identify all calls to services in the client
and all the definitions of those services in the
server. We will see in a next section that this step
is not difficult in the cases of RMI or GWT-RPC
because they follow specific source code conven-
tions (class annotation or class inheritance).

Identifying the Data Exchange Classes
The exchanged data must also be considered.

First, one needs to identify what data is being
exchanged, i.e., what classes define Data Ex-
change Objects. Then, one must make sure that it
can be serialized and deserialized correctly. RMI
and GWT-RPC technologies rely on a proprietary
binary serialization format that is handled trans-
parently by the frameworks themselves. On the
other hand, REST is typically associated with a
generic and standard serialization format such as
JSON, and data (de)serialization must be handled
explicitly by the developer. This introduces some
difficulties, which we explore in the following
paragraphs.

A Data Exchange Class corresponds to a Type
in Java, TypeScript, or any other language. The
JSON format, which has its own MIME type of
“application/json”, contains only primitive types,
arrays, and dictionaries. JSON primitive types are
string, number, and boolean; JSON arrays can
contain any number of “JSON types”; and JSON
dictionaries are key-value collections where the
keys are strings and the values are “JSON types”.
There is no structural description in JSON for
runtime data. Objects are transferred as field-
name/field-value dictionaries. This is a problem
because dictionaries and objects that are serial-
ized to JSON have exactly the same format.

Therefore, the serializer and the deserial-
izer must agree on the structure of the trans-
ferred data beforehand. This is a known is-
sue of “data format” described in the intro-
duction to integration styles in [4]. Even then,
there are still difficulties in the case of trans-
ferring polymorphic objects. For example, to de-
serialize a collection of AbstractEmployee,
a deserializer would need to distinguish in-
stances of FullTimeEmployee from instances

November 2022 3

Department Head

of PartTimeEmployee.
There is also the case of object references.

If a field of a serialized object contains another
object, the latter must be serialized recursively. If
the second object contains a reference back to the
first, this creates a known issue with serializing
objects with circular references.

A final problem is that RMI and GWT-RPC
ignore field visibility. When an object is sent from
the server to the client, the frameworks are able to
serialize all of the object fields, even the private
ones. On the other hand, some modern JSON
libraries, such as Jackson, only (de)serialize fields
with public accessors.

Adapting the Calling Convention
The calling conventions for a service are

different between RMI/GWT-RPC and an HTTP
API.

RMI and RPC invoke a service by executing a
remote class method. On the other hand, modern
RESTful solutions invoke a service using an
HTTP request comprising a resource locator (the
URL) and an HTTP verb (POST, GET, PUT,
DELETE, etc.3). Therefore, client-side invoca-
tions must be adapted to the conventions of an
HTTP API.

Minimize Amount of Exchanged Data
After the initial experiments, we encountered

some performance issues. While evaluating the
performance of a migrated application, we no-
ticed that the exchange of some messages be-
came noticeably slower (from near instantaneous,
to tens of seconds). This often happened on
pages displaying a table of objects, where the
full objects are transferred (as described by the
Embedded Entity pattern in [5, p.314]) while
only a few fields are actually displayed. Profiling
showed that this was due to deserialization in
the client for multi-megabyte payloads. This is a
known problem with JavaScript JSON processing
libraries, as noted in previous work on Web front-
end migration [6]. Because RMI and GWT-RPC
do not have this problem, the application devel-
opers did not focus on making smaller payloads.

3https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

Migration Process

This paper proposes a process for migrating
client-server communication that addresses all of
the above issues. We describe here our solutions
for (i) identifying the services and Data Exchange
Classes; (ii) adapting the calling conventions of
services; (iii) migrating Data Exchange Classes;
and (iv) pruning Data Exchange Objects for per-
formance issues.

Services And Data Exchange Classes
Identification

The services are identified using coding con-
ventions, by static analysis of the applications.
In the case of RMI, the framework requires
service classes to implement the Remote inter-
face, and their methods to be able to throw a
RemoteException to be exposed. For GWT-
RPC, service classes are required to implement
the RemoteService interface, and all the pub-
lic methods are exposed.

Once a method implementing a service is
identified, its return and parameter types can be
identified as Data Exchange Classes.

Adapt Calling Conventions

In the legacy applications, services are imple-
mented by methods in specific classes (as pre-
viously mentioned). For ease of implementation,
we decided to keep the same convention for
the migrated applications. Thus, each class in a
legacy implementation is migrated as a class in its
new implementation, and each method in RMI or
GWT-RPC is migrated as an HTTP API endpoint.
To simplify the migration, we also use only the
HTTP verb: POST. This results in operating at
REST maturity level one.

On the server side, we automatically gener-
ated wrapper services which make use of Spring
Boot, where they are called controllers. The
generated controller for a methodX will accept
HTTP requests and handle JSON deserialization,
then delegate the execution of the service to the
old methodX. This is illustrated in Figure 1 and
Listing 1.

4 IT Professional

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

Figure 1: Wrapping of legacy RMI service into
new Spring controller

1 @ R e s t C o n t r o l l e r
2 @PostMapping (p a t h = " / Se rv iceX " ,
3 consumes = " a p p l i c a t i o n / j s o n " ,
4 p r o d u c e s = " a p p l i c a t i o n / j s o n ")
5 p u b l i c c l a s s S e r v i c e X C o n t r o l l e r {
6

7 @PostMapping (" / methodX ")
8 p u b l i c R e s u l t T y p e methodX (
9 @RequestBody Map< S t r i n g , Objec t > a r g s)

10 t h ro ws RemoteExcep t ion {
11 / / g e t a rgumen t s from JSON p a y l o a d
12 f i n a l ArgType1 a rg1 = a r g s . g e t (" a rg1 ") ;
13 f i n a l ArgType2 a rg2 = a r g s . g e t (" a rg2 ") ;
14 / / g e t o t h e r a rgumen t s . . .
15 f i n a l User _ u s e r = a r g s . g e t (" _ u s e r ") ;
16

17 f i n a l Se rv iceX s e r v i c e = new Serv iceX () ;
18 s e r v i c e . s e t U s e r (_ u s e r) ;
19

20 r e t u r n s e r v i c e . methodX (arg1 , arg2 , . . .) ;
21 }
22 }

Listing 1: Automatically generated controller
with a methodX API endpoint. The strings
“arg1”, “arg2”, etc. represent the argument names
of the old service’s method.

Note that the RemoteException on line 10
is a remnant of the RMI implementation that re-
quired services to be able to throw this exception.
The exception is there because we avoided mod-
ifying the original services, but it will never be
thrown because RMI is no longer used. Another
way to handle it would be to add a try block with
an empty catch statement. If we had not decided
to keep as much of the original code as possible,
we could have refactored the original service to
remove the reference to the RMI interface and
not declare the throwing of the RMI exception.

In the legacy applications, services have a
small context: an object that represents the au-
thenticated user of the application. Our solution
is to use the Context Representation pattern [5,

p.96] and embed this small context in each re-
quest as a specific argument (line 15) of the
service invocation. This context is then set in the
ServiceX instance (line 18) before the method
is called.

Data Exchange Class Migration
We discussed earlier that there are several

problems associated with using JSON to trans-
fer data: no structure description, polymorphic
objects, circular references. We need to use a
JSON library that handles these problems for us.
But since the language is not the same for both
communicating parts, Java on the server side and
TypeScript on the client side, we need compatible
libraries so that exchanged data is understood in
the same way by both. We chose the Jackson
library embedded in Spring Boot for the server
side, and the Jackson-js library, an implemen-
tation of the Jackson library in JavaScript, for
Angular.

As described previously, there is also a dif-
ference between serialization mechanisms based
on attributes (ignoring their visibility) or based
on public getters/setters. The Jackson library ac-
cesses attributes through public accessor methods.
Again, because RMI and GWT-RPC give more
freedom, application developers did not strictly
implement all the accessors. We decided that this
was a violation of good programming rules and
programmed it into our (custom made) linter so
that developers should fix all violations before the
migration occurs.

As mentioned above, the Data Exchange
Classes of the original applications sometimes
contained behavioral code. While it is not com-
plex to automatically migrate the Data Exchange
Class hierarchy and fields from Java to Type-
Script, these methods had to be ignored in the
process due to the difficulty of transpilation.
The development teams will need to reimplement
them manually, and again we use our linter to
identify all occurrences of such methods.

Pruning Data Exchange Objects
The last problem we had to deal with was

the pruning of Data Exchange Objects. This is
necessary when the server sends too much data
to the client, resulting in a noticeable wait while
the client deserializes it.

November 2022 5

Department Head

To solve this problem and reduce the payload
size, we use a solution inspired by GraphQL4 and
follow the Wish List pattern [5, p.335]. The idea
is to reduce the size of the Data Exchange Objects
returned by the server, by not serializing data that
is ignored by the client. In practice, when the
client performs a request to the server, it adds,
as a parameter, the list of fields of interest in the
returned objects. Note that this list is not shown
in Listing 1 (line 14) for the sake of clarity. Then,
on line 20, before returning it to the client part,
the result of the method call is passed to a special
function along with the list of fields of interest.
This function discards the uninteresting fields so
that they do not clutter the JSON data. Again, for
the sake of clarity, this function call is not shown
in the listing.

GraphQL itself is a comprehensive technol-
ogy that would have replaced Spring controllers,
and required substantial changes to the applica-
tions’ source code. Therefore, we chose the small
Jackson-AntPathFilter5 project, which provides
the same pruning functionality but makes fewer
assumptions about the host code.

The applications we worked on are all “stan-
dard management applications” (see below). As
such, a large part of the UI displays tables of data.
The cases where pruning was necessary were for
these tables, when the service returns a list of
objects of which only a few fields are actually
displayed. For each displayed table, we identify
the associated service invocation (which collects
the data to display) and we extract the fields that
the table actually requires.

To do this, we used static analysis of the
code, which was facilitated by the fact that the
developers followed code style guidelines.

First, we need to associate a displayed table
with the service that provides its data:

• The table widget is identified because
it is a class that inherits from
AbstractTableWidget;

• We look for the creation of instances of this
class and the use of the setModel(new
ATableModel()) method, which associates
a model with the widget;

• Table model classes inherit from an

4https://graphql.org/
5https://github.com/Antibrumm/jackson-antpathfilter

AbstractTableModel superclass that
provides a loadData method. We look for
the call to this method in ATableModel
since it usually takes as parameter the
invocation of a service (which will return the
required data).

This tells us which service returns the data
that will be displayed in the table. We must now
identify which fields are actually displayed so that
we can prune the result of the service. To do this,
we look at the constructor of the table widget,
which contains calls to the addColumn method
(see Listing 2). Each parameter of addColumn
is an attribute of interest.

1 c l a s s F o l d e r T a b l e W i d g e t
2 e x t e n d s A b s t r a c t T a b l e W i d g e t {
3

4 p u b l i c F o l d e r T a b l e W i d g e t () {
5 addColumn (F o l d e r . c l a s s , " d a t e ") ;
6 addColumn (F o l d e r . c l a s s , " c i t y . c i t y R e f ") ;
7 }
8 }

Listing 2: Initialization of a Table

This solution is not completely reliable, as
it may sometimes be difficult to track down the
service invocation from the loadData call. When
we are not able to follow a complex data flow
from the call to loadData, we insert a “TODO”
comment in the generated code next to this call.
The application developers will have to go back to
the migrated client, to resolve all these comments
by manually tracking down the service invocation
and inserting the list of fields of interest.

Evaluation
We tested our solution on four real industrial

applications. While we manually verified that the
migrated applications do work as intended, they
have not yet been accepted by their respective
development teams.

Table 1: Four applications on which we tested our
approach

KLOC Service Service Data Ex. Legacy
classes methods Classes comm.

app1 1 090 323 2 991 6 705 RMI
app2 2 735 448 3 355 4 611 GWT-RPC
app3 1 125 645 4 474 5 099 GWT-RPC
app4 322 63 534 479 GWT-RPC

Table 1 gives some data about the subject
applications. They are management applications

6 IT Professional

https://graphql.org/
https://github.com/Antibrumm/jackson-antpathfilter

(financial, customers, human resources). Three of
them are large, with hundreds of service classes
(in the server part), and thousands of service
methods (actual services). Prior to the migration,
three of the applications used GWT-RPC and one
used RMI.

To evaluate the usefulness of Data Exchange
Object pruning in terms of execution time and
memory consumption, we analyzed two different
web pages. The first contains a seven-column
table widget. It displays three rows after the
service invocation. The second one contains an
eight-column table widget. It displays nine rows
after the service invocation. For each web page,
we evaluate three aspects: the size (in kilobytes)
of the message returned by the server, the time
(in milliseconds) the server spent executing the
request and pruning the result, and the “user
time” (in milliseconds) from before the call to
loadData to after it. This is the time the user
waits for the empty displayed page to load the
data. It includes the call to the service and the
time to deserialize the Data Exchange Object.

Table 2: Time and memory consumption with
and without object pruning (values averaged over
several calls)

Payload Server User
size (Kb) time (ms) time (ms)

no pruning 64 18 1 301
Case 1 w/ pruning 39 24 822

Improvement 40% -25% 37%
no pruning 4 249 204 12 126

Case 2 w/ pruning 83 92 1 401
Improvement 98% 55% 89%

Table 2 shows the results of this experiment.
In the first case, the payload size is reduced by
40%, going from 64 Kb to 39 Kb. The server
takes more time due to data pruning (24 ms
instead of 18 ms), but the difference is negli-
gible from a human perspective. The user time
decreases from 1 301 ms to 822 ms (about 0.5
seconds), which is a small difference for the end
user.

In the second case, the improvement in object
size is huge (98%), going from 4 249 Kb to
83 Kb. The server time is also reduced, going
from 204 ms to 92 ms (55%), probably because
there is so much less data to serialize. The user
time decreases from 12 126 ms to 1 401 (89%).
This last case is a concrete example of a service

for which the end user would have to wait more
than 10 seconds, which drops to 1.5 seconds after
pruning (still noticeable, but more acceptable).

The overall inferior performance of RESTful
HTTP compared to RPC technologies is causing
some companies to migrate back to RPC [7].
If performance becomes a significant issue in
validating migrations, a more efficient JSON-
compliant solution could be used at the expense
of readability [8].

In summary, we have succeeded in design-
ing a semi-automated tool to migrate services
from legacy RMI/GWT-RPC to a modern Spring
HTTP API. Using Data Exchange Object prun-
ing, we also addressed the performance issue of
(de)serialization.

Conclusion
In this paper, we expose a concrete problem

of client-server communication migration. We
presented an approach to migrate the client-server
communication of applications and applied it to
applications of Berger-Levrault.

Client-server migration is a complex and time-
consuming process that requires careful planning
and execution. To successfully migrate client-
server communications, it is necessary to identify
the technologies and protocols used by the exist-
ing system, as well as any potential roadblocks
or compatibility issues. It is also important to
have a clear understanding of the data exchanged
between the client and server, as well as any
dependencies or interactions between different
components of the system.

We propose to use a semi-automated tool to
identify and update code that is specific to the
legacy system, while leaving more general code
intact. In this context, standardizing the source
code according to coding conventions can make
the migration process smoother and more effi-
cient. This reduces the manual effort of discov-
ering and mapping source widgets to their target
counterparts, and it improves the maintainability
of the code.

Finally, it is important to thoroughly test the
migrated system to ensure that it works correctly
and meets the needs of end users.

We provide links at https://github.com/
badetitou/Casino to several importers and
generators that can help migrate applications,

November 2022 7

https://github.com/badetitou/Casino
https://github.com/badetitou/Casino

Department Head

and provide details about our approach.

REFERENCES
1. S. Bragagnolo, N. Anquetil, S. Ducasse, S. Abder-

rahmane, and M. Derras, “Analysing Microsoft Access

projects: Building a model in a partially observable

domain,” in International Conference on Software and

Systems Reuse (ICSR’20), ser. LNCS, no. 12541, Dec.

2020.

2. B. Verhaeghe, A. Shatnawi, A. Seriai, A. Etien, N. An-

quetil, M. Derras, and S. Ducasse, “From GWT to An-

gular: An experiment report on migrating a legacy web

application,” IEEE Software, 2021.

3. C. Zirkelbach, A. Krause, and W. Hasselbring, “On the

modernization of ExplorViz towards a microservice ar-

chitecture,” in Combined Proceedings of the Workshops

of the German Software Engineering Conference 2018.

CEUR Workshop Proceedings, 2018.

4. G. Hohpe and B. WOOLF, Enterprise Integration

Patterns: Designing, Building, and Deploying Messaging

Solutions, ser. The Addison-Wesley Signature Series.

Prentice Hall, 2004. [Online]. Available: http://books.

google.com.au/books?id=dH9zp14-1KYC

5. O. Zimmermann, M. Stocker, D. Lübke, U. Zdun, and

C. Pautasso, Patterns for API Design: Simplifying Inte-

gration with Loosely Coupled Message Exchanges, ser.

Addison-Wesley Signature Series (Vernon). Addison-

Wesley Professional, 2022.

6. B. Verhaeghe, A. Shatnawi, A. Seriai, A. Etien, N. An-

quetil, M. Derras, and S. Ducasse, “A hybrid architecture

for the incremental migration of a web front-end,” in Pro-

ceedings of the 17th International Conference on Soft-

ware Technologies - ICSOFT, INSTICC. SciTePress,

2022, pp. 101–110.

7. Y. Lee and Y. Liu, “Using refactoring to migrate

REST applications to gRPC,” in Proceedings of the

2022 ACM Southeast Conference, ser. ACM SE

’22. New York, NY, USA: Association for Computing

Machinery, 2022, pp. 219–223. [Online]. Available:

https://doi.org/10.1145/3476883.3520220

8. J. C. Viotti and M. Kinderkhedia, “Benchmarking JSON

BinPack,” ArXiv, vol. abs/2211.12799, 2022.

Gabriel Darbord is a Ph.D. student at the RMoD
Team of Inria Lille - Nord Europe, France. Contact him
at gabriel.darbord@inria.fr.

Benoît Verhaeghe is a research engineer at Berger-
Levrault. Contact him at benoit.verhaeghe@berger-
levrault.com.

Anne Etien is full Professor at the University of Lille,
France. Contact her at anne.etien@inria.fr.

Nicolas Anquetil is assistant Professor at the
University of Lille, France. Contact him at nico-
las.anquetil@inria.fr.

Mustapha Derras is research director at Berger-
Levrault. Contact him at mustapha.derras@berger-
levrault.com.

8 IT Professional

http://books.google.com.au/books?id=dH9zp14-1KYC
http://books.google.com.au/books?id=dH9zp14-1KYC
https://doi.org/10.1145/3476883.3520220

	Migration Context
	Migration Issues
	Identifying the Services
	Identifying the Data Exchange Classes
	Adapting the Calling Convention
	Minimize Amount of Exchanged Data

	Migration Process
	Services And Data Exchange Classes Identification
	Adapt Calling Conventions
	Data Exchange Class Migration
	Pruning Data Exchange Objects

	Evaluation
	Conclusion
	REFERENCES
	Biographies
	Gabriel Darbord
	Benoît Verhaeghe
	Anne Etien
	Nicolas Anquetil
	Mustapha Derras

