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p2q Université de Strasbourg et CNRS

Abstract

We consider the estimation of the conditional tail moment at extreme levels for the class

of Weibull-type distributions. A two-step procedure is introduced where in the first stage one

estimates the conditional tail moment at an intermediate level, followed by an extrapolation

in the second stage. The asymptotic properties of the estimators introduced in the two

stages are derived under suitable assumptions. The finite sample properties of the proposed

estimator are examined with a simulation experiment. We conclude with two applications

on real life data: wind speed measurements collected at an offshore wind farm and PM2.5

air pollution data.

Keywords: Empirical process, extreme-value statistics, hazard rate function, Weibull-type

distribution.

1 Introduction

Quantifying and estimating the risk of extreme events is of interest in many scientific disciplines.

Floods due to sea storms can entail massive losses, both in terms of human lives and economical

losses, so the modelling of the distribution of wave heights and other sea state parameters is of

crucial importance in the design of coastal protection. In environmental science, extreme levels

of pollutants can have adverse effect on human health. Over the years several risk measures

have been introduced, the most popular of these being the Value-at-Risk (also called return
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level) and the conditional tail expectation. We refer to, e.g., Jorion (2007), Singh et al. (2007),

Coles (2013), Cooley (2013) and Salas and Obeysekera (2014). In this paper we consider the

conditional tail moment pCTMq, being a natural generalisation of the conditional tail expec-

tation, and study its estimation for the class of Weibull-type distributions. Note that moment

estimation is of general interest in statistics. Although we are often primarily interested in the

first and second moments for practical reasons, in some applications one may also be interested

in the conditional tail skewness or kurtosis, see, e.g., Hong and Elshahat (2010) or Eini and

Khaloozadeh (2021) for such examples, and more generally El Methni et al. (2014).

Let β ą 0 and p P p0, 1q. We want to estimate

CTMβ,p :“ E
”

Xβ
ˇ

ˇ

ˇ
X ą UXp1{pq

ı

,

when the distribution of X is of Weibull-type, i.e., the distribution function satisfies

FXpxq “ 1´ e´x
1{θ`Xpxq, x ą 0, (1)

with θ a positive parameter and `X a slowly varying function at infinity, i.e., a positive measur-

able function such that

lim
tÑ8

`Xptxq

`Xptq
“ 1 for all x ą 0,

and UX the tail quantile function of X defined as UXpxq “ inftz : FXpzq ě 1 ´ 1{xu, x ą 1.

This risk measure CTMβ,p uses the information in the upper tail, i.e., above the high quantile

UXp1{pq. Specific interest is here in the extreme case, that is, the situation where p is very small,

typically less than 1{n, where n is the size of the random sample that is available for estimation.

In this case, estimation is challenging as the conditional expectation in the definition of CTMβ,p

cannot simply be estimated by an empirical average. Indeed, for p ă 1{n the natural estimator

for UXp1{pq is the largest observation in the sample, but then there are no further data to base

the estimation of the conditional expectation upon. The role of the power parameter β is, e.g.,

to allow the computation of both the mean and the second moment and thus the variance of

X given that X is extreme (above its quantile). Note that when β “ 1, we recover the usual
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conditional tail expectation.

The considered class of Weibull-type distributions forms a rich subclass of the Gumbel max-

domain of attraction. The tail heaviness of Weibull-type distributions is clearly governed by the

parameter θ, where larger values of θ correspond with a slower decay of the upper tail. Popular

members of this family include the Weibull (corresponding to a constant function `X), normal,

gamma and logistic distributions, to mention only a few. Loosely speaking, the upper tail decays

exponentially fast, in contrast to the Pareto-type models which have a tail decay corresponding

to a decreasing power function, and thus are heavier tailed. The Weibull-type distributions

find important applications in areas like environmental science, climate science, hydrology, en-

gineering and medicine. As the Weibull-type model depends only explicitly on the parameter

θ, it is not unexpected that the estimation of this parameter received a lot of attention in the

extreme-value literature. Girard (2004) introduced a Hill-type estimator for θ; see also Gardes

and Girard (2005) for the related problem of extreme quantile estimation. Generalisations to

estimators based on weighted sums (of spacings) of upper order statistics were considered in

Broniatowski (1993), Gardes and Girard (2008) and Goegebeur et al. (2010). Beirlant et al.

(1995), Dierckx et al. (2009) and Goegebeur and Guillou (2011) developed alternative estimation

methods for θ based on the mean excess function, where the latter two papers highlighted the

improved performance with respect to bias compared to the estimators based on properties of

upper order statistics; see also Diebolt et al. (2008) where a dedicated bias-reducing estimation

procedure was developed. Further extensions where θ is estimated in presence of random covari-

ates can be found in Goegebeur et al. (2015), Gardes and Girard (2016) and de Wet et al. (2016).

The estimation of the conditional tail moment is already studied for the context of Pareto-type

distributions in Goegebeur et al. (2022), who consider the classical setup of independent iden-

tically distributed (i.i.d.) random variables. Goegebeur et al. (2023a) studied this in an i.i.d.

setting with random right censoring. El Methni et al. (2014) studied the estimation of the

conditional tail moment in a regression setup where the conditional distribution of the response

variable given the covariate is of Pareto-type. Estimation of the conditional tail moment for the
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class of Weibull-type distributions is to the best of our knowledge unexplored.

We organise this paper as follows. In Section 2 we provide as a first result an approximation

of CTMβ,p for p Ó 0, which will be used to derive the estimator for this risk measure under

extrapolation. The proposed estimator depends on an estimator for the conditional tail moment

in the intermediate case, i.e., for p “ k{n, where k Ñ 8 as the sample size n Ñ 8 but in

such a way that k{nÑ 0. This intermediate case is studied in Section 3 where we introduce an

estimator and derive its limiting distribution under suitable assumptions. Section 4 is devoted

to the study of the asymptotic properties of the estimator for CTMβ,p in the extreme case.

The finite sample properties are examined by a simulation experiment in Section 5 while the

practical applicability of the proposed method is illustrated in Section 6 on wind speed and air

pollution data. Concluding remarks are given in Section 7. Section 8 contains the proofs of the

results. Some additional simulation results are provided in an online Supporting Information.

2 Construction of the estimator

Let RVψ denote the class of regularly varying functions at infinity with index ψ P R, i.e.,

positive measurable functions f satisfying fptxq{fptq Ñ xψ, as t Ñ 8, for all x ą 0. Denote

Hpxq “ ´ logFXpxq, and hence FXpxq “ e´Hpxq. In the case where FX is of Weibull-type we

have then H P RV1{θ. Note that if H is differentiable with derivative H 1 then H 1 “ h where h

is the hazard rate function.

We start to expand CTMβ,p in case p Ó 0 in order to have an idea about how to estimate this

risk measure under extrapolation, i.e., for p ă 1{n, where n is the size of the sample on which

the estimation is based.

Lemma 2.1 Assume FX satisfies (1), H is differentiable with derivative h P RV1{θ´1. Then,

as p Ó 0, we have
CTMβ,p

”

UX

´

1
p

¯ıβ
ÝÑ 1.

From this lemma, the first idea to estimate CTMβ,p is to use an estimate of
”

UX

´

1
p

¯ıβ
.
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Unfortunately, since by definition of the conditional tail moment we condition on the event

tX ą UXp1{pqu, clearly such an estimate will underestimate the true value. An alternative

method consists in using a two-step procedure as follows.

Let k be an intermediate sequence, i.e., a sequence such that k Ñ 8 and k{n Ñ 0 as n Ñ 8.

Lemma 2.1 yields the approximation

CTMβ,p{

”

UX

´

1
p

¯ıβ

CTMβ,k{n{
“

UX
`

n
k

˘‰β
„ 1,

from which we deduce that

CTMβ,p „

˜

UXp
1
pq

UXp
n
k q

¸β

CTMβ,k{n.

Note that (1) is equivalent to assume that UX satisfies

UXpxq “ plog xqθ `U plog xq,

where `U is also a slowly varying function at infinity. Thus, we deduce the following estimator

for CTMβ,p

{CTMβ,p :“

ˆ

logp1{pq

logpn{kq

˙β pθk

CTMβ,k{n, (2)

where pθk is an estimator of θ and CTMβ,k{n an intermediate estimator of CTMβ,k{n.

3 Asymptotic properties of CTMβ,k{n

Assume we have at our disposal a sample X1, . . . , Xn of independent copies of the random

variable X and denote by X1,n ď . . . ď Xn,n the order statistics. We start with considering the

estimation of the conditional tail moment in the intermediate case. In this situation, the natural

estimator for UXpn{kq is then Xn´k,n, which is within the data range, and hence CTMβ,k{n can

be estimated empirically by the sample mean of the Xβ
i for which Xi ą Xn´k,n. We define

CTMβ,k{n “
1

k

n
ÿ

i“1

Xβ
i 1ltXiąXn´k,nu,
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and introduce

CTMβ,k{npxq :“
1

k

n
ÿ

i“1

Xβ
i 1ltXiąUXpnk q`aXp

n
k
qxu,

where

aXptq :“
1

hpUXptqq
.

Then, CTMβ,k{n can be rewritten as

CTMβ,k{n “ CTMβ,k{n ppun,kq ,

where pun,k :“ pXn´k,n ´ UXpn{kqq{aXpn{kq.

The weak convergence of CTMβ,k{n, after normalisation, is given in the following theorem.

Theorem 3.1 Assume FX satisfies (1), H is differentiable with derivative h which is ultimately

monotone, and h is differentiable with derivative h1 satisfying xh1pxq{hpxq Ñ 1{θ´ 1 as xÑ8.

Then, if k Ñ8 as nÑ8 such that k{nÑ 0 and
?
kaXpn{kq{UXpn{kq Ñ 0, we have

?
k
UXpn{kq

aXpn{kq

˜

CTMβ,k{n

CTMβ,k{n
´ 1

¸

d
ÝÑ Θ :“ β

ż 8

0
W

`

e´v
˘

dv,

where W pzq is a zero centered Gaussian process with covariance function

E tW pzqW pzqu “ minpz, zq.

Note that this theorem implies the convergence of the rescaled estimator of CTMβ,k{n towards

the N p0, 2β2q distribution. As is clear, the limiting distribution in Theorem 3.1 does not depend

on θ. At first sight, this can appear unexpected, but this can be explained by the fact that

the first order expansion of the conditional tail moment (Lemma 2.1), as well as the limiting

distribution of the extreme quantile (see Lemma 8.2 in Section 8) are independent on θ in case

of Weibull-type distributions. Note that this was also observed in Goegebeur et al. (2023b) for

the intermediate estimator of the marginal excess moments for Weibull-type distributions. Note

also that under the assumption

lim
xÑ8

x
`1Xpxq

`Xpxq
“ 0, (3)
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our condition
?
kaXpn{kq{UXpn{kq Ñ 0 is equivalent to

?
k{ logpn{kq Ñ 0, a condition indepen-

dent on the value of θ. The convergence (3) is not a restrictive condition since it is automatically

satisfied for a normalized slowly varying function `X , i.e., a function of the form

`Xpxq “ c exp

"
ż x

a

εpuq

u
du

*

, x ě a,

with c a positive constant and εpxq Ñ 0, see, e.g., Bingham et al. (1987, page 15).

4 Asymptotic properties of {CTMβ,p

In this section we study the asymptotic properties of the estimator {CTMβ,p given in (2). As

estimator for the Weibull-tail coefficient θ we use the estimator proposed by Girard (2004), given

by

pθk :“
1
k

řk
i“1 plogXn´i`1,n ´ logXn´k,nq

1
k

řk
i“1

`

log log n
i ´ log log n

k

˘
.

Below, we recall the limiting distribution of this estimator, properly normalised, in terms of a

stochastic process, as established in Theorem 4.1 in Goegebeur et al. (2023b).

Lemma 4.1 Assume FX satisfies (1), H is differentiable with derivative h which is ultimately

monotone, and h is differentiable with derivative h1 satisfying xh1pxq{hpxq Ñ 1{θ´ 1 as xÑ8.

Then, if k Ñ 8 as nÑ 8 such that
?
kaXpn{kq{UXpn{kq Ñ 0 and

?
k
UXpn{kq`

1
XpUXpn{kqq

`XpUXpn{kqq
Ñ 0,

we have
?
k
´

pθk ´ θ
¯

d
ÝÑ Γ :“ θ

"
ż 8

0
W

`

e´v
˘

dv ´W p1q

*

.

Note that the limiting distribution in Lemma 4.1 is N p0, θ2q. As is clear from Theorem 3.1 and

Lemma 4.1, the limiting behavior of CTMβ,k{n and pθk involves the same stochastic process W .

For more details we refer to Section 8 of the present paper and the proof of Theorem 4.1 in

Goegebeur et al. (2023b).

We can now state the main result of the paper, namely the weak convergence of {CTMβ,p,

properly normalised.
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Theorem 4.1 Assume FX satisfies (1), H is differentiable with derivative h which is ultimately

monotone, and h is differentiable with derivative h1 satisfying xh1pxq{hpxq Ñ 1{θ´ 1 as xÑ8.

Then, if k Ñ8 as nÑ8 such that
?
k aXpn{kqUXpn{kq

Ñ 0 and
?
k supxěUXpn{kq

x|`1Xpxq|

`Xpxq
Ñ 0, we have

for p satisfying p ď k
n such that log 1{p

logn{k Ñ λ P p1,8q that

?
k

˜

{CTMβ,p

CTMβ,p
´ 1

¸

d
ÝÑ β logpλqΓ.

From the result of Theorem 4.1, it is clear that the estimator {CTMβ,p inherits its limiting dis-

tribution, up to the factor β logpλq, from the estimator pθk for the Weibull-tail coefficient. In

particular, we obtain the N p0, pθβ logpλqq2q distribution as limiting distribution for the rescaled

estimator of CTMβ,p. As expected, more severe extrapolations, corresponding with larger values

for λ, lead to an increase in the variance of the limiting distribution.

Below we give some examples of distributions satisfying the assumptions of Theorem 4.1, in

particular the conditions

lim
xÑ8

x
h1pxq

hpxq
“

1

θ
´ 1, (4)

lim
nÑ8

?
k
aXpn{kq

UXpn{kq
“ 0, (5)

lim
nÑ8

?
k sup
xěUXpn{kq

x
|`1Xpxq|

`Xpxq
“ 0. (6)

The distributions are:

• Weibull distribution (Weibullpθq, θ ą 0): We have FXpxq “ e´x
1{θ

and thus Hpxq “ x1{θ.

Clearly H is differentiable with derivative hpxq “ 1
θ x

1
θ
´1 which is monotone and which

satisfies (4). Also since `Xpxq “ 1, (6) is trivially satisfied. Since UXpxq “ plog xqθ, (5) is

equivalent to the condition
?
k

logn{k Ñ 0.

• Gamma distribution (Γpα, λq, α, λ ą 0). Denote by ΓIpa, zq :“
ş8

z t
a´1 e´t dt the upper

incomplete Gamma function and recall its expansion for z Ñ8

ΓIpa, zq „ za´1 e´z
„

1`
a´ 1

z
`O

ˆ

1

z2

˙

, (7)

8



see Abramowitz and Stegun (1983, p. 263). Then we have

FXpxq “
ΓIpα, λ xq

Γpαq
,

and for x large enough

x
h1pxq

hpxq
“ x

f 1Xpxq

fXpxq
` x

fXpxq

FXpxq
“ O

ˆ

1

x

˙

,

from which (4) follows with θ “ 1. In that case hpxq “ `Xpxq
”

1` x
`1Xpxq

`Xpxq

ı

, from which

we deduce that

x
`1Xpxq

`Xpxq
“

hpxq

`Xpxq
´ 1 “

fXpxq

FXpxq `Xpxq
´ 1

“
1` pα´ 1q logHpxq

Hpxq `Op 1
Hpxqq

1`Op 1
xq

´ 1

“ pα´ 1q
logHpxq

Hpxq
`O

ˆ

1

Hpxq

˙

`O

ˆ

1

x

˙

,

using (7) combining with the fact that, according to Girard (2004):

`Xpxq “

"

1

λ
`
α´ 1

λ

logHpxq

Hpxq
`O

ˆ

1

Hpxq

˙*´1

.

This implies that

UX

´n

k

¯ `1XpUXp
n
k qq

`XpUXp
n
k qq

“ pα´ 1q
log log n

k

log n
k

`O

ˆ

1

log n
k

˙

.

Since the right-hand side of the above display tends to 0, (5) is equivalent to the condition
?
k

logn{k Ñ 0. Further, we have, for x large enough, that

x
|`1Xpxq|

`Xpxq
ď C

log x

x
,

where C is some positive constant, and thus, for n large,

?
k sup
xěUXpn{kq

x
|`1Xpxq|

`Xpxq
ď C

?
k

log log n
k

log n
k

,

and hence (6) is satisfied if
?
k

log log n
k

log n
k
Ñ 0. This condition is slightly stronger that the

one due to (5) and similar to the condition
?
k bplogpnk qq Ñ 0 imposed by Girard (2004)

for the asymptotic normality of the Weibull tail coefficient, since for this distribution

bpxq “ p1´ αq log x
x (see Girard, 2004).
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• Extended Weibull distribution (EWeibullpθ, ξq, θ ą 1, ξ P R) with survival function

1´ FXpxq “ rpxqe´x
1{θ
, x ą 0,

where r P RVξ (Klüppelberg and Villaseñor, 1993). We consider the simplified case where

rpxq “ Dxξ instead of being RVξ, then direct computations yield:

`Xpxq “ 1´ ξ x´
1
θ log x´ logDx´

1
θ ,

`1Xpxq “
ξ

θ
x´

1
θ
´1 log x

"

1´
θ ´ plogDq{ξ

log x

*

hpxq “
1

θ
x

1
θ
´1

!

1´ θ ξ x´
1
θ

)

h1pxq “
1

θ

ˆ

1

θ
´ 1

˙

x
1
θ
´2

"

1`
θ2 ξ

1´ θ
x´

1
θ

*

,

from which we deduce that (4) is satisfied, (5) is equivalent to the condition
?
k

logn{k Ñ 0.

Concerning (6) we have, for x large enough,

x
|`1Xpxq|

`Xpxq
ď C

log x

x1{θ
,

where C is a positive constant and thus, for n large enough,

?
k sup
xěUXpn{kq

x
|`1Xpxq|

`Xpxq
ď C

?
k

log log n
k

log n
k

.

Hence, (6) is satisfied if
?
k

log log n
k

log n
k
Ñ 0. This is similar to the condition

?
k bplogpnk qq Ñ 0

imposed by Girard (2004) since bpxq “ ´θ2 ξ log x
x for this distribution (see Girard, 2004).

• Absolute normal distribution (|N pµ, σ2q|, µ P R, σ ą 0), i.e., the distribution of |X|

where X „ N pµ, σ2q. We verify for brevity the case |N p0, 1q|. Let X be a random

variable from a N p0, 1q distribution, with density fX and survival function FX . We have

F |X|pxq “ 2FXpxq, from which we deduce that

hpxq “
fXpxq

FXpxq

x
h1pxq

hpxq
“ x

f 1Xpxq

fXpxq
` x

fXpxq

FXpxq
“ 1`O

ˆ

1

x2

˙

, (8)

since according to Abramowitz and Stegun (1983, p. 932), we have the approximation

FXpxq “
fXpxq

x

"

1´
1

x2
`O

ˆ

1

x4

˙*

.
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The right-hand side of (8) tends to 1 as x goes to infinity, which means that (4) is satisfied

with θ “ 1{2. As for condition (5) note that

x
`1
|X|pxq

`|X|pxq
“
xhpxq

Hpxq
´ 2,

which gives for x large enough that

x
|`1
|X|pxq|

`|X|pxq
ď C

log x

x2
,

for some positive constant C. Hence, (5) is equivalent to the condition
?
k

logn{k Ñ 0, and (6)

is satisfied if
?
k

log log n
k

log n
k
Ñ 0. For the |N pµ, σ2q| distribution with µ ‰ 0 one can show,

after tedious calculations, that (4) is satisfied with θ “ 1{2, and that (5) and (6) hold if

k{ logpn{kq Ñ 0.

Compared to Goegebeur et al. (2022) where the estimation of the conditional tail moment

has also been studied but for Pareto-type distributions, the assumptions required to show the

convergence in distribution of the estimator in the extrapolation case are not the same as those

of Theorem 4.1, nor the speed of convergence. These differences can be explained from the

expression of the estimators in the case of extrapolation which are, in Pareto and Weibull cases,

based on a Weissman-type construction as follows

ˆ

UXp1{pq

UXpn{kq

˙β

ˆ estimator in the intermediate case,

but with a different ratio

UXp1{pq

UXpn{kq
„

$

’

&

’

%

´

k
np

¯γ
in case of Pareto-type distributions,

´

logp1{pq
logpn{kq

¯θ
in case of Weibull-type distributions,

where γ is the extreme value index. Thus, if pγk is an estimator of γ such that
?
kppγk ´ γq

d
Ñ Γ,

the dominant term in the expansion of the ratio between the conditional tail moment estimator

and the true value is given by

$

&

%

1` β ppγk ´ γq log k
np in case of Pareto-type distributions,

1` β ppθk ´ θq log log 1{p
logn{k in case of Weibull-type distributions,
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from which different conditions (involving p) follows.

Note also that it is quite usual to have differences between two domains of attraction, see, e.g.,

Gardes et al. (2011), where some different asymptotic properties are highlighted between the

Weibull tail-coefficient estimator and the Hill estimator (see Hill, 1975), in terms of bias and

rate of convergence.

5 Simulation experiment

In this section we illustrate the finite sample behavior of the proposed estimator by means of

a simulation experiment. The considered distributions are: Weibullp1q, |N p1.2, 1q|, Γp2, 1q and

EWeibullp1.5,´1q. From each distribution we simulate 500 datasets of sizes n P t500, 2000u,

and we consider estimation of CTMβ,p with p P t1{n, 1{p5nqu, and β P t1, 2u.

In Figure 1 we show for the Weibullp1q distribution the boxplots of {CTM1,p{CTM1,p, computed

over the 500 replications, as a function of k for n “ 500 (left) and n “ 2000 (right), and where

the top row corresponds with p “ 1{n and the bottom row with p “ 1{p5nq. Figures 2-4

are constructed analogously for the other distributions. From the simulations we observe the

following:

• For all the distributions considered the estimation is good when k is small compared to

n, which is in agreement with the theoretical condition k{n Ñ 0. With increasing k the

estimators show typically an increase in bias. As for the bias we comment that estimation

for Weibull-type distributions is practically challenging, with a bias that comes typically

rather fast with increasing k. This was also already observed in the simpler context of

the estimation of the Weibull-tail coefficient θ, see, e.g., Girard (2004), Gardes and Girard

(2008), Goegebeur et al. (2010), to mention only a few, and obviously also manifests itself

here.

• The estimation results improve with increasing sample size n.
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Figure 1: Weibullp1q distribution. Boxplots of {CTM1,p{CTM1,p as a function of k for n “ 500

(left) and n “ 2000 (right) with p “ 1{n (top) and p “ 1{p5nq (bottom).

• Decreasing p leads to increased variability of the estimates, which can be expected as

smaller values of p lead to more severe extrapolations.

• Larger values of θ lead to more variable results. This is also in line with the expectations

as θ determines the heaviness of the upper tail of the Weibull-type model.

In Figure 5 we illustrate the estimation of the second conditional tail moment, CTM2,p, for the

|N p1.2, 1q| distribution. Similar figures can be found in the online Supporting Information for

the three other distributions considered here. As expected, estimation of the second conditional

tail moment is more challenging than that of the conditional tail expectation pβ “ 1q, with

larger bias and variability of the estimates.
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Figure 2: |N p1.2, 1q| distribution. Boxplots of {CTM1,p{CTM1,p as a function of k for n “ 500

(left) and n “ 2000 (right) with p “ 1{n (top) and p “ 1{p5nq (bottom).

14



10 20 40 60 80 100 150 200

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

k

R
at

io

10 20 40 60 80 100 200 400

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

k

R
at

io

10 20 40 60 80 100 150 200

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

k

R
at

io

10 20 40 60 80 100 200 400

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

k

R
at

io

Figure 3: Γp2, 1q distribution. Boxplots of {CTM1,p{CTM1,p as a function of k for n “ 500 (left)

and n “ 2000 (right) with p “ 1{n (top) and p “ 1{p5nq (bottom).
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Figure 4: EWeibullp1.5,´1q distribution. Boxplots of {CTM1,p{CTM1,p as a function of k for

n “ 500 (left) and n “ 2000 (right) with p “ 1{n (top) and p “ 1{p5nq (bottom).
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Figure 5: |N p1.2, 1q| distribution. Boxplots of {CTM2,p{CTM2,p as a function of k for n “ 500

(left) and n “ 2000 (right) with p “ 1{n (top) and p “ 1{p5nq (bottom).

17



Next, using Theorem 4.1 combined with Lemma 4.1, we can construct a confidence interval for

the conditional tail moment. To this aim and in order to improve the coverage probabilities, as

suggested by Drees (2003), we use a log-scale version of Theorem 4.1, i.e.,

?
k log

{CTMβ,p

CTMβ,p

d
ÝÑ β logpλqΓ,

from which we deduce the approximate 100p1´ αq% confidence interval

«

{CTMβ,p exp

#

´Φ´1
´

1´
α

2

¯

pθk β
?
k

log
log 1

p

log n
k

+

; {CTMβ,p exp

#

Φ´1
´

1´
α

2

¯

pθk β
?
k

log
log 1

p

log n
k

+ff

,

where Φ´1 denotes the quantile function of the standard normal distribution. To evaluate the

accuracy of the approximate confidence intervals, we show in Figure 6 for the four considered

distributions the empirical coverage probabilities of the 95% confidence intervals for CTMβ,p as

a function of k, for n P t500, 2000u, p P t1{n, 1{p5nqu and β “ 1. As is clear from the results, the

confidence intervals only reach the 95% level for the smaller values of k, except for the extended

Weibull distribution which has a longer stable pattern. The coverage probabilities increase with

n and they are also larger for p “ 1{p5nq compared to p “ 1{n. The latter can be explained by

the fact that the confidence intervals become wider for decreasing values of p.

Finally, we discuss the choice of the parameter k on which the estimator {CTMβ,p is based. Since

the estimates of CTMβ,p are good for small values of k, but clearly present a bias beyond a

certain value, it is important to know in practice how to choose this parameter. This can be

done by looking at the plot pk, {CTMβ,pq and trying to identify a stable region where k can be

selected. Alternatively, we can also use an automatic selection procedure like the one suggested

by Goegebeur et al. (2019), namely:

1. we compute {CTMβ,p for k “ 5, ...,minp0.1n, 100q,

2. we compute the standard deviation of {CTMβ,p in a moving block of 10 successive k´values,

3. we select the block with the smallest standard deviation,

4. within the block selected in step 3, we repeat the steps 2 and 3, now with block size 5,

5. the estimate for CTMβ,p is the median of the {CTMβ,p in the finally selected block.
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Figure 6: Coverage probabilities of approximate 95% confidence intervals as a function of

k for pn, pq “ p500, 0.002q (black solid line), p500, 0.0004q (red dashed line), p2000, 0.0005q

(black dotted line) and p2000, 0.0001q (red dashed-dotted line). The distributions considered

are Weibullp1q (top left), |N p1.2, 1q| (top right), Γp2, 1q (bottom left) and EWeibullp1.5,´1q

(bottom right).
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Figure 7: Boxplots of {CTM1,p{CTM1,p calculated at the optimal k-value, with from left

to right pn, pq “ p500, 0.002q, p500, 0.0004q, p2000, 0.0005q and p2000, 0.0001q. The distribu-

tions considered are Weibullp1q (top left), |N p1.2, 1q| (top right), Γp2, 1q (bottom left) and

EWeibullp1.5,´1q (bottom right).

As is clear from Figure 7, for fixed n smaller values of p lead to more variable results while

increasing n leads to less variability of the estimates, as expected. After the data-driven selection

of k some estimation bias remains, which is in line with the boxplots shown in Figures 1 till 5.

6 Real data analysis

6.1 Wind speeds at Anholt offshore wind farm

Following the worldwide economic development and population growth, global energy demand

has also shown an important upward trend during the last decades. Traditional fossil fuels have
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many disadvantages: their reserves are limited and their use contributes to increased carbon

dioxide levels in the atmosphere. On the other hand, renewable energy like wind power is in-

exhaustible and causes little pollution. Accurate modelling of the wind speed distribution is

of crucial importance for wind energy output estimation, e.g., at an offshore wind farm. For a

review of wind speed modelling approaches we refer to Shi et al. (2021).

Our interest is in an analysis of the upper tail of the wind speed distribution at the An-

holt offshore wind farm, which is a Danish offshore wind power farm in the Kattegat, be-

tween Djursland and the island Anholt. We estimate the Weibull-tail index θ, the first con-

ditional tail moment CTM1,p (also called the conditional tail expectation) and the condi-

tional tail variance Vp :“ CTM2,p ´ CTM2
1,p, using a dataset that is publicly available at

https://orsted.com/en/what-we-do/renewable-energy-solutions/offshore-wind/

offshore-wind-data. In particular we use LIDAR measured wind speeds (in meters per second)

at 100 meters altitude. The original dataset consists of a time series of 10 minutes measurements

during the years 2013-2014, but in order to reduce temporal dependencies only one observation

every three days is kept for the analysis, leading to n “ 242. In order to evaluate the appropri-

ateness of the Weibull-type model (1) we construct the Weibull QQ plot, which has coordinates
ˆ

log

ˆ

´ log

ˆ

1´
i

n` 1

˙˙

, logXi,n

˙

, i “ 1, . . . , n,

see Figure 8, top left panel. Clearly, the Weibull QQ plot becomes approximately linear in

the largest observations, which supports the Weibull-type model. We refer to Goegebeur and

Guillou (2010) for a discussion of the Weibull QQ plot. Next we estimate the Weibull-tail index

θ, see Figure 8, top right, where we show pθk along with approximate 95% confidence intervals

as a function of k. This plot shows a stable horizontal part for k between, approximately, 30

and 60, indicating an estimate for θ of about 0.4. Finally, the bottom row of Figure 8 shows the

estimates for CTM1,1{n (left) and CTM1,1{p5nq (right) with approximate 95% confidence intervals

as a function of k. Applying the data-driven selection method to determine k, as described in

the simulation section, yields {CTM1,1{n “ 27.3 and {CTM1,1{p5nq “ 30.9, obtained at k “ 21

and k “ 19, respectively. These k values are clearly selected in the stable part of the plots of

{CTM1,p as function of k. Besides CTM1,p, being an average above a high quantile, it can also
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Figure 8: Anholt wind speed data. Weibull QQ plot (top left), pθk with approximate 95%

confidence intervals as a function of k (top right), {CTM1,1{n (bottom left) and {CTM1,1{p5nq

(bottom right) with approximate 95% confidence intervals as a function of k.

be relevant to estimate the variability in the upper tail, Vp, see Figure 9. Focusing on the stable

k-region we have an estimate of Vp between 30-40 for p “ 1{n and p “ 1{p5nq.

6.2 PM2.5 air pollution

Air pollution is among the greatest environmental risks to human health. Of particular concern

is the concentration of PM2.5, referring to atmospheric particulate matter with a diameter of less

than 2.5 micrometers. Since these particles are so small and light, they tend to stay longer in

the air than heavier ones, increasing the chances of humans and animals inhaling them. PM2.5

can travel deep in the respiratory tract, reaching the lungs and entering the blood stream. The

adverse health effects of PM2.5 are well studied, see, e.g., Feng et al. (2016) and Li et al. (2017),
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Figure 9: Anholt wind speed data. pVp with p “ 1{n (solid line) and p “ 1{p5nq (dashed line) as

a function of k.

and the references therein.

We apply the developed methodology to the PM2.5 air pollution in the city of Slavonski Brod,

Croatia, which is with an average of 28.0 micrograms per cubic meter (µg{m3), measured during

the last two years, amongst the most polluted cities in Europe. As a reference, note that the

2021 World Health Organisation’s updated health-based guidelines for air quality recommend a

maximum level of 5 µg{m3 for long term exposure, in order to protect health. We use a dataset

of daily average concentrations of PM2.5 over the period 2015-2021, publicly available on the

website of the European Environment Agency at https://discomap.eea.europa.eu/map/fme/

AirQualityExport.htm. We base the analysis on the data from the winter season (December-

February), and in order to reduce the temporal dependence we only consider measurements that

are three days spaced apart, leading to n “ 209. The Weibull QQ plot shown in Figure 10,

top left, becomes ultimately linear, supporting the assumption of an underlying Weibull-type

distribution, and the plot of the Weibull-tail index estimates pθk (Figure 10, top right) along with

approximate 95% confidence intervals as a function of k is stable for k between approximately

20 and 80, indicating an estimate of about 0.7-0.8. In the bottom row of Figure 10 we show
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Figure 10: Air pollution data. Weibull QQ plot (top left), pθk with approximate 95% confidence

intervals as a function of k (top right), {CTM1,1{n (bottom left) and {CTM1,1{p5nq (bottom right)

with approximate 95% confidence intervals as a function of k.

{CTM1,1{n (left panel) and {CTM1,1{p5nq (right panel) along with approximate 95% confidence

intervals as a function of k. The data-driven selection method gives {CTM1,1{n “ 312.8 and

{CTM1,1{p5nq “ 386.6, both obtained at k “ 15. In Figure 11 we show pVp for p “ 1{n and

p “ 1{p5nq as a function of k, indicating estimates around 10 000 and 15 000 for p “ 1{n and

p “ 1{p5nq, respectively.

7 Concluding remarks

Below we list some topics that will be investigated in future projects.

• In the present paper the estimation problem was considered in the context of i.i.d. random

24



0 50 100 150 200

0e
+

00
2e

+
04

4e
+

04
6e

+
04

8e
+

04
1e

+
05

k

V
ar

ia
nc

e

Figure 11: Air pollution data. pVp with p “ 1{n (solid line) and p “ 1{p5nq (dashed line) as a

function of k.

variables. A natural extension is then to derive the asymptotic behavior of the proposed

estimator when the data are of the form of a stationary time series. In the recent literature

there are several contributions concerning the estimation of risk measures based on time

series data, satisfying some mixing condition, though most of these are in the context of

multivariate regular variation/heavy-tailed distributions. For instance, Linton and Xiao

(2013) consider the estimation of the conditional tail expectation based on a stationary

regularly varying time series while Davison et al. (2023) study the estimation of the

marginal expected shortfall for a heavy-tailed multivariate time series. See also Davis and

Mikosch (2009), and Padoan et al. (2023) for other examples of estimation problems with

multivariate regularly varying time series. Drees (2003) contains results for estimation of

the extreme value index and extreme quantiles based on strictly stationary β´mixing time

series where the marginal distribution belongs to the general max-domain of attraction.

Although the result of Theorem 6.1 and Theorem 6.2 of the latter paper could possibly

also be used to address the estimation problem considered in our paper, as the Weibull-

type distributions are a subclass of the general max-domain of attraction, it would be

desirable to have a result that is specific for the Weibull-type class. Indeed, as mentioned
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in the introduction to our paper, by considering the Weibull-type distributions one can

differentiate the tail behaviour by the parameter θ, while from a more general perspective,

i.e., by considering the Gumbel class, one has an extreme value index γ “ 0. Focusing on

our estimation problem, we would need a process convergence result similar to (9) below

for the case of stationary β´mixing time series. Obtaining such a result is not trivial.

A possible approach could be to use the theory on the weak convergence of empirical

processes of cluster functionals, developed in Drees and Rootzén (2010), but this will

require completely different proofs and is outside the scope of the present paper. Note also

that in the time series context the asymptotic variances are typically more complicated as

they are of the form of a series; see, e.g., Theorem 6.1 in Drees (2003) and Davison et al.

(2023), making the results more difficult to use in practice. The development and study

of a bootstrap procedure to estimate the asymptotic variance is another topic of future

investigations.

• The developed methodology could also be extended to the full max-domain of attraction.

This generalisation would then include the Weibull-type models considered in the present

paper, but also the Pareto-type and the light-tailed distributions which have a finite right

endpoint.

8 Proofs

Remark that
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Tnpxq :“
1

k

n
ÿ

i“1

1l
tFXpXiqă

k
n
xu.

The asymptotic behavior of Tnpxq, after proper normalisation, is given in Lemma 1 of Cai et al.

(2015), according which, for any η P r0, 1{2q and T ą 0 we have, for nÑ8,

sup
xPp0,T s

ˇ

ˇ

ˇ

ˇ

ˇ

?
krTnpxq ´ xs ´W pxq

xη

ˇ

ˇ

ˇ

ˇ

ˇ

Ñ 0 a.s. . (9)

Note that in the above result, all the involved processes are defined on the same probability

space via the Skorohod construction. See also Einmahl et al. (2006) for convergence properties

of related stochastic processes.

For completeness, we also include below three lemmas from Goegebeur et al. (2023b), useful for

our proofs. Note that the last one is actually a consequence of the proof of Lemma 5.4 in the

aforementioned paper.
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Lemma 8.1 Let FX satisfy (1), H be differentiable with derivative h P RV1{θ´1, then, as tÑ8

FX

´

t` z
hptq

¯

FXptq
ÝÑ e´z,

uniformly for z ě ´δ, for any δ ą 0.

Lemma 8.2 If FX satisfies (1) and H is differentiable with derivative h P RV1{θ´1, then, for a

sequence k such that k Ñ8 with k{nÑ 0, we have

?
k
Xn´k,n ´ UXp

n
k q

aXp
n
k q

d
ÝÑW p1q.

Lemma 8.3 Assume FX satisfies (1), H is differentiable with derivative h which is ultimately

monotone, and h is differentiable with derivative h1 satisfying xh1pxq{hpxq Ñ 1{θ´ 1 as xÑ8.

Then, if k Ñ 8 as nÑ 8 such that k{nÑ 0 and
?
kaXpn{kq{UXpn{kq Ñ 0, we have, for any
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ˇ

ˇ

ˇ
dvβ Ñ 0.

Proof of Lemma 2.1. We have

CTMβ,p “ ´

ż 8

UXp1{pq

xβ

FXpUXp1{pqq
dFXpxq

“ rUXp1{pqs
β
` β

ż 8

UXp1{pq
xβ´1 FXpxq

FXpUXp1{pqq
dx

“ rUXp1{pqs
β

#

1` β
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ż 8

0

„
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UXp1{pq

β´1 FXpUXp1{pq ` z aXp1{pqq

FXpUXp1{pqq
dz

+

. (10)

Since aXp1{pq
UXp1{pq

Ñ 0, to prove Lemma 2.1, it is sufficient to show that the integral in the right-hand

side of (10) is finite. To this aim, by the mean value theorem, with ξ P p0, 1q, we have

FXpUXp1{pq ` z aXp1{pqq

FXpUXp1{pqq
“ e´HpUXp1{pq`z aXp1{pqq`HpUXp1{pqq

“ e
´
hpUX p1{pq`ξ z aX p1{pqq

hpUX p1{pqq
z
,
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from which, by the use of the Potter bounds (see Proposition B.1.9.5 in de Haan and Ferreira,

2006), for 0 ă δ1 ă 1, δ2 ą 0 and n large we have

ż 8

0

„

1` z
aXp1{pq

UXp1{pq

β´1 FXpUXp1{pq ` z aXp1{pqq

FXpUXp1{pqq
dz

ď

ż 8

0

„

1` z
aXp1{pq

UXp1{pq

β´1

e
´p1´δ1q r1`ξ

aX p1{pq

UX p1{pq
zs

1
θ
´1´δ2 z

dz.

If θ ă 1, take 0 ă δ2 ă 1{θ ´ 1, and obtain, for n large

ż 8

0

„

1` z
aXp1{pq

UXp1{pq

β´1 FXpUXp1{pq ` z aXp1{pqq

FXpUXp1{pqq
dz

ď

ż 8

0

„

1` z
aXp1{pq

UXp1{pq

β´1

e´p1´δ1q z dz

“
UXp1{pq

aXp1{pq
e
p1´δ1q

UX p1{pq

aX p1{pq

ż 8

1
uβ´1 e

´p1´δ1q
UX p1{pq

aX p1{pq
u
du

“
1

1´ δ1

ΓI

´

β, p1´ δ1q
UXp1{pq
aXp1{pq

¯

”

p1´ δ1q
UXp1{pq
aXp1{pq

ıβ´1
e
´p1´δ1q

UX p1{pq

aX p1{pq

. (11)

For p Ó 0, the right-hand side in (11) is bounded.
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Now, if θ ě 1, take 0 ă δ2 ă 1{θ, and for ε,∆ ą 0, we obtain for n large

ż 8

0

„

1` z
aXp1{pq

UXp1{pq

β´1 FXpUXp1{pq ` z aXp1{pqq

FXpUXp1{pqq
dz

ď

ż 8

0

”

1ltβă1u ` p1` ε zq
β´11ltβě1u

ı

e´p1´δ1qr1`ε zs
1
θ
´1´δ2 z dz

“

ż ∆

0

”

1ltβă1u ` p1` ε zq
β´11ltβě1u

ı

e´p1´δ1qr1`ε zs
1
θ
´1´δ2 z dz

`

ż 8

∆

”

1ltβă1u ` p1` ε zq
β´11ltβě1u

ı

e´p1´δ1qrε`
1
z
s
1
θ
´1´δ2 z

1
θ
´δ2

dz

ď

”

1ltβă1u ` p1` ε∆qβ´11ltβě1u

ı

ż ∆

0
e´p1´δ1qr1`ε∆s

1
θ
´1´δ2 z dz

`

ż 8

∆

”

1ltβă1u ` p1` ε zq
β´11ltβě1u

ı

e´p1´δ1qrε`
1
∆
s
1
θ
´1´δ2 z

1
θ
´δ2

dz

ď ∆
”

1ltβă1u ` p1` ε∆qβ´11ltβě1u

ı

`1ltβă1u

ż 8

∆
e´p1´δ1qrε`

1
∆
s
1
θ
´1´δ2 z

1
θ
´δ2

dz

`1ltβě1u

ˆ

ε`
1

∆

˙β´1 ż 8

∆
zβ´1 e´p1´δ1qrε`

1
∆
s
1
θ
´1´δ2 z

1
θ
´δ2

dz

ď ∆
”

1ltβă1u ` p1` ε∆qβ´11ltβě1u

ı

`1ltβă1u
θ

1´ θδ2

«

1

p1´ δ1qpε`
1
∆q

1
θ
´1´δ2

ff
θ

1´θδ2

Γ

ˆ

θ

1´ θδ2

˙

`1ltβě1u

ˆ

ε`
1

∆

˙β´1 θ

1´ θδ2

«

1

p1´ δ1qpε`
1
∆q

1
θ
´1´δ2

ff

βθ
1´θδ2

Γ

ˆ

βθ

1´ θδ2

˙

which is also bounded. This achieves the proof of Lemma 2.1.

Proof of Theorem 3.1. Remark that

CTMβ,k{n

CTMβ,k{n
´ 1 “

rUXpn{kqs
β

CTMβ,k{n

#

CTMβ,k{nppun,kq

rUXpn{kqs
β

´
CTMβ,k{n

rUXpn{kqs
β

+

. (12)

The leading factor in the right-hand side of (12) tends to 1 by Lemma 2.1. Thus we only need

to look at the term in the braces. First, we note that

Tn

´n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

pun,k

¯¯

“ 1 a.s.,
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from which we deduce that

CTMβ,k{nppun,kq

rUXpn{kqs
β

´
CTMβ,k{n

rUXpn{kqs
β

“

#

„

Xn´k,n

UXpn{kq

β

´ 1

+

` β
1
?
k

aXpn{kq

UXpn{kq

ż 8

0
W

`

e´v
˘

dv

`β
aXpn{kq

UXpn{kq

ż 8

0

„

1`
aXpn{kq

UXpn{kq
ppun,k ` vq

β´1

ˆ

”

Tn

´n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

ppun,k ` vq
¯¯

´
n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

ppun,k ` vq
¯

´
1
?
k
W

´n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

ppun,k ` vq
¯¯



dv

`β
aXpn{kq

UXpn{kq

ż 8

0

„

1`
aXpn{kq

UXpn{kq
ppun,k ` vq

β´1

ˆ

”n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

ppun,k ` vq
¯

´ e´ppun,k`vq
ı

dv

`β
aXpn{kq

UXpn{kq
e´pun,k

ż 8

0

«

ˆ

1`
aXpn{kq

UXpn{kq
ppun,k ` vq

˙β´1

´

ˆ

1`
aXpn{kq

UXpn{kq
v

˙β´1
ff

e´v dv

`β
aXpn{kq

UXpn{kq

´

e´pun,k ´ 1
¯

ż 8

0

ˆ

1`
aXpn{kq

UXpn{kq
v

˙β´1

e´v dv

`β
aXpn{kq

UXpn{kq

ż 8

0

„

1`
aXpn{kq

UXpn{kq
v

β´1
”

e´v ´
n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

v
¯ı

dv

`β
1
?
k

aXpn{kq

UXpn{kq

ż 8

0

„

1`
aXpn{kq

UXpn{kq
ppun,k ` vq

β´1

ˆ

”

W
´n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

ppun,k ` vq
¯¯

´W
´

e´ppun,k`vq
¯ı

dv

`β
1
?
k

aXpn{kq

UXpn{kq

ż 8

0

„

1`
aXpn{kq

UXpn{kq
ppun,k ` vq

β´1
”

W
´

e´ppun,k`vq
¯

´W
`

e´v
˘

ı

dv

`β
1
?
k

aXpn{kq

UXpn{kq

ż 8

0

«

ˆ

1`
aXpn{kq

UXpn{kq
ppun,k ` vq

˙β´1

´ 1

ff

W
`

e´v
˘

dv

“:
10
ÿ

i“1

Ti,n.

We will study all the terms separately.

Term T1,n. According to Lemma 8.2, we have

?
k
UXpn{kq

aXpn{kq
T1,n “ β

?
k
Xn´k,n ´ UXpn{kq

aXpn{kq
p1` oPp1qq “ βW p1q ` oPp1q. (13)
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Term T2,n. Clearly

?
k
UXpn{kq

aXpn{kq
T2,n “ β

ż 8

0
W

`

e´v
˘

dv. (14)

Term T3,n. Using Lemmas 8.1 and 8.2, with arbitrary large probability, for n large, c ą 0 and

0 ă η ă 1{2, we have

?
k
UXpn{kq

aXpn{kq
|T3,n| ď sup

0ăyďeδ`c

|
?
krTnpyq ´ ys ´W pyq|

yη

ˆβ

ż 8

0

„

1`
aXpn{kq

UXpn{kq
ppun,k ` vq

β´1
˜

FXpUXp
n
k q ` aXp

n
k q ppun,k ` vqq

FXpUXp
n
k qq

¸η

dv.

The supremum term is negligeable a.s. according to (9) and a treatment similar to that of the

proof of Lemma 2.1 with Potter bounds ensures that the integral is bounded. This yields

?
k
UXpn{kq

aXpn{kq
T3,n “ oPp1q. (15)

Term T4,n. Let us define

Inpx;βq “
?
k

ż 8

0

ˇ

ˇ

ˇ

n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

px` vq
¯

´ e´px`vq
ˇ

ˇ

ˇ
dvβ.

Using Lemma 8.2, with arbitrary large probability, for n large, 0 ă ε ă 1{δ and any ∆ ą 0, we

have

?
k
UXpn{kq

aXpn{kq
|T4,n|

ď 1ltβă1u β p1´ δεq
β´1
?
k

ż 8

0

ˇ

ˇ

ˇ

n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

ppun,k ` vq
¯

´ e´ppun,k`vq
ˇ

ˇ

ˇ
dv

`1ltβě1u β p1` εpδ `∆qqβ´1
?
k

ż ∆

0

ˇ

ˇ

ˇ

n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

ppun,k ` vq
¯

´ e´ppun,k`vq
ˇ

ˇ

ˇ
dv

`1ltβě1u

ˆ

ε`
1` ε δ

∆

˙β´1?
k

ż 8

∆

ˇ

ˇ

ˇ

n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

ppun,k ` vq
¯

´ e´ppun,k`vq
ˇ

ˇ

ˇ
dvβ

ď

˜

sup
xPr´δ,δs

Inpx; 1q

¸

!

1ltβă1u β p1´ δεq
β´1 ` 1ltβě1u β p1` εpδ `∆qqβ´1

)

`

˜

sup
xPr´δ,δs

Inpx;βq

¸

1ltβě1u

ˆ

ε`
1` ε δ

∆

˙β´1

.

Thus, Lemma 8.3 implies that

?
k
UXpn{kq

aXpn{kq
T4,n “ oPp1q. (16)
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Term T5,n. By Lemma 8.2, using the mean value theorem, with ξ P p0, 1q, we have with large

probability, for n large and 0 ă ε ă 1{δ

?
k
UXpn{kq

aXpn{kq
|T5,n| ď β |β ´ 1|

aXpn{kq

UXpn{kq

?
k pun,k

ż 8

0

„

1`
aXpn{kq

UXpn{kq
pv ` ξ pun,kq

β´2

e´v dv p1` oPp1qq

ď β |β ´ 1|
aXpn{kq

UXpn{kq

?
k pun,k p1` oPp1qq

ˆ

"

1ltβă2u p1´ εδq
β´2

ż 8

0
e´v dv ` 1ltβě2u

ż 8

0
r1` εpv ` δqsβ´2 e´v dv

*

“ oPp1q, (17)

again by Lemma 8.2 and since aXpn{kq
UXpn{kq

Ñ 0.

Term T6,n. According to Lemma 8.2, we have

?
k
UXpn{kq

aXpn{kq
T6,n “ ´β

?
k

ˆ

Xn´k,n ´ UXpn{kq

aXpn{kq

˙

` oPp1q “ ´βW p1q ` oPp1q. (18)

Term T7,n. It can be handled similarly as T4,n. This yields

?
k
UXpn{kq

aXpn{kq
T7,n “ oPp1q. (19)

Term T8,n. With arbitrary large probability, for n large, 0 ă ε ă 1{δ and any ∆ ą 0, we have

?
k
UXpn{kq

aXpn{kq
|T8,n| ď

!

1ltβă1u β p1´ δεq
β´1 ` 1ltβě1u β p1` εpδ `∆qqβ´1

)

Wnp1q

`1ltβě1u

ˆ

ε`
1` ε δ

∆

˙β´1

Wnpβq, (20)

where

Wnpβq :“

ż 8

0

ˇ

ˇ

ˇ
W

´n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

ppun,k ` vq
¯¯

´W
´

e´ppun,k`vq
¯ˇ

ˇ

ˇ
dvβ.

For T ą 0, we have

Wnpβq ď

ż 8

T

ˇ

ˇ

ˇ
W

´

e´ppun,k`vq
¯
ˇ

ˇ

ˇ
dvβ `

ż 8

T

ˇ

ˇ

ˇ
W

´n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

ppun,k ` vq
¯¯

ˇ

ˇ

ˇ
dvβ

`

ż T

0

ˇ

ˇ

ˇ
W

´n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

ppun,k ` vq
¯¯

´W
´

e´ppun,k`vq
¯ˇ

ˇ

ˇ
dvβ

“: Wp1q
n pβq `Wp2q

n pβq `Wp3q
n pβq.

Then, for a ą 0 arbitrary, we have

P pWnpβq ą aq ď P
´

Wp1q
n pβq ą

a

4

¯

` P
´

Wp2q
n pβq ą

a

4

¯

` P
´

Wp3q
n pβq ą

a

2

¯

.
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Clearly, for η P p0, 1{2q, we have

P
´

Wp1q
n pβq ą

a

4

¯

ď P

˜

sup
0ăyďeδ

|W pyq|

yη
ą
a ηβ

4β

e´ηδ

ΓIpβ, Tηq

¸

` P p|pun,k| ą δq ,

and similarly, by Lemma 8.1, c ą 0 and n large

P
´

Wp2q
n pβq ą

a

4

¯

ď P

˜

sup
0ăyďeδ`c

|W pyq|

yη

ż 8

T

”n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

p´δ ` vq
¯ıη

dvβ ą
a

4

¸

`P p|pun,k| ą δq .

Following the lines of proof of Lemma 2.1 with the Potter bounds, the integral from the above

display can be made arbitrary small by taking T large. Thus, combining Lemma 8.2 with

Lemma 2 in Cai et al. (2015), and by choosing T large enough, for ε ą 0, there exists n1 such

that for n ą n1 we have

P
´

Wp1q
n pβq ą

a

4

¯

` P
´

Wp2q
n pβq ą

a

4

¯

ď
ε

2
.

With this specific value of T , we have

P
´

Wp3q
n pβq ą

a

2

¯

ď P

˜

sup
yPr´δ,δ`T s

ˇ

ˇ

ˇ
W

´n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

y
¯¯

´W
`

e´y
˘

ˇ

ˇ

ˇ
ą

a

2T β

¸

`P p|pun,k| ą δq .

Lemmas 8.1 and 8.2 combined with the uniform continuity of W on compact sets yield, for

n ą n2

P
´

Wp3q
n pβq ą

a

2

¯

ď
ε

2
,

from which we deduce that, for n ą maxpn1, n2q

P pWnpβq ą aq ď ε. (21)

Combining (20) and (21), we have

?
k
UXpn{kq

aXpn{kq
T8,n “ oPp1q. (22)

Term T9,n. It can be handled similarly as T8,n, except for

ĂWp3q
n pβq :“

ż T

0

ˇ

ˇ

ˇ
W

´

e´ppun,k`vq
¯

´W
`

e´v
˘

ˇ

ˇ

ˇ
dvβ,
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where we can use the bound

P
´

ĂWp3q
n pβq ą

a

2

¯

ď P

˜

sup
vPr0,T s,|x|ďk´1{4

ˇ

ˇ

ˇ
W

´

e´pv`xq
¯

´W
`

e´v
˘

ˇ

ˇ

ˇ
ą

a

2T β

¸

` P
´

|pun,k| ą k´
1
4

¯

.

By the uniform continuity of W on compact sets and Lemma 8.2, we have for n ą n2

P
´

ĂWp3q
n pβq ą

a

2

¯

ď
ε

2
,

from which we deduce that

?
k
UXpn{kq

aXpn{kq
T9,n “ oPp1q. (23)

Term T10,n. By the mean value theorem, with ξ P p0, 1q, we have with large probability, for n

large, and 0 ă ε ă 1{δ and 0 ă η ă 1{2,

?
k
UXpn{kq

aXpn{kq
|T10,n| “

ˇ

ˇ

ˇ

ˇ

ˇ

βpβ ´ 1q
aXpn{kq

UXpn{kq

ż 8

0
rpun,k ` vs

„

1` ξ
aXpn{kq

UXpn{kq
ppun,k ` vq

β´2

W
`

e´v
˘

dv

ˇ

ˇ

ˇ

ˇ

ˇ

ď β|β ´ 1|
aXpn{kq

UXpn{kq

ˆ

"

1ltβă2u r1´ δεs
β´2

ż 8

0
rδ ` vs

ˇ

ˇW
`

e´v
˘ˇ

ˇ dv

`1ltβě2u

ż 8

0
rδ ` vs r1` εpδ ` vqsβ´2

ˇ

ˇW
`

e´v
˘ˇ

ˇ dv

*

ď β|β ´ 1|
aXpn{kq

UXpn{kq

ˆ

"

1ltβă2u r1´ δεs
β´2 sup

0ăyď1

|W pyq|

yη

ż 8

0
rδ ` vs e´η v dv

`1ltβě2u sup
0ăyď1

|W pyq|

yη

ż 8

0
rδ ` vs r1` εpδ ` vqsβ´2 e´η v dv

*

ď C
aXpn{kq

UXpn{kq
, (24)

by Lemma 2 in Cai et al. (2015), and where C is a positive constant.

Combining (13)-(19) with (22)-(24), Theorem 3.1 follows.
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Proof of Theorem 4.1. Consider the following decomposition

?
k

˜

{CTMβ,p

CTMβ,p
´ 1

¸

“
?
k

¨

˚

˚

˚

˚

˝

#

ˆ

log 1{p

log n{k

˙βrpθk´θs
+

loooooooooooomoooooooooooon

T11,n

#

CTMβ, k
n

CTMβ, k
n

+

looooooomooooooon

T12,n

#

plog n{kq´β θCTMβ, k
n

plog 1{pq´β θCTMβ,p

+

loooooooooooooooomoooooooooooooooon

T13,n

´1

˛

‹

‹

‹

‹

‚

“
?
k

#

ˆ

log 1{p

log n{k

˙βrpθk´θs

´ 1

+

T12,n T13,n `
?
k

#

CTMβ, k
n

CTMβ, k
n

´ 1

+

T13,n

`
?
k

#

plog n{kq´β θCTMβ, k
n

plog 1{pq´β θCTMβ,p
´ 1

+

“ β logpλq
?
k rpθk ´ θsp1` oPp1qqT12,n T13,n `

?
k
UXpn{kq

aXpn{kq

#

CTMβ, k
n

CTMβ, k
n

´ 1

+

aXpn{kq

UXpn{kq
T13,n

`
?
k

#

CTMβ, k
n
{rUXpn{kqs

β

CTMβ,p{rUXp1{pqsβ
´ 1

+

ˆ

UXpn{kq

UXp1{pq

˙β ˆ log n{k

log 1{p

˙´β θ

`
?
k

˜

ˆ

UXpn{kq

UXp1{pq

˙β ˆ log n{k

log 1{p

˙´β θ

´ 1

¸

.

According to (10), we have

CTMβ, k
n

rUXpn{kqsβ
“ 1` β

aXpn{kq

UXpn{kq

#

1`

ż 8

0

«

ˆ

1`
aXpn{kq

UXpn{kq
z

˙β´1

´ 1

+

e´z dz

`

ż 8

0

ˆ

1`
aXpn{kq

UXpn{kq
z

˙β´1 ˆFX pUXpn{kq ` aXpn{kq zq

FXpUXpn{kqq
´ e´z

˙

dz

+

“ 1` o

ˆ

1
?
k

˙

.

A similar result can be obtained for CTMβ, 1
p
{rUXp1{pqs

β. Thus, we have

CTMβ, k
n
{rUXpn{kqs

β

CTMβ,p{rUXp1{pqsβ
´ 1 “ o

ˆ

1
?
k

˙

.

Now, the last term of the decomposition.

ˆ

UXpn{kq

UXp1{pq

˙β ˆ log n{k

log 1{p

˙´β θ

´ 1 “

ˆ

`U plog n{kq

`U plog 1{pq

˙β

´ 1 “

ˆ

`XpUXp1{pqq

`XpUXpn{kqq

˙β θ

´ 1,
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since `U plog xq “ r`XpUXpxqqs
´θ.

Now, using the mean value theorem with un P rUXpn{kq;UXp1{pqs, we have, for δ1, δ2 ą 0 and

n large,

ˇ

ˇ

ˇ

ˇ

`XpUXp1{pqq

`XpUXpn{kqq
´ 1

ˇ

ˇ

ˇ

ˇ

“
|`1Xpunq|

`XpUXpn{kqq

„

UX

ˆ

1

p

˙

´ UX

´n

k

¯



“
un |`

1
Xpunq|

`Xpunq

`Xpunq

`XpUXpn{kqq

UXpn{kq

un

ˆ

UXp1{pq

UXpn{kq
´ 1

˙

ď p1` δ1q
un |`

1
Xpunq|

`Xpunq

ˆ

un
UXpn{kq

˙δ2 ˆ

UXp1{pq

UXpn{kq
´ 1

˙

ď p1` δ1q sup
xěUXpn{kq

x |`1Xpxq|

`Xpxq

ˆ

UXp1{pq

UXpn{kq

˙δ2 ˆ

UXp1{pq

UXpn{kq
´ 1

˙

“ o

ˆ

1
?
k

˙

,

since

UXp1{pq

UXpn{kq
´ 1 “

«

ˆ

log 1{p

log n{k

˙θ

´ 1

ff

`U plog 1{pq

`U plog n{kq
`

„

`U plog 1{pq

`U plog n{kq
´ 1



“ Op1q.

Combining Theorem 3.1 with Lemma 4.1, Theorem 4.1 follows.
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