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We consider the estimation of the conditional tail moment at extreme levels for the class of Weibull-type distributions. A two-step procedure is introduced where in the first stage one estimates the conditional tail moment at an intermediate level, followed by an extrapolation in the second stage. The asymptotic properties of the estimators introduced in the two stages are derived under suitable assumptions. The finite sample properties of the proposed estimator are examined with a simulation experiment. We conclude with two applications on real life data: wind speed measurements collected at an offshore wind farm and PM 2.5 air pollution data.

Introduction

Quantifying and estimating the risk of extreme events is of interest in many scientific disciplines.

Floods due to sea storms can entail massive losses, both in terms of human lives and economical losses, so the modelling of the distribution of wave heights and other sea state parameters is of crucial importance in the design of coastal protection. In environmental science, extreme levels of pollutants can have adverse effect on human health. Over the years several risk measures have been introduced, the most popular of these being the Value-at-Risk (also called return level) and the conditional tail expectation. We refer to, e.g., [START_REF] Jorion | Value at risk: the new benchmark for managing financial risk[END_REF], [START_REF] Singh | Risk and reliability analysis: A handbook for civil and environmental engineers[END_REF], [START_REF] Coles | An introduction to the statistical modeling of extreme events[END_REF], [START_REF] Cooley | Return periods and return levels under climate change. Extremes in a changing climate: Detection, analysis and uncertainty[END_REF] and [START_REF] Salas | Revisiting the concepts of return period and risk for nonstationary hydrologic extreme events[END_REF]. In this paper we consider the conditional tail moment pCT M q, being a natural generalisation of the conditional tail expectation, and study its estimation for the class of Weibull-type distributions. Note that moment estimation is of general interest in statistics. Although we are often primarily interested in the first and second moments for practical reasons, in some applications one may also be interested in the conditional tail skewness or kurtosis, see, e.g., [START_REF] Hong | Conditional tail variance and conditional tail skewness[END_REF] or [START_REF] Eini | Tail conditional moment for generalized skew-elliptical distributions[END_REF] for such examples, and more generally El [START_REF] El Methni | Non-parametric estimation of extreme risk measures from conditional heavy-tailed distributions[END_REF].

Let β ą 0 and p P p0, 1q. We want to estimate

CT M β,p :" E " X β ˇˇX ą U X p1{pq ı ,
when the distribution of X is of Weibull-type, i.e., the distribution function satisfies

F X pxq " 1 ´e´x 1{θ X pxq , x ą 0, (1) 
with θ a positive parameter and X a slowly varying function at infinity, i.e., a positive measurable function such that lim tÑ8 X ptxq X ptq " 1 for all x ą 0, and U X the tail quantile function of X defined as U X pxq " inftz : F X pzq ě 1 ´1{xu, x ą 1.

This risk measure CT M β,p uses the information in the upper tail, i.e., above the high quantile U X p1{pq. Specific interest is here in the extreme case, that is, the situation where p is very small, typically less than 1{n, where n is the size of the random sample that is available for estimation.

In this case, estimation is challenging as the conditional expectation in the definition of CT M β,p cannot simply be estimated by an empirical average. Indeed, for p ă 1{n the natural estimator for U X p1{pq is the largest observation in the sample, but then there are no further data to base the estimation of the conditional expectation upon. The role of the power parameter β is, e.g., to allow the computation of both the mean and the second moment and thus the variance of X given that X is extreme (above its quantile). Note that when β " 1, we recover the usual conditional tail expectation.

The considered class of Weibull-type distributions forms a rich subclass of the Gumbel maxdomain of attraction. The tail heaviness of Weibull-type distributions is clearly governed by the parameter θ, where larger values of θ correspond with a slower decay of the upper tail. Popular members of this family include the Weibull (corresponding to a constant function X ), normal, gamma and logistic distributions, to mention only a few. Loosely speaking, the upper tail decays exponentially fast, in contrast to the Pareto-type models which have a tail decay corresponding to a decreasing power function, and thus are heavier tailed. The Weibull-type distributions find important applications in areas like environmental science, climate science, hydrology, engineering and medicine. As the Weibull-type model depends only explicitly on the parameter θ, it is not unexpected that the estimation of this parameter received a lot of attention in the extreme-value literature. [START_REF] Girard | A Hill type estimator of the Weibull tail coefficient[END_REF] introduced a Hill-type estimator for θ; see also [START_REF] Gardes | Estimating extreme quantiles of Weibull tail distributions[END_REF] for the related problem of extreme quantile estimation. Generalisations to estimators based on weighted sums (of spacings) of upper order statistics were considered in [START_REF] Broniatowski | On the estimation of the Weibull tail coefficient[END_REF], [START_REF] Gardes | Estimation of the Weibull-tail coefficient with linear combination of upper order statistics[END_REF] and Goegebeur et al. (2010). [START_REF] Beirlant | The mean residual life function at great age: applications to tail estimation[END_REF], [START_REF] Dierckx | A new estimation method for Weibull-type tails based on the mean excess function[END_REF] and [START_REF] Goegebeur | A weighted mean excess function approach to the estimation of Weibull-type tails[END_REF] developed alternative estimation methods for θ based on the mean excess function, where the latter two papers highlighted the improved performance with respect to bias compared to the estimators based on properties of upper order statistics; see also [START_REF] Diebolt | Bias-reduced estimators of the Weibull tail-coefficient[END_REF] where a dedicated bias-reducing estimation procedure was developed. Further extensions where θ is estimated in presence of random covariates can be found in [START_REF] Goegebeur | Robust conditional Weibull-type estimation[END_REF], Gardes and[START_REF] Gardes | On the estimation of the functional Weibull tail-coefficient[END_REF][START_REF] De Wet | Kernel regression with Weibulltype tails[END_REF].

The estimation of the conditional tail moment is already studied for the context of Pareto-type distributions in [START_REF] Goegebeur | Extreme-value based estimation of the conditional tail moment with application to reinsurance rating[END_REF], who consider the classical setup of independent identically distributed (i.i.d.) random variables. Goegebeur et al. (2023a) We organise this paper as follows. In Section 2 we provide as a first result an approximation of CT M β,p for p Ó 0, which will be used to derive the estimator for this risk measure under extrapolation. The proposed estimator depends on an estimator for the conditional tail moment in the intermediate case, i.e., for p " k{n, where k Ñ 8 as the sample size n Ñ 8 but in such a way that k{n Ñ 0. This intermediate case is studied in Section 3 where we introduce an estimator and derive its limiting distribution under suitable assumptions. Section 4 is devoted to the study of the asymptotic properties of the estimator for CT M β,p in the extreme case.

The finite sample properties are examined by a simulation experiment in Section 5 while the practical applicability of the proposed method is illustrated in Section 6 on wind speed and air pollution data. Concluding remarks are given in Section 7. Section 8 contains the proofs of the results. Some additional simulation results are provided in an online Supporting Information.

Construction of the estimator

Let RV ψ denote the class of regularly varying functions at infinity with index ψ P R, i.e., positive measurable functions f satisfying f ptxq{f ptq Ñ x ψ , as t Ñ 8, for all x ą 0. Denote

Hpxq " ´log F X pxq, and hence F X pxq " e ´Hpxq . In the case where F X is of Weibull-type we have then H P RV 1{θ . Note that if H is differentiable with derivative H 1 then H 1 " h where h is the hazard rate function.

We start to expand CT M β,p in case p Ó 0 in order to have an idea about how to estimate this risk measure under extrapolation, i.e., for p ă 1{n, where n is the size of the sample on which the estimation is based.

Lemma 2.1 Assume F X satisfies (1), H is differentiable with derivative h P RV 1{θ´1 . Then,

as p Ó 0, we have CT M β,p " U X ´1 p ¯ıβ ÝÑ 1.
From this lemma, the first idea to estimate CT M β,p is to use an estimate of

" U X ´1 p ¯ıβ .
Unfortunately, since by definition of the conditional tail moment we condition on the event tX ą U X p1{pqu, clearly such an estimate will underestimate the true value. An alternative method consists in using a two-step procedure as follows.

Let k be an intermediate sequence, i.e., a sequence such that k Ñ 8 and k{n Ñ 0 as n Ñ 8.

Lemma 2.1 yields the approximation

CT M β,p { " U X ´1 p ¯ıβ CT M β,k{n { " U X `n k ˘‰β " 1,
from which we deduce that

CT M β,p " ˜UX p 1 p q U X p n k q ¸β CT M β,k{n .
Note that (1) is equivalent to assume that U X satisfies

U X pxq " plog xq θ U plog xq,
where U is also a slowly varying function at infinity. Thus, we deduce the following estimator

for CT M β,p { CT M β,p :" ˆlogp1{pq logpn{kq ˙β p θ k CT M β,k{n , (2) 
where p θ k is an estimator of θ and CT M β,k{n an intermediate estimator of CT M β,k{n .

3 Asymptotic properties of CT M β,k{n

Assume we have at our disposal a sample X 1 , . . . , X n of independent copies of the random variable X and denote by X 1,n ď . . . ď X n,n the order statistics. We start with considering the estimation of the conditional tail moment in the intermediate case. In this situation, the natural estimator for U X pn{kq is then X n´k,n , which is within the data range, and hence CT M β,k{n can be estimated empirically by the sample mean of the X β i for which X i ą X n´k,n . We define

CT M β,k{n " 1 k n ÿ i"1 X β i 1l tX i ąX n´k,n u ,
and introduce

CT M β,k{n pxq :" 1 k n ÿ i"1 X β i 1l tX i ąU X p n k q`a X p n k q xu ,
where a X ptq :" 1 hpU X ptqq .

Then, CT M β,k{n can be rewritten as

CT M β,k{n " CT M β,k{n pp u n,k q ,
where p u n,k :" pX n´k,n ´UX pn{kqq{a X pn{kq.

The weak convergence of CT M β,k{n , after normalisation, is given in the following theorem.

Theorem 3.1 Assume F X satisfies (1), H is differentiable with derivative h which is ultimately monotone, and h is differentiable with derivative h 1 satisfying xh 1 pxq{hpxq Ñ 1{θ ´1 as x Ñ 8.

Then, if k Ñ 8 as n Ñ 8 such that k{n Ñ 0 and ? ka X pn{kq{U X pn{kq Ñ 0, we have

? k U X pn{kq a X pn{kq ˜CT M β,k{n CT M β,k{n ´1¸d ÝÑ Θ :" β ż 8 0 W `e´v ˘dv,
where W pzq is a zero centered Gaussian process with covariance function E tW pzq W pzqu " minpz, zq.

Note that this theorem implies the convergence of the rescaled estimator of CT M β,k{n towards the N p0, 2 β 2 q distribution. As is clear, the limiting distribution in Theorem 3.1 does not depend on θ. At first sight, this can appear unexpected, but this can be explained by the fact that the first order expansion of the conditional tail moment (Lemma 2.1), as well as the limiting distribution of the extreme quantile (see Lemma 8.2 in Section 8) are independent on θ in case of Weibull-type distributions. Note that this was also observed in [START_REF] Goegebeur | Estimation of marginal excess moments for Weibull-type distributions[END_REF] for the intermediate estimator of the marginal excess moments for Weibull-type distributions. Note also that under the assumption

lim xÑ8 x 1 X pxq X pxq " 0, (3) 
our condition ? ka X pn{kq{U X pn{kq Ñ 0 is equivalent to ? k{ logpn{kq Ñ 0, a condition independent on the value of θ. The convergence (3) is not a restrictive condition since it is automatically satisfied for a normalized slowly varying function X , i.e., a function of the form

X pxq " c exp "ż x a εpuq u du * , x ě a,
with c a positive constant and εpxq Ñ 0, see, e.g., Bingham et al. (1987, page 15).

4 Asymptotic properties of { CT M β,p
In this section we study the asymptotic properties of the estimator { CT M β,p given in (2). As estimator for the Weibull-tail coefficient θ we use the estimator proposed by [START_REF] Girard | A Hill type estimator of the Weibull tail coefficient[END_REF], given by p θ k :"

1 k ř k i"1 plog X n´i`1,n ´log X n´k,n q 1 k ř k i"1 `log log n i ´log log n k ˘.
Below, we recall the limiting distribution of this estimator, properly normalised, in terms of a stochastic process, as established in Theorem 4.1 in [START_REF] Goegebeur | Estimation of marginal excess moments for Weibull-type distributions[END_REF].

Lemma 4.1 Assume F X satisfies (1), H is differentiable with derivative h which is ultimately monotone, and h is differentiable with derivative h 1 satisfying xh 1 pxq{hpxq Ñ 1{θ ´1 as x Ñ 8.

Then, if k Ñ 8 as n Ñ 8 such that ? ka X pn{kq{U X pn{kq Ñ 0 and ? k

U X pn{kq 1 X pU X pn{kqq X pU X pn{kqq Ñ 0, we have ? k ´p θ k ´θ¯d ÝÑ Γ :" θ "ż 8 0 W `e´v ˘dv ´W p1q * .
Note that the limiting distribution in Lemma 4.1 is N p0, θ 2 q. As is clear from Theorem 3.1 and Lemma 4.1, the limiting behavior of CT M β,k{n and p θ k involves the same stochastic process W .

For more details we refer to Section 8 of the present paper and the proof of Theorem 4.1 in [START_REF] Goegebeur | Estimation of marginal excess moments for Weibull-type distributions[END_REF].

We 

? k sup xěU X pn{kq x | 1 X pxq| X pxq " 0. ( 6 
)
The distributions are:

• Weibull distribution (W eibullpθq, θ ą 0): We have F X pxq " e ´x1{θ and thus Hpxq " x 1{θ .

Clearly H is differentiable with derivative hpxq " 1 θ x 1 θ ´1 which is monotone and which satisfies (4). Also since X pxq " 1, ( 6) is trivially satisfied. Since U X pxq " plog xq θ , ( 5) is equivalent to the condition

? k log n{k Ñ 0.
• Gamma distribution (Γpα, λq, α, λ ą 0). Denote by Γ I pa, zq :" ş 8 z t a´1 e ´t dt the upper incomplete Gamma function and recall its expansion for z Ñ 8

Γ I pa, zq " z a´1 e ´z " 1 `a ´1 z `O ˆ1 z 2 ˙ , (7) 
F X pxq " Γ I pα, λ xq Γpαq ,
and for x large enough

x h 1 pxq hpxq " x f 1 X pxq f X pxq `x f X pxq F X pxq " O ˆ1 x ˙,
from which (4) follows with θ " 1. In that case hpxq " X pxq

" 1 `x 1 X pxq X pxq ı , from which we deduce that x 1 X pxq X pxq " hpxq X pxq ´1 " f X pxq F X pxq X pxq ´1 " 1 `pα ´1q log Hpxq Hpxq `Op 1 Hpxq q 1 `Op 1 x q ´1 " pα ´1q log Hpxq Hpxq `O ˆ1 Hpxq ˙`O ˆ1 x ˙,
using ( 7) combining with the fact that, according to [START_REF] Girard | A Hill type estimator of the Weibull tail coefficient[END_REF]:

X pxq " " 1 λ `α ´1 λ log Hpxq Hpxq `O ˆ1 Hpxq ˙*´1 .
This implies that

U X ´n k ¯ 1 X pU X p n k qq X pU X p n k qq " pα ´1q log log n k log n k `O ˆ1 log n k ˙.
Since the right-hand side of the above display tends to 0, ( 5) is equivalent to the condition ? k log n{k Ñ 0. Further, we have, for x large enough, that

x | 1 X pxq| X pxq ď C log x x ,
where C is some positive constant, and thus, for n large,

? k sup xěU X pn{kq x | 1 X pxq| X pxq ď C ? k log log n k log n k , and hence (6) is satisfied if ? k log log n k log n k Ñ 0.
This condition is slightly stronger that the one due to (5) and similar to the condition ? k bplogp n k qq Ñ 0 imposed by [START_REF] Girard | A Hill type estimator of the Weibull tail coefficient[END_REF] for the asymptotic normality of the Weibull tail coefficient, since for this distribution bpxq " p1 ´αq log x x (see [START_REF] Girard | A Hill type estimator of the Weibull tail coefficient[END_REF]).

• Extended Weibull distribution (EW eibullpθ, ξq, θ ą 1, ξ P R) with survival function 1 ´FX pxq " rpxqe ´x1{θ , x ą 0, where r P RV ξ [START_REF] Klüppelberg | Estimation of distribution tails -a semiparametric approach[END_REF]. We consider the simplified case where rpxq " Dx ξ instead of being RV ξ , then direct computations yield:

X pxq " 1 ´ξ x ´1 θ log x ´log D x ´1 θ , 1 X pxq " ξ θ x ´1 θ ´1 log x " 1 ´θ ´plog Dq{ξ log x * hpxq " 1 θ x 1 θ ´1 ! 1 ´θ ξ x ´1 θ ) h 1 pxq " 1 θ ˆ1 θ ´1˙x 1 θ ´2 " 1 `θ2 ξ 1 ´θ x ´1 θ * ,
from which we deduce that ( 4) is satisfied, ( 5) is equivalent to the condition

? k log n{k Ñ 0. Concerning (6) we have, for x large enough, x | 1 X pxq| X pxq ď C log x x 1{θ ,
where C is a positive constant and thus, for n large enough,

? k sup xěU X pn{kq x | 1 X pxq| X pxq ď C ? k log log n k log n k . Hence, (6) is satisfied if ? k log log n k log n k
Ñ 0. This is similar to the condition ? k bplogp n k qq Ñ 0 imposed by [START_REF] Girard | A Hill type estimator of the Weibull tail coefficient[END_REF] since bpxq " ´θ2 ξ log x

x for this distribution (see [START_REF] Girard | A Hill type estimator of the Weibull tail coefficient[END_REF]).

• Absolute normal distribution (|N pµ, σ 2 q|, µ P R, σ ą 0), i.e., the distribution of |X| where X " N pµ, σ 2 q. We verify for brevity the case |N p0, 1q|. Let X be a random variable from a N p0, 1q distribution, with density f X and survival function F X . We have

F |X| pxq " 2 F X pxq, from which we deduce that hpxq " f X pxq F X pxq x h 1 pxq hpxq " x f 1 X pxq f X pxq `x f X pxq F X pxq " 1 `O ˆ1 x 2 ˙, (8) 
since according to Abramowitz and Stegun (1983, p. 932), we have the approximation

F X pxq " f X pxq x " 1 ´1 x 2 `O ˆ1 x 4 ˙* .
The right-hand side of (8) tends to 1 as x goes to infinity, which means that (4) is satisfied with θ " 1{2. As for condition (5) note that

x 1 |X| pxq |X| pxq " xhpxq Hpxq ´2,
which gives for x large enough that

x | 1 |X| pxq| |X| pxq ď C log x x 2 ,
for some positive constant C. Hence, ( 5) is equivalent to the condition

? k log n{k Ñ 0, and (6) is satisfied if ? k log log n k log n k Ñ 0. For the |N pµ, σ 2 q| distribution with µ ‰ 0 one can show,
after tedious calculations, that (4) is satisfied with θ " 1{2, and that ( 5) and ( 6) hold if k{ logpn{kq Ñ 0.

Compared to [START_REF] Goegebeur | Extreme-value based estimation of the conditional tail moment with application to reinsurance rating[END_REF] where the estimation of the conditional tail moment has also been studied but for Pareto-type distributions, the assumptions required to show the convergence in distribution of the estimator in the extrapolation case are not the same as those of Theorem 4.1, nor the speed of convergence. These differences can be explained from the Note also that it is quite usual to have differences between two domains of attraction, see, e.g., [START_REF] Gardes | Weibull tail-distributions revisited: a new-look at some tail estimators[END_REF], where some different asymptotic properties are highlighted between the Weibull tail-coefficient estimator and the Hill estimator (see [START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF], in terms of bias and rate of convergence.

Simulation experiment

In this section we illustrate the finite sample behavior of the proposed estimator by means of a simulation experiment. The considered distributions are: W eibullp1q, |N p1.2, 1q|, Γp2, 1q and EW eibullp1.5, ´1q. From each distribution we simulate 500 datasets of sizes n P t500, 2000u, and we consider estimation of CT M β,p with p P t1{n, 1{p5nqu, and β P t1, 2u.

In Figure 1 we show for the W eibullp1q distribution the boxplots of { CT M 1,p {CT M 1,p , computed over the 500 replications, as a function of k for n " 500 (left) and n " 2000 (right), and where the top row corresponds with p " 1{n and the bottom row with p " 1{p5nq. Figures 234are constructed analogously for the other distributions. From the simulations we observe the following:

• For all the distributions considered the estimation is good when k is small compared to n, which is in agreement with the theoretical condition k{n Ñ 0. With increasing k the estimators show typically an increase in bias. As for the bias we comment that estimation for Weibull-type distributions is practically challenging, with a bias that comes typically rather fast with increasing k. This was also already observed in the simpler context of the estimation of the Weibull-tail coefficient θ, see, e.g., [START_REF] Girard | A Hill type estimator of the Weibull tail coefficient[END_REF], [START_REF] Gardes | Estimation of the Weibull-tail coefficient with linear combination of upper order statistics[END_REF], Goegebeur et al. (2010), to mention only a few, and obviously also manifests itself here.

• The estimation results improve with increasing sample size n. • Decreasing p leads to increased variability of the estimates, which can be expected as smaller values of p lead to more severe extrapolations.

• Larger values of θ lead to more variable results. This is also in line with the expectations as θ determines the heaviness of the upper tail of the Weibull-type model.

In Figure 5 we illustrate the estimation of the second conditional tail moment, CT M 2,p , for the |N p1.2, 1q| distribution. Similar figures can be found in the online Supporting Information for the three other distributions considered here. As expected, estimation of the second conditional tail moment is more challenging than that of the conditional tail expectation pβ " 1q, with larger bias and variability of the estimates. 

« { CT M β,p exp # ´Φ´1 ´1 ´α 2 ¯p θ k β ? k log log 1 p log n k + ; { CT M β,p exp # Φ ´1 ´1 ´α 2 ¯p θ k β ? k log log 1 p log n k +ff ,
where Φ ´1 denotes the quantile function of the standard normal distribution. To evaluate the accuracy of the approximate confidence intervals, we show in Figure 6 for the four considered distributions the empirical coverage probabilities of the 95% confidence intervals for CT M β,p as a function of k, for n P t500, 2000u, p P t1{n, 1{p5nqu and β " 1. As is clear from the results, the confidence intervals only reach the 95% level for the smaller values of k, except for the extended

Weibull distribution which has a longer stable pattern. The coverage probabilities increase with n and they are also larger for p " 1{p5nq compared to p " 1{n. The latter can be explained by the fact that the confidence intervals become wider for decreasing values of p.

Finally, we discuss the choice of the parameter k on which the estimator { CT M β,p is based. Since the estimates of CT M β,p are good for small values of k, but clearly present a bias beyond a certain value, it is important to know in practice how to choose this parameter. This can be done by looking at the plot pk, { CT M β,p q and trying to identify a stable region where k can be selected. Alternatively, we can also use an automatic selection procedure like the one suggested by [START_REF] Goegebeur | Bias-corrected estimation for conditional Paretotype distributions with random right censoring[END_REF], namely:

1. we compute { CT M β,p for k " 5, ..., minp0.1n, 100q, 2. we compute the standard deviation of { CT M β,p in a moving block of 10 successive k´values, 3. we select the block with the smallest standard deviation, 4. within the block selected in step 3, we repeat the steps 2 and 3, now with block size 5, 5. the estimate for CT M β,p is the median of the { CT M β,p in the finally selected block. As is clear from Figure 7, for fixed n smaller values of p lead to more variable results while increasing n leads to less variability of the estimates, as expected. After the data-driven selection of k some estimation bias remains, which is in line with the boxplots shown in Figures 1 till 5.

6 Real data analysis 6.1 Wind speeds at Anholt offshore wind farm

Following the worldwide economic development and population growth, global energy demand has also shown an important upward trend during the last decades. Traditional fossil fuels have many disadvantages: their reserves are limited and their use contributes to increased carbon dioxide levels in the atmosphere. On the other hand, renewable energy like wind power is inexhaustible and causes little pollution. Accurate modelling of the wind speed distribution is of crucial importance for wind energy output estimation, e.g., at an offshore wind farm. For a review of wind speed modelling approaches we refer to [START_REF] Shi | Wind speed distributions used in wind energy assessment: a review[END_REF].

Our interest is in an analysis of the upper tail of the wind speed distribution at the Anholt offshore wind farm, which is a Danish offshore wind power farm in the Kattegat, between Djursland and the island Anholt. We estimate the Weibull-tail index θ, the first conditional tail moment CT M 1,p (also called the conditional tail expectation) and the conditional tail variance V p :" CT M 2,p ´CT M 2 1,p , using a dataset that is publicly available at https://orsted.com/en/what-we-do/renewable-energy-solutions/offshore-wind/ offshore-wind-data. In particular we use LIDAR measured wind speeds (in meters per second) at 100 meters altitude. The original dataset consists of a time series of 10 minutes measurements during the years 2013-2014, but in order to reduce temporal dependencies only one observation every three days is kept for the analysis, leading to n " 242. In order to evaluate the appropriateness of the Weibull-type model (1) we construct the Weibull QQ plot, which has coordinates (bottom right) with approximate 95% confidence intervals as a function of k.

ˆlog ˆ´log ˆ1 ´i n `1 ˙˙, log X i,n ˙, i " 1, . . . ,
be relevant to estimate the variability in the upper tail, V p , see Figure 9. Focusing on the stable k-region we have an estimate of V p between 30-40 for p " 1{n and p " 1{p5nq.

PM 2.5 air pollution

Air pollution is among the greatest environmental risks to human health. Of particular concern is the concentration of PM 2.5 , referring to atmospheric particulate matter with a diameter of less than 2.5 micrometers. Since these particles are so small and light, they tend to stay longer in the air than heavier ones, increasing the chances of humans and animals inhaling them. PM and the references therein.

We apply the developed methodology to the PM 2.5 air pollution in the city of Slavonski Brod, Croatia, which is with an average of 28.0 micrograms per cubic meter (µg{m 3 ), measured during the last two years, amongst the most polluted cities in Europe. As a reference, note that the 2021 World Health Organisation's updated health-based guidelines for air quality recommend a maximum level of 5 µg{m 3 for long term exposure, in order to protect health. We use a dataset of daily average concentrations of PM 2.5 over the period 2015-2021, publicly available on the website of the European Environment Agency at https://discomap.eea.europa.eu/map/fme/ AirQualityExport.htm. We base the analysis on the data from the winter season (December- 

Concluding remarks

Below we list some topics that will be investigated in future projects.

• In the present paper the estimation problem was considered in the context of i.i.d. random Although the result of Theorem 6.1 and Theorem 6.2 of the latter paper could possibly also be used to address the estimation problem considered in our paper, as the Weibulltype distributions are a subclass of the general max-domain of attraction, it would be desirable to have a result that is specific for the Weibull-type class. Indeed, as mentioned in the introduction to our paper, by considering the Weibull-type distributions one can differentiate the tail behaviour by the parameter θ, while from a more general perspective, i.e., by considering the Gumbel class, one has an extreme value index γ " 0. Focusing on our estimation problem, we would need a process convergence result similar to (9) below for the case of stationary β´mixing time series. Obtaining such a result is not trivial.

A possible approach could be to use the theory on the weak convergence of empirical processes of cluster functionals, developed in [START_REF] Drees | Limit theorems for empirical processes of cluster functionals[END_REF], but this will require completely different proofs and is outside the scope of the present paper. Note also that in the time series context the asymptotic variances are typically more complicated as they are of the form of a series; see, e.g., Theorem 6.1 in [START_REF] Drees | Extreme quantile estimation for dependent data, with applications to finance[END_REF] and [START_REF] Davison | Tail risk inference via expectiles in heavytailed time series[END_REF], making the results more difficult to use in practice. The development and study of a bootstrap procedure to estimate the asymptotic variance is another topic of future investigations.

• The developed methodology could also be extended to the full max-domain of attraction.

This generalisation would then include the Weibull-type models considered in the present paper, but also the Pareto-type and the light-tailed distributions which have a finite right endpoint.

Proofs

Remark that

" β 1 k n ÿ i"1 ż X i 0 u β´1 du 1l tX i ąU X p n k q`a X p n k q xu " β ż 8 0 u β´1 1 k n ÿ i"1 1l tXiąmaxpu,UXp n k q`a X p n k q xqu du " β ż U X p n k q`a X p n k q x 0 u β´1 du 1 k n ÿ i"1 1l tX i ąU X p n k q`a X p n k q xu `β ż 8 U X p n k q`a X p n k q x u β´1 1 k n ÿ i"1 1l tX i ąuu du " " U X ´n k ¯`a X ´n k ¯xı β 1 k n ÿ i"1 1l tX i ąU X p n k q`aXp n k q xu `β a X ´n k ¯ż 8 0 " U X ´n k ¯`a X ´n k ¯px `vq ı β´1 1 k n ÿ i"1 1l tX i ąU X p n k q`aXp n k q px`vqu dv " " U X ´n k ¯ıβ $ & % « 1 `aX `n k ȖX `n k ˘xff β T n ´n k F X ´UX ´n k ¯`a X ´n k ¯x¯β a X `n k ȖX `n k ˘ż 8 0 « 1 `aX `n k ȖX `n k ˘px `vq ff β´1 T n ´n k F X ´UX ´n k ¯`a X ´n k ¯px `vq ¯¯dv , . - a.s.,
where

T n pxq :" 1 k n ÿ i"1 1l tF X pX i qă k n xu .
The asymptotic behavior of T n pxq, after proper normalisation, is given in Lemma 1 of [START_REF] Cai | Estimation of the marginal expected shortfall: the mean when a related variable is extreme[END_REF], according which, for any η P r0, 1{2q and T ą 0 we have, for n Ñ 8, sup xPp0,T s ˇˇˇˇ? krT n pxq ´xs ´W pxq

x η ˇˇˇˇÑ 0 a.s. . (9) 
Note that in the above result, all the involved processes are defined on the same probability space via the Skorohod construction. See also [START_REF] Einmahl | Weighted approximations of tail copula processes with application to testing the bivariate extreme value condition[END_REF] for convergence properties of related stochastic processes.

For completeness, we also include below three lemmas from [START_REF] Goegebeur | Estimation of marginal excess moments for Weibull-type distributions[END_REF], useful for our proofs. Note that the last one is actually a consequence of the proof of Lemma 5.4 in the aforementioned paper.

Lemma 8.1 Let F X satisfy (1), H be differentiable with derivative h P RV 1{θ´1 , then, as t Ñ 8

F X ´t `z hptq F X ptq ÝÑ e ´z ,
uniformly for z ě ´δ, for any δ ą 0.

Lemma 8.2 If F X satisfies (1) and H is differentiable with derivative h P RV 1{θ´1 , then, for a sequence k such that k Ñ 8 with k{n Ñ 0, we have

? k X n´k,n ´UX p n k q a X p n k q d ÝÑ W p1q.
Lemma 8.3 Assume F X satisfies (1), H is differentiable with derivative h which is ultimately monotone, and h is differentiable with derivative h 1 satisfying xh 1 pxq{hpxq Ñ 1{θ ´1 as x Ñ 8.

Then, if k Ñ 8 as n Ñ 8 such that k{n Ñ 0 and ? ka X pn{kq{U X pn{kq Ñ 0, we have, for any

δ ą 0, sup xPr´δ,δs ? k ż 8 0 ˇˇn k F X ´UX ´n k ¯`a X ´n k ¯px `vq ¯´e ´px`vq ˇˇdv β Ñ 0.
Proof of Lemma 2.1. We have

CT M β,p " ´ż 8 U X p1{pq x β F X pU X p1{pqq dF X pxq " rU X p1{pqs β `β ż 8 U X p1{pq x β´1 F X pxq F X pU X p1{pqq dx " rU X p1{pqs β # 1 `β a X p1{pq U X p1{pq ż 8 0 " 1 `z a X p1{pq U X p1{pq  β´1 F X pU X p1{pq `z a X p1{pqq F X pU X p1{pqq dz + . (10) 
Since a X p1{pq U X p1{pq Ñ 0, to prove Lemma 2.1, it is sufficient to show that the integral in the right-hand side of ( 10) is finite. To this aim, by the mean value theorem, with ξ P p0, 1q, we have

F X pU X p1{pq `z a X p1{pqq F X pU X p1{pqq " e ´HpU X p1{pq`z a X p1{pqq`HpU X p1{pqq " e ´hpU X p1{pq`ξ z a X p1{pqq hpU X p1{pqq z ,
from which, by the use of the Potter bounds (see Proposition B.1.9.5 in de [START_REF] De Haan | Extreme value theory, an introduction[END_REF], for 0 ă δ 1 ă 1, δ 2 ą 0 and n large we have

ż 8 0 " 1 `z a X p1{pq U X p1{pq  β´1 F X pU X p1{pq `z a X p1{pqq F X pU X p1{pqq dz ď ż 8 0 " 1 `z a X p1{pq U X p1{pq  β´1 e ´p1´δ 1 q r1`ξ a X p1{pq U X p1{pq zs 1 θ ´1´δ 2 z dz.
If θ ă 1, take 0 ă δ 2 ă 1{θ ´1, and obtain, for n large

ż 8 0 " 1 `z a X p1{pq U X p1{pq  β´1 F X pU X p1{pq `z a X p1{pqq F X pU X p1{pqq dz ď ż 8 0 " 1 `z a X p1{pq U X p1{pq  β´1 e ´p1´δ 1 q z dz " U X p1{pq a X p1{pq e p1´δ 1 q U X p1{pq a X p1{pq ż 8 1 u β´1 e ´p1´δ 1 q U X p1{pq a X p1{pq u du " 1 1 ´δ1 Γ I ´β, p1 ´δ1 q U X p1{pq a X p1{pq "p1 ´δ1 q U X p1{pq a X p1{pq ı β´1 e ´p1´δ 1 q U X p1{pq a X p1{pq . (11) 
For p Ó 0, the right-hand side in ( 11) is bounded. Now, if θ ě 1, take 0 ă δ 2 ă 1{θ, and for ε, ∆ ą 0, we obtain for n large

ż 8 0 " 1 `z a X p1{pq U X p1{pq  β´1 F X pU X p1{pq `z a X p1{pqq F X pU X p1{pqq dz ď ż 8 0 " 1l tβă1u `p1 `ε zq β´1 1l tβě1u ı e ´p1´δ 1 qr1`ε zs 1 θ ´1´δ 2 z dz " ż ∆ 0 " 1l tβă1u `p1 `ε zq β´1 1l tβě1u ı e ´p1´δ 1 qr1`ε zs 1 θ ´1´δ 2 z dz `ż 8 ∆ " 1l tβă1u `p1 `ε zq β´1 1l tβě1u ı e ´p1´δ 1 qrε`1 z s 1 θ ´1´δ 2 z 1 θ ´δ2 dz ď " 1l tβă1u `p1 `ε ∆q β´1 1l tβě1u ı ż ∆ 0 e ´p1´δ 1 qr1`ε ∆s 1 θ ´1´δ 2 z dz `ż 8 ∆ " 1l tβă1u `p1 `ε zq β´1 1l tβě1u ı e ´p1´δ 1 qrε`1 ∆ s 1 θ ´1´δ 2 z 1 θ ´δ2 dz ď ∆ " 1l tβă1u `p1 `ε ∆q β´1 1l tβě1u ı `1l tβă1u ż 8 ∆ e ´p1´δ 1 qrε`1 ∆ s 1 θ ´1´δ 2 z 1 θ ´δ2 dz `1l tβě1u ˆε `1 ∆ ˙β´1 ż 8 ∆ z β´1 e ´p1´δ 1 qrε`1 ∆ s 1 θ ´1´δ 2 z 1 θ ´δ2 dz ď ∆ " 1l tβă1u `p1 `ε ∆q β´1 1l tβě1u ı `1l tβă1u θ 1 ´θδ 2 « 1 p1 ´δ1 qpε `1 ∆ q 1 θ ´1´δ 2 ff θ 1´θδ 2 Γ ˆθ 1 ´θδ 2 1l tβě1u ˆε `1 ∆ ˙β´1 θ 1 ´θδ 2 « 1 p1 ´δ1 qpε `1 ∆ q 1 θ ´1´δ 2 ff βθ 1´θδ 2 Γ ˆβθ 1 ´θδ 2
ẇhich is also bounded. This achieves the proof of Lemma 2.1.

Proof of Theorem 3.1. Remark that

CT M β,k{n CT M β,k{n ´1 " rU X pn{kqs β CT M β,k{n # CT M β,k{n pp u n,k q rU X pn{kqs β ´CT M β,k{n rU X pn{kqs β + . ( 12 
)
The leading factor in the right-hand side of ( 12) tends to 1 by Lemma 2.1. Thus we only need to look at the term in the braces. First, we note that

T n ´n k F X ´UX ´n k ¯`a X ´n k ¯p u n,k ¯¯" 1 a.s.,
from which we deduce that

CT M β,k{n pp u n,k q rU X pn{kqs β ´CT M β,k{n rU X pn{kqs β " # " X n´k,n U X pn{kq  β ´1+ `β 1 ? k a X pn{kq U X pn{kq ż 8 0 W `e´v ˘dv `β a X pn{kq U X pn{kq ż 8 0 " 1 `aX pn{kq U X pn{kq pp u n,k `vq  β´1 ˆ"T n ´n k F X ´UX ´n k ¯`a X ´n k ¯pp u n,k `vq ¯¯´n k F X ´UX ´n k ¯`a X ´n k ¯pp u n,k `vq 1 ? k W ´n k F X ´UX ´n k ¯`a X ´n k ¯pp u n,k `vq ¯¯ dv `β a X pn{kq U X pn{kq ż 8 0 " 1 `aX pn{kq U X pn{kq pp u n,k `vq  β´1 ˆ" n k F X ´UX ´n k ¯`a X ´n k ¯pp u n,k `vq ¯´e ´pp u n,k `vq ı dv `β a X pn{kq U X pn{kq e ´p u n,k ż 8 0 « ˆ1 `aX pn{kq U X pn{kq pp u n,k `vq ˙β´1 ´ˆ1 `aX pn{kq U X pn{kq v ˙β´1 ff e ´v dv `β a X pn{kq U X pn{kq ´e´p u n,k ´1¯ż 8 0 ˆ1 `aX pn{kq U X pn{kq v ˙β´1 e ´v dv `β a X pn{kq U X pn{kq ż 8 0 " 1 `aX pn{kq U X pn{kq v  β´1 " e ´v ´n k F X ´UX ´n k ¯`a X ´n k ¯v¯ı dv `β 1 ? k a X pn{kq U X pn{kq ż 8 0 " 1 `aX pn{kq U X pn{kq pp u n,k `vq  β´1 ˆ"W ´n k F X ´UX ´n k ¯`a X ´n k ¯pp u n,k `vq ¯¯´W ´e´pp u n,k `vq ¯ı dv `β 1 ? k a X pn{kq U X pn{kq ż 8 0 " 1 `aX pn{kq U X pn{kq pp u n,k `vq  β´1 " W ´e´pp u n,k `vq ¯´W `e´v ˘ı dv `β 1 ? k a X pn{kq U X pn{kq ż 8 0 « ˆ1 `aX pn{kq U X pn{kq pp u n,k `vq ˙β´1 ´1ff W `e´v ˘dv ": 10 ÿ i"1 T i,n .
We will study all the terms separately.

Term T 1,n . According to Lemma 8.2, we have

? k U X pn{kq a X pn{kq T 1,n " β ? k X n´k,n ´UX pn{kq a X pn{kq p1 `oP p1qq " β W p1q `oP p1q. ( 13 
) Term T 2,n . Clearly ? k U X pn{kq a X pn{kq T 2,n " β ż 8 0 W `e´v ˘dv. ( 14 
)
Term T 3,n . Using Lemmas 8.1 and 8.2, with arbitrary large probability, for n large, c ą 0 and 0 ă η ă 1{2, we have

? k U X pn{kq a X pn{kq |T 3,n | ď sup 0ăyďe δ `c | ? krT n pyq ´ys ´W pyq| y η ˆβ ż 8 0 " 1 `aX pn{kq U X pn{kq pp u n,k `vq  β´1 ˜F X pU X p n k q `aX p n k q pp u n,k `vqq F X pU X p n k qq ¸η dv.
The supremum term is negligeable a.s. according to (9) and a treatment similar to that of the proof of Lemma 2.1 with Potter bounds ensures that the integral is bounded. This yields

? k U X pn{kq a X pn{kq T 3,n " o P p1q. ( 15 
)
Term T 4,n . Let us define

I n px; βq " ? k ż 8 0 ˇˇn k F X ´UX ´n k ¯`a X ´n k ¯px `vq ¯´e ´px`vq ˇˇdv β .
Using Lemma 8.2, with arbitrary large probability, for n large, 0 ă ε ă 1{δ and any ∆ ą 0, we have

? k U X pn{kq a X pn{kq |T 4,n | ď 1l tβă1u β p1 ´δεq β´1 ? k ż 8 0 ˇˇn k F X ´UX ´n k ¯`a X ´n k ¯pp u n,k `vq ¯´e ´pp u n,k `vq ˇˇdv `1l tβě1u β p1 `εpδ `∆qq β´1 ? k ż ∆ 0 ˇˇn k F X ´UX ´n k ¯`a X ´n k ¯pp u n,k `vq ¯´e ´pp u n,k `vq ˇˇdv `1l tβě1u ˆε `1 `ε δ ∆ ˙β´1 ? k ż 8 ∆ ˇˇn k F X ´UX ´n k ¯`a X ´n k ¯pp u n,k `vq ¯´e ´pp u n,k `vq ˇˇdv β ď ˜sup xPr´δ,δs I n px; 1q ¸!1l tβă1u β p1 ´δεq β´1 `1l tβě1u β p1 `εpδ `∆qq β´1 ) `˜sup xPr´δ,δs I n px; βq ¸1l tβě1u ˆε `1 `ε δ ∆ ˙β´1 .
Thus, Lemma 8.3 implies that

? k U X pn{kq a X pn{kq T 4,n " o P p1q. ( 16 
)
Term T 5,n . By Lemma 8.2, using the mean value theorem, with ξ P p0, 1q, we have with large probability, for n large and 0 ă ε ă 1{δ 

? k U X pn{kq a X pn{kq |T 5,n | ď β |β ´1| a X pn{kq U X pn{kq ? k p u n,k ż 8 0 " 1 `aX pn{kq U X pn{kq pv `ξ p u n,k q  β´2 e ´v dv
Term T 8,n . With arbitrary large probability, for n large, 0 ă ε ă 1{δ and any ∆ ą 0, we have

? k U X pn{kq a X pn{kq |T 8,n | ď ! 1l tβă1u β p1 ´δεq β´1 `1l tβě1u β p1 `εpδ `∆qq β´1 ) W n p1q `1l tβě1u ˆε `1 `ε δ ∆ ˙β´1 W n pβq, (20) 
where

W n pβq :" ż 8 0 ˇˇW ´n k F X ´UX ´n k ¯`a X ´n k ¯pp u n,k `vq ¯¯´W ´e´pp u n,k `vq ¯ˇˇd v β .
For T ą 0, we have

W n pβq ď ż 8 T ˇˇW ´e´pp u n,k `vq ¯ˇˇd v β `ż 8 T ˇˇW ´n k F X ´UX ´n k ¯`a X ´n k ¯pp u n,k `vq ¯¯ˇˇˇd v β `ż T 0 ˇˇW ´n k F X ´UX ´n k ¯`a X ´n k ¯pp u n,k `vq ¯¯´W ´e´pp u n,k `vq ¯ˇˇd v β ": W p1q n pβq `Wp2q n pβq `Wp3q n pβq.
Then, for a ą 0 arbitrary, we have 

by Lemma 2 in [START_REF] Cai | Estimation of the marginal expected shortfall: the mean when a related variable is extreme[END_REF], and where C is a positive constant.

Combining ( 13)-( 19) with ( 22)-( 24), Theorem 3.1 follows. Now, using the mean value theorem with u n P rU X pn{kq; U X p1{pqs, we have, for δ 1 , δ 2 ą 0 and n large, 

ˇˇˇ X pU X p1{pqq X pU X pn{kqq ´1ˇˇˇˇ" | 1 X pu n q| X pU X pn{kqq " U X ˆ1 p ˙´U X ´n k ¯ " u n | 1 X pu n q| X pu n q X pu n q X pU X pn{kqq U X pn{kq u n ˆUX p1{pq U X pn{kq ´1ď p1 `δ1 q u n | 1 X pu n q| X pu n q ˆun U X pn{kq ˙δ2 ˆUX p1{pq U X pn{kq ´1ď p1 `δ1 q sup xěU X pn{kq x | 1 X pxq| X pxq

  studied this in an i.i.d. setting with random right censoring. El Methni et al. (2014) studied the estimation of the conditional tail moment in a regression setup where the conditional distribution of the response variable given the covariate is of Pareto-type. Estimation of the conditional tail moment for the class of Weibull-type distributions is to the best of our knowledge unexplored.
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 1 Figure 1: W eibullp1q distribution. Boxplots of { CT M 1,p {CT M 1,p as a function of k for n " 500 (left) and n " 2000 (right) with p " 1{n (top) and p " 1{p5nq (bottom).

Figure 2 :

 2 Figure 2: |N p1.2, 1q| distribution. Boxplots of { CT M 1,p {CT M 1,p as a function of k for n " 500 (left) and n " 2000 (right) with p " 1{n (top) and p " 1{p5nq (bottom).

Figure 3 :

 3 Figure 3: Γp2, 1q distribution. Boxplots of { CT M 1,p {CT M 1,p as a function of k for n " 500 (left) and n " 2000 (right) with p " 1{n (top) and p " 1{p5nq (bottom).

Figure 4 :

 4 Figure 4: EW eibullp1.5, ´1q distribution. Boxplots of { CT M 1,p {CT M 1,p as a function of k for n " 500 (left) and n " 2000 (right) with p " 1{n (top) and p " 1{p5nq (bottom).
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 5 Figure 5: |N p1.2, 1q| distribution. Boxplots of { CT M 2,p {CT M 2,p as a function of k for n " 500 (left) and n " 2000 (right) with p " 1{n (top) and p " 1{p5nq (bottom).
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 67 Figure 6: Coverage probabilities of approximate 95% confidence intervals as a function of k for pn, pq " p500, 0.002q (black solid line), p500, 0.0004q (red dashed line), p2000, 0.0005q (black dotted line) and p2000, 0.0001q (red dashed-dotted line). The distributions considered are W eibullp1q (top left), |N p1.2, 1q| (top right), Γp2, 1q (bottom left) and EW eibullp1.5, ´1q (bottom right).
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 8 Figure 8: Anholt wind speed data. Weibull QQ plot (top left), p θ k with approximate 95% confidence intervals as a function of k (top right), { CT M 1,1{n (bottom left) and { CT M 1,1{p5nq

Figure 9 :

 9 Figure 9: Anholt wind speed data. p V p with p " 1{n (solid line) and p " 1{p5nq (dashed line) as a function of k.

February), andFigure 10 :

 10 Figure 10: Air pollution data. Weibull QQ plot (top left), p θ k with approximate 95% confidence intervals as a function of k (top right), { CT M 1,1{n (bottom left) and { CT M 1,1{p5nq (bottom right)with approximate 95% confidence intervals as a function of k.

Figure 11 :

 11 Figure 11: Air pollution data. p V p with p " 1{n (solid line) and p " 1{p5nq (dashed line) as a function of k.

  Assume F X satisfies (1), H is differentiable with derivative h which is ultimately monotone, and h is differentiable with derivative h 1 satisfying xh 1 pxq{hpxq Ñ 1{θ ´1 as x Ñ 8.

	Theorem 4.1 Then, if k Ñ 8 as n Ñ 8 such that	?	k a X pn{kq U X pn{kq Ñ 0 and	? k sup xěU X pn{kq	x| 1 X pxq| X pxq Ñ 0, we have
	for p satisfying p ď k n such that log 1{p log n{k Ñ λ P p1, 8q that
	?	k	˜{ CT M β,p CT M β,p	´1¸d ÝÑ β logpλq Γ.
	From the result of Theorem 4.1, it is clear that the estimator { CT M β,p inherits its limiting dis-
	tribution, up to the factor β logpλq, from the estimator p θ k for the Weibull-tail coefficient. In
	particular, we obtain the N p0, pθβ logpλqq 2 q distribution as limiting distribution for the rescaled
	estimator of CT M β,p . As expected, more severe extrapolations, corresponding with larger values
	for λ, lead to an increase in the variance of the limiting distribution.
	Below we give some examples of distributions satisfying the assumptions of Theorem 4.1, in
	particular the conditions						
			lim xÑ8	x	h 1 pxq hpxq	"	1 θ	´1,	(4)
			lim nÑ8	? k	a X pn{kq U X pn{kq	" 0,	(5)
			lim nÑ8			
	can now state the main result of the paper, namely the weak convergence of { CT M β,p ,
	properly normalised.						

  Following the lines of proof of Lemma 2.1 with the Potter bounds, the integral from the above display can be made arbitrary small by taking T large. Thus, combining Lemma 8.2 with Lemma 2 in[START_REF] Cai | Estimation of the marginal expected shortfall: the mean when a related variable is extreme[END_REF], and by choosing T large enough, for ε ą 0, there exists n 1 such that for n ą n 1 we have Lemmas 8.1 and 8.2 combined with the uniform continuity of W on compact sets yield, for from which we deduce that, for n ą maxpn 1 , n 2 q P pW n pβq ą aq ď ε.Term T 9,n . It can be handled similarly as T 8,n , except forˇˇW ´e´pp u n,k `vq ¯´W `e´v ˘ˇˇd v β , ˇˇW ´e´pv`xq ¯´W `e´v ˘ˇˇą a 2 T β ¸`P ´|p u n,k | ą k ´1 4 ¯.By the uniform continuity of W on compact sets and Lemma 8.2, we have for n ą n 2 Term T 10,n . By the mean value theorem, with ξ P p0, 1q, we have with large probability, for n large, and 0 ă ε ă 1{δ and 0 ă η ă 1{2,

	P ´Wp1q n pβq ą n pβq ą P ´Ă W p3q a ¯ď P ˜sup a 4 ¯ď P ˜sup 0ăyďe δ 2 vPr0,T s,|x|ďk ´1{4	|W pyq| y η ą	a η β 4 β	e ´ηδ Γ I pβ, T ηq	¸`P p|p u n,k | ą δq ,
	and similarly, by Lemma 8.1, c ą 0 and n large
	P ´Wp2q n pβq ą	a 4	¯ď P ˜sup 0ăyďe δ `c |W pyq| y η P ´Ă W p3q n pβq ą ż 8 T " n k a 2	F X ´UX ¯ď ε 2 ,	´n k	¯`a X	´n k	¯p´δ `vq ¯ıη	dv β ą	a 4	P
	p|p u n,k | ą δq . from which we deduce that	
								? k	U X pn{kq a X pn{kq	T 9,n " o P p1q.	(23)
	?	k	U X pn{kq a X pn{kq	|T 10,n | "	P ´Wp1q n pβq ą ˇˇˇˇβ pβ ´1q a X pn{kq a 4 ¯`P ´Wp2q n pβq ą U X pn{kq ż 8 0 rp u n,k `vs	a 4 " 1 ¯ď ε 2 U X pn{kq . `ξ a X pn{kq	pp u n,k `vq	 β´2	W `e´v ˘dv	ˇˇˇď
	With this specific value of T , we have P ´Wp3q n pβq ą a 2 ¯ď P ˜sup yPr´δ,δ`T s ˇˇW a X pn{kq ´n k β|β ´1| U X pn{kq ˆ"1l tβă2u r1 ´δεs β´2 F X ´UX ż 8 rδ `vs ˇˇW `e´v ˘ˇd v ´n k ¯`a X ´n k ¯y¯¯´W	`e´y ˘ˇˇą a 2 T β
												0
								`1l tβě2u	ż 8	rδ `vs r1 `εpδ `vqs β´2 ˇˇW `e´v ˘ˇd v	*
												0
	n ą n 2			ď β|β ´1|	a X pn{kq U X pn{kq
							P ´Wp3q n pβq ą ˆ"1l tβă2u r1 ´δεs β´2 sup a 2 ¯ď ε 0ăyď1 |W pyq| , y η 2 `1l tβě2u sup 0ăyď1 |W pyq| 0 y η rδ `vs r1 `εpδ `vqs β´2 e ´η v dv ż 8 rδ `vs e ´η v dv 0 ż 8	*
						ď C	a X pn{kq U X pn{kq	,		(21)
	Combining (20) and (21), we have		
								? k	U X pn{kq a X pn{kq	T 8,n " o P p1q.	(22)
			P pW n pβq ą aq ď P ´Wp1q n pβq ą ż T Ă W p3q n pβq :" 0		a 4	¯`P ´Wp2q n pβq ą	a 4	¯`P ´Wp3q n pβq ą	a 2	¯.

P p|p u n,k | ą δq .

  Proof of Theorem 4.1. Consider the following decompositionCT M β,p {rU X p1{pqs β ´1 " o ˆ1 ? k since U plog xq " r X pU X pxqqs ´θ.

		?	k	˜{ CT M β,p CT M β,p	´1"
				¨#ˆl			
		?	k			og 1{p log n{k loooooooooooomoooooooooooon ˙βr p θ k ´θs +	# looooooomooooooon CT M β, k n CT M β, k n +	loooooooooooooooomoooooooooooooooon # + plog n{kq ´β θ CT M β, k n plog 1{pq ´β θ CT M β,p	‹ ´1‹ ‹ ‹ '
										T 11,n	T 12,n	T 13,n
	"	?	k	#	ˆlog 1{p log n{k	˙βr p θ k ´θs	´1+	T 12,n T 13,n `?k	#	CT M β, k n n CT M β, k	´1+	T 13,n
		`?k	#	plog n{kq ´β θ CT M β, k n plog 1{pq ´β θ CT M β,p	´1+
	" β logpλq	?	k r p θ k ´θsp1 `oP p1qq T 12,n T 13,n `?k	U X pn{kq a X pn{kq	#	CT M β, k n CT M β, k n	´1+ a X pn{kq U X pn{kq	T 13,n
		`?k	#	CT M β, k n CT M β,p {rU X p1{pqs β {rU X pn{kqs β	U X p1{pq ´1+ ˆUX pn{kq	log 1{p ˙β ˆlog n{k	˙´β θ
		`?k	˜ˆU X pn{kq U X p1{pq	˙β ˆlog n{k log 1{p	˙´β θ	´1¸.
	According to (10), we have
	CT M β, k n rU X pn{kqs β " 1	`β a X pn{kq U X pn{kq	#	1	`ż 8 0	« ˆ1	`aX pn{kq U X pn{kq	z	˙β´1	´1+	e ´z dz
											0 `ż 8	ˆ1	`aX pn{kq U X pn{kq	z	˙β´1 ˆF X pU X pn{kq `aX pn{kq zq F X pU X pn{kqq	´e´z ˙dz	+
										" 1	k `o ˆ1 ?	˙.
	A similar result can be obtained for CT M β, 1 p	{rU X p1{pqs β . Thus, we have
													CT M β, k n	{rU X pn{kqs β	˙.
	Now, the last term of the decomposition.
		ˆUX pn{kq U X p1{pq	˙β ˆlog n{k log 1{p	˙´β θ	´1 "	ˆ	U plog n{kq U plog 1{pq	˙β ´1 "	ˆ	X pU X p1{pqq X pU X pn{kqq	˙β θ	´1,
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