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Abstract

We consider the estimation of the conditional tail moment, defined for a positive random
variable X as E(X?|X > Q(1 — p)), where Q denotes the quantile function of X, 8 > 0
and p € (0,1), at extreme levels for the class of Weibull-type distributions. A two-step
procedure is introduced where in the first stage one estimates the conditional tail moment
at an intermediate level, followed by an extrapolation in the second stage. The asymptotic
properties of the estimators introduced in the two stages are derived under suitable assump-
tions. The finite sample properties of the proposed estimator are examined with a simulation
experiment. We conclude with two applications on real life data: wind speed measurements
collected at an offshore wind farm and PMs 5 air pollution data.

Keywords: Weibull-type distribution, extreme-value statistics, hazard rate function, em-
pirical process.

1 Introduction

Quantifying and estimating the risk of extreme events is of interest in many scientific disciplines.
Floods due to sea storms can entail massive losses, both in terms of human lives and economical,
so the modelling of the distribution of wave heights and other sea state parameters is of crucial
importance in the design of coastal protection. In environmental science, extreme levels of pol-
lutants can have adverse effect on human health. Over the years several risk measures have been
introduced, the most popular of these being the Value-at-Risk (also called return level) and the
conditional tail expectation. We refer to, e.g., Jorion (2007), Singh et al. (2007), Coles (2013),
Cooley (2013) and Salas and Obeysekera (2014). In this paper we consider the conditional tail
moment (CTM), being a natural generalisation of the conditional tail expectation, and study
its estimation for the class of Weibull-type distributions.



Let 8> 0 and p € (0,1). We want to estimate
CTMg, = E [XBIX > Ux(1/p)]
when the distribution of X is of Weibull-type, i.e., the distribution function satisfies
Fx(x)=1- e_zl/%X(“”),:r > 0, (1)

with 0 a positive parameter and £x a slowly varying function at infinity, i.e., a positive measur-
able function such that

Ux(tx)
11m
oo Lx(t)

=1 forallz >0,

and Uy the tail quantile function of X defined as Ux(x) = inf{z : Fx(z) > 1—1/z},z > 1.
Specific interest is here in the extreme case, that is, the situation where p is very small, typically
less than 1/n, where n is the size of the random sample that is available for estimation. In
this case, estimation is challenging as the conditional expectation in the definition of C'T'Mg,,
cannot simply be estimated by an empirical average. Indeed, for p < 1/n the natural estimator
for Ux(1/p) is the largest observation in the sample, but then there are no further data to base
the estimation of the conditional expectation upon.

The considered class of Weibull-type distributions forms a rich subclass of the Gumbel max-
domain of attraction. The tail heaviness of Weibull-type distributions is clearly governed by the
parameter 6, where larger values of 6 correspond with a slower decay of the upper tail. Popular
members of this family include the Weibull (corresponding to a constant function £x ), normal,
gamma and logistic distributions, to mention only a few. Loosely speaking, the upper tail decays
exponentially fast, in contrast to the Pareto-type models which have a tail decay corresponding
to a decreasing power function, and thus are heavier tailed. The Weibull-type distributions
find important applications in areas like environmental science, climate science, hydrology, en-
gineering and medicine. As the Weibull-type model depends only explicitly on the parameter
0, it is not unexpected that the estimation of this parameter received a lot of attention in the
extreme-value literature. We refer to Broniatowski (1993), Beirlant et al. (1995), Girard (2004),
Gardes and Girard (2005, 2008, 2016), Diebolt et al. (2008), Dierckx et al. (2009), Goegebeur
et al. (2010), Goegebeur and Guillou (2011), Goegebeur et al. (2015), de Wet et al. (2016) and
the references therein.

The estimation of the conditional tail moment is already studied for the context of Pareto-type
distributions in Goegebeur et al. (2022a), who consider the classical setup of independent iden-
tically distributed (i.i.d.) random variables and in Goegebeur et al. (2022b) in an i.i.d. setting
with random right censoring. El Methni et al. (2014) studied the estimation of the conditional
tail moment in a regression setup where the conditional distribution of the response variable
given the covariate is of Pareto-type. Estimation of the conditional tail moment for the class of
Weibull-type distributions is to the best of our knowledge unexplored.



We organise this paper as follows. In Section 2 we provide as a first result an approximation
of CT'Mpg,, for p | 0, which will be used to derive the estimator for this risk measure under
extrapolation. The proposed estimator depends on an estimator for the conditional tail moment
in the intermediate case, i.e., for p = k/n, where k — o as the sample size n — o but in
such a way that k/n — 0. This intermediate case is studied in Section 3 where we introduce an
estimator and derive its limiting distribution under suitable assumptions. Section 4 is devoted
to the study of the asymptotic properties of the estimator for CT Mg, in the extreme case.
The finite sample properties are examined by a simulation experiment in Section 5 while the
practical applicability of the proposed method is illustrated in Section 6 on wind speed and air
pollution data. Section 7 contains the proofs of the results.

2 Construction of the estimator

Let RV, denote the class of regularly varying functions at infinity with index ¢ € R, i.e.,
positive measurable functions f satisfying f(tx)/f(t) — 2%, as t — oo, for all 2 > 0. Denote
H(z) = —log Fx(z), and hence Fx(z) = e #(®), In the case where Fy is of Weibull-type we
have then H € RV; 9. Note that if H is differentiable with derivative H' then H' = h where h
is the hazard rate function.

We start to expand CT Mg, in case p | 0 in order to have an idea about how to estimate this
risk measure under extrapolation, i.e., for p < 1/n, where n is the size of the sample on which
the estimation is based.

Lemma 2.1 Assume Fx satisfies (1), H is differentiable with derivative h € RVyij9_1. Then,

as p | 0, we have
CT Mg,y

o)

B
From this lemma, the first idea to estimate CT'Mpg, is to use an estimate of [UX <%>] .

Unfortunately, since by definition of the conditional tail moment we condition on the event
{X > Ux(1/p)}, clearly such an estimate will underestimate the true value. An alternative
method consists in using a two-step procedure as follows.

Let k be an intermediate sequence, i.e., a sequence such that k — o0 and k/n — 0 as n — o0.
Lemma 2.1 yields the approximation

from which we deduce that




Note that (1) is equivalent to assume that Ux satisfies
Ux (x) = (log )’ £y (log ),

where £ is also a slowly varying function at infinity. Thus, we deduce the following estimator
for CT'Mg ),

log(1/p)
log(n/k)

where ék is an estimator of 6 and CT'M g1/, an intermediate estimator of CT' Mg g /p,-

. B0k
CTMﬁ’p = ( ) CTM,B,k/nv (2)

3 Asymptotic properties of C'T'Mg./,

Assume we have at our disposal a sample Xi,...,X, of independent copies of the random
variable X and denote by X;, < ... < X, , the order statistics. We start with considering the
estimation of the conditional tail moment in the intermediate case. In this situation, the natural
estimator for Ux (n/k) is then X, ,, which is within the data range, and hence CT'Mg;/y, can

be estimated empirically by the sample mean of the XZ.B for which X; > X,,_;,,. We define

CTMp k= ;in]l{prnk,n}v
and introduce
CTMpg j () : ;i ﬂ{X >Ux (2)+ax () z}s
where

Then, CT'M g/, can be rewritten as
CTMg g = CTMpg o (Unk)
where Ut := (Xpn—tn — Ux(n/k))/ax(n/k).

The weak convergence of C'T'M g 1/, after normalisation, is given in the following theorem.

Theorem 3.1 Assume Fx satisfies (1), H is differentiable with derivative h which is ultimately
monotone, and h is differentiable with derivative h' satisfying xh/(x)/h(x) = 1/0 —1 as x — o0.
Then, if k — o as n — o such that k/n — 0 and vVkax(n/k)/Ux(n/k) — 0, we have

Ux(/k) (CTMprm \ d o._ g (" (oo
\/Eax(n/k) (CTMg,k/n 1> 6'_Bf0 W(e )dv,

where W (z) is a zero centered Gaussian process with covariance function

E{W(z) W(Z)} = min(z, Z).




Note that this theorem implies the convergence of the rescaled estimator of C'T'Mgy/, towards
the NV(0,2 8?) distribution.

4 Asymptotic properties of CTM B.p

In this section we study the asymptotic properties of the estimator CTM 3p given in (2). As
estimator for the Weibull-tail coefficient 6 we use the estimator proposed by Girard (2004), given
by
§ — %Z?:l (lOg Xn—i-‘rl,n - log ank,n)
- .
37 (loglog 2 — loglog %)

Below, we recall the limiting distribution of this estimator, properly normalised, in terms of a
stochastic process, as established in Theorem 4.1 in Goegebeur et al. (2023).

Theorem 4.1 Assume Fx satisfies (1), H is differentiable with derivative h which is ultimately

monotone, and h is differentiable with derivative h' satisfying xh'(x)/h(x) — 1/0 —1 as x — 0.
Then, if k — 0 as n — o such that Vkax(n/k)/Ux(n/k) — 0 and vk UX(Z/(]?U;gﬁg?/k)) — 0,
we have

aesy) i»r::e{foow(e—v) dv—W(l)}.

0

Note that the limiting distribution in Theorem 4.1 is (0, 62). As is clear from Theorem 3.1 and
Theorem 4.1, the limiting behavior of CT'M g/, and 6 involves the same stochastic process

W. For more details we refer to Section 7 of the present paper and the proof of Theorem 4.1 in
Goegebeur et al. (2023).

We can now state the main result of the paper, namely the weak convergence of CTM B.p>
properly normalised.

Theorem 4.2 Assume Fx satisfies (1), H is differentiable with derivative h which is ultimately

monotone, and h is differentiable with derivative h' satisfying xh'(x)/h(x) — 1/0 —1 as x — 0.

Then, if k — o as n — o such that \Fax k) 0 and VE SUD,> Uy (n/k) 7 oy (( )) — 0, we have

(n/k)
for p satisfying p < ﬁ such that log 1% — A€ (1,00) that

CTM
7p

From the result of Theorem 4.2, it is clear that the estimator CTM g,p inherits its limiting
distribution, up to the factor 8 log()\), from the estimator ék for the Weibull-tail coefficient. In
particular, we obtain the A'(0, (§31log(\))?) distribution as limiting distribution for the rescaled
estimator of C'T'Mg,. As expected, more severe extrapolations, corresponding with larger values
for A, lead to an increase in the variance of the limiting distribution.



5 Simulation experiment

In this section we illustrate the finite sample behavior of the proposed estimator by means of a
simulation experiment. The considered distributions are:

e Weibull distribution (Weibull(6), 6 > 0), with distribution function as in (1) with £x = 1.
We set 0 = 1.

e Absolute normal distribution (|N(u,02)|, u € R, o > 0), i.e., the distribution of | X | where
X ~ N(u,0?). For this distribution § = 1/2. We set (u,0?) = (1.2,1).

e Gamma distribution (I'(cr, \), o, A > 0), for which § = 1. We set (a, A) = (2, 1).
e Extended Weibull distribution (EWeibull(6,£), 6 > 1, £ € R) with survival function

1/6

1—Fx(z)=r(z)e ™", x>0,

where r € RV (Kliippelberg and Villasenior, 1993). We set (0,¢) = (1.5, —1).

From each distribution we simulate 500 datasets of sizes n € {500,2000}, and we consider esti-
mation of CT Mg, with p € {1/n,1/(5n)}, and g € {1, 2}.

In Figure 1 we show for the Weibull(1) distribution the boxplots of CTM 1,p/CTM, 5, computed
over the 500 replications, as a function of k for n = 500 (left) and n = 2000 (right), and where
the top row corresponds with p = 1/n and the bottom row with p = 1/(5n). Figures 2-4
are constructed analogously for the other distributions. From the simulations we observe the
following:

e For all the distributions considered the estimation is good when k is small compared to
n, which is in agreement with the theoretical condition k/n — 0. With increasing k the
estimators show typically an increase in bias. As for the bias we comment that estimation
for Weibull-type distributions is practically challenging, with a bias that comes typically
rather fast with increasing k. This was also already observed in the simpler context of
the estimation of the Weibull-tail coefficient 6, see, e.g., Girard (2004), Gardes and Girard
(2008), Goegebeur et al. (2010), to mention only a few, and obviously also manifests itself
here.

e The estimation results improve with increasing sample size n.

e Decreasing p leads to increased variability of the estimates, which can be expected as
smaller values of p lead to more severe extrapolations.

e Larger values of § lead to more variable results. This is also in line with the expectations
as 0 determines the heaviness of the upper tail of the Weibull-type model.

Finally, in Figure 5 we illustrate the estimation of the second conditional tail moment, C'T'Ma y,,
for the |[N(1.2,1)| distribution. As expected, estimation of the second conditional tail moment
is more challenging than that of the conditional tail expectation (8 = 1), with larger variability
of the estimates.
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Figure 1: Weibull(1) simulation. Boxplots of WL]D/CTMLP as a function of k for n = 500
(left) and n = 2000 (right) with p = 1/n (top) and p = 1/(5n) (bottom).
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Figure 2: |N(1.2,1)| simulation. Boxplots of ml,p/CTMLp as a function of k for n = 500
(left) and n = 2000 (right) with p = 1/n (top) and p = 1/(5n) (bottom).
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Figure 3: T'(2,1) simulation. Boxplots of @Lp/CTMLp as a function of k for n = 500 (left)
and n = 2000 (right) with p = 1/n (top) and p = 1/(5n) (bottom).
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6 Real data analysis

6.1 Wind speeds at Anholt offshore wind farm

Following the worldwide economic development and population growth, global energy demand
has also shown an important upward trend during the last decades. Traditional fossil fuels have
many disadvantages: their reserves are limited and their use contributes to increased carbon
dioxide levels in the atmosphere. On the other hand, renewable energy like wind power is in-
exhaustible and causes little pollution. Accurate modelling of the wind speed distribution is
of crucial importance for wind energy output estimation, e.g., at an offshore wind farm. For a
review of wind speed modelling approaches we refer to Shi et al. (2021).

Our interest is in an analysis of the upper tail of the wind speed distribution at the Anholt
offshore wind farm, which is a Danish offshore wind power farm in the Kattegat, between Djurs-
land and the island Anholt. We estimate the Weibull-tail index 6, the first conditional tail
moment CTM; , (also called the conditional tail expectation) and the conditional tail variance
Vp = CT M), — C’TMip, using a dataset that is publicly available at
https://orsted.com/en/what-we-do/renewable-energy-solutions/offshore-wind/
offshore-wind-data. In particular we use LIDAR measured wind speeds (in meters per second)
at 100 meters altitude. The original dataset consists of a time series of 10 minutes measurements
during the years 2013-2014, but in order to reduce temporal dependencies only one observation
every three days is kept for the analysis, leading to n = 242. In order to evaluate the appropri-
ateness of the Weibull-type model (1) we construct the Weibull QQ plot, which has coordinates

i .
<10g <_10g (1 — TL+1>> ,108;Xi,n> , 1= 1,...,TL,

see Figure 6, top left panel. Clearly, the Weibull QQ plot becomes approximately linear in the
largest observations, which supports the Weibull-type model. We refer to Goegebeur and Guillou
(2010) for a discussion of the Weibull QQ plot. Next we estimate the Weibull-tail index 6, see
Figure 6, top right, where we show é\k as a function of k. This plot shows a stable horizontal
part for k between, approximately, 30 and 60, indicating an estimate for 6 of about 0.4. Finally,
the bottom row of Figure 6 shows the estimates for C'T'M; ) (left) and for the conditional tail
variance V,, (right) for p = 1/n (solid line) and p = 1/(5n) (dashed line) as a function of k. Again
these plots show stability for & between 30 and 60 with estimates for CT'M; 1/, and CT' M 1/(5n)
of about 27 and 32 meters per second, respectively. Besides CT'M; ,, being an average above a
high quantile, it is also relevant to estimate the variability in the upper tail, V},. Again focusing
on the stable k-region we have an estimate of V}, between 30-40 for p = 1/n and p = 1/(5n).

6.2 PM,; air pollution

Air pollution is among the greatest environmental risks to human health. Of particular concern
is the concentration of PMs 5, referring to atmospheric particulate matter with a diameter of less
than 2.5 micrometers. Since these particles are so small and light, they tend to stay longer in
the air than heavier ones, increasing the chances of humans and animals inhaling them. PMs 5
can travel deep in the respiratory tract, reaching the lungs and entering the blood stream. The

12
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Figure 6: Anholt wind speed data. Weibull QQ plot (top left), é\k as a function of k (top right),
CTM, ) with p = 1/n (solid line) and p = 1/(5n) (dashed line) as a function of k (bottom left),
and V,, with p = 1/n (solid line) and p = 1/(5n) (dashed line) as a function of k£ (bottom right).
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adverse health effects of PMy 5 are well studied, see, e.g. Feng et al. (2016) and Li et al. (2017),
and the references therein.

We apply the developed methodology to the PMsy 5 air pollution in the city of Slavonski Brod,
Croatia, which is with an average of 28.0 micrograms per cubic meter (ug/m?), measured during
the last two years, amongst the most polluted cities in Europe. As a reference, note that the
2021 World Health Organisation’s updated health-based guidelines for air quality recommend a
maximum level of 5 ug/m? for long term exposure, in order to protect health. We use a dataset
of daily average concentrations of PMy 5 over the period 2015-2021, publicly available on the
website of the European Environment Agency at
https://discomap.eea.europa.eu/map/fme/AirQualityExport.htm. We base the analysis
on the data from the winter season (December-February), and in order to reduce the temporal
dependence we only consider measurements that are three days spaced apart, leading to n = 209.
The Weibull QQ plot shown in Figure 7, top left, becomes ultimately linear, supporting the
assumption of an underlying Weibull-type distribution, and the plot of the Weibull-tail index
estimates 0y (Figure 7, top right) is stable for k£ between approximately 20 and 80, indicating an
estimate of about 0.7-0.8. In the bottom row of Figure 7 we show mﬁp (left panel) and 17},
(right panel) for p = 1/n (solid line) and p = 1/(5n) (dashed line) as a function of k. For these
plots the stable region for k is from 20 to 50, approximately, with an estimate for C'T'M; j, of
around 300 for p = 1/n and 400 for p = 1/(5n), and estimates for V}, around 10000 and 15000
for p = 1/n and p = 1/(5n), respectively.

14
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7 Proofs

Remark that

CTMpg g/ ()
SR p—1
= BkZJO U du xS Uy () vax (2) 2)

1 &
B-1 =
- B U k Z ]I{Xi>max(u,UX(%)+aX(%)x)}du

i=1
Ux (2)+ax(2)z
_ 3 f

oe]

11
+6 uf1 Z Z N x>0y du

-
>
=3
+
2
>
=3
8

Ux () +ox () oo i; Lixotx () +ax(p) @rop @

7 g n n
ORI RGN ORNOR)
2) [ ax (% o — n
+BU);((Z‘>) fo 1+UX((Z)) (a:—i—v)] Tn(k:FX<UX(E>+aX<E> (a:—i—v))) dv » a.s.,

where
1 n
i=1

The asymptotic behavior of T),(x), after proper normalisation, is given in Lemma 1 of Cai et al.
(2015), according which, for any n € [0,1/2) and T > 0 we have, for n — o0,

V[T () — 2] = W (x)

xn

sup
z€(0,T]

—0a.s.. (3)

Note that in the above result, all the involved processes are defined on the same probability
space via the Skorohod construction. See also Einmahl et al. (2006) for convergence properties
of related stochastic processes.

For completeness, we also include below three lemmas from Goegebeur et al. (2023), useful for

our proofs. Note that the last one is actually a consequence of the proof of Lemma 5.4 in the
aforementioned paper.
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Lemma 7.1 Let Fx satisfy (1), H be differentiable with derivative h € RVi/p_1, then, ast — o0

Fx(t+3)
Fx(t) 7
uniformly for z = —§, for any 6 > 0.

Lemma 7.2 If Fx satisfies (1) and H is differentiable with derivative h € RVyy_y, then, for a
sequence k such that k — oo with k/n — 0, we have

Xn—pm — Ux (%
\/E k, nX(k)—d’W
ax (%)

(1).

Lemma 7.3 Assume Fx satisfies (1), H is differentiable with derivative h which is ultimately
monotone, and h is differentiable with derivative h' satisfying xh'(x)/h(x) — 1/0 —1 as x — 0.

Then, if k — o0 as n — o0 such that k/n — 0 and Vkax(n/k)/Ux(n/k) — 0, we have, for any
6 >0,

e (e () o () v 0) e o

Proof of Lemma 2.1. We have

CTM,B,p = = fo(l/p) m dFX(:L‘)
= [Ux(1/p)]’ +8 T e Fx(@)

Ux (1/p) Fx(Ux(1/p))

_ 8 ax(l/p) [~ , ax(1/p) Pt Fx(Ux(1/p) + zax(1/p)) s
Wx(1/p)] {”5 e |, [ o) FxUxWp) } W
Since 2x(1/P)

Tx(/p) 0, to prove Lemma 2.1, it is sufficient to show that the integral in the right-hand
side of (4) is finite. To this aim, by the mean value theorem, with £ € (0,1), we have
Fx(Ux(1/p) + zax(1/p))
Fx(Ux(1/p))

= ¢ HWUx(/p)+zax(1/p))+H(Ux (1/p))

_h(Ux(U/p)+Ezax (1/p)
= ¢ R(Ux (1/p))

from which, by the use of the Potter bounds (see Proposition B.1.9.5 in de Haan and Ferreira,
2006), for 0 < 61 < 1,92 > 0 and n large we have

“1, L ax(Wp) 1°7 Fx(Ux(1/p) + zax(1/p)
L [” UX<1/p>] FxOx(fp) "
© ax(1/p) 177" (10 (e gxie) ph s
<[ el =
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If < 1, take 0 < d2 < 1/6 — 1, and obtain, for n large

[|repie ]5—1 Fx(Ux(1/p) + zax(1/p)
0 Ux(1/p) Fx(Ux(1/p))
o ax(1/p) 1”7 _as))-
< Jo [”ZUXu/pJ ‘ 4
Ux(1/p) (-4 Lxim JOO W1 =000 X6 g,

= AP, ax (1/p)

ax(1/p) 1
Ux(1/p)
_ 1 F(ﬁ’(l_‘sl)afﬁ(l/p)) :
o Ux(1/p)’ ( )

1—-96 B-1 _(1-s
o]

where I'(.,.) denotes the incomplete Gamma function, namely I'(s, z) := SZO v’~le ™ dv. For
p | 0, the right-hand side in (5) is bounded.
Now, if 8 > 1, take 0 < d2 < 1/6, and for e, A > 0, we obtain for n large

[|+ih ]f“ Fx(Ux(1/p) + zax(1/p)
0 Ux(1/p) Fx(Ux(1/p))

) 1 -
< f []l{,B<1} + (1 + 82)5*1 ]1{521}] 6*(1*51)[1+EZ]9 1-3y I
0

1

° 1
= f []l{ﬁ<1} +(1+ 52)5—1ﬂ{ﬁ>1}] o (1) [1422]8 7! 5, 5
0

* -1 —(1=81)[e+ 15102 L5~
+f []1{5<1} + (14+¢€2) ]1{521}] e ! z dz
A

A 114,
< []l{5<1} + (1 +5A)571]1{ﬂ>1}] f o—(1=01)[1+c A7 : s
0
) p-1 —(1-¢ )[E-‘ri]%_
+L [H{B<1} +(1+e2) ﬂ{ﬁ>1}] e e
<A [ﬂ{ﬁ<1} +(1+ EA)ﬁfl]l{ﬂM}]

1_

0¢]
<1 JA e~ (=)=t ]

| T RT S Ry
sz (E—I— A) f Pl em(1=)le+ 5] N dz
A

1-35 25—52

dz

<A []l{/@<1} + (1 + €A)’8_1ﬂ{5>1}]

- ()
B<1}1 = 055 (1—61)(c + %)%—1—62 1— 66,

BO
1\ ¢ 1 o 36
+1y5>1) <€+A> 1— 05, [(1_51)(5+i)é_1_62] P<1—952>
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which is also bounded. This achieves the proof of Lemma 2.1.
Proof of Theorem 3.1. Remark that
CTMp | _ [Ux(n/k))’ {OTMB,k/n(an,w _ CTMpupm }
[Ux(m/k) [Ux(n/k))’

CTMg jm CTMg jm
The leading factor in the right-hand side of (6) tends to 1 by Lemma 2.1. Thus we only need to
look at the term in the braces. First, we note that

£ (2 (05 (2) o (2) ) =10

(6)

19



from which we deduce that

CTMg k/n(un k) CTMg k/n

Ux/ml Ox/m)P
. n—k,n . 1 aX( /k) * e v
- {[ n/k] } 75 Ty by W

i | [ o]

|7 (5 P (U (5) + o () st 00)) = 5P (U () +0x (3) (Gt 0)
o (o (2 o () o)
14 ax(n/k) ( nk+v)}ﬁ 1

X

ax(n/k) [©
P U))(((”/k)fo [ Ux (n/k)
7 (00 (2) o 3) s ) -0

+4 Z.);((Zéi)) e ln.k LOO (1 + aX((n//lz)) (u Un | + v)>ﬁ_1 — (1 + (C;))((((Z//IZ; v) 6_1] e Vdv
+5 aX((Z;Z)) <€_a”’k - 1) LOO (1 + I(});((néi)) U) . e Vdv
g L R iR e @) e () ) e
w}%%fhxmnw¢l
[0 (3 (0 () wox (7) o)) - (c50)
o isom | [ B o] [ (o) v ] a

1 ax(n/k) (* ax(n/k) A1 v
+BT Ux(n/k)fo [(1+UX (n/k) nk+v)> —1]W(e ) v
= ZTL”'
i=1

We will study all the terms separately.

Term 71 ,. According to Lemma 7.2, we have

Ux(n/k) X kn — UX(n/k) _ o
o (/) in = BVEk ooy (LT or(1) = BW(D) + op(1). (7)
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Term 75 ,,. Clearly

\/EUX((n/k Ty, — 6J (8)

Term T3 ,,. Using Lemmas 7.1 and 7.2, with arbitrary large probability, for n large, ¢ > 0 and
0 <n<1/2, we have

Ux (n/k) IVE[Ta(y) —y] = W(y)|
V=2 T3,] < sup

ax (n/k) 7 O<y<ed+c y"
3 K)o (FrUx @)+ ax(®) @e+ o))"
ﬂf [1+ k)( nk + )} ( Fx(Ux(2) ) dv.

The supremum term is negligeable a.s. according to (3) and a treatment similar to that of the
proof of Lemma 2.1 with Potter bounds ensures that the integral is bounded. This yields

ﬂngm = O]p(l). (9)

Term T} ,,. Let us define

L(x; B) = \/%JOOO ‘%FX (UX (%) +ay <%> (z + v)) _ e (@tv)

Using Lemma 7.2, with arbitrary large probability, for n large, 0 < ¢ < 1/§ and any A > 0, we
have

dv®.

\/EM Ty

x(n/k)
— /B 1 n » — _(an,k""v)
< Mgy B(1 - de) \FJ Ux (k) +ax <k> (un,k+v)> e dv
+]1{5>1} B (1 + 6(5 + A))ﬂ_l \/%J EFX (UX (%) +ax (%) (amk + v)) — e’(an,kﬂ)) dv
0
1+e6\°! “in = n n -
— — — -~ — _(un,k+v) /B
sz (H A > \/%L ’kFX (UX <k> +ax (k:) (. +”)> ¢ dv
< ( s In(; 1)) {n{ﬁd} B(1—6e)" ™t + Moy B (1+e(6+ A))ﬂ—l}
ze[—4,
1+es6\?!
+ | sup Ip(z;8) | N> <E+ >
(m[(s,a] ( )> B=1 A
Thus, Lemma 7.3 implies that
\@MTM — op(1). (10)



Term T5,. By Lemma 7.2, using the mean value theorem, with £ € (0, 1), we have with large
probability, for n large and 0 < e < 1/6

Ux(n/k) Ly ex/k) e (P axmm) e T
\/Em T5n| < BIB-1] Ux (n/F) \/Eun,kjo {1 + U (n/k) (v+ fumk)] e "dv(1+op(1))
< BlA-1 m«mk (1 + op(1))
X {]1{5<2} (1 — 85)5—2L eV du + ]1{[322}‘[0 [1 + E('U + 5)]5—2 e~V dv}
= op(1), (11)

again by Lemma 7.2 and since ;’; ((%]Z)) — 0.

Term 7§ ,,. According to Lemma 7.2, we have

Y (n/k) _ Xn—k,n —Ux (n/k:) B
\/Em Tﬁ,n = _6\/E < aX(n/k) > + 0]1»(1) =-0 W(l) + Op(l). (12)

Term 77 ,. It can be handled similarly as T} . This yields

@MTM ~ op(1). (13)

Term Tg,. With arbitrary large probability, for n large, 0 < ¢ < 1/6 and any A > 0, we have

\/%m Tsnl < {ﬂ{5<1} B(1—6e)" '+ Moy B (1+e(5+ A))ﬁ—l} W, (1)

1+¢ed

-1
o1y <€+ ) W, (8), (14)

W,(8) := “lw PFx (Ux (2) +ax (2) (@ng +v))) =W (e @t | g,
k k k

0
For T' > 0, we have

i = [ o (o) ot [ (2 e (2) o () e 1)

[ G (o () o (5) s )) = ()
= W) + WP (8) + WD (5).

Then, for a > 0 arbitrary, we have

a

P(Wa(8) > a) <P (WD (B) > 1) +P (WR(8) > 7) +P(WP(8) > 7).
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Clearly, for n € (0,1/2), we have

B —né
(1) ay _ W)l _an” e -

and similarly, by Lemma 7.1, ¢ > 0 and n large

(m0=5) < 2, o E R e () e () o)) w2 5)

O<y<edS+c

+P (|Up x| > 9) .

Following the lines of proof of Lemma 2.1 with the Potter bounds, the integral from the above
display can be made arbitrary small by taking 7" large. Thus, combining Lemma 7.2 with Lemma
2 in Cai et al. (2015), and by choosing T" large enough, for € > 0, there exists n; such that for
n > ni we have

P (WS)(B) > %) 4P (W?(ﬁ) > %) <

N ™

With this specific value of T', we have

(0= 2) < p (o (s (o (2) o (2) ) - > o)

+P (|t k] > 6) .

Lemmas 7.1 and 7.2 combined with the uniform continuity of W on compact sets yield, for
n > ny

(3) ) &
P(WP() > 5) <,
from which we deduce that, for n > max(ni,ns)
P(W,(8) >a) <e. (15)
Combining (14) and (15), we have
k
Vi OB o). (16)

ax(n/k)

Term Ty ,,. It can be handled similarly as 7% ,,, except for

dv®

W®(8) .= LT W (e mrr) —w ()

where we can use the bound

14 <e*(””)> -W (e*“)

P (WS’)(B) > %) <P ( sup

ve[0,T],|z|<k—1/4
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By the uniform continuity of W on compact sets and Lemma 7.2, we have for n > no

P(WH(8) > 2) <2,

from which we deduce that

\/Em%m = op(1). (17)

Term Tip,. By the mean value theorem, with £ € (0,1), we have with large probability, for n
large, and 0 <e <1/§ and 0 <7 < 1/2,

VR 3, - ‘5(5— DS |16 SO ] ()
< BAlB-1 aX((%g
X {n{ﬁd} [1—0e)72 JOOO [6 +v] [W (e7)] dv
Pl JOO [6+ 0] [1+ (6 + )72 (W ()] dv}
< BB-1l7 (("7,‘?)
x {n{ﬁd} [1— de] *20<y<1 W)l LOO [0 +v] e dv
sy o, V‘;y)’ f:o 6+ 0] [1+2(6 + v)]P2 e‘"”dv}
< CI%’ (18)

by Lemma 2 in Cai et al. (2015), and where C' is a positive constant.
Combining (7)-(13) with (16)-(18), Theorem 3.1 follows.
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Proof of Theorem 4.2. Consider the following decomposition

Vi <CTM/37P - 1)

CTMsg,
i log 1/p\P10x=01) (CTMgx ) ((logn/k)=P*CTMy x
— ‘n ‘n _1
g <10gn/l<:> CTMj (log1/p)=B9CT Mg,
log 1/p ﬁ[gk—GJ CTM57E
= — 13T, Ti3n i — 1 T3,
ﬁ{(logn/k) 12 Tisn + VE CTMg 15
(log n/k:)_BGCTMB k
m g
i (log 1/p)=#0CT Mg,
~ Ux(n/k) [ CTMpgx ax(n/k)
S —0)(1 + op(1)) Tiop Tizm wo_ g\ xR g
9 1og(0) VI 16 = 01(1.+ 0p(1)) Trzn Tig + VE 0 CTM, U (n/k)
VE CTMB,E [Ux (n/k)]° . (UX(n/l{)>B<logn/k>_Bg
CTMpg,/[Ux(1/p)])° Ux (1/p) log 1/p

i (G ()™ ).

According to (4), we have

CTMgs ax (n/k) » ax(n/k) \*7' | .
TP~ P i) “L <”UX<n/k>z) bperd

. L@O (1 L ax(n/k) z>5—1 (FX (Ux (n/k) + ax(n/k)z) 6_z> dz}

Ux(n/k)

- 1+0<¢1E>.

A similar result can be obtained for CT'M 1 /[Ux (1 /p)]?. Thus, we have
P

Fx(Ux(n/k))

CT My /[Ux (n/k))? ) ( 1 )
= - = o|— ).
CTMp,p/[Ux(1/p)])° Vk
Now, the last term of the decomposition.

(i) (in) - - (i) -

80

<€x(Ux(1/p))
Ix(Ux(n/k))

N—
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since £y (logz) = [(x(Ux(x))]~°.
Now, using the mean value theorem with wu, € [Ux(n/k); Ux(1/p)], we have, for 01,02 > 0 and
n large,

S = aeai 1 G) e ()]
S e ()
< (144 uﬁ%% : <UX?Z/k>>52 <ml>
< o s SO (ROR) (G )

()

Ux(/p) | _ [<1og1/p>9_1] eU<log1/p>+[eU<1og1/p>

Ux(n/k) logn/k ly(logn/k) ly(log n/k)

since

- 1} - 0(1).

Combining Theorem 3.1 with Theorem 4.1, Theorem 4.2 follows.
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