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Abstract

We consider the estimation of the conditional tail moment, defined for a positive random
variable X as EpXβ |X ą Qp1´ pqq, where Q denotes the quantile function of X, β ą 0 and
p P p0, 1q, at extreme levels for the class of Weibull-type distributions. A two-step procedure
is introduced where in the first stage one estimates the conditional tail moment at an inter-
mediate level, followed by an extrapolation in the second stage. The asymptotic properties
of the estimators introduced in the two stages are derived under suitable assumptions.
Keywords: Weibull-type distribution, extreme-value statistics, hazard rate function, em-
pirical process.

1 Introduction

Quantifying and estimating the risk of extreme events is of interest in many scientific disciplines.
Floods due to sea storms can entail massive losses, both in terms of human lives and economical,
so the modelling of the distribution of wave heights and other sea state parameters is of crucial
importance in the design of coastal protection. In environmental science, extreme levels of pol-
lutants can have adverse effect on human health. Over the years several risk measures have been
introduced, the most popular of these being the Value-at-Risk (also called return level) and the
conditional tail expectation. We refer to, e.g., Jorion (2007), Singh et al. (2007), Coles (2013),
Cooley (2013) and Salas and Obeysekera (2014). In this paper we consider the conditional tail
moment pCTMq, being a natural generalisation of the conditional tail expectation, and study
its estimation for the class of Weibull-type distributions.

Let β ą 0 and p P p0, 1q. We want to estimate

CTMβ,p :“ E
”

Xβ
ˇ

ˇ

ˇ
X ą UXp1{pq

ı

,

when the distribution of X is of Weibull-type, i.e., the distribution function satisfies

FXpxq “ 1´ e´x
1{θ`Xpxq, x ą 0, (1)

1



with θ a positive parameter and `X a slowly varying function at infinity, i.e., a positive measur-
able function such that

lim
tÑ8

`Xptxq

`Xptq
“ 1 for all x ą 0,

and UX the tail quantile function of X defined as UXpxq “ inftz : FXpzq ě 1 ´ 1{xu, x ą 1.
Specific interest is here in the extreme case, that is, the situation where p is very small, typically
less than 1{n, where n is the size of the random sample that is available for estimation. In
this case, estimation is challenging as the conditional expectation in the definition of CTMβ,p

cannot simply be estimated by an empirical average. Indeed, for p ă 1{n the natural estimator
for UXp1{pq is the largest observation in the sample, but then there are no further data to base
the estimation of the conditional expectation upon.

The considered class of Weibull-type distributions forms a rich subclass of the Gumbel max-
domain of attraction. The tail heaviness of Weibull-type distributions is clearly governed by the
parameter θ, where larger values of θ correspond with a slower decay of the upper tail. Popular
members of this family include the Weibull (corresponding to a constant function `X), normal,
gamma and logistic distributions, to mention only a few. Loosely speaking, the upper tail decays
exponentially fast, in contrast to the Pareto-type models which have a tail decay corresponding
to a decreasing power function, and thus are heavier tailed. The Weibull-type distributions
find important applications in areas like environmental science, climate science, hydrology, en-
gineering and medicine. As the Weibull-type model depends only explicitly on the parameter
θ, it is not unexpected that the estimation of this parameter received a lot of attention in the
extreme-value literature. We refer to Broniatowski (1993), Beirlant et al. (1995), Girard (2004),
Gardes and Girard (2005, 2008, 2016), Diebolt et al. (2008), Dierckx et al. (2009), Goegebeur
et al. (2010), Goegebeur and Guillou (2011), Goegebeur et al. (2015), de Wet et al. (2016) and
the references therein.

The estimation of the conditional tail moment is already studied for the context of Pareto-type
distributions in Goegebeur et al. (2022a), who consider the classical setup of independent iden-
tically distributed (i.i.d.) random variables and in Goegebeur et al. (2022b) in an i.i.d. setting
with random right censoring. El Methni et al. (2014) studied the estimation of the conditional
tail moment in a regression setup where the conditional distribution of the response variable
given the covariate is of Pareto-type. Estimation of the conditional tail moment for the class of
Weibull-type distributions is to the best of our knowledge unexplored.

We organise this paper as follows. In Section 2 we provide as a first result an approximation
of CTMβ,p for p Ó 0, which will be used to derive the estimator for this risk measure under
extrapolation. The proposed estimator depends on an estimator for the conditional tail moment
in the intermediate case, i.e., for p “ k{n, where k Ñ 8 as the sample size n Ñ 8 but in
such a way that k{nÑ 0. This intermediate case is studied in Section 3 where we introduce an
estimator and derive its limiting distribution under suitable assumptions. Section 4 is devoted
to the study of the asymptotic properties of the estimator for CTMβ,p in the extreme case.
Section 5 contains the proofs of the results.
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2 Construction of the estimator

Let RVψ denote the class of regularly varying functions at infinity with index ψ P R, i.e.,
positive measurable functions f satisfying fptxq{fptq Ñ xψ, as t Ñ 8, for all x ą 0. Denote
Hpxq “ ´ logFXpxq, and hence FXpxq “ e´Hpxq. In the case where FX is of Weibull-type we
have then H P RV1{θ. Note that if H is differentiable with derivative H 1 then H 1 “ h where h
is the hazard rate function.

We start to expand CTMβ,p in case p Ó 0 in order to have an idea about how to estimate this
risk measure under extrapolation, i.e., for p ă 1{n, where n is the size of the sample on which
the estimation is based.

Lemma 2.1 Assume FX satisfies (1), H is differentiable with derivative h P RV1{θ´1. Then,
as p Ó 0, we have

CTMβ,p
”

UX

´

1
p

¯ıβ
ÝÑ 1.

From this lemma, the first idea to estimate CTMβ,p is to use an estimate of
”

UX

´

1
p

¯ıβ
.

Unfortunately, since by definition of the conditional tail moment we condition on the event
tX ą UXp1{pqu, clearly such an estimate will underestimate the true value. An alternative
method consists in using a two-step procedure as follows.

Let k be an intermediate sequence, i.e., a sequence such that k Ñ 8 and k{n Ñ 0 as n Ñ 8.
Lemma 2.1 yields the approximation

CTMβ,p{

”

UX

´

1
p

¯ıβ

CTMβ,k{n{
“

UX
`

n
k

˘‰β
„ 1,

from which we deduce that

CTMβ,p „

˜

UXp
1
pq

UXp
n
k q

¸β

CTMβ,k{n.

Note that (1) is equivalent to assume that UX satisfies

UXpxq “ plog xqθ `U plog xq,

where `U is also a slowly varying function at infinity. Thus, we deduce the following estimator
for CTMβ,p

{CTMβ,p :“

ˆ

logp1{pq

logpn{kq

˙β pθk

CTMβ,k{n, (2)

where pθk is an estimator of θ and CTMβ,k{n an intermediate estimator of CTMβ,k{n.
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3 Asymptotic properties of CTMβ,k{n

Assume we have at our disposal a sample X1, . . . , Xn of independent copies of the random
variable X and denote by X1,n ď . . . ď Xn,n the order statistics. We start with considering the
estimation of the conditional tail moment in the intermediate case. In this situation, the natural
estimator for UXpn{kq is then Xn´k,n, which is within the data range, and hence CTMβ,k{n can
be estimated empirically by the sample mean of the Xi for which Xi ą Xn´k,n. We define

CTMβ,k{n “
1

k

n
ÿ

i“1

Xβ
i 1ltXiąXn´k,nu,

and introduce

CTMβ,k{npxq :“
1

k

n
ÿ

i“1

Xβ
i 1ltXiąUXpnk q`aXp

n
k
qxu,

where

aXptq :“
1

hpUXptqq
.

Then, CTMβ,k{n can be rewritten as

CTMβ,k{n “ CTMβ,k{n ppun,kq ,

where pun,k :“ pXn´k,n ´ UXpn{kqq{aXpn{kq.

The weak convergence of CTMβ,k{n, after normalisation, is given in the following theorem.

Theorem 3.1 Assume FX satisfies (1), H is differentiable with derivative h which is ultimately
monotone, and h is differentiable with derivative h1 satisfying xh1pxq{hpxq Ñ 1{θ´ 1 as xÑ8.
Then, if k Ñ8 as nÑ8 such that k{nÑ 0 and

?
kaXpn{kq{UXpn{kq Ñ 0, we have

?
k
UXpn{kq

aXpn{kq

˜

CTMβ,k{n

CTMβ,k{n
´ 1

¸

d
ÝÑ Θ :“ β

ż 8

0
W

`

e´v
˘

dv,

where W pzq is a zero centered Gaussian process with covariance function

E tW pzqW pzqu “ minpz, zq.

Note that this theorem implies the convergence of the rescaled estimator of CTMβ,k{n towards
the N p0, 2β2q distribution.
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4 Asymptotic properties of {CTMβ,p

In this section we study the asymptotic properties of the estimator {CTMβ,p given in (2). As
estimator for the Weibull-tail coefficient θ we use the estimator proposed by Girard (2004), given
by

pθk :“
1
k

řk
i“1 plogXn´i`1,n ´ logXn´k,nq

1
k

řk
i“1

`

log log n
i ´ log log n

k

˘
.

Below, we recall the limiting distribution of this estimator, properly normalised, in terms of a
stochastic process, as established in Theorem 4.1 in Goegebeur et al. (2023).

Theorem 4.1 Assume FX satisfies (1), H is differentiable with derivative h which is ultimately
monotone, and h is differentiable with derivative h1 satisfying xh1pxq{hpxq Ñ 1{θ´ 1 as xÑ8.

Then, if k Ñ 8 as nÑ 8 such that
?
kaXpn{kq{UXpn{kq Ñ 0 and

?
k
UXpn{kq`

1
XpUXpn{kqq

`XpUXpn{kqq
Ñ 0,

we have
?
k
´

pθk ´ θ
¯

d
ÝÑ Γ :“ θ

"
ż 8

0
W

`

e´v
˘

dv ´W p1q

*

.

Note that the limiting distribution in Theorem 4.1 is N p0, θ2q. As is clear from Theorem 3.1 and
Theorem 4.1, the limiting behavior of CTMβ,k{n and pθk involves the same stochastic process
W . For more details we refer to Section 7 of the present paper and the proof of Theorem 4.1 in
Goegebeur et al. (2023).

We can now state the main result of the paper, namely the weak convergence of {CTMβ,p,
properly normalised.

Theorem 4.2 Assume FX satisfies (1), H is differentiable with derivative h which is ultimately
monotone, and h is differentiable with derivative h1 satisfying xh1pxq{hpxq Ñ 1{θ´ 1 as xÑ8.

Then, if k Ñ 8 as nÑ 8 such that
?
k aXpn{kqUXpn{kq

Ñ 0 and
?
k supxěUXpn{kq

x`1Xpxq

`Xpxq
Ñ 0, we have

for p satisfying p ď k
n such that log 1{p

logn{k Ñ λ P p1,8q that

?
k

˜

{CTMβ,p

CTMβ,p
´ 1

¸

d
ÝÑ β logpλqΓ.

From the result of Theorem 4.2, it is clear that the estimator {CTMβ,p inherits its limiting

distribution, up to the factor β logpλq, from the estimator pθk for the Weibull-tail coefficient. In
particular, we obtain the N p0, pθβ logpλqq2q distribution as limiting distribution for the rescaled
estimator of CTMβ,p. As expected, more severe extrapolations, corresponding with larger values
for λ, lead to an increase in the variance of the limiting distribution.
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5 Proofs

Remark that

CTMβ,k{npxq

“ β
1

k

n
ÿ

i“1

ż Xi

0
uβ´1 du 1ltXiąUXpnk q`aXp

n
k
qxu

“ β

ż 8

0
uβ´1 1

k

n
ÿ

i“1

1ltXiąmaxpu,UXp
n
k
q`aXp

n
k qxqu

du

“ β

ż UXp
n
k
q`aXp

n
k
qx

0
uβ´1 du

1

k

n
ÿ

i“1

1ltXiąUXpnk q`aXp
n
k
qxu

`β

ż 8

UXp
n
k
q`aXp

n
k
qx
uβ´1 1

k

n
ÿ

i“1

1ltXiąuu du

“

”

UX

´n

k

¯

` aX

´n

k

¯

x
ıβ 1

k

n
ÿ

i“1

1l
tXiąUXp

n
k q`aXp

n
k qxu

`β aX

´n

k

¯

ż 8

0

”

UX

´n

k

¯

` aX

´n

k

¯

px` vq
ıβ´1 1

k

n
ÿ

i“1

1l
tXiąUXp

n
k q`aXp

n
k q px`vqu

dv

“

”

UX

´n

k

¯ıβ

$

&

%

«

1`
aX

`

n
k

˘

UX
`

n
k

˘ x

ffβ

Tn

´n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

x
¯¯

`β
aX

`

n
k

˘

UX
`

n
k

˘

ż 8

0

«

1`
aX

`

n
k

˘

UX
`

n
k

˘ px` vq

ffβ´1

Tn

´n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

px` vq
¯¯

dv

,

.

-

a.s.,

where

Tnpxq :“
1

k

n
ÿ

i“1

1l
tFXpXiqă

k
n
xu.

The asymptotic behavior of Tnpxq, after proper normalisation, is given in Lemma 1 of Cai et al.
(2015), according which, for any η P r0, 1{2q and T ą 0 we have, for nÑ8,

sup
xPp0,T s

ˇ

ˇ

ˇ

ˇ

ˇ

?
krTnpxq ´ xs ´W pxq

xη

ˇ

ˇ

ˇ

ˇ

ˇ

Ñ 0 a.s. . (3)

Note that in the above result, all the involved processes are defined on the same probability
space via the Skorohod construction. See also Einmahl et al. (2006) for convergence properties
of related stochastic processes.

For completeness, we also include below three lemmas from Goegebeur et al. (2023), useful for
our proofs. Note that the last one is actually a consequence of the proof of Lemma 5.4 in the
aforementioned paper.
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Lemma 5.1 Let FX satisfy (1), H be differentiable with derivative h P RV1{θ´1, then, as tÑ8

FX

´

t` z
hptq

¯

FXptq
ÝÑ e´z,

uniformly for z ě ´δ, for any δ ą 0.

Lemma 5.2 If FX satisfies (1) and H is differentiable with derivative h P RV1{θ´1, then, for a
sequence k such that k Ñ8 with k{nÑ 0, we have

?
k
Xn´k,n ´ UXp

n
k q

aXp
n
k q

d
ÝÑW p1q.

Lemma 5.3 Assume FX satisfies (1), H is differentiable with derivative h which is ultimately
monotone, and h is differentiable with derivative h1 satisfying xh1pxq{hpxq Ñ 1{θ´ 1 as xÑ8.
Then, if k Ñ 8 as nÑ 8 such that k{nÑ 0 and

?
kaXpn{kq{UXpn{kq Ñ 0, we have, for any

δ ą 0,

sup
xPr´δ,δs

?
k

ż 8

0

ˇ

ˇ

ˇ

n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

px` vq
¯

´ e´px`vq
ˇ

ˇ

ˇ
dvβ Ñ 0.

Proof of Lemma 2.1. We have

CTMβ,p “ ´

ż 8

UXp1{pq

xβ

FXpUXp1{pqq
dFXpxq

“ rUXp1{pqs
β
` β

ż 8

UXp1{pq
xβ´1 FXpxq

FXpUXp1{pqq
dx

“ rUXp1{pqs
β

#

1` β
aXp1{pq

UXp1{pq

ż 8

0

„

1` z
aXp1{pq

UXp1{pq

β´1 FXpUXp1{pq ` z aXp1{pqq

FXpUXp1{pqq
dz

+

. (4)

Since aXp1{pq
UXp1{pq

Ñ 0, to prove Lemma 2.1, it is sufficient to show that the integral in the right-hand

side of (4) is finite. To this aim, by the mean value theorem, with ξ P p0, 1q, we have

FXpUXp1{pq ` z aXp1{pqq

FXpUXp1{pqq
“ e´HpUXp1{pq`z aXp1{pqq`HpUXp1{pqq

“ e
´
hpUX p1{pq`ξ z aX p1{pqq

hpUX p1{pqq
z
,

from which, by the use of the Potter bounds (see Proposition B.1.9.5 in de Haan and Ferreira,
2006), for 0 ă δ1 ă 1, δ2 ą 0 and n large we have

ż 8

0

„

1` z
aXp1{pq

UXp1{pq

β´1 FXpUXp1{pq ` z aXp1{pqq

FXpUXp1{pqq
dz

ď

ż 8

0

„

1` z
aXp1{pq

UXp1{pq

β´1

e
´p1´δ1q r1`ξ

aX p1{pq

UX p1{pq
zs

1
θ
´1´δ2 z

dz.
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If θ ă 1, take 0 ă δ2 ă 1{θ ´ 1, and obtain, for n large

ż 8

0

„

1` z
aXp1{pq

UXp1{pq

β´1 FXpUXp1{pq ` z aXp1{pqq

FXpUXp1{pqq
dz

ď

ż 8

0

„

1` z
aXp1{pq

UXp1{pq

β´1

e´p1´δ1q z dz

“
UXp1{pq

aXp1{pq
e
p1´δ1q

UX p1{pq

aX p1{pq

ż 8

1
uβ´1 e

´p1´δ1q
UX p1{pq

aX p1{pq
u
du

“
1

1´ δ1

Γ
´

β, p1´ δ1q
UXp1{pq
aXp1{pq

¯

”

p1´ δ1q
UXp1{pq
aXp1{pq

ıβ´1
e
´p1´δ1q

UX p1{pq

aX p1{pq

, (5)

where Γp., .q denotes the incomplete Gamma function, namely Γps, zq :“
ş8

z v
s´1 e´v dv. For

p Ó 0, the right-hand side in (5) is bounded.
Now, if θ ě 1, take 0 ă δ2 ă 1{θ, and for ε,∆ ą 0, we obtain for n large

ż 8

0

„

1` z
aXp1{pq

UXp1{pq

β´1 FXpUXp1{pq ` z aXp1{pqq

FXpUXp1{pqq
dz

ď

ż 8

0

”

1ltβă1u ` p1` ε zq
β´11ltβě1u

ı

e´p1´δ1qr1`ε zs
1
θ
´1´δ2 z dz

“

ż ∆

0

”

1ltβă1u ` p1` ε zq
β´11ltβě1u

ı

e´p1´δ1qr1`ε zs
1
θ
´1´δ2 z dz

`

ż 8

∆

”

1ltβă1u ` p1` ε zq
β´11ltβě1u

ı

e´p1´δ1qrε`
1
z
s
1
θ
´1´δ2 z

1
θ
´δ2

dz

ď

”

1ltβă1u ` p1` ε∆qβ´11ltβě1u

ı

ż ∆

0
e´p1´δ1qr1`ε∆s

1
θ
´1´δ2 z dz

`

ż 8

∆

”

1ltβă1u ` p1` ε zq
β´11ltβě1u

ı

e´p1´δ1qrε`
1
∆
s
1
θ
´1´δ2 z

1
θ
´δ2

dz

ď ∆
”

1ltβă1u ` p1` ε∆qβ´11ltβě1u

ı

`1ltβă1u

ż 8

∆
e´p1´δ1qrε`

1
∆
s
1
θ
´1´δ2 z

1
θ
´δ2

dz

`1ltβě1u

ˆ

ε`
1

∆

˙β´1 ż 8

∆
zβ´1 e´p1´δ1qrε`

1
∆
s
1
θ
´1´δ2 z

1
θ
´δ2

dz

ď ∆
”

1ltβă1u ` p1` ε∆qβ´11ltβě1u

ı

`1ltβă1u
θ

1´ θδ2

«

1

p1´ δ1qpε`
1
∆q

1
θ
´1´δ2

ff
θ

1´θδ2

Γ

ˆ

θ

1´ θδ2

˙

`1ltβě1u

ˆ

ε`
1

∆

˙β´1 θ

1´ θδ2

«

1

p1´ δ1qpε`
1
∆q

1
θ
´1´δ2

ff

βθ
1´θδ2

Γ

ˆ

βθ

1´ θδ2

˙
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which is also bounded. This achieves the proof of Lemma 2.1.

Proof of Theorem 3.1. Remark that

CTMβ,k{n

CTMβ,k{n
´ 1 “

rUXpn{kqs
β

CTMβ,k{n

#

CTMβ,k{nppun,kq

rUXpn{kqs
β

´
CTMβ,k{n

rUXpn{kqs
β

+

. (6)

The leading factor in the right-hand side of (6) tends to 1 by Lemma 2.1. Thus we only need to
look at the term in the braces. First, we note that

Tn

´n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

pun,k

¯¯

“ 1 a.s.,
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from which we deduce that

CTMβ,k{nppun,kq

rUXpn{kqs
β

´
CTMβ,k{n

rUXpn{kqs
β

“

#

„

Xn´k,n

UXpn{kq

β

´ 1

+

` β
1
?
k

aXpn{kq

UXpn{kq

ż 8

0
W

`

e´v
˘

dv

`β
aXpn{kq

UXpn{kq

ż 8

0

„

1`
aXpn{kq

UXpn{kq
ppun,k ` vq

β´1

ˆ

”

Tn

´n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

ppun,k ` vq
¯¯

´
n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

ppun,k ` vq
¯

´
1
?
k
W

´n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

ppun,k ` vq
¯¯



dv

`β
aXpn{kq

UXpn{kq

ż 8

0

„

1`
aXpn{kq

UXpn{kq
ppun,k ` vq

β´1

ˆ

”n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

ppun,k ` vq
¯

´ e´ppun,k`vq
ı

dv

`β
aXpn{kq

UXpn{kq
e´pun,k

ż 8

0

«

ˆ

1`
aXpn{kq

UXpn{kq
ppun,k ` vq

˙β´1

´

ˆ

1`
aXpn{kq

UXpn{kq
v

˙β´1
ff

e´v dv

`β
aXpn{kq

UXpn{kq

´

e´pun,k ´ 1
¯

ż 8

0

ˆ

1`
aXpn{kq

UXpn{kq
v

˙β´1

e´v dv

`β
aXpn{kq

UXpn{kq

ż 8

0

„

1`
aXpn{kq

UXpn{kq
v

β´1
”

e´v ´
n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

v
¯ı

dv

`β
1
?
k

aXpn{kq

UXpn{kq

ż 8

0

„

1`
aXpn{kq

UXpn{kq
ppun,k ` vq

β´1

ˆ

”

W
´n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

ppun,k ` vq
¯¯

´W
´

e´ppun,k`vq
¯ı

dv

`β
1
?
k

aXpn{kq

UXpn{kq

ż 8

0

„

1`
aXpn{kq

UXpn{kq
ppun,k ` vq

β´1
”

W
´

e´ppun,k`vq
¯

´W
`

e´v
˘

ı

dv

`β
1
?
k

aXpn{kq

UXpn{kq

ż 8

0

«

ˆ

1`
aXpn{kq

UXpn{kq
ppun,k ` vq

˙β´1

´ 1

ff

W
`

e´v
˘

dv

“:
10
ÿ

i“1

Ti,n.

We will study all the terms separately.

Term T1,n. According to Lemma 5.2, we have

?
k
UXpn{kq

aXpn{kq
T1,n “ β

?
k
Xn´k,n ´ UXpn{kq

aXpn{kq
p1` oPp1qq “ βW p1q ` oPp1q. (7)

10



Term T2,n. Clearly

?
k
UXpn{kq

aXpn{kq
T2,n “ β

ż 8

0
W

`

e´v
˘

dv. (8)

Term T3,n. Using Lemmas 5.1 and 5.2, with arbitrary large probability, for n large, c ą 0 and
0 ă η ă 1{2, we have

?
k
UXpn{kq

aXpn{kq
|T3,n| ď sup

0ăyďeδ`c

|
?
krTnpyq ´ ys ´W pyq|

yη

ˆβ

ż 8

0

„

1`
aXpn{kq

UXpn{kq
ppun,k ` vq

β´1
˜

FXpUXp
n
k q ` aXp

n
k q ppun,k ` vqq

FXpUXp
n
k qq

¸η

dv.

The supremum term is negligeable a.s. according to (3) and a treatment similar to that of the
proof of Lemma 2.1 with Potter bounds ensures that the integral is bounded. This yields

?
k
UXpn{kq

aXpn{kq
T3,n “ oPp1q. (9)

Term T4,n. Let us define

Inpx;βq “
?
k

ż 8

0

ˇ

ˇ

ˇ

n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

px` vq
¯

´ e´px`vq
ˇ

ˇ

ˇ
dvβ.

Using Lemma 5.2, with arbitrary large probability, for n large, 0 ă ε ă 1{δ and any ∆ ą 0, we
have

?
k
UXpn{kq

aXpn{kq
|T4,n|

ď 1ltβă1u β p1´ δεq
β´1
?
k

ż 8

0

ˇ

ˇ

ˇ

n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

ppun,k ` vq
¯

´ e´ppun,k`vq
ˇ

ˇ

ˇ
dv

`1ltβě1u β p1` εpδ `∆qqβ´1
?
k

ż ∆

0

ˇ

ˇ

ˇ

n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

ppun,k ` vq
¯

´ e´ppun,k`vq
ˇ

ˇ

ˇ
dv

`1ltβě1u

ˆ

ε`
1` ε δ

∆

˙β´1?
k

ż 8

∆

ˇ

ˇ

ˇ

n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

ppun,k ` vq
¯

´ e´ppun,k`vq
ˇ

ˇ

ˇ
dvβ

ď

˜

sup
xPr´δ,δs

Inpx; 1q

¸

!

1ltβă1u β p1´ δεq
β´1 ` 1ltβě1u β p1` εpδ `∆qqβ´1

)

`

˜

sup
xPr´δ,δs

Inpx;βq

¸

1ltβě1u

ˆ

ε`
1` ε δ

∆

˙β´1

.

Thus, Lemma 5.3 implies that

?
k
UXpn{kq

aXpn{kq
T4,n “ oPp1q. (10)

11



Term T5,n. By Lemma 5.2, using the mean value theorem, with ξ P p0, 1q, we have with large
probability, for n large and 0 ă ε ă 1{δ

?
k
UXpn{kq

aXpn{kq
|T5,n| ď β |β ´ 1|

aXpn{kq

UXpn{kq

?
k pun,k

ż 8

0

„

1`
aXpn{kq

UXpn{kq
pv ` ξ pun,kq

β´2

e´v dv p1` oPp1qq

ď β |β ´ 1|
aXpn{kq

UXpn{kq

?
k pun,k p1` oPp1qq

ˆ

"

1ltβă2u p1´ εδq
β´2

ż 8

0
e´v dv ` 1ltβě2u

ż 8

0
r1` εpv ` δqsβ´2 e´v dv

*

“ oPp1q, (11)

again by Lemma 5.2 and since aXpn{kq
UXpn{kq

Ñ 0.
Term T6,n. According to Lemma 5.2, we have

?
k
UXpn{kq

aXpn{kq
T6,n “ ´β

?
k

ˆ

Xn´k,n ´ UXpn{kq

aXpn{kq

˙

` oPp1q “ ´βW p1q ` oPp1q. (12)

Term T7,n. It can be handled similarly as T4,n. This yields

?
k
UXpn{kq

aXpn{kq
T7,n “ oPp1q. (13)

Term T8,n. With arbitrary large probability, for n large, 0 ă ε ă 1{δ and any ∆ ą 0, we have

?
k
UXpn{kq

aXpn{kq
|T8,n| ď

!

1ltβă1u β p1´ δεq
β´1 ` 1ltβě1u β p1` εpδ `∆qqβ´1

)

Wnp1q

`1ltβě1u

ˆ

ε`
1` ε δ

∆

˙β´1

Wnpβq, (14)

where

Wnpβq :“

ż 8

0

ˇ

ˇ

ˇ
W

´n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

ppun,k ` vq
¯¯

´W
´

e´ppun,k`vq
¯ˇ

ˇ

ˇ
dvβ.

For T ą 0, we have

Wnpβq ď

ż 8

T

ˇ

ˇ

ˇ
W

´

e´ppun,k`vq
¯
ˇ

ˇ

ˇ
dvβ `

ż 8

T

ˇ

ˇ

ˇ
W

´n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

ppun,k ` vq
¯¯

ˇ

ˇ

ˇ
dvβ

`

ż T

0

ˇ

ˇ

ˇ
W

´n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

ppun,k ` vq
¯¯

´W
´

e´ppun,k`vq
¯ˇ

ˇ

ˇ
dvβ

“: Wp1q
n pβq `Wp2q

n pβq `Wp3q
n pβq.

Then, for a ą 0 arbitrary, we have

P pWnpβq ą aq ď P
´

Wp1q
n pβq ą

a

4

¯

` P
´

Wp2q
n pβq ą

a

4

¯

` P
´

Wp3q
n pβq ą

a

2

¯

.

12



Clearly, for η P p0, 1{2q, we have

P
´

Wp1q
n pβq ą

a

4

¯

ď P

˜

sup
0ăyďeδ

|W pyq|

yη
ą
a ηβ

4β

e´ηδ

Γpβ, Tηq

¸

` P p|pun,k| ą δq ,

and similarly, by Lemma 5.1, c ą 0 and n large

P
´

Wp2q
n pβq ą

a

4

¯

ď P

˜

sup
0ăyďeδ`c

|W pyq|

yη

ż 8

T

”n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

p´δ ` vq
¯ıη

dvβ ą
a

4

¸

`P p|pun,k| ą δq .

Following the lines of proof of Lemma 2.1 with the Potter bounds, the integral from the above
display can be made arbitrary small by taking T large. Thus, combining Lemma 5.2 with Lemma
2 in Cai et al. (2015), and by choosing T large enough, for ε ą 0, there exists n1 such that for
n ą n1 we have

P
´

Wp1q
n pβq ą

a

4

¯

` P
´

Wp2q
n pβq ą

a

4

¯

ď
ε

2
.

With this specific value of T , we have

P
´

Wp3q
n pβq ą

a

2

¯

ď P

˜

sup
yPr´δ,δ`T s

ˇ

ˇ

ˇ
W

´n

k
FX

´

UX

´n

k

¯

` aX

´n

k

¯

y
¯¯

´W
`

e´y
˘

ˇ

ˇ

ˇ
ą

a

2T β

¸

`P p|pun,k| ą δq .

Lemmas 5.1 and 5.2 combined with the uniform continuity of W on compact sets yield, for
n ą n2

P
´

Wp3q
n pβq ą

a

2

¯

ď
ε

2
,

from which we deduce that, for n ą maxpn1, n2q

P pWnpβq ą aq ď ε. (15)

Combining (14) and (15), we have

?
k
UXpn{kq

aXpn{kq
T8,n “ oPp1q. (16)

Term T9,n. It can be handled similarly as T8,n, except for

ĂWp3q
n pβq :“

ż T

0

ˇ

ˇ

ˇ
W

´

e´ppun,k`vq
¯

´W
`

e´v
˘

ˇ

ˇ

ˇ
dvβ,

where we can use the bound

P
´

ĂWp3q
n pβq ą

a

2

¯

ď P

˜

sup
vPr0,T s,|x|ďk´1{4

ˇ

ˇ

ˇ
W

´

e´pv`xq
¯

´W
`

e´v
˘

ˇ

ˇ

ˇ
ą

a

2T β

¸

` P
´

|pun,k| ą k´
1
4

¯

.

13



By the uniform continuity of W on compact sets and Lemma 5.2, we have for n ą n2

P
´

ĂWp3q
n pβq ą

a

2

¯

ď
ε

2
,

from which we deduce that

?
k
UXpn{kq

aXpn{kq
T9,n “ oPp1q. (17)

Term T10,n. By the mean value theorem, with ξ P p0, 1q, we have with large probability, for n
large, and 0 ă ε ă 1{δ and 0 ă η ă 1{2,

?
k
UXpn{kq

aXpn{kq
|T10,n| “

ˇ

ˇ

ˇ

ˇ

ˇ

βpβ ´ 1q
aXpn{kq

UXpn{kq

ż 8

0
rpun,k ` vs

„

1` ξ
aXpn{kq

UXpn{kq
ppun,k ` vq

β´2

W
`

e´v
˘

dv

ˇ

ˇ

ˇ

ˇ

ˇ

ď β|β ´ 1|
aXpn{kq

UXpn{kq

ˆ

"

1ltβă2u r1´ δεs
β´2

ż 8

0
rδ ` vs

ˇ

ˇW
`

e´v
˘ˇ

ˇ dv

`1ltβě2u

ż 8

0
rδ ` vs r1` εpδ ` vqsβ´2

ˇ

ˇW
`

e´v
˘
ˇ

ˇ dv

*

ď β|β ´ 1|
aXpn{kq

UXpn{kq

ˆ

"

1ltβă2u r1´ δεs
β´2 sup

0ăyď1

|W pyq|

yη

ż 8

0
rδ ` vs e´η v dv

`1ltβě2u sup
0ăyď1

|W pyq|

yη

ż 8

0
rδ ` vs r1` εpδ ` vqsβ´2 e´η v dv

*

ď C
aXpn{kq

UXpn{kq
, (18)

by Lemma 2 in Cai et al. (2015), and where C is a positive constant.
Combining (7)-(13) with (16)-(18), Theorem 3.1 follows.
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Proof of Theorem 4.2. Consider the following decomposition

?
k

˜

{CTMβ,p

CTMβ,p
´ 1

¸

“
?
k

¨

˚

˚

˚

˚

˝

#

ˆ

log 1{p

log n{k

˙βrpθk´θs
+

loooooooooooomoooooooooooon

T11,n

#

CTMβ, k
n

CTMβ, k
n

+

looooooomooooooon

T12,n

#

plog n{kq´β θCTMβ, k
n

plog 1{pq´β θCTMβ,p

+

loooooooooooooooomoooooooooooooooon

T13,n

´1

˛

‹

‹

‹

‹

‚

“
?
k

#

ˆ

log 1{p

log n{k

˙βrpθk´θs

´ 1

+

T12,n T13,n `
?
k

#

CTMβ, k
n

CTMβ, k
n

´ 1

+

T13,n

`
?
k

#

plog n{kq´β θCTMβ, k
n

plog 1{pq´β θCTMβ,p
´ 1

+

“ β logpλq
?
k rpθk ´ θsp1` oPp1qqT12,n T13,n `

?
k
UXpn{kq

aXpn{kq

#

CTMβ, k
n

CTMβ, k
n

´ 1

+

aXpn{kq

UXpn{kq
T13,n

`
?
k

#

CTMβ, k
n
{rUXpn{kqs

β

CTMβ,p{rUXp1{pqsβ
´ 1

+

ˆ

UXpn{kq

UXp1{pq

˙β ˆ log n{k

log 1{p

˙´β θ

`
?
k

˜

ˆ

UXpn{kq

UXp1{pq

˙β ˆ log n{k

log 1{p

˙´β θ

´ 1

¸

.

According to (4), we have

CTMβ, k
n

rUXpn{kqsβ
“ 1` β

aXpn{kq

UXpn{kq

#

1`

ż 8

0

«

ˆ

1`
aXpn{kq

UXpn{kq
z

˙β´1

´ 1

+

e´z dz

`

ż 8

0

ˆ

1`
aXpn{kq

UXpn{kq
z

˙β´1 ˆFX pUXpn{kq ` aXpn{kq zq

FXpUXpn{kqq
´ e´z

˙

dz

+

“ 1` o

ˆ

1
?
k

˙

.

A similar result can be obtained for CTMβ, 1
p
{rUXp1{pqs

β. Thus, we have

CTMβ, k
n
{rUXpn{kqs

β

CTMβ,p{rUXp1{pqsβ
´ 1 “ o

ˆ

1
?
k

˙

.

Now, the last term of the decomposition.

ˆ

UXpn{kq

UXp1{pq

˙β ˆ log n{k

log 1{p

˙´β θ

´ 1 “

ˆ

`U plog n{kq

`U plog 1{pq

˙β

´ 1 “

ˆ

`XpUXp1{pqq

`XpUXpn{kqq

˙β θ

´ 1,
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since `U plog xq “ r`XpUXpxqqs
´θ.

Now, using the mean value theorem with un P rUXpn{kq;UXp1{pqs, we have, for δ1, δ2 ą 0 and
n large,

ˇ

ˇ

ˇ

ˇ

`XpUXp1{pqq

`XpUXpn{kqq
´ 1

ˇ

ˇ

ˇ

ˇ

“
|`1Xpunq|

`XpUXpn{kqq

„

UX

ˆ

1

p

˙

´ UX

´n

k

¯



“
un |`

1
Xpunq|

`Xpunq

`Xpunq

`XpUXpn{kqq

UXpn{kq

un

ˆ

UXp1{pq

UXpn{kq
´ 1

˙

ď p1` δ1q
un |`

1
Xpunq|

`Xpunq

ˆ

un
UXpn{kq

˙δ2 ˆ

UXp1{pq

UXpn{kq
´ 1

˙

ď p1` δ1q sup
xěUXpn{kq

x |`1Xpxq|

`Xpxq

ˆ

UXp1{pq

UXpn{kq

˙δ2 ˆ

UXp1{pq

UXpn{kq
´ 1

˙

“ o

ˆ

1
?
k

˙

,

since

UXp1{pq

UXpn{kq
´ 1 “

«

ˆ

log 1{p

log n{k

˙θ

´ 1

ff

`U plog 1{pq

`U plog n{kq
`

„

`U plog 1{pq

`U plog n{kq
´ 1



“ Op1q.

Combining Theorem 3.1 with Theorem 4.1, Theorem 4.2 follows.
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