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Spectral model of wall-pressure fluctuations applied to the
transonic flow around a generic space launcher

Simon Lecler∗, Pierre-Élie Weiss † and Sébastien Deck‡

DAAA, ONERA, Université Paris Saclay, F-92190 Meudon, France

High fidelity approaches based on LES or hybrid RANS-LES methods allow to predict
unsteady quantities such as wall-pressure fluctuations for complex configurations. However,
they are still expensive and time-consuming in terms of computational resources, especially in
the earlier phases of design. In this context, this study presents an analytical spectral model for
predicting wall-pressure fluctuations for complex, three-dimensional configurations using mean
flow data as input. The model is first assessed on a transonic launcher configuration simulated
with Zonal Detached Eddy Simulation (ZDES). Then, model outputs, namely the fluctuating
wall-pressure coefficient and one-point pressure spectra are compared to numerical results to
the reference ZDES computation and available experimental data. Finally, the present model is
applied to the RANS mean flow fields using the Spalart-Allmaras model. Using inputs from
RANS computations is more challenging compared to ZDES as some turbulent quantities are
not provided by the simulation and must be modeled, but it represents an outstanding gain
in term of the global computational cost. The predicted fluctuating wall-pressure coefficients
and one-point spectra are found to be in very good agreement with ZDES data, given the
computational efficiency of the model.

I. Nomenclature

𝑥1, 𝑥2, 𝑥3 = coordinate system
𝑈1,𝑈2,𝑈3 = mean velocity components in the streamwise, wall normal and transverse directions
𝑢′1, 𝑢

′
2, 𝑢

′
3 = fluctuating velocity components

𝑢1”, 𝑢2”, 𝑢3” = fluctuating velocity components using Favre averaging
𝑘1, 𝑘2, 𝑘3 = aerodynamic wavenumbers
k = (𝑘1, 𝑘3) planar wavenumber vector
−→̂ = (𝑘1, 𝑘2, 𝑘3) planar wavenumber vector
𝑘 =

√︃
𝑘2

1 + 𝑘
2
3 planar wavenumber vector magnitude

^ =
√︃
𝑘2

1 + 𝑘
2
2 + 𝑘

2
3 wavenumber vector magnitude

𝜔 = angular frequency
𝑈∞ = free stream velocity
𝑈𝑐 = convective speed of pressure fluctuations
𝑀 = Mach number
𝐷 = reference diameter
𝑝′ = fluctuating pressure
𝜌 = density
𝜌′ = fluctuating density
𝑘𝑡 = turbulent kinetic energy
`𝑡 = eddy viscosity
𝜖 = turbulent dissipation rate
Λ = longitudinal integral length scale of turbulence
𝑙 = length scale of turbulent velocity fluctuations
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𝜎2 = variance of homogeneous turbulence field
a = Von Kármán spectrum constant
𝜙𝑝𝑝 = wavenumber spectral density of wall-pressure fluctuations
Φ𝑖 𝑗 = 3D cross-spectral density of turbulent velocity fluctuations
𝜑𝑖 𝑗 = 2D cross-spectral density of turbulent velocity fluctuations
𝐺 𝑝𝑝 = one-point frequency spectrum of wall-pressure fluctuations
𝑝𝑟𝑚𝑠 = root-mean-square value of wall-pressure fluctuations
𝐶𝑝 = mean pressure coefficient
𝐶𝑝𝑟𝑚𝑠 = rms pressure coefficient
𝛿𝑖 𝑗 = Kronecker symbol
𝛿() = Dirac function
Γ() = gamma function
𝐾𝑧 = modified Bessel function of the second kind of order z
(·)∗ = complex conjugate
(̂·) = Fourier transform
⟨·⟩ = ensemble average
(·) = Reynolds average
(̃·) = Favre average

II. Introduction
During transonic flight, space launchers experience large unsteady aerodynamic loads related to high-level pressure

fluctuations that can endanger a launch vehicle and its payload. The unsteady wall-pressure field is highly dependent on
the launcher geometry [1] and needs to be predicted in the earlier phases of design to estimate buffet loads. In particular,
wall-pressure fluctuations are characterized by one-point pressure spectra 𝐺 𝑝𝑝 (𝜔) and the fluctuating wall-pressure
coefficient 𝐶𝑝𝑟𝑚𝑠 .

LES and hybrid RANS-LES simulations can predict the wall-pressure fluctuations for complex three-dimensional
turbulent flows with high accuracy [2]. However, they are still time-consuming and require significant computational
resources. In the preliminary design stage, one needs to quickly estimate the order of magnitude of the level of pressure
fluctuations for a given configuration. Semi-empirical and analytical models may offer a trade-off between accuracy
and computational cost and are still used to estimate the fluctuating wall-pressure field on space launchers during
atmospheric ascent [3]. Plenty of empirical correlations have been suggested to predict cross-power spectra, one-point
spectra and the rms coefficient of pressure fluctuations. Most of them consist in simple mathematical expressions that fit
empirical data (see Corcos [4, 5]). As en example, they can be built from turbulent boundary layer data (see Goody [6]
or Chase [7, 8]). The applicability of the models to realistic configurations has also been studied. For instance, Efimtsov
model [9] is based on compressible flows over aircrafts. Regarding launcher configurations, Robertson [10] focused
on axisymmetric bodies in the transonic regime. These empirical approaches are very restrictive as the models are
calibrated for specific flow conditions.

More recently, machine learning techniques have emerged as a promising way to build surrogate models for turbulent
quantities. Few studies [11, 12] focused on the prediction of pressure fluctuations in turbulent flows. Moreover,
existing models were based on experimental or DNS data. Finally, analytical models have been developped to predict
wall-pressure spectra in turbulent boundary layers of airfoil trailing edges [13–18]. These models are more general
as they are based on the Poisson equation governing turbulent pressure fluctuations. They express the wall-pressure
spectrum from mean flow data and some turbulence statistics that need to be modeled.

In this context, this study aims at extending previous analytical approaches to complex compressible flows, as those
encountered around space launchers, including both attached boundary layers and separating/reattaching flows. To do
so, Zonal Detached Eddy Simulation (ZDES [19–21]) and RANS computations have been conducted for a hammerhead
configuration (NASA model 11 [22]) in the transonic regime. Using the computed mean flow field as input, our
model has been applied and results are compared to numerical (i.e. the reference ZDES computation) and available
experimental data.

This paper is organized as follows: first the test case is presented, including details about the numerical procedure.
Then, we describe the development of the present model in the case of incompressible flows. The third part of the paper
is dedicated to the extension of the model to compressible flows. Finally, the proposed model is applied using both
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ZDES and RANS mean flow fields as input, and results are presented. In particular, predicted 𝐶𝑝𝑟𝑚𝑠 and pressure
spectra are analyzed and compared to the reference ZDES data.

III. Test case : NASA model 11 hammerhead launch vehicle

A. Experimental studies of reference
The test case configuration is the NASA model 11 hammerhead launch vehicle. This semi-realistic configuration

has been first studied by Coe et Nute [22] who recorded pressure fluctuations along the wall using Kulites, and more
recently by Schuster et al. [23] and Panda et al. [24] using unsteady pressure sensitive paint (uPSP). This geometry
is particularly relevant to study the unsteady wall-pressure field, as it is prone to buffet because of the separated flow
following the hammerhead payload fairing, that is submitted to destabilizing aerodynamic damping forces [1].

As shown in Fig. 1(a), the model consists in an axisymmetric launcher configuration, with a payload fairing of
maximum diameter 𝐷 = 0.244 m, followed by a second stage with a smaller section, ensuring a separation of the flow at
the edge of the payload fairing. The second stage diameter is smaller than the first stage diameter, providing pressure
gradients along the wall.

Free stream conditions are set to reproduce the experiments described in Schuster et al. [23] and Panda et al. [24]
at zero angle of attack and a Mach number equal to 0.8. The total pressure is set to 𝑃𝑖 = 236255 Pa and the total
temperature 𝑇𝑖 equals 790 K. The Reynolds number 𝑅𝑒𝐷 of the external flow based on the payload diameter 𝐷 is
2.4 × 106.

B. Description of the mesh
The multi-block structured mesh is shown in a longitudinal cut and at the wall in Fig. 1(b). The length and diameter

of the computational domain are 246D and 320D, respectively. The first stage has been extended up to the end of the
domain to be representative of the sting holding the model in the experiments. The mesh contains 240 points in the
azimuthal direction, resulting in a discretization of Δ\ = 1.5°. The Δ𝑦+ = 1 condition at the wall is satisfied. The early
stages of the vorticity thickness development are modeled with 15 points, as advised by Simon et al. [25]. The mesh
contains a total of 24M hexædric cells.

(a) (b)

Fig. 1 (a) Sketch of the geometry of the NASA model 11 hammerhead configuration (b) Computational mesh in
a streamwise cut-off plane

C. Numerical setup
The computation has been performed using the finite-volume FLU3M code developed by ONERA [26]. The

approach used to model the flow is the Zonal Detached Eddy Simulation (ZDES)[20, 21], that belongs to hybrid
RANS/LES methods. ZDES has been proven to be efficient to simulate complex turbulent phenomena for high Reynolds
number configurations. It aims at treating in a single model all classes of flow problems illustrated in Fig. 2. ZDES is
based on the Spalart-Allmaras (SA) model. Its formulation involves three hybrid length scales (see Eq. 1), also called
modes, adapted to the three typical flow field topologies displayed in Fig. 2. The distance to the wall 𝑑𝑤 in the SA
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model is replaced by 𝑑𝑍𝐷𝐸𝑆:

𝑑𝑍𝐷𝐸𝑆 = 𝑑𝑚𝑜𝑑𝑒

(
Δ̃, 𝑑𝑤 ,𝑈𝑖, 𝑗 , a, ã,

𝜕ã

𝜕𝑛
,
𝜕 | |𝜔 | |
𝜕𝑛

)
(1)

with 𝑚𝑜𝑑𝑒 = 1,2,3, Δ̃ the subgrid length scale, 𝑑𝑤 the distance to the wall, | |𝜔 | | the magnitude of vorticity, a and ã the
kinematic and pseudo eddy viscosity and 𝜕·

𝜕𝑛
the derivative in the wall-normal direction.

Fig. 2 Classification of typical flow problems. I: separation fixed by the geometry, II: pressure gradient induced
separation on a curved surface, III: wall-modeled LES, when the separation is strongly influenced by the dynamics
of the incoming boundary layer.

To study complex geometries such as space launchers, the mode 2 with its fully automatic formulation is needed due
to the difficulty to locate a priori the separation point. Hence, this work is mainly based on ZDES mode 2 (2020)[21],
where the model sets dynamically the RANS-LES interface. Hence, the area after the separation point is treated with
LES, and the flow upstream of this point is computed using the URANS approach.

Numerical sensors were placed on every cell at the wall in the streamwise direction after the separation point. For
each streamwise location, 4 sensors are regularly distributed in the azimuthal direction. We let the flow develop for 200
ms to avoid any transitory effect. Then, pressure at the wall was recorded during 0.3 s. The time step of the computation
is 0.2 µs.

D. Flow topology
The salient features of the instantaneous flow are displayed in Fig. 3, with a plot of an isosurface of the normalized

Q-criterion 𝑄𝐷2/𝑈2
∞ = 0.5 colored by the Mach number and a cut-off plane of the instantaneous pressure coefficient.

The visualization of the Q-criterion evidences the presence of toroidal structures just after the separation point. These
are related to the Kelvin-Helmholtz instability process [27]. These structures merge together and finally impinge the
wall. Downstream of the reattachment point, located at 𝑋/𝐷 = 1.1, the vortex shedding phenomenon is observed,
responsible for the pressure fluctuations along the interstage flare and the first stage [27]. The visualization of the
pressure coefficient exhibits a zone of high pressure originating from the impingement of the shear layer on the wall and
from the compression corner at the flare / second stage intersection, following the low pressure region characterizing the
recirculation zone.

The mean organization of the flow is evidenced in Fig. 4. The mean streamlines display the shape of the recirculation
region between the separation and the mean reattachment point. Contours of the fluctuating pressure coefficient in the
flow field and at the wall evidence that the highest fluctuations arise in the shear layer and in the reattachment region.
Contours of the mean wall pressure coefficient show the presence of a high pressure gradient in the reattachment region
[23, 28] around the position 𝑋/𝐷 = 0.7.

E. Validation of the computation
In addition to the ZDES computation described in section III.C, two RANS simulations were conducted using the

Spalart-Allmaras (SA [29]) and Spalart-Allmaras with rotation correction (SAR [30]) models. The computed RANS
mean flow fields will be used as input data for the proposed spectral model. The simulations have been validated by
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Fig. 3 Instantaneous flow visualization. Isosurface of the dimensionless Q-criterion (𝑄𝐷2/𝑈2
∞ = 0.5) colored by

the Mach number and iso-contours of the pressure coefficient in a longitudinal cut.

Fig. 4 Cut-off plane of the fluctuating pressure coefficient (top) along with the mean pressure coefficient at the
wall and mean streamlines (bottom).

comparison with the available experimental results of Schuster et al. [23] and Coe and Nute [22].The evolution of the
computed and measured pressure coefficient 𝐶𝑝 along the surface of the launcher is plotted in Fig. 5a). An good overall
agreement between numerical and experimental results is obtained for the three simulations, providing a validation of
the predicted mean flow data. Small discrepancies are observed between 𝑋/𝐷 = 0.5 and 𝑋/𝐷 = 1.4, as the predicted
size of the recirculation zone is slightly different.

Regarding the fluctuating pressure field, Fig. 5(b) shows the evolution of 𝐶𝑝𝑟𝑚𝑠 predicted by the present ZDES
computation compared to the measurements of Schuster et al. [23] and Coe and Nute [22]. Here the ZDES data were
filtered as in both experiments, in the band-pass range of [0-10] kHz and [10-800] Hz, respectively. A good agreement
between numerical and measured data is obtained after the separation point (𝑋/𝐷 = 0). This corresponds to the zone
treated in LES, where the largest scales of the turbulent flow are resolved. Along the payload fairing (𝑋/𝐷 < 0),
pressure fluctuations are underestimated. This result was expected: as the flow is computed in URANS mode in this
area, the fluctuations occurring inside the boundary layer developing along the wall are not resolved.

In this section, the ZDES simulation of the studied configuration was validated. In section VI, the computed mean
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(a) (b)

Fig. 5 (a) Pressure coefficient predicted by ZDES and RANS computations compared to the experimental
results of Schuster et al.[23] and Coe and Nute[22]. (b) 𝐶𝑝𝑟𝑚𝑠 predicted by ZDES compared to experimental
data. Results are filtered according to both experiments.

flow field is used as input for the proposed analytical model, and the pressure fluctuations computed with ZDES are used
as reference data to evaluate the model. The description of the proposed spectral model is the subject of section IV.

IV. Wall pressure fluctuation model

A. Incompressible formulation : Poisson equation
In this section, we derive an incompressible formulation for the wall pressure spectrum. The extension to compressible

flows is presented in section V.
The pressure fluctuations in an incompressible flow are governed by the following Poisson equation:

1
𝜌
∇2𝑝′ = −2

𝜕𝑢′
𝑗

𝜕𝑥𝑖

𝜕𝑈𝑖

𝜕𝑥 𝑗︸        ︷︷        ︸
turbulence - mean shear

− 𝜕2

𝜕𝑥𝑖𝜕𝑥 𝑗

(
𝑢′𝑖𝑢

′
𝑗 − 𝑢′𝑖𝑢′𝑗

)
︸                      ︷︷                      ︸

turbulence - turbulence

(2)

with 𝑖, 𝑗 = 1, 2, 3 referring to the streamwise, wall-normal and transverse directions.
This equation derives from the divergence of the momentum equation. Introducing Reynolds decomposition, the

time-averaged part is substracted and the continuity equation is used to drop terms.
The first source term appearing in the right part of equation 2 is referred as the slow (linear) part, as it is immediately

influenced by a change imposed on the mean velocity gradient and is linear on the velocity fluctuations. It thus describes
the turbulence-mean shear interaction. The second term is called the rapid (nonlinear) source term, describing the
quadratic interaction of velocity fluctuation components.

The following boundary conditions are imposed to solve equation 2:

lim
𝑥→∞

𝑝′ = 0 ;
𝜕𝑝′

𝜕𝑥2

����
𝑥2=0

= 0

meaning that pressure fluctuations vanish far from the wall and that the rigid wall condition is adopted.

B. Hypotheses
Several assumptions are adopted to proceed to the analytical resolution of the Poisson equation. First, the nonlinear

source term of equation 2 is neglected. This is supported by the analytical developments of Kraichnan [31] and
the estimation of the relative importance of both terms of Liley et Hodgson [32]. Then, the turbulence is assumed
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homogeneous in planes parallel to the wall, which allows to apply the Fourier transform in the plane (𝑥1, 𝑥3). However,
contrary to previous models, this study is not restricted to boundary layer flows. We consider the three components
of velocity, and only neglect the mean velocity gradient in the transverse direction because of the axisymmetric
configuration.

C. Resolution in the wavenumber domain
The Poisson equation can be solved in the space domain using a Green’s function approach, as shown by Peltier &

Hambric [33], Hu et al. [34] and Slama et al. [35]. Such a method implies a four-dimensional integration to compute
the cross-correlation of wall-pressure fluctuations. Then, a three-dimensional Fourier transform is applied to get the
wavenumber-frequency spectrum. Finally the wall pressure spectrum is obtained integrating over the wavenumber
domain. The computation of 8 successive integrals would involve a large amount of computational resources, whereas
deriving a solution for the Poisson equation directly in the wavenumber domain only requires a 4-dimensional integration.
As a consequence, this second approach has been retained in the present study.

Following Grasso et al. [18] and considering the aforementioned hypotheses, the Fourier transform is applied to
Eq. (2), yielding the modified Helmholtz equation:

𝜕2𝑝′ (k, 𝑥2)
𝜕𝑥2

2
− k2𝑝′ (k, 𝑥2) = −2𝜌𝑖𝑘𝑖

𝜕𝑈𝑖

𝜕𝑥 𝑗
𝑢′
𝑗
(k, 𝑥2) − 2𝜌

𝜕𝑈2
𝜕𝑥𝑖

𝜕𝑢′
𝑖
(k, 𝑥2)
𝜕𝑥2

, 𝑖 ∈ {1, 3} (3)

with the following convention for the Fourier transform:

𝑝′ (k, 𝑥2) =
1

4𝜋2

∫ ∫ +∞

−∞
𝑝′ (x)𝑒−𝑖 (𝑘1𝑥1+𝑘3𝑥3 )𝑑𝑥1𝑑𝑥3 (4)

Eq. (3) is a second-order ordinary differential equation with constant coefficients, that can be solved with the method
of variation of parameters. The solution at the wall (𝑥2 = 0) is:

𝑝′ (k, 𝑥2 = 0) =2𝜌𝑖
1
k

∫ ∞

0

[
𝑘1

(
𝜕𝑈1 (𝑋2)
𝜕𝑥2

𝑢′2 (k, 𝑋2) +
𝜕𝑈1 (𝑋2)
𝜕𝑥1

𝑢′1 (k, 𝑋2)
)
+

𝑘3

(
𝜕𝑈3 (𝑋2)
𝜕𝑥2

𝑢′2 (k, 𝑋2) +
𝜕𝑈3 (𝑋2)
𝜕𝑥1

𝑢′1 (k, 𝑋2)
)]
𝑑𝑋2+

2
𝜌

k

∫ ∞

0

[
𝜕𝑈2 (𝑋2)
𝜕𝑥1

𝜕𝑢′1 (k, 𝑋2)
𝜕𝑥2

+ 𝜕𝑈2 (𝑋2)
𝜕𝑥2

𝜕𝑢′2 (k, 𝑋2)
𝜕𝑥2

]
𝑑𝑋2

(5)

A detailed demonstration of this solution is available in reference [18].
The 2D wavenumber cross-spectrum of wall pressure fluctuations 𝜙𝑝𝑝 (k) is given by the ensemble average of

𝑝′ (k, 𝑥2 = 0) by its complex conjugate:

𝜙𝑝𝑝 (k) =
〈
𝑝′ (k, 𝑥2 = 0)𝑝′∗ (k′, 𝑥2 = 0)

〉
=

∫
k′

∫ ∫ ∞

0

4𝜌2

𝑘2 𝑒
−(𝑋2+𝑋′

2)𝑘×[(
𝜕𝑈2 (𝑋2)
𝜕𝑥1

𝜕𝑢′1 (k, 𝑋2)
𝜕𝑥2

+ 𝜕𝑈2 (𝑋2)
𝜕𝑥2

𝜕𝑢′2 (k, 𝑋2)
𝜕𝑥2

)
+ 𝑖𝑘1

(
𝜕𝑈1 (𝑋2)
𝜕𝑥2

𝑢′2 (k, 𝑋2) +
𝜕𝑈1 (𝑋2)
𝜕𝑥1

𝑢′1 (k, 𝑋2)
)

+𝑖𝑘3

(
𝜕𝑈3 (𝑋2)
𝜕𝑥2

𝑢′2 (k, 𝑋2) +
𝜕𝑈3 (𝑋2)
𝜕𝑥1

𝑢′1 (k, 𝑋2)
)]

×[(
𝜕𝑈2

(
𝑋 ′

2
)

𝜕𝑥1

𝜕𝑢′1
(
k′, 𝑋 ′

2
)

𝜕𝑥2
+
𝜕𝑈2

(
𝑋 ′

2
)

𝜕𝑥2

𝜕𝑢′2
(
k′, 𝑋 ′

2
)

𝜕𝑥2

)
+ 𝑖𝑘1

(
𝜕𝑈1

(
𝑋 ′

2
)

𝜕𝑥2
𝑢′2

(
k′, 𝑋 ′

2
)
+
𝜕𝑈1

(
𝑋 ′

2
)

𝜕𝑥1
𝑢′1 (k

′, 𝑋2)
)

+𝑖𝑘3

(
𝜕𝑈3

(
𝑋 ′

2
)

𝜕𝑥2
𝑢′2

(
k′, 𝑋 ′

2
)
+
𝜕𝑈3

(
𝑋 ′

2
)

𝜕𝑥1
𝑢′1 (k

′, 𝑋2)
)]∗

𝑑𝑋2𝑑𝑋
′
2𝑑k′

(6)
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The development of Eq. (6) yields:

𝜙𝑝𝑝 (k) =
∫

k′

∫ ∫ ∞

0

4𝜌2

𝑘2 𝑒
−(𝑋2+𝑋′

2)𝑘×[
𝑘2

1 ×
(
𝜕𝑈1 (𝑋2)
𝜕𝑥2

𝜕𝑈1
(
𝑋 ′

2
)

𝜕𝑥2

〈
𝑢′2𝑢

′
2
∗〉 + 𝜕𝑈1 (𝑋2)

𝜕𝑥1

𝜕𝑈1
(
𝑋 ′

2
)

𝜕𝑥1

〈
𝑢′1𝑢

′
1
∗〉 + 𝜕𝑈1 (𝑋2)

𝜕𝑥2

𝜕𝑈1
(
𝑋 ′

2
)

𝜕𝑥1

〈
𝑢′2𝑢

′
1
∗〉

+𝜕𝑈1 (𝑋2)
𝜕𝑥1

𝜕𝑈1
(
𝑋 ′

2
)

𝜕𝑥2

〈
𝑢′1𝑢

′
2
∗〉) + 𝑘2

3 ×
(
𝜕𝑈3 (𝑋2)
𝜕𝑥2

𝜕𝑈3
(
𝑋 ′

2
)

𝜕𝑥2

〈
𝑢′2𝑢

′
2
∗〉 + 𝜕𝑈3 (𝑋2)

𝜕𝑥1

𝜕𝑈3
(
𝑋 ′

2
)

𝜕𝑥1

〈
𝑢′1𝑢

′
1
∗〉+

𝜕𝑈1 (𝑋2)
𝜕𝑥2

𝜕𝑈1
(
𝑋 ′

2
)

𝜕𝑥1

〈
𝑢′2𝑢

′
1
∗〉 + 𝜕𝑈1 (𝑋2)

𝜕𝑥1

𝜕𝑈1
(
𝑋 ′

2
)

𝜕𝑥2

〈
𝑢′1𝑢

′
2
∗〉) + 𝜕𝑈2 (𝑋2)

𝜕𝑥1

𝜕𝑈2
(
𝑋 ′

2
)

𝜕𝑥1

〈
𝜕𝑢′1
𝜕𝑥2

𝜕𝑢′1
𝜕𝑥2

∗〉
+𝜕𝑈2 (𝑋2)

𝜕𝑥2

𝜕𝑈2
(
𝑋 ′

2
)

𝜕𝑥2

〈
𝜕𝑢′2
𝜕𝑥2

𝜕𝑢′2
𝜕𝑥2

∗〉
+ 𝜕𝑈2 (𝑋2)

𝜕𝑥1

𝜕𝑈2
(
𝑋 ′

2
)

𝜕𝑥2

〈
𝜕𝑢′1
𝜕𝑥2

𝜕𝑢′2
𝜕𝑥2

∗〉
+ 𝜕𝑈2 (𝑋2)

𝜕𝑥2

𝜕𝑈2
(
𝑋 ′

2
)

𝜕𝑥1

〈
𝜕𝑢′2
𝜕𝑥2

𝜕𝑢′1
𝜕𝑥2

∗〉
+𝑖𝑘1 ×

(
𝜕𝑈1 (𝑋2)
𝜕𝑥2

𝜕𝑈2
(
𝑋 ′

2
)

𝜕𝑥1

〈
𝑢′2
𝜕𝑢′1

∗

𝜕𝑥2

〉
−
𝜕𝑈1

(
𝑋 ′

2
)

𝜕𝑥2

𝜕𝑈2 (𝑋2)
𝜕𝑥1

〈
𝜕𝑢′1
𝜕𝑥2

𝑢′2
∗
〉
+ 𝜕𝑈1 (𝑋2)

𝜕𝑥2

𝜕𝑈2
(
𝑋 ′

2
)

𝜕𝑥2

〈
𝑢′2
𝜕𝑢′2

∗

𝜕𝑥2

〉
−
𝜕𝑈1

(
𝑋 ′

2
)

𝜕𝑥2

𝜕𝑈2 (𝑋2)
𝜕𝑥2

〈
𝜕𝑢′2
𝜕𝑥2

𝑢′2
∗
〉
+ 𝜕𝑈1 (𝑋2)

𝜕𝑥1

𝜕𝑈2
(
𝑋 ′

2
)

𝜕𝑥1

〈
𝑢′1
𝜕𝑢′1

∗

𝜕𝑥2

〉
−
𝜕𝑈1

(
𝑋 ′

2
)

𝜕𝑥1

𝜕𝑈2 (𝑋2)
𝜕𝑥1

〈
𝜕𝑢′1
𝜕𝑥2

𝑢′1
∗
〉

+𝜕𝑈1 (𝑋2)
𝜕𝑥1

𝜕𝑈2
(
𝑋 ′

2
)

𝜕𝑥2

〈
𝑢′1
𝜕𝑢′2

∗

𝜕𝑥2

〉
−
𝜕𝑈1

(
𝑋 ′

2
)

𝜕𝑥1

𝜕𝑈2 (𝑋2)
𝜕𝑥2

〈
𝜕𝑢′2
𝜕𝑥2

𝑢′1
∗
〉)

+ 𝑖𝑘3 ×
(
𝜕𝑈1 (𝑋2)
𝜕𝑥2

𝜕𝑈2
(
𝑋 ′

2
)

𝜕𝑥1

〈
𝑢′2
𝜕𝑢′1

∗

𝜕𝑥2

〉
−
𝜕𝑈1

(
𝑋 ′

2
)

𝜕𝑥2

𝜕𝑈2 (𝑋2)
𝜕𝑥1

〈
𝜕𝑢′1
𝜕𝑥2

𝑢′2
∗
〉
+ 𝜕𝑈1 (𝑋2)

𝜕𝑥2

𝜕𝑈2
(
𝑋 ′

2
)

𝜕𝑥2

〈
𝑢′2
𝜕𝑢′2

∗

𝜕𝑥2

〉
−
𝜕𝑈1

(
𝑋 ′

2
)

𝜕𝑥2

𝜕𝑈2 (𝑋2)
𝜕𝑥2

〈
𝜕𝑢′2
𝜕𝑥2

𝑢′2
∗
〉

+𝜕𝑈1 (𝑋2)
𝜕𝑥1

𝜕𝑈2
(
𝑋 ′

2
)

𝜕𝑥1

〈
𝑢′1
𝜕𝑢′1

∗

𝜕𝑥2

〉
−
𝜕𝑈1

(
𝑋 ′

2
)

𝜕𝑥1

𝜕𝑈2 (𝑋2)
𝜕𝑥1

〈
𝜕𝑢′1
𝜕𝑥2

𝑢′1
∗
〉
+ 𝜕𝑈1 (𝑋2)

𝜕𝑥1

𝜕𝑈2
(
𝑋 ′

2
)

𝜕𝑥2

〈
𝑢′1
𝜕𝑢′2

∗

𝜕𝑥2

〉
−
𝜕𝑈1

(
𝑋 ′

2
)

𝜕𝑥1

𝜕𝑈2 (𝑋2)
𝜕𝑥2

〈
𝜕𝑢′2
𝜕𝑥2

𝑢′1
∗
〉)

+ 𝑘1𝑘3 ×
(
𝜕𝑈1 (𝑋2)
𝜕𝑥2

𝜕𝑈3
(
𝑋 ′

2
)

𝜕𝑥1

〈
𝑢′2
𝜕𝑢′1

∗

𝜕𝑥2

〉
−
𝜕𝑈1

(
𝑋 ′

2
)

𝜕𝑥2

𝜕𝑈3 (𝑋2)
𝜕𝑥1

〈
𝜕𝑢′1
𝜕𝑥2

𝑢′2
∗
〉

+𝜕𝑈1 (𝑋2)
𝜕𝑥2

𝜕𝑈3
(
𝑋 ′

2
)

𝜕𝑥2

〈
𝑢′2
𝜕𝑢′2

∗

𝜕𝑥2

〉
−
𝜕𝑈3

(
𝑋 ′

2
)

𝜕𝑥2

𝜕𝑈3 (𝑋2)
𝜕𝑥2

〈
𝜕𝑢′2
𝜕𝑥2

𝑢′2
∗
〉
+ 𝜕𝑈1 (𝑋2)

𝜕𝑥1

𝜕𝑈3
(
𝑋 ′

2
)

𝜕𝑥1

〈
𝑢′1
𝜕𝑢′1

∗

𝜕𝑥2

〉
−
𝜕𝑈1

(
𝑋 ′

2
)

𝜕𝑥1

𝜕𝑈3 (𝑋2)
𝜕𝑥1

〈
𝜕𝑢′1
𝜕𝑥2

𝑢′1
∗
〉
+ 𝜕𝑈1 (𝑋2)

𝜕𝑥1

𝜕𝑈3
(
𝑋 ′

2
)

𝜕𝑥2

〈
𝑢′1
𝜕𝑢′2

∗

𝜕𝑥2

〉
−
𝜕𝑈1

(
𝑋 ′

2
)

𝜕𝑥1

𝜕𝑈3 (𝑋2)
𝜕𝑥2

〈
𝜕𝑢′2
𝜕𝑥2

𝑢′1
∗
〉)]

𝑑𝑋2𝑑𝑋
′
2𝑑k′

(7)

Following Grasso et al. [18], the ensemble average of velocity fluctuations can be written as:〈
𝑢𝑖 (k, 𝑋2)𝑢 𝑗

(
k′, 𝑋 ′

2
)〉

= 𝜑𝑖 𝑗
(
k, 𝑟2 = |𝑋2 − 𝑋 ′

2 |
)
𝛿(k − k′) (8)

The 2D cross-spectral density of turbulent velocity fluctuations 𝜑𝑖 𝑗 appearing in expression Eq. (8) needs to be
modeled. Moreover, let us assume that operators < . > and 𝜕

𝜕𝑥2
commute. Following Kraichnan (Eqs.(5.8)-(5.9)) [31],

we can write:

<
𝜕𝑢′

𝑖

𝜕𝑥2

𝜕𝑢′
𝑖

𝜕𝑥2

∗

>=
𝜕2𝜑𝑖𝑖

𝜕𝑟2
2

(9)

and
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<
𝜕𝑢′

𝑖

𝜕𝑥2
𝑢′
𝑖

∗
>=

𝜕𝜑𝑖 𝑗

𝜕𝑟2
(10)

According to Wilson [36], we also have: 𝜑21 = −𝜑12. Hence, Eq. (7) can be simplified:

𝜙𝑝𝑝 (k) =
∫ ∫ ∞

0

4𝜌2

𝑘2 𝑒
−(𝑋2+𝑋′

2)𝑘×[
𝑘2

1 ×
(
𝜕𝑈1 (𝑋2)
𝜕𝑥2

𝜕𝑈1
(
𝑋 ′

2
)

𝜕𝑥2
𝜑22 +

𝜕𝑈1 (𝑋2)
𝜕𝑥1

𝜕𝑈1
(
𝑋 ′

2
)

𝜕𝑥1
𝜑11

)
+𝑘2

3 ×
(
𝜕𝑈3 (𝑋2)
𝜕𝑥2

𝜕𝑈3
(
𝑋 ′

2
)

𝜕𝑥2
𝜑22 +

𝜕𝑈3 (𝑋2)
𝜕𝑥1

𝜕𝑈3
(
𝑋 ′

2
)

𝜕𝑥1
𝜑11

)
+2𝑘1𝑘3 ×

(
𝜕𝑈1 (𝑋2)
𝜕𝑥2

𝜕𝑈3
(
𝑋 ′

2
)

𝜕𝑥2
𝜑22 +

𝜕𝑈3 (𝑋2)
𝜕𝑥1

𝜕𝑈1
(
𝑋 ′

2
)

𝜕𝑥1
𝜑11

)
+𝜕𝑈2 (𝑋2)

𝜕𝑥1

𝜕𝑈2
(
𝑋 ′

2
)

𝜕𝑥1

𝜕2𝜑11

𝜕𝑟2
2

+ 𝜕𝑈2 (𝑋2)
𝜕𝑥2

𝜕𝑈2
(
𝑋 ′

2
)

𝜕𝑥2

𝜕2𝜑22

𝜕𝑟2
2

−2𝑖𝑘1 ×
(
𝜕𝑈2 (𝑋2)
𝜕𝑥1

𝜕𝑈1
(
𝑋 ′

2
)

𝜕𝑥2
− 𝜕𝑈2 (𝑋2)

𝜕𝑥2

𝜕𝑈1
(
𝑋 ′

2
)

𝜕𝑥1

)
× 𝜕𝜑12
𝜕𝑟2

−2𝑖𝑘3 ×
(
𝜕𝑈2 (𝑋2)
𝜕𝑥1

𝜕𝑈3
(
𝑋 ′

2
)

𝜕𝑥2
− 𝜕𝑈2 (𝑋2)

𝜕𝑥2

𝜕𝑈3
(
𝑋 ′

2
)

𝜕𝑥1

)
× 𝜕𝜑12
𝜕𝑟2

]
𝑑𝑋2𝑑𝑋

′
2

(11)

The wall-pressure frequency spectrum 𝐺 𝑝𝑝 (𝜔) can be obtained from the wavenumber cross-spectrum by integrating
over 𝑘3 and adopting Taylor’s hypothesis of frozen turbulence [37] in the streamwise direction. For a given pulsation 𝜔,
the only contributing wavenumber is 𝑘𝑐 = 𝜔

𝑈𝑐
, with𝑈𝑐 the convection velocity of pressure fluctuations. Panda et al.[24]

measured𝑈𝑐 = 0.53𝑈∞. It follows:

𝐺 𝑝𝑝 (𝜔) =

∫ ∞
−∞ 𝜙𝑝𝑝

(
𝜔
𝑈𝑐
, 𝑘3

)
𝑑𝑘3

𝑈𝑐

(12)

Integrating over the whole frequency range and taking the square root of the result, we get the rms (root-mean-square)
pressure:

𝑝𝑟𝑚𝑠 =

√︄∫ ∞

0
𝐺 𝑝𝑝 (𝜔)𝑑𝜔 (13)

D. Turbulence modeling
The cross-spectral density of turbulent velocity fluctuations 𝜑𝑖 𝑗 can be computed from the turbulent kinetic energy

spectral density 𝐸
(−→̂)

, with −→̂
= (𝑘1, 𝑘2, 𝑘3) and ^ =

√︃
𝑘2

1 + 𝑘
2
2 + 𝑘

2
3. In this study we use the Von Kármán model

given by:

𝐸 (^) = 4Γ(a + 5/2)
√
𝜋Γ(a)

𝜎2^4𝑙5(
1 + ^2𝑙2

)a+5/2 (14)

with a = 1/3.
Batchelor [38] gives an expression for the 3D turbulent velocity fluctuations spectra Φ𝑖 𝑗 , knowing the energy

spectrum:

Φ𝑖 𝑗 (^) =
𝐸 (^)
4𝜋^4

(
𝛿𝑖 𝑗^

2 − 𝑘𝑖𝑘 𝑗
)

(15)
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The 2D spectra 𝜑𝑖 𝑗 are finally obtained by computing the inverse Fourier transform of the 3D spectra. Reminding
that 𝑘 =

√︃
𝑘2

1 + 𝑘
2
3 and 𝐾𝑧 is the modified Bessel function of the second kind of order 𝑧, the following expressions are

given by Wilson [36]:

𝜑11 (𝑘1, 𝑘3, 𝑟2) =
𝜎2𝑙2ba+1

2𝜋aΓ(a)
(
1 + 𝑘2𝑙2

)a+1 ×
[(
a + 3

2

)
𝐾a+1 (b) −

b
(
1 + 𝑘2

1𝑙
2)

2
(
1 + 𝑘2𝑙2

) 𝐾a+2 (b)
]

(16)

𝜑22 (𝑘1, 𝑘3, 𝑟2) =
𝜎2𝑙2𝑘2ba+2

𝜋2a+1Γ(a)
(
1 + 𝑘2𝑙2

)a+2𝐾a+2 (b) (17)

𝜑12 (𝑘1, 𝑘3, 𝑟2) = − 𝑖𝜎2𝑙3𝑘1b
a+2

𝜋2a+1Γ(a)
(
1 + 𝑘2𝑙2

)a+3/2𝐾a+1 (b) (18)

with b = 𝑟2
√

1+k2𝑙2

𝑙
.

The variance 𝜎2 is defined as 𝜎2 = 𝑢′22 . The characteristic length 𝑙 is related to the longitudinal integral length scale
Λ through equation 19:

𝑙 =
Γ(a)

√
𝜋Γ(a + 1/2)

Λ (19)

The isotropic longitudinal integral length scale is given by Kamruzzaman [39]:

Λ = 0.23𝜋

(
2
3 𝑘𝑡

) 3
2

𝜖
(20)

with 𝑘𝑡 the turbulent kinetic energy and 𝜖 the dissipation.
A last step of modeling is necessary, as Λ and 𝜎2 depend on both 𝑋2 and 𝑋 ′

2 in the present model, whereas these
physical quantities are defined as functions of only one normal Cartesian component. Following Fischer [17], Λ and 𝜎2

are modeled by their geometric mean:

Λ
(
𝑋2, 𝑋

′
2
)
=

√︁
Λ(𝑋2)Λ(𝑋2) (21)

𝜎2 (𝑋2, 𝑋
′
2
)
=

√︁
𝜎2 (𝑋2)𝜎2 (𝑋2) (22)

The limits for 𝑟2 −→ 0 are:

𝜑22 (𝑟2 = 0) = a(a + 1)𝜎2𝑙4𝑘2

𝜋
(
1 + 𝑙2𝑘2)a+2 (23)

𝜑11 (𝑟2 = 0) = 𝜎2𝑙2a

𝜋
(
1 + 𝑙2𝑘2)a+1

[
a + 3

2
− (a + 1)

1 + 𝑘2
1𝑙

2

1 + 𝑘2𝑙2

]
(24)

𝜑12 (𝑟2 = 0) =
𝜎2𝑙2a𝑘2

1

𝜋
(
1 + 𝑙2𝑘2)a+1 (25)

V. Extension to compressible flows
In the previous section, a solution of the incompressible Poisson equation was derived to predict the pressure spectra

and rms levels at the wall. However, this study aims at predicting these quantities in the transonic regime, where
compressibility effects cannot be neglected.

Thus, this section focuses on adapting our model to compressible flows from the study of the compressible
formulation of the Poisson equation. The impact of compressibility on wall pressure fluctuations has already been
studied by some authors. Bernardini et Pirozzoli [40] studied supersonic turbulent boundary layers and found that
the magnitude of wall-pressure fluctuations was weakly affected by compressibility effects, whose influence was only
visible in the high frequency range of pressure spectra. However, Kistler & Chen [41] observed that the increase of the
Mach number in supersonic boundary layers decreases the length scale of the pressure field.
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To derive a compressible formulation for the Poisson equation, we start from the divergence of the momentum
equation, where mean and fluctuating quantities are separated using Favre averaging. Similarly to the incompressible
case, the Favre-averaged part is substracted and the mass conservation equation is used to get the following compressible
Poisson equation [42, 43]:

∇2𝑝′ =
𝜕2𝜌′

𝜕𝑡2
− 𝜕2

𝜕𝑥𝑖𝜕𝑥 𝑗

[
𝜌′𝑈𝑖𝑈 𝑗

]
− 𝜕2

𝜕𝑥𝑖𝜕𝑥 𝑗

[
2𝜌𝑈𝑖𝑢 𝑗” − 𝜌𝑢𝑖”𝑢 𝑗” + 𝜌𝑢𝑖”𝑢 𝑗”

]
(26)

The complete derivation of this equation can be found in appendix A. The first term in the right-hand side of Eq. (26)
accounts for the propagation of acoustic waves. Bernardini & Pirozzoli [40] suggest that these acoustic waves are
responsible for the increase of the energy content in the high frequency range of the pressure spectra. The second term
describes the effect of density fluctuations on the fluctuating pressure field. Following Lee et al. [42], these two terms
are neglected, as well as the second derivatives of the fluctuating and mean quantities of the rapid nonlinear term. The
final form of the compressible Poisson equation is then:

∇2𝑝′ = −2
𝜕𝑢 𝑗”
𝜕𝑥𝑖

𝜕𝜌𝑈𝑖

𝜕𝑥 𝑗
− 𝜕2

𝜕𝑥𝑖𝜕𝑥 𝑗

[
𝜌𝑢𝑖”𝑢 𝑗” − 𝜌𝑢𝑖”𝑢 𝑗”

]
(27)

The resulting equation is analogous to the incompressible Poisson equation (Eq 2), except for the variable density
that is left inside the spatial derivatives. Following the same steps as in section IV.C for the analytical resolution,
Eq. (28) is obtained for the compressible form of the wavenumber spectral density of wall-pressure fluctuations.

𝜙𝑝𝑝 (k) =
∫ ∫ ∞

0

4
k2 𝑒

−(𝑋2+𝑋′
2)𝑘×[

𝑘2
1 ×

(
𝜕𝜌𝑈1 (𝑋2)

𝜕𝑥2

𝜕𝜌𝑈1
(
𝑋 ′

2
)

𝜕𝑥2
𝜑22 +

𝜕𝜌𝑈1 (𝑋2)
𝜕𝑥1

𝜕𝜌𝑈1
(
𝑋 ′

2
)

𝜕𝑥1
𝜑11

)
+𝑘2

3

(
𝜕𝜌𝑈3 (𝑋2)

𝜕𝑥2

𝜕𝜌𝑈3
(
𝑋 ′

2
)

𝜕𝑥2
𝜑22 +

𝜕𝜌𝑈3 (𝑋2)
𝜕𝑥1

𝜕𝜌𝑈3
(
𝑋 ′

2
)

𝜕𝑥1
𝜑11

)
+𝑘1𝑘3

(
𝜕𝜌𝑈1 (𝑋2)

𝜕𝑥2

𝜕𝜌𝑈3
(
𝑋 ′

2
)

𝜕𝑥2
𝜑22 +

𝜕𝜌𝑈3 (𝑋2)
𝜕𝑥1

𝜕𝜌𝑈1
(
𝑋 ′

2
)

𝜕𝑥1
𝜑11

)
+𝜕𝜌𝑈2 (𝑋2)

𝜕𝑥1

𝜕𝜌𝑈2
(
𝑋 ′

2
)

𝜕𝑥1

𝜕2𝜑11

𝜕𝑟2
2

+ 𝜕𝜌𝑈2 (𝑋2)
𝜕𝑥2

𝜕𝜌𝑈2
(
𝑋 ′

2
)

𝜕𝑥2

𝜕2𝜑22

𝜕𝑟2
2

+2𝑖𝑘1 ×
(
𝜕𝜌𝑈2 (𝑋2)

𝜕𝑥1

𝜕𝜌𝑈1
(
𝑋 ′

2
)

𝜕𝑥2
− 𝜕𝜌𝑈2 (𝑋2)

𝜕𝑥2

𝜕𝜌𝑈1
(
𝑋 ′

2
)

𝜕𝑥1

)
× 𝜕𝜑12
𝜕𝑟2

+2𝑖𝑘3 ×
(
𝜕𝜌𝑈2 (𝑋2)

𝜕𝑥1

𝜕𝜌𝑈3
(
𝑋 ′

2
)

𝜕𝑥2
− 𝜕𝜌𝑈2 (𝑋2)

𝜕𝑥2

𝜕𝜌𝑈3
(
𝑋 ′

2
)

𝜕𝑥1

)
× 𝜕𝜑12
𝜕𝑟2

]
𝑑𝑋2𝑑𝑋

′
2

(28)

VI. Results

A. Principle and numerical implementation
As illustrated in the schematic diagram of Fig. 6, the model introduced in this study provides the wall-pressure

spectrum at a given streamwise location, taking as inputs azimuthally-averaged profiles of mean flow variables in the
wall-normal direction.

In addition to the ZDES computation, RANS simulations with Spalart-Allmaras (SA) and Spalart-Allmaras with
rotations correction (SAR) models were conducted to study the impact of the input mean flow field on the results
predicted by the present model for a same configuration.

11



However, some of the required mean quantities may not be provided depending on the chosen turbulence model in
the simulation. In that case, missing variables must be rebuilt using an ad-hoc model. Table 1 lists the available and
missing input variables yielded by a ZDES, RANS SA and RANS SAR simulation.

Fig. 6 Schematic representation of the working principle of the spectral model.

Table 1 Available and missing mean flow variables depending on the CFD turbulence model

CFD solver turbulence model
ZDES RANS SA/SAR

M
ea

n
flo

w
va

ria
bl

e 𝜕𝑈𝑖

𝜕𝑥 𝑗
(6 variables) ✓ ✓

𝜌 ✓ ✓

𝑢2
2 ✓ ✗

^𝑡 ✓ ✗

𝜖 ✓ ✗

The following modelling approaches were used for the missing variables in the case of RANS mean flow fields:
• isotropic turbulence: 𝑢2

2 = 2
3 𝑘𝑡

• production and dissipation 𝜖 of turbulent kinetic energy are equal:

𝜖 = −𝑢′1𝑢
′
2

(
𝜕𝑈1
𝜕𝑥2

+ 𝜕𝑈2
𝜕𝑥1

)
− 𝑢′21

𝜕𝑈1
𝜕𝑥1

− 𝑢′22
𝜕𝑈2
𝜕𝑥2

(29)

• we used the quadratic constitutive relation (QCR) of Mani et al. [44] to rebuild 𝑘𝑡 :

2
3
𝜌𝑘𝑡𝛿𝑖 𝑗 = 2.5`𝑡

√︁
2𝑆∗𝑚𝑛𝑆

∗
𝑚𝑛𝛿𝑖 𝑗 (30)

𝑆∗𝑖 𝑗 = 𝑆𝑖 𝑗 −
1
3
𝜕𝑈𝑘

𝜕𝑥𝑘
𝛿𝑖 𝑗 (31)

𝑆𝑖 𝑗 =
1
2

(
𝜕𝑈𝑖

𝜕𝑥 𝑗
+
𝜕𝑈 𝑗

𝜕𝑥𝑖

)
(32)

For a given streamwise location, the computation of the rms pressure coefficient still requires the evaluation of a
5-dimensional integral. The computational cost using classical integration methods (e.g. trapezoidal rule, Simpson)
becomes prohibitive. In this study, the computation of the successive integrals is achieved using 15 and 30-point
Gaussian quadratures [45]. The chosen numbers of points have been shown to be sufficient by comparing integrals
computed using Gaussian quadratures and the classical trapezoidal rule.

B. Application on a ZDES-based mean flow field
The present model was first applied using the ZDES-computed mean flow field as input. We first present the

predicted evolution of the fluctuating wall-pressure coefficient along the wall, then computed wall pressure spectra and
maps of the power spectral density of pressure fluctuations are displayed and compared to the ZDES results.
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1. Predicted fluctuating pressure coefficient 𝐶𝑝𝑟𝑚𝑠

The rms pressure coefficient at the wall computed using the present model applied to the ZDES mean flow field is
plotted in Fig. 7 and compared with the reference ZDES results. One can note that the present spectral model allows to
successfully retrieve the evolution of the fluctuating wall-pressure coefficient along the wall. In particular, the peaks
due to the reattachment, the recompression or the expansion of the flow (𝑋/𝐷 = 1.1, 3 and 4.7) are accurately located,
and levels of pressure fluctuations in the reattached zone of the flow (after the peak located at 𝑋/𝐷 = 1.1) are in good
overall agreement with ZDES. In particular, along the first stage (from 𝑋/𝐷 = 4.7), where the flow is attached and is
characterized by a boundary layer development, the predicted 𝐶𝑝𝑟𝑚𝑠 are in good agreement with ZDES data. However,
the fluctuation levels around the reattachement point and at the second stage - flare intersection are overestimated. Along
the payload fairing, the model predicts higher levels of fluctuations compared to ZDES. This is expected as reference
pressure fluctuations computed with URANS mode are underestimated (as explained in section III.E.

Fig. 7 Comparison of the fluctuating wall-pressure coefficient computed using the present model applied to a
ZDES mean flow field (red dotted line) and ZDES results (black line).

2. Predicted wall-pressure spectra
Single-point wall-pressure spectra in different zones of the flow are plotted in Fig. 8 and 9 and compared to spectra

obtained with the ZDES computation.
The best predictions occur in the heart of the recirculation zone (points (b), (c) and (d) of Fig. 8) and along the first

stage (points (g) and (h) of Fig. 9). In most of the flow areas, the slope of the predicted spectra in the high frequency
range is underestimated. In the compression corner (flare-second stage intersection), the PSD is highly overpredicted.
Significant discrepancies can also be found for low Strouhal numbers.

In order to improve the representation of the spatial organisation of the spectral content of the wall pressure field,
maps of single-point power spectra of the fluctuating pressure field are displayed in Fig. 10. A common area of high
energy is observed in both maps (zone I). It corresponds to the reattachment region, where fluctuations are the most
intense. This visualization also enhances the overprediction of the level of fluctuations by our model in this area, also
visible in spectra (e) and (f) of Fig. 8. In the very low frequency range (𝑆𝑡𝐷 < 0.005), a spurious zone of high energy
located in the recirculation region and centered around 𝑋/𝐷 = 0.6 is predicted by the present model. Using our model,
this high-energy region extends slightly on the second part of the first stage (zone II), which is consistent with the
overestimation of the PSD for 𝑆𝑡𝐷 in the range [0.1, 1] in Fig. 8(g).

At the beginning of zone III, the overprediction of the PSD in the compression corner is enhanced by a thin band
extending in the range 𝑆𝑡𝐷 ∈ [0, 1]. At the edge of the first stage (zone IV), a rise of the pressure fluctuations level is
accurately predicted (corresponding to the last peak in Fig. 7). However, using our model, the predicted energy content
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Fig. 8 Comparison of the wall-pressure spectra computed using the present model applied to a ZDES mean
flow field (red lines) and ZDES (black lines). Spectra are located along the fairing boattail and the second stage.

at this position is limited to very low frequencies (monotonic decay of the predicted spectrum in Fig. 9(f)), whereas the
ZDES computation predicts a peak centered around 𝑆𝑡𝐷 = 0.4.

C. Application on RANS-based mean flow fields
This section aims at assessing the possibility of predicting the unsteady pressure field without resorting to any costly

unsteady simulation. The present model was therefore applied using RANS mean flow fields as inputs. Two RANS
computations were conducted using the Spalart-Allmaras (SA) and Spalart-Allmaras with rotation correction (SAR)
turbulence models, respectively.

As in the previous section, we first focus on the predicted rms pressure coefficient at the wall compared to ZDES
and experimental results, before looking at the single-point wall-pressure spectra.

1. Predicted fluctuating pressure coefficient 𝐶𝑝𝑟𝑚𝑠

Figure 11 shows the predicted evolution of the fluctuating wall-pressure coefficient using RANS SA and RANS
SAR computations as input, as well as the reference ZDES results.

The overall evolution of 𝐶𝑝𝑟𝑚𝑠 is still well predicted, given the simplicity and the computational efficiency of the
present model associated to a RANS simulation. The same peaks of intense fluctuations are retrieved, and levels of
𝐶𝑝𝑟𝑚𝑠 along the payload fairing and the first stage are very similar compared to the results obtained using a ZDES
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Fig. 9 Comparison of the wall-pressure spectra computed using the present spectral model applied to a ZDES
mean flow field (red lines) and ZDES (black lines). Spectra are located along the interstage flare and the first
stage.

mean flow field as input (Fig. 7). However, in the separating/reattaching zone of the flow (𝑋/𝐷 ∈ [0 − 2.8]), the levels
of 𝐶𝑝𝑟𝑚𝑠 are underpredicted compared with ZDES. It can be assumed that the approximate estimation of the modeled
quantities 𝑢2

2, 𝑘𝑡 and 𝜖 listed in Table. 1 is mainly responsible for these discrepancies. Finally, the use of SAR RANS
model improves slightly the prediction in the separated flow region compared to the results obtained with the SA model.
A small spurious peak at the fairing/second stage intersection (𝑋/𝐷 = 0.3) predicted using the SA model disappears
when using the SAR model. In addition, the present model applied to a RANS SAR flow field yields better results along
the first stage, as the predicted 𝐶𝑝𝑟𝑚𝑠 levels are similar to the reference ZDES results.

These results enhance the high sensitivity of the present analytical model to the quality of the input mean flow field,
hence consequently to the underlying CFD computation. Especially, the discrepancies between results obtained using
RANS SA and RANS SAR models suggest that the chosen turbulence model has a significant impact on the quality of
the results. Finally, it is clear that resorting to an unsteady hybrid RANS-LES simulation such as ZDES yields better
results in most parts of the flow.

2. Predicted wall-pressure spectra
The predicted pressure spectra using RANS SA and RANS SAR mean flow fields as input are plotted in Figs. 12 and

13. They have been computed at the same streamwise positions compared to Figs. 8 and 9. In the recirculation bubble
and the reattachement region along the second stage, predicted spectra are in good agreement with ZDES results in the
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(a) (b)

Fig. 10 Comparison of the power spectral density (PSD) maps of the fluctuating pressure computed using ZDES
(a) and the present spectral model applied to a ZDES mean flow field (b) in the separated/reattaching flow region.

Fig. 11 Comparison of the fluctuating wall-pressure coefficient computed using the present spectral model
applied to a RANS SA (blue line) and RANS SAR (green lines) mean flow field and ZDES results (black line).

medium and high frequency ranges (𝑆𝑡𝐷 > 0.2). However, pressure fluctuation levels are significantly underpredicted
at low frequency, as the predicted power spectral density tends to locally decrease at low Strouhal numbers. These
discrepancies may explain the constant underestimation of 𝐶𝑝𝑟𝑚𝑠 in this area observed in Fig. 11.

Similar observations are made for spectra located along the flare and the first stage of the launcher (Fig. 13): spurious
decrease of the PSD at low frequency while the shape of the spectrum is mostly preserved in the mid-frequency region.
However, the predicted PSD is mostly overpredicted at high frequency. The rapid decrease of the PSD in this frequency
range and the similar 𝐶𝑝𝑟𝑚𝑠 levels observed in Fig. 11 suggest that this gap has low influence on the predicted pressure
fluctuation levels. Finally, the spectrum of Fig. 13(f) is clearly distinguishable as it fails to approximate the ZDES
spectrum in the whole frequency range. It corresponds to a sudden expansion of the flow located at a geometric
discontinuity. One may assume that some of the hypotheses of the present model listed in section IV.B are locally
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unvalidated.

Fig. 12 Comparison of the wall-pressure spectra computed using the present spectral model applied to a RANS
SA (blue line), and RANS SAR (green line) mean flow field and ZDES (black line)

Regarding the maps of power spectral density of pressure fluctuation (Fig. 14), the same zones are evidenced.
However, the predicted pressure fluctuations in the reattachment region present a lower energy content compared with
the previous case, especially for the SAR case, which is consistent with the results observed in section VI.C.1. The
underprediction of the PSD in the range 𝑆𝑡𝐷 ∈ [0.1 − 1] at the flare/first stage intersection applying the present spectral
model on RANS mean flow fields is more significant (see zone IV of Fig. 14c) and Fig. 14f)), compared to the
observations of section VI.B.2.

These results enhance the fact that using a RANS mean flow field with Spalart-Allmaras turbulence model as input
(instead of ZDES mean flow data) for our spectral model leads to underestimate the pressure fluctuation levels in the
reattachment zone. However, considering the lower computational cost of a RANS simulation, it gives a fair estimation
of pressure fluctuation levels and their spatial organisation. The choice of the underlying CFD simulation is therefore a
trade-off between accuracy of the results and computation cost.

Moreover, considering the case where a ZDES computation is necessary, the present spectral model yields wide-band
spectra from a converged mean flow field. Hence, it is still significantly time-saving as it is not necessary to let the
ZDES simulation run for a long time to acquire pressure history at the wall.

Finally, future works will consist in studying the model performance using alternative RANS turbulence models
such as the 𝑘 − 𝜔 SST model, that gives 𝑘𝑡 and 𝜖 . As these variables will not be estimated using an ad-hoc model
anymore, more accurate results could be expected.
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Fig. 13 Comparison of the wall-pressure spectra computed using the present spectral model applied to a RANS
SA (blue lines), and RANS SAR (green lines) mean flow field and ZDES (black lines)

(a) (b) (c)

Fig. 14 Comparison of the power spectral density (PSD) maps of the fluctuating pressure computed using ZDES
(a) and the present spectral model applied to a RANS SA (b) and RANS SAR (c) mean flow field.

VII. Conclusion
A new analytical spectral model for the prediction of wall-pressure fluctuations has been introduced. Its applicability

to compressible flows around complex configurations, characterized by flow separation and reattachment and strong
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pressure gradients has been assessed. The model is based on a resolution in the wavenumber domain of the compressible
Poisson equation governing pressure fluctuations. The Von Kármán energy spectrum is used to model turbulence
statistics appearing in the formulation. Velocity components in the three directions of space are taken into account, as
well as the gradients in the streamwise and wall-normal directions. The resulting 3D model is then adapted to treat
axisymmetric configurations such as space launchers.

This newly developed spectral model was evaluated on a transonic hammerhead launcher configuration (NASA
model 11). A ZDES computation has been conducted and validated using experimental data. Applied to the resulting
azimuthally-averaged mean flow field, our model provided results in fair agreement with ZDES and experimental results.
In particular, the spatial organisation of pressure fluctuations as well as their spectral distribution were retrieved.

For this configuration, we also demonstrated that results are highly sensitive to the input mean flow field, and
consequently the underlying turbulence model used in the simulation. Using RANS mean flow fields as input, the
accuracy of the model prediction is locally decreased compared to the one obtained with a ZDES time-averaged flow.
However, such an approach offers a compromise of clear interest considering the lower computational cost of RANS
simulations. In the early stages of design, it can be worth getting orders of magnitude for relevant unsteady quantities
such as the fluctuating pressure using models requiring few computational resources.

Finally, this study brought perspectives to enhance the model predictions. One can expect improved results using
RANS turbulence models that output the turbulent kinetic energy and the turbulent dissipation rate such as the 𝑘 − 𝜔
SST model. Finally, these results could be supported by the application of the present model to other configurations.
All in all, this work paves the way to predict wall-pressure fluctuations for a wide variety of space launchers without
resorting to costly unsteady simulations.

Appendix

A. Derivation of the compressible Poisson equation for pressure fluctuations
The continuity and momentum equations for compressible perfect Newtonian gas are:

𝜕𝜌

𝜕𝑡
+ 𝜕𝜌𝑢𝑖
𝜕𝑥𝑖

= 0 (33)

𝜕𝜌𝑢𝑖

𝜕𝑡
+
𝜕𝜌𝑢𝑖𝑢 𝑗

𝜕𝑥 𝑗
= − 𝜕𝑝

𝜕𝑥𝑖
+
𝜕𝜏𝑖 𝑗

𝜕𝑥 𝑗
(34)

where 𝜏𝑖 𝑗 is the viscous stress tensor.
The analogous FANS (Favre-averaged Navier Stokes) equations are:

𝜕𝜌

𝜕𝑡
+ 𝜕𝜌𝑈𝑖

𝜕𝑥𝑖
= 0 (35)

𝜕𝜌𝑈𝑖

𝜕𝑡
+
𝜕𝜌𝑈𝑖𝑈 𝑗

𝜕𝑥 𝑗
= − 𝜕𝑝

𝜕𝑥𝑖
+
𝜕

(
𝜏𝑖 𝑗 − 𝜌𝑢𝑖”𝑢 𝑗”

)
𝜕𝑥 𝑗

(36)

By taking the divergence of equation Eq. (34), we get:

∇2𝑝 = − 𝜕

𝜕𝑥𝑖

𝜕𝜌𝑢𝑖

𝜕𝑡
− 𝜕2

𝜕𝑥𝑖𝜕𝑥 𝑗

(
𝜌𝑢𝑖𝑢 𝑗

)
+
𝜕2𝜏𝑖 𝑗

𝜕𝑥𝑖𝜕𝑥 𝑗
(37)

The same operation is performed on equation Eq. (36) to obtain the following expression:

∇2𝑝 = − 𝜕

𝜕𝑥𝑖

𝜕𝜌𝑈𝑖

𝜕𝑡
− 𝜕2

𝜕𝑥𝑖𝜕𝑥 𝑗

(
𝜌𝑈𝑖𝑈 𝑗

)
+ 𝜕2

𝜕𝑥𝑖𝜕𝑥 𝑗

(
𝜏𝑖 𝑗 − 𝜌𝑢𝑖”𝑢 𝑗”

)
(38)

Equation (37) is split into mean and fluctuating part using Favre averaging:

∇2 (𝑝 + 𝑝′) = − 𝜕

𝜕𝑥𝑖

𝜕𝜌

(
𝑈𝑖 + 𝑢𝑖”

)
𝜕𝑡

− 𝜕2

𝜕𝑥𝑖𝜕𝑥 𝑗

(
𝜌

(
𝑈𝑖 + 𝑢𝑖”

) (
𝑈 𝑗 + 𝑢 𝑗”

))
+
𝜕2𝜏𝑖 𝑗

𝜕𝑥𝑖𝜕𝑥 𝑗
(39)
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Substracting Eq. (38) from Eq. (39) and neglecting viscous effects:

∇2𝑝′ =
𝜕2

𝜕𝑥𝑖𝜕𝑡

[
−𝜌𝑢𝑖 + 𝜌𝑈𝑖

]
+ 𝜕2

𝜕𝑥𝑖𝜕𝑥 𝑗

[
−𝜌′𝑈𝑖𝑈 𝑗 − 𝜌𝑢𝑖”𝑢 𝑗” + 𝜌𝑢𝑖”𝑢 𝑗”

]
− 2

𝜕2

𝜕𝑥𝑖𝜕𝑥 𝑗

[
𝜌𝑈𝑖𝑢 𝑗”

]
(40)

By combining Eq. (40) with the continuity equations (33) and (35), the final form of the compressible Poisson
equation of obtained:

∇2𝑝′ =
𝜕2𝜌′

𝜕𝑡2
− 𝜕2

𝜕𝑥𝑖𝜕𝑥 𝑗

[
𝜌′𝑈𝑖𝑈 𝑗

]
− 𝜕2

𝜕𝑥𝑖𝜕𝑥 𝑗

[
2𝜌𝑈𝑖𝑢 𝑗” − 𝜌𝑢𝑖”𝑢 𝑗” + 𝜌𝑢𝑖”𝑢 𝑗”

]
(41)
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