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Abstract

Magnetic Resonance Imaging (MRI) acquisition is per-
formed sequentially in the spatial-frequency domain (k-
space) and involves several views of the object/subject.
To accelerate the acquisition, k-space lines are often
undersampled on a cartesian grid. Parallel imaging
reconstruction algorithms are then applied to recover
unseen lines. We consider this super-resolution prob-
lem in k-space to further reduce the acquisition time
with deep learning and to reduce the costs associated
with this expensive medical imaging technology. Be-
cause the sensors are specific to anatomical regions
and experimental setups, it pushes toward learning a
reconstruction model on a per-image basis, i.e. for ev-
ery scan and image. Here, we propose an extension
of state-of-the-art MRI reconstruction methods where
the super-resolution task in k-space is solved with a
convolutional neural network, and where an adversar-
ial strategy using a patch discriminator in image space
is used to reach higher undersampling rates. Both
parts are trained in a one-shot learning setting. It is
demonstrated both using simulated and in vivo brain
experiments that this combined approach provides en-
hanced image quality for undersampling rates larger
than the ones used in a clinical routine on multi-slice
2D T2-weighted imaging sequences, making the ap-
proach readily applicable as an alternative reconstruc-
tion strategy in MRI systems for 2D parallel imaging,
and which could be further extended to accelerate 3D
imaging sequences.
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1 Introduction

Magnetic resonance imaging (MRI) is a major diag-
nostic tool indicated in many diseases and is central
to biomedical research. To provide a few examples, it
is used in oncology to characterize tumour evolution,
response to treatments or surgical planning; in neurol-
ogy to detect and follow up brain lesions such as in
multiple sclerosis or epilepsy, to locate fine structures
deep in the brain for treating Parkinson’s diseases or to
characterize atrophy in Alzheimer’s disease. MRI is ex-
tremely versatile in the information it provides thanks
to a multiplicity of contrast mechanisms. However, this
is an expensive technology, and MRI exams are long,
typically lasting on the order of 30-45 minutes. Re-
ducing the duration of an MRI exam while keeping the
same information is challenging, but it is a key soci-
etal issue that would enable a wider availability and/or
higher diagnostic value.

There is a series of operations that are performed
from the raw MR signals to the final images that are
used for diagnosis. Indeed, MRI scanning principles
are based on the sequential acquisition of raw k-space
data which corresponds to the spatial frequencies of the
object/subject under observation. These sampled sig-
nals are complex-valued by nature. Additionally, the
object is simultaneously seen by several sensors, called
receiver coils. From a fully-sampled k-space, an MR
image is reconstructed by applying an inverse Fourier
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transform, and images are then combined from the dif-
ferent coils with, e.g., a sum-of-squares combination
[1].

The most common way to reduce the acquisition
time is to acquire fewer measurements by undersam-
pling k-space, and exploit the redundancy coming from
the multiple receiver-coil views to recover the missing
k-space lines. This strategy is called parallel imaging
(PI), which has been implemented in clinical MRI sys-
tems since its development in the years 2000’s [2], [3]. It
corresponds to a super-resolution problem in k-space.
A standard reconstruction algorithm is GRAPPA [3].

A recent class of MR reconstruction techniques are
based on deep learning (DL) [4]–[7]. AUTOMAP [5]
performs the reconstruction tasks based on extensive
simulations of the acquisition processes, while other
approaches are more directly focusing on the super-
resolution problem [4]. In order to perform this task,
variational networks [8] or generative models [9], [10]
were also proposed. DL based approaches hold great
promises in further improving the reconstruction qual-
ity, however, it often requires a large amount of data
for training [11]. Additionally, DL models trained on
one type of data might not be adapted to the variety
of MRI experimental conditions. Indeed, DL based
approaches pose a challenge in reconstructing high-
quality images for PI because of different acquisition
parameters, anatomical territories and configuration of
the receiver coils, which impede or reduce the capacity
of DL reconstruction approaches to be generally ap-
plicable to all MRI acquisitions. Additionally, models
trained using large datasets may also fail to general-
ize on rare pathologies, and this is one major concern
in the trust in DL-based diagnostic tools and for their
certification [12].

For the specific task of super-resolution in k-space,
a family of approaches have focused on learning sim-
ple models with few parameters enabling learning a
new model dedicated to each single image [6]. The
goal of recovering a High-Resolution (HR) fully sam-
pled k-space from the low resolution under-sampled k-
space data can be formalized as a Single Image Super-
Resolution (SISR) for MRI. In computer vision lit-
erature, SISR within the GAN framework [13] has
gain popularity (e.g.[14]). This idea has the advan-
tage to require less data for training, including scan-
specific ones, but does not make use of adversarial
learning to enhance the reconstructed image quality.
This approach was proposed in computer vision using
patch-discriminator [15] and further developed for im-
age translation tasks. A number of studies have since
been proposed to exploit adversarial training for MRI

reconstruction. Wang et al. [14] proposed a GAN
framework using a patch-discriminator for 3D single
image super-resolution on T1-weighted brain MRI im-
ages.

In this work, we focus on uniform undersampled ac-
quisitions for which we propose a novel one-shot super-
resolution method that combines parallel imaging-
inspired DL techniques following the line of works
opened by [3], [6]. A convolutional neural network op-
erating in the k-space domain is combined with patch-
based adversarial learning in the image domain and
trained for every new single image. It is demonstrated
both in simulation and in vivo that this approach
can achieve higher visual quality at higher accelera-
tion rates than current standard MRI reconstructions
of undersampled 2D acquisitions of brain images. The
adversarial discriminator does bring improvements in
reconstructed images quality although this does not
translate into objective measurements and on the gen-
eralization ability of learned models. Our approaches
could be extended in order to further accelerate the
acquisition of 3D MRI k-space data.

2 Background and Related
works

2.1 Background

In MRI, the signals collected are inherently complex-
valued. The MRI signal measured by the ith coil is
acquired in k-space and given by

Xi = F(cix), i ∈ 1, 2, ..nc (1)

where F is the Fourier transform, ci is a complex-
valued diagonal matrix encoding sensitivity of the ith

coil, nc is the number of coils, and x is the image to
estimate. In parallel imaging (PI), k-space is under-
sampled by

Si = MuXi +N (0, σ2), i ∈ 1, 2, ..nc (2)

where Mu is a binary mask operator and N (0, σ2) is
the measurement noise that follows a normal distribu-
tion on both real and imaginary part with zero mean
and a variance σ2, assumed to follow the same statis-
tics for all coils. The super-resolution problem can be
formalized as estimating a fully-sampled version of the
signals from the under-sampled multicoil signals. This
fully-sampled version can be writen as:

Ŝi = MfXi, i ∈ 1, 2, ..nc (3)
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where Mf is a binary mask that samples k-space suffi-
ciently such that an inverse Fourier transform provides
image estimates free of aliasing. When a fully-sampled
k-space is acquired or predicted, a single combined
image is reconstructed using, e.g, the sum-of-squares
(SoS) over coils as

x̂SoS =

√√√√ nc∑
i=1

F−1(Ŝi)2 (4)

where F−1 is the inverse Fourier transform. In the
following section, the relevant convolutional models to
perform the upsampling task are detailed.

2.2 Related works

Generalized Auto-calibrating Partially Parallel Acqui-
sitions (GRAPPA) have been broadly used in clinical
Magnetic Resonance Imaging. GRAPPA estimates the
missing k-space lines in each coil by a linear combina-
tion of its neighbourhood acquired data overall coils.
During acquisition, the central region of k-space (which
corresponds to low spatial frequencies) is fully sam-
pled. This region, called the Auto-Calibration Signal
or ACS, is used to estimate the GRAPPA weights G.
The under-sampling is simulated in the ACS in a uni-
form manner as shown in the figure 1. The GRAPPA
weights are then used at all spatial locations, which
can be formalised as a complex-valued convolution in
k-space from nc channels to nc channels.
The recently-proposed RAKI [6] non-linearly esti-

mates the missing k-space lines using multiple convolu-
tional layers and non-linear activation layers Rectified
Linear Unit (ReLU). The reconstruction is similar to
GRAPPA but uses a deep convolutional network in-
stead of linear convolutional kernels for interpolation
in k-space. The initial RAKI implementation suffered
from longer run time because of large number of convo-
lution networks were required. An alternate approach
called Line-By-Line (LBL) [16] CNN for RAKI was in-
troduced for clinically acceptable computational time
while preserving the reconstructed image quality. Here,
CNN models in this line are further developed and
trained in an adversarial way.

3 Problem setting

In MRI, k-space data can be acquired in 2D or 3D.
Here, we consider 2D acquisitions of several contigu-
ous slices, which is called 2D multi-slice imaging. In
the acquisition process, after a slice-selection, signals

only originate from the selected slice and k-space data
are acquired line by line in a sequential 2D scanning
process. A line of the 2D k-space is fully-sampled along
the frequency-encoding direction (the first dimension),
but each time with different phase-encoding, i.e., with
different sampling location in the second dimension. To
get an idea, in all the experiments that we will consider,
volumes are tensors of dimension ns, nc,nx,ny where ns

is the number of slices (2D images), nc is the number
of coils, nx and ny stand for the fully-sampled k-space
sizes along frequency-encoding and phase-encoding di-
rections, respectively.

According to the Nyquist–Shannon sampling theo-
rem, k-space is fully sampled when the distance be-
tween two k-space samples is smaller than the inverse
of the object size along this direction. In 2D acquisi-
tions, it means that phase-encoding lines should not be
too far appart to ensure that the reconstructed image
via an inverse Fourier transform is free of aliasing . The
acceleration rate, R, is defined as the ratio of the num-
ber of k-space lines that would be required to fullfill
Nyquist-Shannon criterion, to the number of effectively
acquired lines in an accelerated scan. The undersam-
pling could either be uniform (every other R line in
k-space), pseudo-random or ad-hoc. In this work, we
focus on uniform undersampling. Slices are considered
one at a time for learning a reconstrution model from
an undersampled view of it based on the ACS, and
the model is then applied on undersampled data to
estimate fully-sampled k-spaces for this specific slice.
In the next section is described how such a model is
trained and regularized using an adversarial strategy.

4 Model

We propose an MRI reconstruction model driven by an
adversarial loss as shown in Fig 2. We use as super-
resolution model, G, state-of-the-art zero-shot recon-
struction models such as GRAPPA and RAKI for uni-
form sampling. We perform Line-by-Line reconstruc-
tion as proposed in [16]. Such classical models did
not include validation during the training stage which
leads to overfitting. To overcome this issue, a train-
validation partition scheme for early stopping is intro-
duced as shown in Figure 1.

More specifically for a given acceleration rate R, we
create R − 1 networks which correspond to the R − 1
lines to be predicted. From undersampling the ACS,
we can obtain R data-target pairs that can be used as
reference data. We thus use R−1 data-target pairs for
training and the remaining pair for validation. To take
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Figure 1: a) An overview of the proposed Train-Validation Partition for the super-resolution network for uniform
sampling at R=3. Line-by-Line reconstruction is performed. For given R, R-1 networks are created for training.
Each network learns the parameters from an undersampled view of the ACS and (b) After the training is
performed, the weights are applied on the undersampled k-space data to obtain the final reconstruction i.e fully
sampled kspace. it is a combination of the predicted lines from each network.

into account the complex nature of k-space data, we
use complex implementation of the layers, as well as
real implementations initialy reported in the literature
[6] for comparison.

Moreover, to enhance the quality of the recon-
structed images, an adversarial discriminator that op-
erates on patches in image space (after inverse Fourier
transform and coil combination) is proposed. The ad-
versarial model is trained from a single fully-sampled
coil-combined image. This patch-based discriminative
network, D, is trained to distinguish between patches
generated from the fully sampled image as well as from
the reconstructed image. It is a convolutional neural
network that takes a patch as input and outputs a clas-
sification score.

4.1 Model description

Super-resolution model. We use standard dimen-
sioning of GRAPPA and RAKI models as used in pre-
vious studies [6]. Both models are convolutional net-
works. GRAPPA consists in one 2D complex conv-
block with kernel size of 5x4. RAKI is a CNN with
3 conv-blocks whose kernel sizes are 5x2, 1x1, 3x2
with ReLU activation functions. Original RAKI im-
plemented the convolution by concatenating the real
and imaginary components. Here, we also explore the
use of complexRAKI (cRAKI) which exploits a true
complex implementation: the convolution is replaced
by complex convolution and LeakyReLU is replaced
with complex LeakyReLU [17].

Patch discriminator. While GRAPPA is a stan-
dard reconstruction method that has been imple-
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Figure 2: The architecture of the proposed one-shot learning Super-ResolutIon with Adversarial training , SAN-
GRIA. It consists of super-resolution model (upsampler) coupled with a patch-discriminator. Super-resolution
models are either GRAPPA, RAKI or cRAKI.

mented on MRI systems for many years, the recon-
stucted image quality quickly degrades with the accel-
eration rate which is typically 2-3 in clinical practice.
In 2D imaging, R above 3 usually yields unusable im-
ages for diagnosis.
We therefore introduce a discriminator to increase

the quality of the upsampled image as it has been pro-
posed for natural image super-resolution [13] and more
recently for MRI images [14]. As the goal is to learn a
super-resolution model for each slice, one can only rely
on a patch-based adversarial discriminator, which has
to be learned on a few data. To cope with this par-
ticular setting, we experimented with a shallow patch
GAN discriminator with limited receptive field. We
choose it to accept input as 17x17 patch. The dis-
criminator consists of three convolution blocks, each
including a convolution layer, batch normalization and
LeakyReLU, followed by a fully connected layer with a
single decision output. Convolution layers have succes-
sively 1, 32 and 64 filters with size equal to 5× 5. The
discriminator takes the coil-combined image as input,
and outputs a decision score for each patch.
Training. The full model is trained with a combined

loss which is the sum of the reconstruction loss and of
the adversarial loss.

min
G

max
D

αLrec(G) + (1− α)Ladv(G,D) (5)

where α is a regularization parameter bewteen 0 and 1
that balances the two losses. The reconstruction loss is

the mean squared error loss between the reconstructed
ACS ŷ and the fully-sampled ACS y, restricted to the
training partition.

Lrec(y, ŷ) =
1

N

N∑
j=1

(yj − ŷj)
2 (6)

where N denotes the total number of k-space points.
The adversarial loss Ladv penalizes the reconstructor
for not generating realistic patches. D is trained to
classify correctly the patches coming from both the
patches from the fully sampled image and from the
reconstucted image generated by G. The fully sam-
pled image we call xref is the single fully sampled coil-
combined (SoS) in the image space. Simultaneously
G is trained to fool the discriminator and to generate
a reconstructed k-space G(S) (with S the multi-coils
undersampled k-space), whose patches (after transfor-
mation in the image space) are classified as realistic by
the discriminator.

Ladv(G,D)(S) = Ep∼xref
[logD(p)]+

Ep∼iR [1− logD(p)] (7)

where iR stands for the reconstructed image in the im-
age space iR =

√∑nc

i=1(F−1G(Si))2 from the inputs
coils S, p ∼ xref means that p follows the patch dis-
tribution of xref and p ∼ iR means that p follows the
patch distribution of iR.
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5 Experiments

5.1 Data and experimental setting

Data. We performed experiments on both synthetic
brain images and in-vivo brain data acquired from
a healthy volunteer. In-vivo data consists of vari-
ous multi-slice T2-weighted 2D spin-echo brain acqui-
sitions with in-plane resolution of 0.8 mm, matrix size
256x196 at 3 Tesla (Siemens Vida). Informed con-
sent was obtained. Fully-sampled data (acquisition
time Tacq of 4 minutes), as well as under-sampled
data with acceleration factors ranging from R=2 to 6,
were acquired, resulting in R times faster acquisitions.
ACS of size (49,52,64,40) is acquired in the separated
fast scan. Concerning synthetic data, brain volumes
from the MNI152 standard-space T1-weighted average
structural template were generated [18]. The template
provides tissue probability maps of the following tissue
classes: grey matter, white matter, cerebrospinal fluid,
bone, skin and air. The MNI template is provided
in the Statistical Parametric Mapping (SPM12) Mat-
lab software. Synthetic brain volumes were simulated
by setting a different signal level for each class. Coil
sensitivities were simulated using Biot and Savart law
assuming an nc = 8 receiver-coil array with coils po-
sitioned regularly spaced around the brain on a cylin-
drical surface. From these simulated coil sensitivities
and synthetic brain volumes, fully-sampled and under-
sampled k-spaces with different acceleration factor R
and noise levels, as well as SoS-image combinations
were generated.

Experimental setting. All the methods were
trained for a maximum of 1000 epochs with early stop-
ping. The reconstruction model and the discriminator
are learned with learning rates that are grid searched
on set by cross-validation (learning rates from 1e-4 to
1e-2). In any case, training ends when performance
on the validation dataset starts to degrade. We used
Adam optimizer with β1 = 0.9 , β2 = 0.999.

Metrics. Qualitative and quantitative evaluations
for comparison of the various methods were performed.
For quantitative evaluation, Normalized Root Mean
Squared Error (NRMSE), Normalized Root Mean
Absolute Error (NMAE), Peak Signal to Noise Ra-
tio (PSNR) and Structural Similarity Index Measure
(SSIM) [19] were calculated. For qualitative evalua-
tion, examples of reconstructed images were inspected
visually.

5.2 Quantitative evaluation of the re-
construction quality

In the first series of experiments, we compare all the
methods on data where train and test images corre-
spond to the same acceleration rate, and uniform un-
dersampling mask. We provide results for simulated
data and for in-vivo data for uniform undersampling.

Synthetic data Table 1 shows the quantitative com-
parison of various methods for the simulated data. We
observe that at R = 4, 5 cRAKI has superior perfor-
mance in terms of SSIM and PSNR as compared to
GRAPPA and RAKI. When GRAPPA is coupled with
an adversarial discriminator D, we observe improved
performance for both R = 4, 5 and for all the metrics.
Besides the addition of the adversarial discriminator in
RAKI and cRAKI modeling sighlty degrades the per-
formance in terms of SSIM/PSNR but sighlty improves
with respect to NRMSE/MAE both for R = 4, 5.

In-vivo data Table 2 compares the same quanti-
tative metrics of various methods as above but for
volunteer data, averaged over 49 slices, and with a
higher acceleration rate of 5 and 6. A larger accel-
eration rate could be obtained in vivo. In this case,
data were acquired with nc=52 receiver coils (while the
synthetic data had nc=8), and acquisition field-of-view
was slightly larger than the brain dimension along the
phase encoding. This could explain that the acceler-
ation rate that can be achieved in vivo is larger than
the one reached in simulation. Unlike the simulated
data, image qualitative metrics such as SSIM/PSNR
decreased when GRAPPA and RAKI is coupled with
discriminator at both R=5,6. However, we observed
an improvement in NRMSE/NMAE when RAKI was
trained with the discriminator at both R=5,6. cRAKI
and cRAKI with D has similar quantitative metrics at
R=5, but it degrades at R=6.

5.3 Qualitative evaluation of recon-
struction quality

While prior results have not clearly demonstrated an
advantage to using an adversarial discriminator with
respect to objective evaluation measures, including im-
age quality-based criteria such as SSIM/PSNR, we
provide here qualitative results that demonstrate that
these objective criteria do not directly relate to subjec-
tive image quality. It is been reported in the computer
vision literature [13] that perceptual quality may not
corresponds to the objective metrics.
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Reconstructor R NRMSE NMAE SSIM PSNR

GRAPPA 4x 0.058±0.060 0.191±0.088 0.943±0.080 38.322±4.463
RAKI 4x 0.066±0.082 0.215±0.084 0.971±0.013 42.785±6.845
cRAKI 4x 0.060±0.085 0.164±0.105 0.984±0.009 44.599±6.267

GRAPPA w/ D 4x 0.050±0.017 0.154±0.028 0.982±0.011 39.526±1.606
RAKI w/ D 4x 0.063±0.064 0.216±0.069 0.942±0.041 37.440±2.886
cRAKI w/ D 4x 0.025±0.015 0.112±0.055 0.974±0.029 44.081±2.680

GRAPPA 5x 0.217±0.239 0.378±0.147 0.808±0.189 28.174±8.813
RAKI 5x 0.541±0.138 0.523±0.074 0.680±0.096 23.893±9.801
cRAKI 5x 0.083±0.076 0.245±0.079 0.966±0.014 40.769±7.360

GRAPPA w/ D 5x 0.113±0.032 0.380±0.049 0.895±0.023 30.551±2.232
RAKI w/ D 5x 0.181±0.250 0.368±.159 0.799±0.221 30.700±8.094
cRAKI w/ D 5x 0.047±0.032 0.188±0.061 0.958±0.031 39.100±1.892

Table 1: Average metrics over 121 slices for the synthetic data for various reconstructors coupled (or not) with
an adversarial patch-discriminator at R=4,5. We performed experiments on uniform undersampling.

Reconstructor R NRMSE NMAE SSIM PSNR

GRAPPA 5x 0.182±0.046 0.545±0.087 0.946±0.016 37.176±1.665
RAKI 5x 0.209±0.045 0.514±0.072 0.955±0.114 39.276±2.030
cRAKI 5x 0.158±0.038 0.461±0.066 0.898±0.033 36.401±1.835

GRAPPA w/ D 5x 0.239±0.082 0.725±0.173 0.902±0.035 35.013±2.157
RAKI w/ D 5x 0.164±0.039 0.482±0.069 0.920±0.022 36.755±1.668
cRAKI w/ D 5x 0.158±0.038 0.463±0.066 0.901±0.032 36.451±1.809

GRAPPA 6x 0.354±0.046 0.769±0.074 0.844±0.054 28.846±2.539
RAKI 6x 0.265±0.044 0.606±0.063 0.915±0.022 36.088±2.099
cRAKI 6x 0.215±0.046 0.576±0.067 0.867±0.032 33.099±1.701

GRAPPA w/ D 6x 0.427±0.097 1.102±0.190 0.732±0.055 27.079±1.982
RAKI w/ D 6x 0.230±0.055 0.647±0.090 0.876±0.032 33.182±1.926
cRAKI w/ D 6x 0.268±0.072 0.703±0.105 0.854±0.058 32.361±2.532

Table 2: Average metrics over 49 slices for the volunteer data for various reconstructors coupled (or not) with
an adversarial patch-discriminator, D at R=5,6. The MRI zero-shot methods such as GRAPPA, RAKI and
cRAKI is trained with/without adversarial tranining. We performed experiments on uniform undersampling.
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The first series of images in figure 3 provides a
qualitative comparison of the various methods. It
show superior visual quality of reconstucted images
when the methods are coupled with D. RAKI per-
form better in terms of the image-quality index such
as SSIM/PSNR. However, we observed the images ob-
tained from RAKI has more undersampling artefacts
than GRAPPA and artefactual ‘dots’ around the cen-
tre region. When RAKI is coupled with D, artefac-
tual ‘dots’ disappears and SSIM/PSNR is degraded.
NRMSE/NMAE is lower in cRAKI and cRAKI with
D, indicating that the model better represents the ACS
data. However, in terms of image-based quantitative
measured SSIM/PSNR degrades a little, although Fig-
ure 3 indicates cRAKI with D improved visual quality
both R=5,6. The cRAKI reconstruction has fewer un-
dersampling artefacts than GRAPPA and the absence
of artefactual ‘dots’ (red square) appeared in RAKI re-
construction. RAKI and cRAKI with D both can per-
form reconstruction up to R=6. Although, we obtained
noisy reconstructions at R=6 but the global features of
the brain image were restored, while all other methods
failed to reconstruct at this acceleration rate.

The second series of images in figure 4 illustrates
how the learning changes when the tradeoff between
the reconstruction loss and the adversarial loss is varied
(through the α hyperparameter in Eq.5. Various values
of α are used in the range of 1e-6 to 1. The quantitative
measures are similar for all the α greater than 1e-3.
Visually, however, the reconstruction quality improves
for α = 0.1. When α = 1, only reconstruction loss
dominates, and undersampling artefacts are visible.

6 Conclusion

We proposed a one-shot learning approach for MRI re-
construction, which combines state-of-the-art zero-shot
MRI super-resolution models operating in kspace with
an adversarial patch discriminator operating in the im-
age domain. We present a train-validation partition
that is specific to uniform undersampling in order to
avoid overfitting during training. The subjective analy-
sis shows improved-quality reconstruction when an ad-
versarial discriminator is introduced. Due to the lack
of an objective criterion which strongly related to the
subjective quality of the reconstructed image, a large-
scale subjective evaluation could be performed in order
to confirm the superiority of this adversarial strategy
for MRI reconstruction.
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