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Abstract—The potential of Mobility-on-Demand systems has
frequently been studied in the literature, often in combination
with dynamic demand models that respond to the obtained
service levels. However, the endogenous demand usually does
not respond to generated rejection rates. The paper discusses
potential ways of integrating this dimension into a behavioral
demand model. A linear control-based approach is proposed that
penalizes choices for the on-demand service until a maximum
desired rejection rate is obtained. The practical value of the
method is demonstrated on a large-scale agent-based transport
simulation and pathways for future improvements are provided.

Index Terms—ride-pooling, mobility on demand, rejections,
simulation, endogenous demand, linear control

I. INTRODUCTION

Mobility-on-Demand (MoD) refers to a type of mobility
system that consists of a fleet of on-demand vehicles that are
available to the users as needed, offering more flexibility and
an alternative to owning private cars. The development of MoD
is closely related to the development of autonomous vehicles
[1] which are expected to render on-demand mobility business
models more viable and profitable.

The design of MoD systems involves decisions on the strate-
gical, tactical and operational levels [2], [3] such as number
and characteristics of vehicles, operation strategies and pricing.
Agent-based simulation is a tool that is increasingly used in
mobility studies for the design and prospective assessment
of future mobility systems. Various agent-based simulation
tools and frameworks with different capabilities and levels
of details have been proposed, many of which are open-
source [4]. Consequently, various studies based on agent-based
simulations considering MoD systems can be found in the
literature [1]. Various aspects of MoD systems have been
addressed, from fleet sizing [5], [6] to operation strategies [7],
[8].

Most of the studies of MoD systems in agent-based simula-
tion consider static demand for MoD where a predefined set of
requests is submitted to a service. Various indicators such as
wait times, travel times and the empty distance ratio are used
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Île-de-France.

to assess the quality of service. In the majority of existing
studies, all requests must be served by the operators, which
means that the demand level directly impacts those indicators.
Fewer studies allow requests to be rejected [9]. In those cases,
the service metrics are decoupled from the demand level and
a new indicator, the rejection rate, is introduced.

More recent studies use endogenous demand, where the
requests are adjusted by a behavioral model that recursively
takes into account the level of service of the MoD system [10]–
[13]. Typically, those studies make use of rejection-free fleet
control algorithms. To our knowledge, no endogenous demand
study has been proposed that integrates observed rejection
rates into its demand estimation, although this case represents
more closely future deployments of MoD systems in reality.

In this work, we propose a method to integrate rejection
rates into such an endogenous demand simulation model.
Section II formally introduces the type of simulation we
consider. Potential solutions for integrating rejection rates are
discussed, and their individual shortcomings are identified.
Section III presents our method based on a linear proportional
controller to address the identified issues. Section IV describes
our simulation environment to evaluate the approach and
presents a use case for the area of Paris-Saclay. Section V
discusses our approach, edge cases, and proposes policy-
relevant interpretations. Finally, Section VI concludes the
study with perspectives on future improvements.

II. PROBLEM

Formally, we consider simulation set-ups as shown in Figure
1. In an iterative way, a set of requests is generated using
a demand model, which is then processed in a mobility
simulation. In a closed loop, the obtained information on
waiting times, detours, and also the rejection rate, are fed back
to the decision process in order to generate a new adapted set
of requests. Generally, low levels of service will lead to lower
demand while reduced wait times, travel times and rejection
rates should yield higher demand.

In most endogenous demand studies, discrete mode choice
models are used. In those models, users can choose for each of
their trips between a set of modes, for instance, using the car,
public transport, using the bicycle, or walking. For each mode,
a utility function is defined, with higher utilities indicating
more interesting alternatives.
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Fig. 1. Endogenous demand loop

For instance, [11] uses the following equation to simulate
MoD in Paris:

ṽMoD(x) = βASC,MoD

+ βtravelTime,MoD · xtravelTime,MoD

+ βwaitingTime,MoD · xwaitingTime,MoD

+ βcost · p · xdistance,MoD

(1)

Variables denoted as x describe estimated choice dimen-
sions for a specific trip, and behavioral parameters (usually
negative) denoted as β quantify their share in the overall
generalized costs for the trip. Furthermore, a price p is defined,
and similar utility functions are defined for the other modes
of transport that compete with the on-demand service.

A commonly used discrete choice model type that is also
used in [11] is the multinomial logit model which yields a
probability to choose each alternative based on the calculated
utilities for each mode [14]. Additionally, an availability ak ∈
{0, 1} can be defined which defines whether an alternative is
available for a specific trip k or whether the choice probability
is zero.

While some choice dimensions (like the distance) can be
obtained directly through routing, others, such as the waiting
time can be estimated from the mobility simulation, for
instance in time bins and on a hexagonal grid such as in [11]
or [12].

Additionally, we now assume that a fleet control algorithm
with rejections is used in the simulation, which allows us to
calculate a global rejection rate ρ ∈ [0, 1] as the quotient of
the rejected number of requests and the total amount.

The resulting question is how to feed back this rejection rate
like the other choice dimensions (Figure 1). In the following,
let i ∈ N denote the currently executed iteration from which
information has been obtained. Intuitively, there are three
pathways to achieve the feedback:

(i) The rejection rate can be integrated into the utility
function as another choice dimension, weighted by the
parameter βrejection:

vi+1 = ṽ(xi) + βrejection · ρi (2)

Economically, the formulation is not realistic, as a re-
jection rate of 100% should lead users to never consider

the service. However, then βrejection should be quite high,
and it is not intuitively clear which value to put for
the parameter. There is also a conceptual contradiction:
The idea of the parameter is that βrejection < 0 would
penalize rejections. However, if a state is reached at which
rejections are avoided, ρi will be zero and the additional
term will have no impact.

(ii) The availability of the MoD mode can be sampled
according to

ak,i+1 ∼ Bernoulli(1− ρi) (3)

indicating that the number of trips for which MoD is
available follows the acceptance rate. However, applying
this approach will not yield the desired rejection rate in
the following iteration, since choices should be discarded
after being chosen based on the utilities. This could be
a viable approach, but would imply complex structural
changes to the choice process.

(iii) Similar to the first option, a new penalty term π ∈ R can
be introduced to the utility function:

vi+1 = ṽ(xi) + πi+1 (4)

Being a simple constant (but iteration-dependent) term
to the utility function, it can be interpreted easily in a
multinomial logit context and even converted to monetary
units. If πi+1 is chosen close to zero, there will be little
impact on the overall demand and the rejection rate.
If a strongly negative value is chosen, demand will be
suppressed and (assuming same fleet size) the rejection
rate will decrease. We assume that a value π∗ can be
found that pushes the rejection rate below a predefined
threshold ρ∗.

Due to its flexibility and interpretability, we choose the last
approach. The correct value of π∗ to reach a rejection rate of
ρ∗ depends on external configuration inputs, such as the fleet
size. One would, hence, need to run multiple simulations for
each new configuration to find the optimal π∗ and even repeat
the process for different target rates ρ∗.

Therefore, we propose an iterative approach to auto-
calibrate the parameter π∗ over the course of one iterative
simulation.

III. APPROACH

The approach proposed in this paper draws from the field
of control theory and concretely makes use of a Linear
Proportional Controller [15] in order to dynamically find a
penalty that drives the rejection rate below ρ∗.

The control process is formalized by defining an update rule
for the penalty:

πi+1 = πi +∆πi (5)

In a purely linear control application, a proportional con-
troller can be defined through the update rule

∆πi = K ·∆ρi with ∆ρi = ρ∗ − ρi (6)



leading to a positive update if the current rejection rate ρ
is too low and to a negative update otherwise, assuming a
positive proportional gain K > 0, which specifies how fast
the penalty is adjusted.

For stability reasons (see below), we propose an extended
update rule as

∆πi =

{
K ·∆ρi if ρi ≥ ρ∗

0 else
(7)

Accordingly, the penalty is only updated if the current value
is larger than the target value. The initial penalty π0 is set to
zero.

IV. CASE STUDY

We consider in this work the use case of a future mobility
system in the Paris-Saclay area presented in [16]. Alongside
future rail-based public transport lines that are considered, the
use case features a MoD system that is used as a feeder to
and from train, metro and tramway lines including those of the
future Grand Paris Express, one of the largest infrastructure
projects in Europe.

The case study is based on the MATSim simulation frame-
work [17], and the demand is determined using a multinomial
logit model that is used to update the mode decisions of a
random selection of 20% of a total of 700, 000 agents in
each iteration. They represent 100% of the travelers observed
on an average day in the study area. The simulated travelers
can choose between performing trips using their own car (if
available), public transport, slow modes or a MoD system that
is integrated with public transport.

During the mobility simulations, an insertion-based algo-
rithm is used to assign vehicles to waiting customers. It
searches points in all vehicles’ schedules where an incoming
requests can be inserted, while obtaining arrival times as early
as possible and adhering to maximum wait time and detour
constraints for each assigned passenger [18]. If no suitable
insertion is found, a request can be rejected by the operator.

In the case study [16], only requests which have origin
or destination at a rail-based public transport stop can be
submitted. Hence, the MoD system is operated in feeder mode.
Furthermore, decisions are based on a tour-based (rather than
a trip-based) model, which means that accumulated utilities
over multiple individual trips, for instance, along a home-
based round-trip, are considered. The control-based approach
proposed in this study easily generalizes to such complex
scenarios without any specific adjustment (as would be the
case for the second approach described above).

In contrast to the case study [16], where rejection rates were
merely reported and not fed back into the agent decisions, here
we perform simulations making use of the proposed control
approach. The simulations are performed with 400 iterations,
requiring about 3 days of runtime on 10 cores and using 40GB
of RAM for one full simulation. Therefore, an approach that is
integrated into the simulation dynamics, rather than an offline
calibration of π∗, is beneficial.
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Fig. 2. Observed rejection rates during simulations with 200 vehicles varying
target rejection rates compared to the base simulation
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Fig. 3. Evolution of the penalty during simulations with 200 vehicles varying
target rejection rates

Figure 2 shows observed rejection rates through simulations
of a fleet of 200 vehicles and different values of the target
rate ρ∗ ∈ {0%, 1%, 5%, 20%}. The trajectory of the observed
rejection rate is compared to the base simulation where no
controller is used and where a demand is generated that leads
to about 20% of the requests being rejected. With ρ∗ = 5%,
Figure 2 shows that our approach is able to lower the demand
as to obtain rejection rates below the value of r∗.

However, when the target rejection rate is very low (ρ∗ ∈
{0%, 1%}), the observed rejection rates do not drop consis-
tently below ρ∗. This is an artifact of the demand model, which
is probabilistic and, even when the MoD mode is strongly
penalized, may choose it for a specific trip. Those trips are
usually characterized by poor other options, for instance,
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Fig. 4. Obtained penalty value to ensure a rejection rate less than 5% with
various fleet sizes

without car access, but also not having a viable public transport
alternative. Based on the particular set-up of the case study,
these trips are also those which are likely to be rejected by
the operator because operational constraints (delay, wait time)
cannot be fulfilled.

Moreover, we note that when the target rejection rate is
above the one already observed in the base case (r∗ = 20%),
our controller does not reduce the observed rejection rate.

These results are mirrored in Figure 3 where the evolution of
the penalty in those simulations is shown. The penalty remains
at zero when ρ∗ = 20%. As expected, the penalty decreases
with lower values of ρ∗. For ρ∗ ∈ {5%, 10%}, the converged
value of the penalty is achieved after about 100 iterations.
As the required rejection rate cannot be reached, for ρ∗ ∈
{1%, 0%}, the penalty decreases continuously.

For properly chosen target rejection rates, these results show
that our approach is able to find a penalty value that lowers
the demand just enough to achieve an acceptable rejection
rate for a fixed fleet size. From another perspective, it is
interesting to analyze what penalty is needed to reach the same
target rejection rate at different fleet sizes. In order to do so,
we perform simulations with fleet sizes between 50 and 450
vehicles and a target rejection rate of ρ∗ = 5%.

Figure 4 shows the obtained penalty values after 400 iter-
ations. With higher fleet sizes, the penalty approaches zero,
indicating that after 350 vehicles the fleet is large enough to
provide rejection rates below 5%. Figure 5 shows the number
of trips performed in these simulations. Below the fleet size of
350 vehicles, the number of trips increases almost linearly with
the number of vehicles, with a clear saturation of demand.

V. DISCUSSION

The results shown in section IV demonstrate the effective-
ness of our approach and its ability to lower the observed
rejection rates below a certain value. However, the obtained
rejection rate can be somewhat lower than the target (Figure
2). This is due to an overshooting by our method that reduces
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Fig. 5. Number of MoD trips performed with various fleet sizes when using
a penalty to ensure less than 5% of rejected requests

the penalty more than necessary. The overshooting behavior is
directly related to the value of K that is used. Lower values for
this parameter will overshoot less, but take longer to converge.
The problem can be tackled by making use of the default
update rule introduced in Equation 8.

Figure 6 shows the evolution of the penalty when using
the standard controller. As is common for purely proportional
controllers [15], the penalty value shows oscillations. Its am-
plitude seems to be decreasing, but the penalty does not reach
convergence within 400 iterations. This issue could further
be mitigated by making use of a PI (proportional integral)
controller using the update rule:

∆πi = KP ·∆ρi +KI ·
i∑

j=0

∆ρj (8)
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Fig. 6. Evolution of the penalty when enabling backward adjustment during
simulations with 200 vehicles and r∗ = 0.05



However, this approach would require additional (and com-
putationally costly) fine-tuning of the two gain parameters KP

and KI .
Our results also allow observations related to edge cases:

When the fleet size is large enough to handle the demand
without a penalty, the service does not become more attractive
and the rejection rate always stays below the target. On the
other hand, when the fleet size or the target rejection rate are
too low, the penalty can decrease infinitely, and the demand
is driven close to zero.

Regarding the interpretation of the obtained penalty values,
a few alternatives are possible:

• The penalty can be understood as an addition to the
alternative-specific constant (βASC) that is defined for
the mode and captures preference effects that are not
explained explicitly by the choice dimensions. However,
this is a bare conceptual interpretation that does not allow
any economic interpretation.

• In a multinomial logit model, the marginal effects β can
be converted into marginal (monetary) costs by dividing
the whole utility function by βcost [12]. Hence, π∗/βcost
represents a price. In the case study [16], a penalty of
π∗ = −1 would, according to the values of the choice
model, represent an additional cost of about 4.85 EUR
per trip. This is the price that an operator would need to
ask to avoid excessive rejection rates in the system (for
a given fleet size).

• Analogously, π∗ can be translated into any other choice
dimension in a multinomial logit model with a linear
utility function. For instance, the penalty of π∗ = −1
represents 20 minutes of additional wait time per trip
in [16]. This is the delay that an operator can allow its
vehicles if rejection rates should be capped.

An interesting development pathway for this method is to
adjust penalties based on user characteristics, zones, or time of
day. This would allow differentiating between situations with
varying demand. When interpreting the penalty as a price, this
idea links to the topic of dynamic pricing for MoD systems
that has been addressed in literature [19].

VI. CONCLUSION

In this study, a linear control approach is proposed to
achieve feedback of rejection rates generated by MoD sim-
ulator to an endogenous demand model. It can be integrated
into classic discrete choice demand models without complex
modifications of the choice logic. Also, it generalizes well to
complex use cases, as is demonstrated with our case study on
a MoD feeder system.

The results detailed in this work show the practical use
of the method as it is able, for well-defined target values, to
find penalty values that yield rejection rates below a specified
threshold. However, we note that certain issues remain: The
approach is not able to achieve target rejection rates too close
to zero, as it becomes subject to artifacts inherent in the
fleet operational strategies and the endogenous demand model.
Furthermore, it presents overshooting behavior that results in

not exactly reaching the target rejection rate, but one that is
lower (but close to) the requested service level. The problem
can be mediated using a classic proportional or proportional-
integral control approach, which, however, needs additional
calibration.

A major benefit of our approach is the potential to interpret
the obtained results. Interesting operational insights on mon-
etary costs and wait times can be derived from the obtained
penalty values, as shown in our case study. Finally, combining
our approach with feedback of other system performance
indicators (wait times and detours) to the endogenous model
demand, it is possible to fully assess the impact that existing
and novel operational strategies have on the attractiveness of
an MoD system.
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