

Experimental and numerical study of laminar flame speed of Ammonia/Ethanol at high pressure and temperature

Ronan Pelé, Guillaume Dayma, Christine Mounaïm-Rousselle, Pierre Brequigny, Fabien Halter

▶ To cite this version:

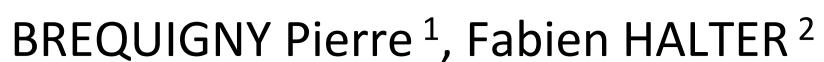
Ronan Pelé, Guillaume Dayma, Christine Mounaïm-Rousselle, Pierre Brequigny, Fabien Halter. Experimental and numerical study of laminar flame speed of Ammonia/Ethanol at high pressure and temperature. 39th International Symposium on Combustion, Jul 2022, Vancouver, Canada. . hal-04050026

HAL Id: hal-04050026

https://hal.science/hal-04050026

Submitted on 29 Mar 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.


L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

EXPERIMENTAL AND NUMERICAL STUDY OF LAMINAR FLAME SPEED OF

AMMONIA/ETHANOL AT HIGH PRESSURE AND TEMPERATURE

Ronan PELÉ¹, DAYMA Guillaume², MOUNAIM-ROUSSELLE Christine¹,

¹ Laboratoire PRISME, Univ. Orléans, INSA CVL, EA4229, Orléans 45072, France

² Univ. Orléans, CNRS-ICARE, Orléans, France

[3]

Introduction

Ingénierie des Systèmes, Mécanique, Énergétique

- Ammonia = promising energy and hydrogen carrier.
- > To optimize the global efficiency of energy systems: to retrieve its energy content through > To provide laminar flame speed data for NH3 C- Bio-ethanol blend optimized combustion processes.
- \succ To enhance the ignition and combustion development \rightarrow blend ammonia with another 'neutral' carbon fuel as bio-alcohols

Objectives:

Shrestha

NH₃

- > simultaneously different levels of temperature and pressures
 - > as usual in an internal combustion engine, up to 10 bar and 600K.

Experimental set-up

- Flame chemiluminescence visualization to obtain the radius evolution with a CMOS camera > (PHANTOM V1611) with adapted frame rate:
 - > 5 000 fps for ammonia only
 - > up to 15 000 fps for ethanol only due to the laminar flame speed difference.
- \rightarrow Initial pressure P₀ = 1 and 2 bar, initial temperature = 423.15 K,
 - > enabling to process data up to 650 K and 10 bar (for Po=2bar).
- Stoichiometric equivalence ratio with the following equation of combustion:

$$X_{NH_3}NH_3 + \left(1 - X_{NH_3}\right)C_2H_5OH + \frac{3(1 - 0.75X_{NH_3})}{0.21}(0.21O_2 + 0.79N_2) = Products \tag{1}$$

 $X_{NH_3} = \frac{n_{NH_3}}{n_{C_2H_5OH} + n_{NH_3}}$ With:

Measurement of the laminar flame speed S_n by using both pressure and flame radius growth relying on the hypothesis of *an isentropic compression of the unburned gases* following the ignition and resulting in a simultaneous increase of both pressure and temperature for the unburned gases within the vessel.

Determination of S_{u}

 $S_{u} = \frac{dR_{f}}{dt} - \frac{(R_{0}^{3} - R_{f}^{3})}{3\gamma_{u}R_{f}^{2}P} \frac{dP}{dt}$

> Where Rf and Ro are the radius of the flame and the spherical chamber respectively, P, the pressure, and γu, the heat capacity ratio of the unburnt gases at the corresponding radius Rf.

with the PREMIX module from the ANSYS CHEMKIN-PRO package.

> Two kinetics mechanisms tested: CEU [1] and one merged from PCRL [2] and Shrestha [3] and

The numerical simulations set with a 10 cm grid, curvature and gradient criteria of 0.1 and 0.05

respectively, multicomponent transport, and Soret effect. Table 1: Mechanisms tested with their range of validation Ref Mechs **Fuels** CEU NH3/H2-CH4-CH3OH-C2H5OH [1] 0.7-1.6 298-448K 1 atm **PCRL** C₂H₅OH 300-600K [2] 0.6 - 11-10 atm

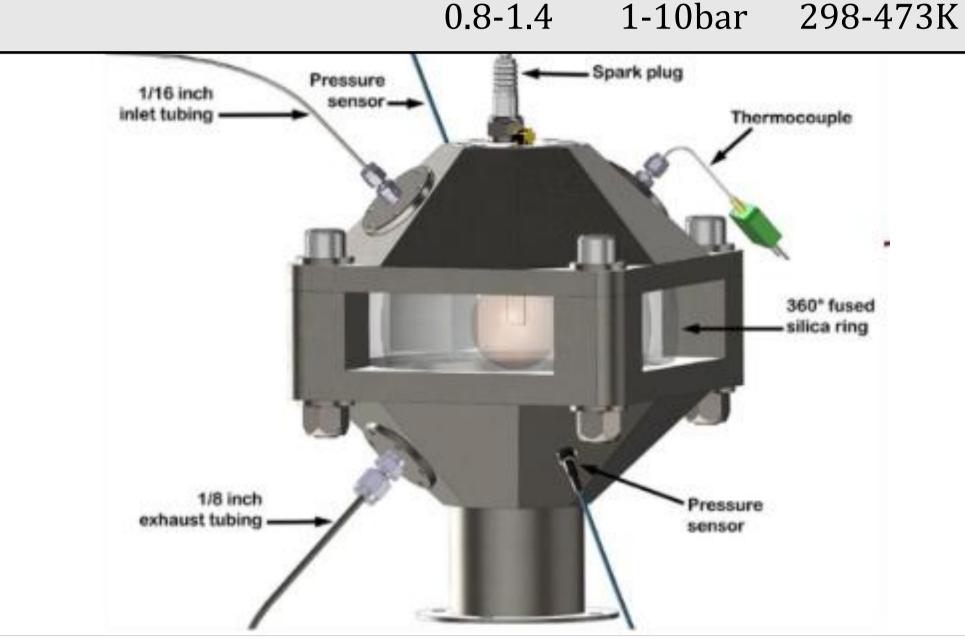


Figure 1: Experimental set-up of the isochoric methodology used [4]

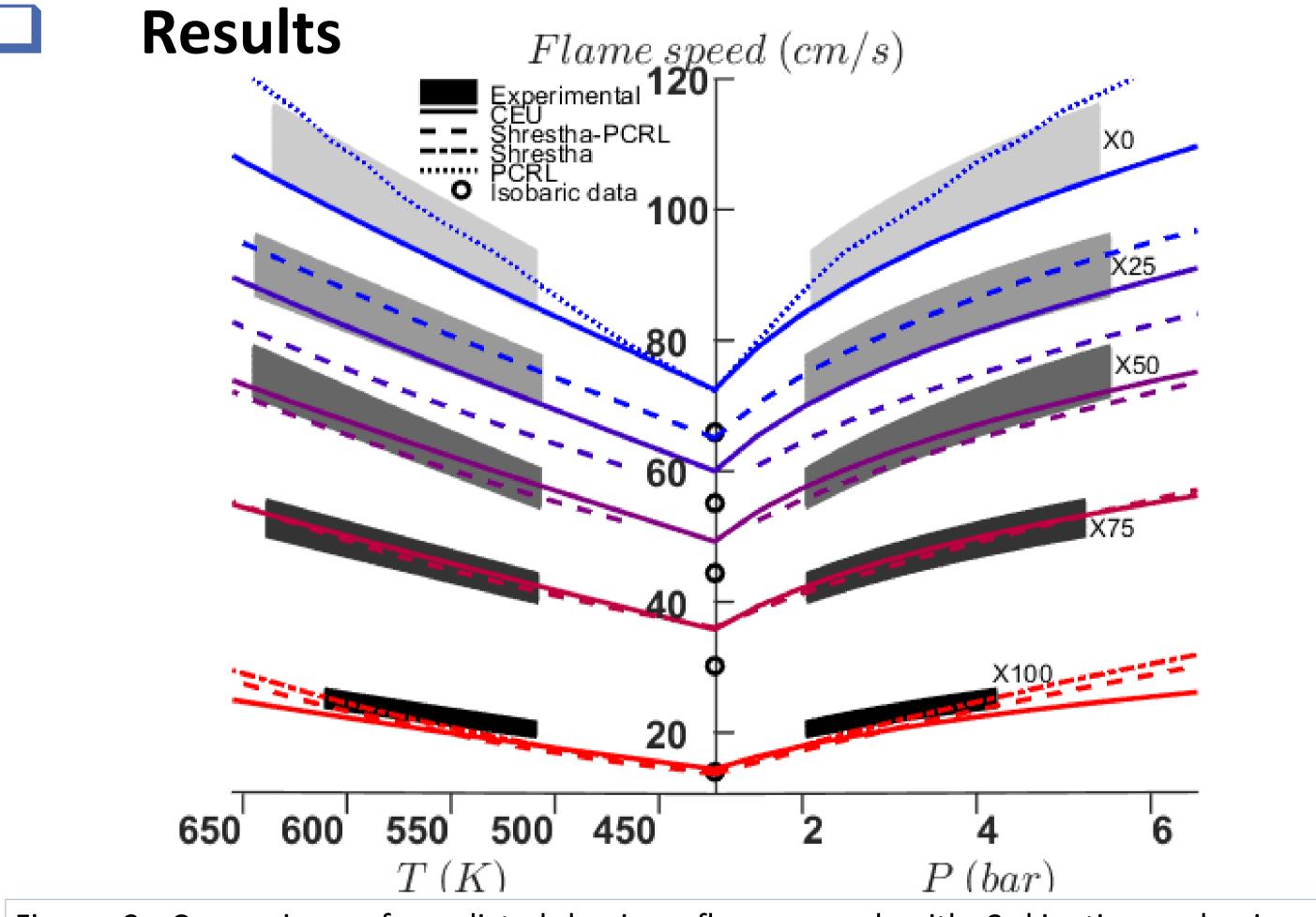


Figure 2. Comparison of predicted laminar flame speed with 2 kinetic mechanisms with experimental values for ammonia/ethanol blends; experimental values: Thickened line colored with a grey scale; mixing rules: The different linestyles correspond to the laminar flame speed simulated with several mechanisms (blue for ethanol and red for ammonia) for Po=1 and $T_0=423.15 K$.

- ➤ Simultaneous ¬ of both P&T in the vessel due to the isentropic compression
 - → laminar flame speed increase.
- > Effect of ethanol addition on laminar flame speed not linear:
 - the addition of a small amount of ethanol to ammonia = important reactivity increase
 - > carbon chemistry plays a major role even for low ethanol content.
- CEU mechanism agrees well with the laminar flame speed at high temperature and pressure for the initial pressure $P_0 = 1$ bar but can not reproduce the isobaric points.
- **Shrestha-PCRL mechanism** agrees well the laminar flame at high pressure and temperature **for low ratio of ethanol but fails with a high content of ethanol (X0 and X25**). Oxidation kinetic well optimized for pure ammonia but not for pure ethanol.

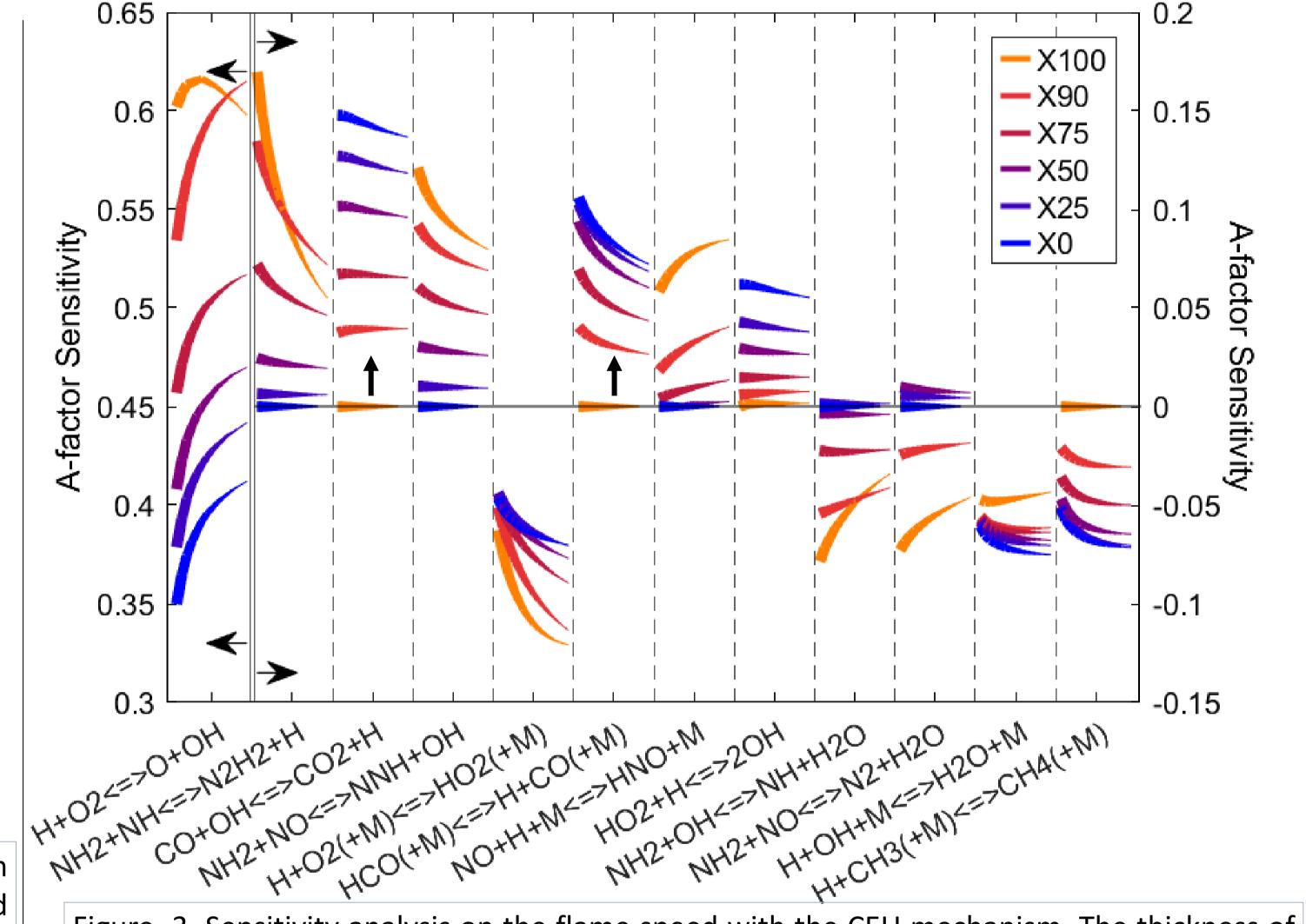


Figure 3. Sensitivity analysis on the flame speed with the CEU mechanism. The thickness of the line corresponds to the evolution of the pressure between 1 bar (thick) to 8 bar (narrow) and the color corresponds to NH3 content (X).

- Sensitivity coefficients calculated for each blend and each couple (P,T).
- \rightarrow Thickest part of the trace (the left one) = initial condition (1 bar, 423.15K).
- Decrease of the thickness = (P,T) evolution up to 8 bar.
- Mechanism of the decomposition of HCO with the reaction and oxidation of CO:

HCO(+M) <=>H+CO(+M) CO+OH<=>CO2+H

One of the key to understanding the behavior of the laminar flame speed as a function of the ethanol content.

Conclusion

- > New laminar flame speed data for ammonia/ethanol blends using the isochoric methodology at representative engine condition of pressure and temperature with comparison to kinetic mechanisms.
- > The laminar flame speed for the different blends = non linear dependence of ammonia content in the blend :
 - the laminar flame speed increases notably with the addition of a small amount of ethanol suggesting by HCO(+M)<=>H+CO(+M) and CO+OH<=>CO2+H.
- > The two mechanism tested reproduce globally the experimental laminar flame speed for the low content of ethanol but for high ethanol ratio X0 and X25 only CEU mechanism
- [1] Z. Wang, X. Han, Y. He, R. Zhu, Y. Zhu, Z. Zhou, K. Cen, Combust. Flame 229 (2021) 111392.
- [2] S. Roy, O. Askari, Energy & Fuels 34 (2020) 3691–3708.
- [3] K.P. Shrestha, C. Lhuillier, A.A. Barbosa, P. Brequigny, F. Contino, C. Mounaïm-Rousselle, L. Seidel, F. Mauss, Proc. Combust. Inst. 38 (2020) 2163–2174.
- [4] F. Halter, Z. Chen, G. Dayma, C. Bariki, Y. Wang, P. Dagaut, C. Chauveau, Combust. Flame 212 (2020) 165–176.

