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HOMOTOPY THEORY OF MOORE FLOWS (III)
PHILIPPE GAUCHER

ABSTRACT. The previous paper of this series shows that the gq-model categories of G-
multipointed d-spaces and of G-flows are Quillen equivalent. In this paper, the same
result is established by replacing the reparametrization category G by the reparametriza-
tion category M. Unlike the case of G, the execution paths of a cellular M-multipointed
d-space can have stop intervals. The technical tool to overcome this obstacle is the no-
tion of globular naturalization. It is the globular analogue of Raussen’s naturalization of
a directed path in the geometric realization of a precubical set. The notion of globular
naturalization working both for G and M, the proof of the Quillen equivalence we obtain
is valid for the two reparametrization categories. Together with the results of the first
paper of this series, we then deduce that G-multipointed d-spaces and M-multipointed
d-spaces have Quillen equivalent g-model structures.

CONTENTS

L. Introduction
5 Moore ﬂ();‘

E Multipointed d-spacd
L Globul ligati ] . 13
5. Chain of globed 22
6. Locally finite cellular multipointed d—spaoe‘ 26

Wﬂmﬂ 28
36

1. INTRODUCTION

o Ot =

Presentation. Multipointed d-spaces are a variant of Grandis’ notion of d-space ﬂﬁ]
which can be used for studying geometric models of concurrency [6]. They are used
together with Moore flows in , Corollary 6.9] to give a model category interpretation
of the fact that the space of nonconstant tame regular directed paths between two vertices
in the geometric realization of a precubical set is homotopy equivalent to a CW-complex.
This fact is explicitly proved in @, Theorem 6.1 and Theorem 7.6] by constructing an
explicit homotopy equivalence with the classifying space of a small category obtained
from the precubical set, namely the small category of Ziemianski cube chains associated
with the precubical set.

2020 Mathematics Subject Classification. 18C35,18D20,55U35,68Q85.
Key words and phrases. directed path, reparametrization, enriched semicategory, semimonoidal structure,
combinatorial model category, Quillen equivalence, locally presentable category, topologically enriched
category.
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It is proved in [11, Theorem 8.1] that multipointed d-spaces and Moore flows have
Quillen equivalent g-model structures. The reparametrizations of execution paths allowed
in [11] are the precomposition by the maps of the reparametrization category G in the
sense of Proposition 2.3 which are the nondecreasing homeomorphisms between nontrivial
segments of the real line. The advantage of this setting is that all execution paths of
a cellular multipointed d-space are reqular in the sense of [5, Definition 1.1], namely
without stop intervals, i.e. without nontrivial intervals on which the path is constant
(cf. Definition A.I0). It makes their geometry much simpler to understand. It is the
primary reason for choosing G in the paper which introduced multipointed d-spaces [§].
The drawback of this setting is that it can be used only to study the homotopy theory of
regular directed paths.

Grandis’ notion of d-space allows more general reparametrizations of directed paths. It
makes possible to deal with non-regular directed paths. The purpose of this paper is to
prove the same Quillen equivalence between multipointed d-spaces and Moore flows by
allowing the reparametrizations of execution paths by precomposing by all maps of the
reparametrization category M in the sense of Proposition 2.4l which are the nondecreasing
surjective maps between nontrivial segments of the real line. The technical obstacle to
overcome is that the execution paths of a cellular multipointed d-space can now contain
stop intervals. This implies that several crucial theorems belonging to the technical core
of [11] are either false in this new setting or their proof must be modified (cf. Table ().

By [23, Proposition 2.2], every nonconstant Moore path in a Hausdorff space has a
regular reparametrization. Moreover, by [5, Proposition 3.8], the regular reparametriza-
tion of a given nonconstant Moore path in a Hausdorff space is unique up to a map of
G. In |24, Definition 2.14], Raussen introduces a notion of naturalization of a directed
path. This means that any nonconstant directed path + in the geometric realization of
a precubical set has a regular reparametrization called the naturalization nat™(+) which
is morally more natural than the other ones. It is the unique reparametrization which
makes the directed path a Moore composition of isometries for some Lawvere metric
structure on the geometric realization of a precubical set. This idea is generalized to the
setting of transverse sets in [14]. By Proposition .12}, there is then a unique factorization
v = nat”(v)n where n € M.

The main technical tool of this paper is the introduction of a globular version of
Raussen’s idea in Proposition and Definition .14l Every execution path 7 of a cel-
lular multipointed d-space has also a regular reparametrization nat8'(+y) which is morally
more natural than the other ones. Again by Proposition [4.12] and since the underlying
space of a cellular multipointed d-space is Hausdorff, there is then a unique factorization
v = nat®'(y)n where n € M. It is the key point to adapt the technical core of [11].

Raussen’s naturalization and the globular naturalization have in common the following
property: the naturalization of a Moore composition is the Moore composition of the
naturalizations. On the other hand, Raussen’s naturalization and the globular natural-
ization do not behave in the same way with respect to continuous deformations. This
point is explained in Corollary and in the remark following it. Two directed paths in
the geometric realization of a precubical set or of a transverse set which are dihomotopy
equivalent relatively to the extremities have naturalizations of the same length. On the



contrary, the best that can be said in the globular case is that, on such a compact con-
tinuous path of directed paths, the natural length is bounded (actually, it takes finitely
many values).

The main result of this paper can be stated as follows.

Theorem. (Theorem and Theorem [710) The inclusion functor G C M induces a
forgetful functor MdTop — GdTop from M-multipointed d-spaces to G-multipointed
d-spaces. There is the commutative square of right Quillen equivalences between the four
g-model structures

MdTop —— GdTop

MMl lMg

MFlow —— GFlow

where MFlow and GFlow are the categories of M-flows and G-flows respectively. Fi-
nally, the unit maps and the counit maps of the two vertical adjunctions are isomorphisms
on q-cofibrant objects.

As a byproduct of some new tools introduced in this paper, it is also proved the
following new fact which was not in |11}, even for the case P = G:

Theorem. (Theorem[6.8) Let P be either G or M. The compact-open topology on the
set of execution paths of a locally finite cellular P-multipointed d-space is A-generated.
Therefore in this case, the space of execution paths is metrizable with the distance of the
uniform convergence.

Extending the results of [11] from G to M has another interest than making possible
the homotopical study of non-regular directed paths. It enables us to find proofs which
are independent of the choice of the reparametrization category G or M: it was not
the case for the proofs of [11]. In fact, the question raised by this work is to find a
better definition of a reparametrization category than Definition 222 A good notion of
a reparametrization category P should be a small category satisfying Definition and
additional properties so that it makes sense to talk about the P-multipointed d-spaces
(unless P is the final category). It is an open question which could be reworded as follows:
is there any other “interesting” reparametrization category than the terminal category, G
and M 7

Table [I] concludes the presentation. The left column is a reparametrization category
and the right column is the corresponding type of tame nonconstant directed paths con-
tained in the corresponding notion of flows (a trace is a directed path up to reparametriza-
tion, according to the terminology of e.g. [24]). The terminal category is mentioned in
Table [l for completeness.

Outline of the paper. Section [2 is a reminder about P-flows for a reparametrization
category P which is either G or M in this paper.

Section [B adapts some results and constructions for G-multipointed d-spaces proved in
[11] to the case of M-multipointed d-spaces.

Section @ is the adaptation of [11, Section 5] to the case of cellular M-multipointed

d-spaces. The main results are the notion of globular naturalization of an execution path
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P | Type of directed paths
1 Trace

g Regular

M All

TABLE 1. Type of directed paths

of a cellular M-multipointed d-space (Proposition 13 and Definition EL14]). We then
obtain, thanks to the notion of carrier, Theorem 17 which is a replacement for [11,
Theorem 5.20] and Theorem which is a replacement for |11, Theorem 5.19].

Section [l is the adaptation of [11, Section 6]. A generalization of [11, Theorem 6.11]
is proved in Theorem B9

Section [A] is a digression which uses Theorem [£.21] and Theorem to prove that the
space of execution paths in the locally finite case is metrizable with the distance of the
uniform convergence in Theorem [6.8.

Finally, Section [ establishes the main theorem of the paper, namely Theorem and
Theorem [Z.I0l

Erratum. As explained in the corrected version of |10], the tenseur product of P-spaces
is not symmetric if P is G or M. Therefore, the word symmetric must be removed
everywhere from [11]. Besides, the terminology of biclosed semimonoidal structure should
be used instead of the terminology of closed semimonoidal structure to describe the tensor
product of P-spaces.

Prerequisites and notations. We refer to [1] for locally presentable categories, to [26]
for combinatorial model categories. We refer to [19,20] for more general model categories.
We refer to [21] and to [2, Chapter 6] for enriched categories. All enriched categories are
topologically enriched categories: the word topologically is therefore omitted. A gold mine
of examples and counterexamples in general topology can be found in [27]. A cellular
object of a combinatorial model category is an object X such that the canonical map
@ — X is a transfinite composition of pushouts of generating cofibrations.

The results of this paper rely heavily on the results of [11]. A self-contained paper would
not help the reader much. The choice made for this work is to emphasize the differences
between G and M instead of the similarities. Table 2l summarizes these differences. The
left column is a list of theorems of [11]. The middle column gives the status of the
statement for P = M. The right column gives the replacement in this paper: it consists
of a statement which is modified if necessary and a new proof. In this paper, even if [11,
Theorem 5.19] is still valid for P = M, it is replaced by Theorem which is a much
powerful statement both for the proof of Theorem and to understand the difference
between the globular naturalization and the cubical naturalization.

The category Top denotes the category of A-generated spaces or of A-Hausdorff A-
generated spaces (cf. [12, Section 2 and Appendix B]). The inclusion functor from the full
subcategory of A-generated spaces to the category of general topological spaces together
with the continuous maps has a right adjoint called the A-kelleyfication functor. The

latter functor does not change the underlying set: it only adds open subsets. The category
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H Status for M ‘ Replacement ‘

[11, Theorem 3.9] true Theorem
[11, Proposition 2.12] true Proposition 311
11, Theorem 5.7 true Theorem [4.§

11, Theorem 5.9 false Theorem
[11, Theorem 5.20] false Theorem .17
[11, Proposition 5.17] false Theorem [A.2]]
11, Theorem 5.18 true Corollary
11, Theorem 5.19 true Corollary
[11, Proposition 6.3] true Proposition [(.4]
[11, Theorem 6.11] true Theorem
[11, Theorem 7.2 and Theorem 7.3] true Theorem [.3]

TABLE 2. Main differences between G and M

Top is locally presentable and cartesian closed. The internal hom TOP(X,Y) is given
by taking the A-kelleyfication of the compact-open topology on the set Top(X,Y'). The
category Top is equipped with its g-model structure. A compact space is a quasicompact
Hausdorff space (French convention). All A-generated spaces are sequential.

K°P denotes the opposite category of KC; Obj(K) is the class of objects of K; K is the
category of functors and natural transformations from a small category I to K; & is the
initial object, 1 is the final object, Idx is the identity of X; I(X,Y") is the set of maps in
a set-enriched, i.e. locally small, category KC; K(X,Y) is the space of maps in an enriched
category K. The underlying set of maps may be denoted by ICo(X,Y) if it is necessary
to specify that we are considering the underlying set.

All Moore paths in this paper are nonconstant: see Definition

2. MOORE FLOW

2.1. Notation. The notations ¢, ¢, ¢;, L, ... mean a strictly positive real number unless
specified something else. [¢, ¢'] denotes a segment: unless specified, it is always understood
that £ < 0.

2.2. Definition. [10, Definition 4.3] A reparametrization category (P,®) is a small en-
riched semimonoidal category satisfying the following additional properties:

(1) The semimonoidal structure is strict, i.e. the associator is the identity.

(2) All spaces of maps P(¢, (') for all objects ¢ and ¢’ of P are contractible.

(3) Forallmaps ¢ : £ — ¢ of P, for all £, ¢}, € Obj(P) such that ¢, @0, = ¢', there exist
two maps ¢ : 1 — ¢} and ¢9 : fo — £, of P such that ¢ = ¢p1R¢9 : 1Ry — V[ R0,
(which implies that ¢, ® ¢y = 0).

The terminal category is a symmetric reparametrization category. It is not known
whether there exist symmetric reparametrization categories not equivalent to the terminal
category. Here are the two examples of reparametrization category used in this paper.

2.3. Proposition. [10, Proposition 4.9] There exists a reparametrization category, de-

noted by G, such that the semigroup of objects is the open interval ]0,4o00| equipped

with the addition and such that for every 1,0y > 0, G({1,03) is the set of nondecreasing
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homeomorphisms from [0, 41] to [0,4s] equipped with the A-kelleyfication of the relative
topology induced by the set inclusion G({1,¢2) C TOP([0,4],]0,¢2]) and such that for
every ly, Uy, U3 > 0, the composition map G(ly,ls) X G(la,l3) — G(€1,{3) is induced by the
composition of continuous maps.

2.4. Proposition. [10, Proposition 4.11] There exists a reparametrization category, de-
noted by M, such that the semigroup of objects is the open interval |0, +oo[ equipped
with the addition and such that for every €y,0y, > 0, M(l1,{s) is the set of nondecreas-
ing surjective maps from [0, ¢1] to [0, 5] equipped with the A-kelleyfication of the relative
topology induced by the set inclusion M({1,ls) C TOP([0, ¢4], [0, ls]) and such that for
every {y, o, U3 > 0, the composition map M(ly,ly) x M(la, l3) — M({q,03) is induced by
the composition of continuous maps.

2.5. Notation. A reparametrization category P which is either G or M is fixed for the
rest of the paper.

2.6. Proposition. The topology of P({1,{s) is the compact-open topology. In particular,
it is metrizable. A sequence (¢n)nso0 of P(l1,l2) converges to ¢ € P(ly,4s) if and only if
1t converges pointwise.

Proof. 1t is mutatis mutandis the same argument as the one given for P = G in |11,
Proposition 2.5].

2.7. Notation. Let ¢; € P(¢;, () for n > 1 and 1 < i < n. Then the map
P1®... QP Y L —>Z£;
denotes the nondecreasing surjective map defined by

1(t) if0<t
<

<4
G2t — £1) + 104 if 44 <

t< U+ 4y

P R...Qp,)t) =< "
(# @) it — Xjcily) + 5l i Xl <t <X

(bn(t - Zj<n ) + Z]<n j if Zj<n ej < t < ngn ej'

2.8. Proposition. Let ¢ € P(¢,0'). Let n > 1. Consider {},..., 0, >0 with n > 1 such
that 0 + ---+ (!, = {'. Then there exists a decomposition of ¢ of the form

such that ¢; € P(4;, ;) for 1 < i < n. Moreover, if P = G, then this decomposition is
unique.

Proof. The case n = 1 is trivial. The case n = 2 comes from the fact G and M are
reparametrization categories. We deduce the existence of the decomposition by induction
on n > 2. The uniqueness when P = G is [11, Proposition 3.2]. U

2.9. Notation. The enriched category of enriched presheaves from P to Top is denoted by

[P°?, Top|. The underlying set-enriched category of enriched maps of enriched presheaves
6



is denoted by [P, Topls. The objects of [P?, Top], are called the P-spaces. Let
FPU = P(—, () x U € [P, Topl,

where U is a topological space and where ¢ > 0.

2.10. Proposition. [9, Proposition 5.3 and Proposition 5.5] The category [P, Top|o is a
full reflective and coreflective subcategory of Toppgp. For every P-space F': P°? — Top,
every £ > 0 and every topological space X, we have the natural bijection of sets

(PP, Toplo(F} ™ X, F) = Top(X, F({)).

2.11. Theorem. ([9, Proposition 5.1] and [10, Theorem 5.14]) The category [P°, Top],
is locally presentable. Let D and E be two P-spaces. Let
(01,02

D®E:/ DBt + ) x D) x E(ly).

The pair ([P, Toplo, ®) has the structure of a biclosed semimonoidal category.

2.12. Definition. |10, Definition 6.2] A P-flow, also called a Moore flow if there is no ambi-
guity on the choice of P, is a small semicategory enriched over the biclosed semimonoidal
category ([P, Toplo, ®) of Theorem 211l The corresponding category is denoted by
PFlow.

A P-flow X consists of a set of states X, for each pair («, 3) of states a P-space P, s X
of [P°?, Top], and for each triple («, 3,7) of states an associative composition law

* : ]P)aﬁX (%9 ]PB,«/X — ]P)om/X-
A map of P-flows f from X to Y consists of a set map
X0 = y?

(often denoted by f as well if there is no possible confusion) together for each pair of
states (o, ) of X with a natural transformation

Pf:PopX — PrayrpY

compatible with the composition law. The topological space P, 3X(¢) is denoted by
]P’f;ﬂX and is called the space of execution paths of length £.

2.13. Definition. Let X be a P-flow. The P-space of execution paths PX of X is by
definition the P-space
PX = 11 P, sX.

(a,3)EX0x X0
It yields a well-defined functor P : PFlow — [P Topls. The image of ¢ is denoted by
P. We therefore have the equality

PX= ] PX

(a,)€XOx X0

The category PFlow is locally presentable by [10, Theorem 6.11].
7



2.14. Notation. Let D : P’ — Top be a P-space. We denote by Glob(D) the Moore
flow defined as follows:

Glob(D)° = {0, 1}

Py 0Glob(D) = Py 1Glob(D) = P, (Glob(D) = @

Py 1Glob(D) = D.
There is no composition law. This construction yields a functor

Glob : [P?, Toply — PFlow.

2.15. Remark. The notation Glob(D) is not ambiguous since D is always a P-space
with P being G or M and Glob(D) is then necessarily either a G-flow or an M-flow
respectively.

By [9, Theorem 6.2], the category of P-spaces [P, Toply can be endowed with the
projective model structure associated with the model structures Top,. Tt is called the
projective g-model structure. It is combinatorial. The fibrations are the objectwise -
fibrations. The weak equivalences are the objectwise weak homotopy equivalences. All
P-spaces are fibrant for this model structure. By [10, Theorem 8.8, Theorem 8.9 and
Theorem 8.16], the category of P-flows can be endowed with a combinatorial model
structure characterized as follows: 1) a map of P-flows f: X — Y is a weak equivalence
if and only if f° : X° — Y? is a bijection and Pf : PagX — Py ssY is a weak
equivalence of the projective g-model structure of P-flows; 2) a map of P-flows f : X — Y
is a fibration if and only if Pf : Po s X — Pfa),r(s)Y is a fibration of the projective q-model
structure of P-flows, i.e. an objectwise g-fibration of topological spaces. All P-flows are
g-fibrant.

3. MULTIPOINTED D-SPACE

3.1. Definition. Let 7; and -, be two continuous maps from [0, 1] to some topological
space such that v1(1) = 7,(0). The composite defined by

~(2t) if 0 <
<

1
29
(2t —1) if § 1

i<
71 *N Y2)(t) =
(12 22)(0) { i
is called the normalized composition. The normalized composition being not associative,
a notation like vy *p - - - %5 v, Will mean, by convention, that *x, is applied from the left

to the right.

3.2. Definition. Let U be a topological space. A (Moore) path of U consists in this paper
of a nonconstant continuous map ~ : [0,¢] — U with ¢ > 0. The real number ¢ is called
the length of ~.

Let 71 : [0,¢1] — U and 75 : [0,¢3] — U be two paths of a topological space U such
that v (¢1) = 72(0). The Moore composition v, * v2 : [0,¢1 + €3] — U is the Moore path
defined by

71 (%) for t € [0, ¢4]
(71 *72)(t) =
’)/Q(t—fl) for t € [£1,£1+£Q].

The Moore composition of Moore paths is strictly associative.
8



3.3. Notation. Let ¢ > 0. Let u, : [0,¢] — [0,1] be the homeomorphism defined by
pe(t) = t/¢.

3.4. Definition. A P-multipointed d-space X or just multipointed d-space X if there is
no ambiguity on the choice of P is a triple (|X|, X°, PP X)) where

e The pair (| X, X°) is a multipointed space. The space |X| is called the underlying space
of X and the set XY the set of states of X.
e The set PP X is a set of continous maps from [0, 1] to | X| called the execution paths,
satisfying the following axioms:
— For any execution path ~y, one has v(0),v(1) € X°.
— Let v be an execution path of X. Then any composite y¢ with ¢ € P([0, 1], [0,1])
is an execution path of X.
— Let 71 and 2 be two composable execution paths of X:; then the normalized
composition vy %y Y2 is an execution path of X.

A map f : X — Y of P-multipointed d-spaces is a map of multipointed spaces from
(|X1, X% to (]Y|,Y?) such that for any execution path v of X, the map PP f : v+ f.y
is an execution path of Y.

3.5. Notation. The category of P-multipointed d-spaces is denoted by PdTop.

The category PdTop is locally presentable by |8, Theorem 3.5]: the proof is written for
the case P = G; it consists of finding an axiomatization of the category of multipointed
d-spaces by a relational universal strict Horn theory without equality which contains a
small set of axioms; it suffices to replace in the third axiom page 597 “t is a strictly
increasing reparametrization”, i.e. t € G(1,1) by t € M(1,1) to obtain the proof for the
case P = M.

The subset of execution paths from a to 3 is the set of v € PP X such that v(0) = «
and (1) = §; it is denoted by IP’ZZ%X: « is called the initial state and 3 the final state
of such a . The set Pizp X is equipped with the A-kelleyfication of the relative topology
induced by the inclusion PZZ%X C TOP([0,1],]X]). It induces a functor

PP : PdTop — Top.
Unless specified, the set IP’ZZ%X is always equipped with this topology.
3.6. Notation. The mapping P’ f will be often denoted by f if there is no ambiguity.

The following examples play an important role in the sequel.
(1) Any set E will be identified with the P-multipointed d-space (E, E, &).
(2) The topological globe of Z of length ¢ > 0, which is denoted by Glob”(Z), is the
P-multipointed d-space defined as follows
e the underlying topological space is the quotient space
{0,1} U (Z x [0,1])
(2,0) = (2/,0) =0,(2,1) = (¢/,1) =1
e the set of states is {0,1}
e the set of execution paths is the set of continuous maps

{60 0 P(1,1),2 € Z}
9




with d,(t) = (2,t). It is equal to the underlying set of the space P(1,1) x Z.
In particular, Glob” (@) is the P-multipointed d-space {0,1} = ({0, 1},{0,1}, @).
(3) The directed segment is the P-multipointed d-space I ¥ = Glob” ({0}).

3.7. Remark. The terminology P-multipointed d-space is chosen because it is a variant
of the notion of Grandis’ d-space. The adjective P-multipointed contains the informa-
tion about the allowed reparametrizations and the constraints on the extremities for the
execution paths. The set of execution paths of length 1 is denoted by P’ X for a P-
multipointed d-space X, and not PP X, because there is no ambiguity on what it is. On
the contrary, the notation GlobP(Z ) for a given topological space Z is used to specify
that Glob” (Z) is a P-multipointed d-space. The G-multipointed d-space Glob¥(Z) is not
equal to the M-multipointed d-space Glob™(Z) indeed.

3.8. Proposition. Let X be a P-multipointed d-space. Let (o, 3) € X x X°. The
following data assemble into a P-space denoted by Pg, ;X :

o P! X = {yu |y e PLX}
o For¢: ' - (€ P and vy € P ,X, P ,X(¢) = 7¢.

Proof. Let v € P4 ;X. Then, by definition of P! ;X there exists a (unique) 7 € Py%X
such that v = Ju,. We obtain v¢ = F(uedpu, " )pue. Since pepu,' € P(1,1), we have
F(peppy') € PZZ%X and therefore y¢ € IP’f;'ﬂX. O

3.9. Notation. Let X be a P-multipointed d-space. Let (a, 3) € X° x X0, Let
P,sX = ligIP’;ﬁX.
The topological space P, g X = lig]P’;’ 5X is the quotient of the topological space
¢
[P sX
>0

by the equivalence relation generated by the identifications v ~ 7' < v¢ = ~¢' with
veP L 5X, v €PL X, ¢ € P(U",0) and ¢ € P({",1').

3.10. Definition. ([5, Definition 1.2]) The above equivalence relation ~ is called the
reparametrization equivalence. The two Moore paths v and 7’ above are said reparametriza-
tion equivalent.

3.11. Proposition. For every u,v € P(1,{), there exist ¢, ¢, € P(1,1) such that up, =
VO,

Proof. Let u,v € P(1,£). Then p,u and uw belong to P(1,1). By [5, Proposition 2.19],
when P = M, there exist ¢,,¢, € P(1,1) such that pwuep, = pwe,. When P = G,
the same statement holds with ¢, = Id; and ¢, = v~'u. In both cases, it implies that
UGy, = VO, g being invertible. O

3.12. Proposition. Denote by P! the full subcategory of P generated by 1. Let X
be a P-multipointed d-space. Let (a,3) € X° x XY. The inclusion j : P* C PP is
final.  Consequently, the topological space P, 53X is also the quotient of IP":%X by the

reparametrization equivalence.
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Proof. Consider the comma category (jl¢) for a fixed ¢ > 0. It is nonempty because
P(1,¢) is nonempty. Let u,v € P(1,¢). Using Proposition BI1], write up, = v, for
some ¢y, ¢, € P(1,1). The equality u¢, = v, means that there is the commutative
diagram of P

1 Pu 1 bv 1
14 14 14

In other terms, the comma category (jl¢) is connected. It implies that the inclusion
functor P! C P is final in the sense of [22, Section IX.3]. The proof is complete thanks
to [22, Theorem 1X.3.1]. O

3.13. Definition. Let X be a P-multipointed d-space. The space ]P’f;ﬁX is called the
space of execution paths of length ¢ from « to 8. Let
PX= ] P.sX
(a,8)EX0Ox X0
A map of multipointed d-spaces f : X — Y induces for each ¢ > 0 a continuous map
P'f : P°X — P'Y by composition by f (in fact by |f|). The space P1X is also denoted
by PP X,

3.14. Proposition. Let X be a P-multipointed d-space. Let ~y; and s be two execution
paths of X with v1(1) = 72(0). Let l1,0y > 0. Then (yifie, * Yofie, )Hg, e, 15 an ezecution
path of X.

Proof. 1t is mutatis mutandis the proof of [11, Proposition 4.10] after observing that
G(1,1) C P(1,1). O

3.15. Proposition. Let X be a multipointed d-space. Let {1,0s > 0. The Moore compo-
sition of continuous maps yields a continuous maps PAX x P2X — Patlzx,

Proof. Tt is a consequence of Definition B.13 and Proposition B.14] O

3.16. Theorem. The mapping 2 : X — (| X[, X) induces a functor from PdTop to the
category MTop of multipointed spaces which is topological and fibre-small. The Q-final
structure is the set of finite Moore compositions of the form (fiy1) *---* (fuyn) such that
v €EPYX; forall 1 <i < n with Y, 6; = 1.

Note that Theorem [B.I6] holds both by working with A-generated spaces and with
A-Hausdorff A-generated spaces.

Proof. The first statement is proved for P = G in [13, Proposition 6.5 using a description
of the Q-initial structure which works for P = M as well. The proof of the last statement
is similar to the proof of |11, Theorem 3.9]. O

3.17. Proposition. ([11, Proposition 2.12] for G and M) Let Z be a topological space of
Top. Then there is the homeomorphism

PyTGlob”(Z) = P(1,1) x Z.
11



Because of the possible presence of stop intervals (see Definition ELI0) in the case P =
M., the proof of Proposition B.I7 slightly differs from the proof of |11, Proposition 2.12]:
the latter is valid only for the case P = G.

Proof. The set map ¥ : P(1,1) x Z — Py7Glob” (Z) defined by (¢, 2) = 6,¢ is con-
tinuous because the mapping (¢, ¢, z) — (z, ¢(t)) from [0,1] x P(1,1) x Z to |Glob” (Z)|
is continuous. It is a bijection since, by definition of GlobP(Z ), the underlying set of
IP’B?{’GlobP(Z) is equal to the underlying set of the space P(1,1) x Z. Consider the
composite set map

m: PYYGlob”(Z) — P(L,1) x Z — Z
which takes d.¢ to pro(¥1(d.¢)) = z (pr, is the projection on the second factor). Suppose
that 7 is not continuous. All involved topological spaces being sequential, there exist
Zoo € Z, an open neighborhood V' of z, in Z, and a sequence (0., ¢y, ),>0 which converges
to the execution path d, ¢ such that z, € Z\V for all n > 0. Choose t, € [0, 1] such
that ¢ (to) €]0, 1[. The convergence for the compact-open topology implies the pointwise
convergence. Thus the sequence (3, ¢n(to))nso of |Glob” (Z)| converges to 0. deo(to). It
implies that there exists N > 0 such that for all n > N, (2,, ¢n(to)) € |Glob” (Z)[\{0,1}.
By considering the image by the continuous projection (the left-hand term being equipped
with the relative topology)

|Glob” (Z)|\{0,1} — Z

which is well-defined precisely because 0 and 1 are removed, we obtain that the sequence
(zn)n>n converges to 2., and therefore that z,, € Z\V, the latter set being closed in Z:
contradiction. This means that 7 is continuous. The continuous map Z — {0} induces
a continuous map

PyYGlob” (Z) — Byt Glob” ({0}) = P(1, 1)
Y=,

where p : |Glob”(Z)| — [0,1] is the projection map. Therefore the set map
U1 PGlob”(Z) — P(1,1) x Z
{ v+ (py, (7))
is continuous and ¥ is a homeomorphism. O
3.18. Corollary. Let Z be a topological space of Top. Then there is the homeomorphism
Py, Glob” (Z) = Z.

Proof. There are the homeomorphisms

lim (73(1,1) X Z) = (@P(l,l)) A

P Pp1
the left-hand homeomorphism since Top is cartesian closed and the right-hand homeo-
morphism by Proposition 311l The proof is complete thanks to Proposition B.17 and
Proposition B.12] U

3.19. Theorem. Let X be a P-multipointed d-space. The following data assemble into a
P-flow denoted by M” (X):
12



o The set of states X° of X

e Foralla, € X° P, ;M (X) = P35 X.

o For all o, 3,7 € X° and all real numbers £,¢' > 0, the composition map is given
by the map * : Pg s X @ Pj X — P; X

The mapping above induces a functor M” : PdTop — PFlow which is a right adjoint.

Proof. Tt is possible to construct a left adjoint by following step by step the method of
[11, Appendix B]: the fact that all maps of G are invertible does not play any role at
all. O

3.20. Notation. The left adjoint of M” : PdTop — PFlow is denoted by
M? : PFlow — PdTop.

3.21. Proposition. Let X be a P-multipointed d-space. Let £ > 0 be a real number. Let
Z be a topological space. Then there is a bijection of sets

PdTop(Glob”(Z2),X)= [[  Top(ZP5X)
(a,3)EX0x X0

which is natural with respect to Z and X .
Proof. 1t is mutatis mutandis the proof of |11, Proposition 4.13]. O

3.22. Proposition. For all compact topological spaces Z, there are the natural isomor-
phisms MP (Glob” (Z)) = Glob(FP”(Z)) and M (Glob(FP*"(Z))) = Glob” (Z).

Proof. By definition of M” and by Proposition B.17, the only nonempty path P-space

of MP(Glob”(2)) is Py \MP (Glob” (Z)) = P(—, 1) x Z: we obtain the first isomorphism.
For any P-multipointed d-space X, there is the sequence of natural bijections

PdTop (M7 (Glob(F{™ (Z))), X ) 2 PFlow (Glob(F}"(2)), M” X )
[T [P Toplo(FT" (2),PasX)
(a,3)EX0x X0

o 1T Top(Z, P;ﬁX)

(a,8)EX0x X0

>~ PdTop(Glob” (Z), X),

I

the first bijection by adjunction, the second bijection by [10, Proposition 6.10], the third
bijection by Proposition 2.10/ and the last bijection by Proposition [3.2Il The proof of the
second isomorphism is then complete thanks to the Yoneda lemma. 0

4. GLOBULAR NATURALIZATION AND CARRIER

4.1. Notation. Let n > 1. Denote by D" = {b € R",|b| < 1} the n-dimensional disk,
and by S"!' = {b € R™, |b] = 1} the (n — 1)-dimensional sphere. By convention, let
DY = {0} and S7! = .

The g¢-model structure of P-multipointed d-spaces is the unique combinatorial model
structure such that

{Glob” (8" 1)  Glob”(D") |n >0} U{C: @ — {0}, R:{0,1} — {0}}
13



is the set of generating cofibrations, the maps between globes being induced by the closed
inclusions S*~! € D", and such that

{Glob” (D" x {0}) C Glob”(D"*!) | n > 0}

is the set of generating trivial cofibrations, the maps between globes being induced by the
closed inclusions (x1,...,x,) — (21,...,2,,0). The weak equivalences are the maps of
multipointed d-spaces f : X — Y inducing a bijection f°: X° = Y and a weak homotopy
equivalence PP f : P?X — PPY and the fibrations are the maps of multipointed d-
spaces f : X — Y inducing a g-fibration PP f : P?X — PPY of topological spaces.
A construction of this model structure is given in [13, Theorem 6.16] for P = G. The
argument works in the same way for P = M because it relies on the use of the Quillen path
object argument in [13, Theorem 6.14] applied to the right adjoint from P-multipointed
d-spaces to topological graphs which forgets the composition and the reparametrization
of execution paths.

The space of execution paths of the cellular P-multipointed d-spaces of the g-model
structure are of particular interest. It is the purpose of this section to study them. Let
A be an ordinal. We work with a colimit-preserving functor

X : A\ — PdTop

such that
e The P-multipointed d-space X is a set, in other terms X, = (X°, X°, &) for some
set X0,
e For all v < A, there is a pushout diagram of multipointed d-spaces

Glob” (8™~ 1) — ¥ X,

|

Glob”(D™) —5 X, 44
with n, > 0.
4.2. Notation. Let X, = hﬂy@\ X, be the transfinite composition.

4.3. Definition. A cellular P-multipointed d-space is a P-multipointed d-space of the
form X,.

As already noticed in [11, Proposition 5.2], the underlying space |X,| is a cellular
topological space. Proposition 14l is required to be able to use [5, 23] for the Moore
paths in | X,|.

4.4. Proposition. The topological space | X,| is Hausdorff. Let K be a compact subspace
of | Xx|. Then K intersects finitely many c, .

Proof. The space X is normal, being discrete. Adding one cell preserves normality by
[7, Proposition 1.1.2 (ii)]. Assume that v < A is a limit ordinal and that each X, for
i < v is normal. We prove that X, is normal by an argument similar to the one of [7,
Proposition A.5.1 (iv)]. Each X, for p < X is A-Hausdorff by [12, Proposition B.16],
and therefore has closed points. Hence |X,| is Hausdorff. The last assertion is [11,

Proposition 5.5] whose proof mimicks [18, Proposition A.1]. O
14



For all v < )\, there is the equality X? = X°. Denote by
¢, = |Glob” (D™)[\|Glob” (8™ 1)

the v-th cell of X. It is called a globular cell. Like in the usual setting of CW-complexes,
g, induces a homeomorphism from ¢, to g,(c,) equipped with the relative topology which
will be therefore denoted in the same way. It also means that g,(c,) equipped with the
relative topology is A-generated. The closure of ¢, in | X,]| is denoted by

& = Gu(|Glob” (D™)]).
It is a compact closed subset of | X,|. The boundary of ¢, in | X,| is denoted by
dc, = 3, (|Glob” (8™ 1)]).

The state g,(0) € X° (g,(1) € X° resp.) is called the initial (final resp.) state of c,.
Note that they are not necessarily distinct. The integer n, + 1 is called the dimension of
the globular cell ¢,. It is denoted by dim ¢,. The states of X° are also called the globular
cells of dimension 0.

4.5. Proposition. [11, Proposition 5.2] The space | X,| is a cellular space. It contains
XY as a discrete closed subspace. For every 0 < v; < 1p < A, the continuous map
| X0, | = | Xo,| is a g-cofibration of spaces, and in particular a closed Ty-inclusion.

4.6. Proposition. (11, Proposition 5.3] For all 0 < vy < vy < A, there is the equality
PrX, =P°X,, NTOP([0,1],]X,,|).
4.7. Theorem. The composite functor
PR PdTop L Top
is colimit-preserving. In particular the continuous bijection
li_H;(IP’tOP.X) — Pop ling
is a homeomorphism. Moreover the topology of IP’t"pligX is the final topology.

Proof. 1t is mutatis mutandis the proof of |11, Theorem 5.6] which relies on Proposi-
tion [4.6l 0

4.8. Theorem. The composite functor

X M”,
A — PdTop — PFlow
is colimit-preserving. In particular the natural map
lim M”(X,) — M” X,
s an isomorphism.

Proof. The proof is mutatis mutandis the proof of [11, Theorem 5.7] whose proof relies
on Proposition and Theorem [4.7] 0

4.9. Notation. Let ¢, be a globular cell of X,. For all z € D™ and all ¢ € P(1,1), the
composite g,0,¢ is an execution path of X. When there is no ambiguity on the globular

cell ¢, or no need to mention it, the execution path g,0.¢ of X, will be denoted by ¢§,¢
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(which is strictly speaking an abuse of notations already made in [11] to not overload the
notations).

4.10. Definition. [5, Definition 1.1] Let v : [0, L] — |X,| be a Moore path. A stop
interval of vy is an interval [a,b] C [0, L] with a < b such that the restriction 7y [ o4 is
constant and such that [a,b] is maximal for this property. The set of stop intervals of
7 is denoted by A,. The path 7 is regular if A, = @ (no stop interval) . The Moore
composition of two regular paths is regular.

The set A, contains only closed intervals since |X,| is Hausdorff, Note that in the
case P = G, all execution paths of X are regular by [11, Proposition 5.13]. In the case
P = M, an execution path of the form g,d,¢ with ¢ € M(1,1)\G(1,1) is not regular.
Proposition [ 11] and Proposition play a key role in the sequel.

4.11. Proposition. Consider a globular cell ¢, of X. Let 2 € D™\S™ 1. The ezecution
path g,9, is reqular.

Proof. 1t is a consequence of the facts that g, induces a homeomorphism from ¢, to g,(c,)
and that &, is a regular execution path of Glob” (D™). O

4.12. Proposition. Let v : [0, L] — |X,| be a Moore path. Suppose that ~y is reqular and
that there exist ny,mo € P({, L) such that yn, = yny. Then ny = ns.

Proof. Note that n;,m, € P(¢, L) C M({, L). From ym; = Y1, we obtain yu; ' prmp, ' =
yup oy . The Moore path yu;* @ [0,1] — | Xy| is regular, ;' being a homeomor-
phism. Using [5, Lemma 3.9], we deduce that urmipu, ' = prnop, ' and therefore that
h = 1 O

4.13. Theorem. Let v be an execution path of X,. It can be decomposed as a Moore
composition

V= (Gur 0z P1pe,) * -+ - % (G, 0, Prpie,)
withn > 1, v; < X and z; € D™\S™ 1 and ¢; € P(1,1) for all i € {1,...,n} and
b+ -+ 1, =1. Consider a second decomposition

V= (Gu;0x D1hey) * -+ % (Gur O Brpier ).
Thenn =n', v; = v, and z; = z, for all 1 <i < n and
(Pr110,) @ - .. @ (Pupie,) = (111e,) @ ... @ (S, pe,) € P(1,m).

Proof. By Theorem [B.16, every execution path v from « to g of X, is of the form a
Moore composition v = (g,,0,,01/te,) * =+ * (G0, 0z, Gnpe,) With n > 1, v; < X and
z; € D™i\S™ ! and ¢; € P(1,1) for all i € {1,...,n} and ¢; + --- + £, = 1. Consider
a second decomposition v = (g,70.1 ¢y fie) * -+ * (@52;,¢’nug;,). Then 7 is the Moore
composition of a Moore path going from g,,(0) to g,, (1) in the globular cell ¢,, followed by
a Moore path going from g,,(0) to g,,(1) in the globular cell ¢,, etc... until a Moore path
going from g, (0) to g,, (1) in the globular cell ¢,,,. And 7 is also the Moore composition
of a Moore path going from g,7(0) to g,/(1) in the globular cell ¢,; followed by a Moore

IRemember that by Definition B2} all Moore paths of this paper are nonconstant.
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path going from g,,(0) to g, (1) in the globular cell ¢,; etc... until a Moore path going
from g, (0) to g,~ (1) in the globular cell ¢,/ . From the set bijection
|X)\| = XO LJ H Cy,
v<A
we deduce that n = n', v; = v/ and z; = 2, for 1 < ¢ < n. By |11, Proposition 3.4], we
also have

(@; ) ke Zn>) ((m» ©...8 <¢nmn>)
— (@0« @70, ) (W) & 0 ()

Since (Gy, 0z, )%+ *(90, 02, ) = (G021 )% - '*(g/”:/éz;/) is a regular Moore path, being a Moore
composition of regular Moore paths by Proposition [A.11], we deduce by Proposition
the equality
(D1110,) ® - @ (Putie,) = (Phper) ® ... & (Dprey,)-
O

Theorem is a modification of |11, Theorem 5.9] which is valid both for G and M.

Let ¥ = (¢1u41)®®(¢>n,ugn) = (lelugll)®®( Inu%) IfP:Q, then f1++f1 =
U—1(i) for 1 <4 < n. It implies that ¢; = £, for 1 < i < n, and by Proposition 28, we
deduce that ¢; = ¢} for 1 < i < n, which implies [11, Theorem 5.9].

4.14. Definition. With the notations of Theorem .13 The regular Moore path
nat® (7) = (9,02 ) * -+ * (3,05,
is called the (globular) naturalization of v. The sequence of globular cells
Carrier(y) = [Cuyy - - -5 Cu]

is called the carrier of . The integer n is called the length of the carrier. It is also called
the natural length of ~.

The globular naturalization of the Moore composition of two execution paths is the
Moore composition of the globular naturalizations.

4.15. Proposition. Let vy be an execution path of X of natural lengthn. Then the regular
Moore path nat®(v) is an execution path of Xy of length n.

Proof. 1t is a consequence of Proposition [3.15] O

4.16. Definition. An execution path v of X is minimalE if v = g,6,¢ for some v < A,
some z € D™\S™ ! and some ¢ € P(1,1).

4.17. Theorem. Let 0 < v < A. Then every execution path of X,1 can be written as a
finite Moore composition
(f171N€1) ook (fn/Yn,uﬁn)
with n > 1 such that
21t is not exactly the definition chosen in [11]. This one makes sense only for cellular P-multipointed

d-spaces.
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(1) 3,6 =1.

(2) fi = f and~y; is an execution path of X, or f; = g, and ~y; = 6,,¢; with z; € D™\S™~!
and some ¢; € P(1,1).

(8) for all 1 < i < mn, either fiy; or fiy1Vie1 (or both) is (are) of the form g,0,¢ for some
z € D™\S™ ™! and some ¢ € P(1,1): intuitively, there is no possible simplification
using the Moore composition inside X, .

If there is another finite Moore composition

(Fivipe) * - (fuynme,)

with n' > 1 satisfying the same properties, then n = n', for all i € {1,...,n} one has
fi =1}, ri = nat®(v;) = nat¥(v;) and finally

(Pr1e,) @ . @ (Pnpie,) = (Pptey) @ .. @ (P a0r,)
with ~v; = ri¢; and v, = r;@} for alli € {1,...,n}.

Proof. The existence of the finite Moore composition is a consequence of Theorem
Leti € {1,...,n}. If f; = f, then f; is one-to-one by Proposition @0 Thus, the execution
path fnat8!(y;) is regular. Besides, f nat®!(v;) is in this case the regular naturalization of
frvi- It fi =g, and v; = 0,,¢;, then f;0,, is regular by Proposition .11l And by definition
of the globular naturalization, f;0., = nat®!(f;d.,). Therefore we obtain

(frmat® (30)) % - % (fonat® (7)) = (f{nat(11) # - % (£, nat™(7,)) € P"X,.

By definition of the Moore composition, it implies that nat®'(v;) = nat8!(y}) for all i €
{1,...,n}. The last equality is a consequence of Proposition [L.12] O

Theorem 1T is a replacement for [11, Theorem 5.20] which is valid both for G and M.
Let U = (61/10,) ® .- ® (Suie,) = (B1e) © - (Pl ). TP =, then b+ + b =
U—1(3) for 1 <4 < n. It implies that ¢; = ¢, for 1 < i < n, and by Proposition 28, we
deduce that ¢; = ¢} for 1 < i < n, which implies [11, Theorem 5.20].

4.18. Definition. Let ¢, be a globular cell of the cellular P-multipointed d-space X, with
v < Aand dim(c,) > 1. Let 0 < h < 1. Let

i = @) | () € 1o o)}
It is called an achronal slice of the globular cell ¢, .

[11, Proposition 5.17] claims that, for any globular cell ¢, of any cellular G-multipointed
d-space X, with dim(e,) > 1, there exists b €]0, 1] such that for all A €]0, ], one has
G [h] N XY = @. It implies that there exists h €]0, 1] such that ¢,[h] N X° = @. In plain
English, this means that there is an achronal slice of the globular cell ¢, which does not
intersect X°. Tt is the key fact to prove [11, Theorem 5.18], and then to deduce [11,
Theorem 5.19]. Proposition proves that [11, Proposition 5.17] is false for P = M.

4.19. Proposition. There ezists a cellular M-multipointed d-space X, and a globular

cell ¢, with v < X\ and dim(c,) > 1 such that for all h €]0,1[, ¢, [h] N X° # @.
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Proof. Consider the continuous map ¥ : [—1, 1] x [0, 1] — [0, 1] defined by
0 if0<t <&
Uiz, t) = at—2—a  if 2L L3
1 if 42 <t <1

The continuous map
f (), t) = ((2,9), ¥(z, 1)

from S' x [0,1] to |Glob™(S!)| induces a continuous map from |Glob™ (S| to itself
since f((z,v),0) = ((x,y), ¥ (x,0)) = 0 and f((z,y),1) = ((z,y), ¥(z,1)) = 1 for all
(z,y) € S' by definition of U. An execution path of the form d,, ¢ with ¢ € M(1,1)
is taken by this continuous map to the continuous path (,.)V(z, ¢(t)). The latter is an
execution path of |Glob™(S")| since ¥(x, —) € M(1,1) for all # € [~1,1]. Consequently,
we obtain a map of M-multipointed d-spaces f : Glob™(S") — Glob™(S"). Consider the
M-multipointed d-space X defined by the pushout diagram of M-multipointed d-spaces

GlobM(S') —— Glob™(S)

T

Glob™(D?) X

where the left vertical map is induced by the inclusion S* € D?. The M-multipointed
space X is cellular, Glob™(S!) being cellular. Let h €]0, 1[. Consider the achronal slice

fIb = {f(z,h) | (z,h) € |Glob™(D?)|}.
One has

o~

f((ov 1)7 h) = f((07 1)7 h) = ((07 1)7 \D(Oa h))>

the first equality because the square above is commutative and the second equality by

definition of f. This implies that f((0,1),h) = 0 when h < 1/2 by definition of V.
Similarly, there are the equalities

f((_lv())v h’) = f((_170)7 h) = ((_17())7 \Il<_17 h’))

This implies that f((—1,0),h) =1 when h > 1/2 by definition of V.
We deduce that for all h €]0,1[, f[h] N Z° # @. O

In this paper, we prove Theorem [£2]] instead. It enables us to deduce both [11,
Theorem 5.18] and [11, Theorem 5.19] in a different way for the two reparametrization
categories G and M.

4.20. Notation. Let (o, ) € X° x X% Denote by ( Z%X,\)CO the set IP’ZPX)\ equipped
with the compact-open topology.

4.21. Theorem. (replacement for [11, Proposition 5.17]) Let (a, ) € X° x X°. Let
(Vn)ns0 be a sequence of (Ppr)\)w which converges to vo. Then the set {Carrier(v,) |
n > 0} is finite.

Proof. Consider the one-point compactification N = N U {oo} of the discrete space of

integers N. Note that N is not A-generated, its A-kelleyfication being discrete. The
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converging sequence (7,),>0 gives rise to a continuous map
¥ N — (PBX))e C TOP([0,1], X))

where TOP ([0, 1], | X,|) is the set of continuous maps from [0, 1] to | X | equipped with
the compact-open topology. Since [0, 1] is locally compact, it is exponential in the category
of general topological spaces by [2, Proposition 7.1.5]. We obtain a continuous map

0N Xgen [0,1] — | X,

where X, is the binary product in the category of general topological spaces. Since
N X gen [0, 1] is compact by Tychonoff, the subset ¢ (N X g, [0, 1]) is compact and closed in
| X/, the latter being Hausdorff by Proposition B4l The subset (N X 4, [0, 1]) therefore
intersects finitely many globular cells {c,, | j € J} by Proposition {4l Suppose that the
set {Carrier(y,) | n > 0} is infinite. It implies that the sequence of lengths of Carrier(y,)
for n > 0 is not bounded, the set J being finite. By extracting a subsequence, one
can suppose that the sequence of lengths is strictly increasing. Each infinite sequence
of {c,, | 7 € J} has a constant infinite subsequence since J is finite. Therefore by a
Cantor diagonalization argument, one can suppose that there exists a sequence (c,;, )n>0
of {c,, | j € J} such that for all n > 0, there is the equality

Carrier(y,) = [cuyy; - - - c,,jin]

for some strictly increasing sequence of integers (i,),>o. This means that the exe-
cution path =, is the composition of an execution path whose image is included in
190,,(0), g, (1)} Uy, from g, (0) to g, (1) followed by an execution path whose image
is included in {g,, (0) U g, (1)} Uc,, from g, (1) = g,, (0) to g,, (1) etc... until an
execution path whose image is included in {gjh\n (0)u G, ()} U ¢y, - The sequence of
execution paths (7, ),>0 converges pointwise to 7., because it converges for the compact-
open topology by hypothesis. The subset ¢, being closed in |X,| for all v < A, the
sequence of globular cells Carrier(v,) consists of a concatenation of sequences S, for
n > 0 where either S, = [c,, ] or S, is a nonempty finite sequence of globular cells
intersecting dc,, . It implies that the sequence of globular cells Carrier(vs) is infinite:
contradiction. O

4.22. Corollary. ([11, Theorem 5.18] for G and M) Let v be an execution path of
Xy. Let vy < A. There exists an open neighborhood Q0 of v in PP Xy such that for all
execution paths v € €1, the number of copies of c,, in the carrier of v cannot exceed the
length of the carrier of Yoo.

Proof. Let §2,, be the set of execution paths v such that the number of copies of ¢,, in
the carrier of v does not exceed the length of the carrier of v,. Suppose that 7. is
not in the interior of €. Since PP X is sequential, being A-generated, there exists a
sequence (Yy,)nso of the complement of ), converging to v... By Theorem E.21] the set
{Carrier(,) | n > 0} is finite. Thus by extracting a subsequence, one can suppose that
the sequence of carriers (Carrier(7,))n>o is constant, write

Carrier(vn) = [Cuys - - -5 Cuy]
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for all n > 0. The integer N is strictly greater than the length of Carrier(v,,) since
[Cuys - -y Cuy] contains strictly more copies of ¢, than the length of Carrier(vs) by defi-
nition of €,,. The sequence (7,)n>0 converges also pointwise to V. Thus, Carrier(vs)
consists of a concatenation of sequences S, for 1 < n < N where either S,, = [c,,] or
S, is a nonempty finite sequence of globular cells intersecting dc,, . This implies that
the length of Carrier(vs) is strictly greater than itself: contradiction. We deduce that
Yoo 18 in the interior of €2,,,. Hence the existence of the open neighborhood. ]

Corollary proves the existence of an open neighborhood €2 in the A-kelleyfication
of the compact-open topology. The latter topology contains more open subsets than the
compact-open topology. The proof of [11, Theorem 5.18] implies that Q can even be
taken in the compact-open topology when P = G.

4.23. Corollary. ([11, Theorem 5.19] for G and M) Let (k. )r=o0 be a sequence of execution
paths of X which converges inPYX . Let ¢y, be a globular cell of X . Let iy, be the number
of times that c,, appears in Carrier(v). Then the sequence of integers (ix)r=o 1S bounded.

Proof. The sequence (v;)r=o converges in (P9.X)),, as well because of the continuous map
P9X, — (P9X))e. Thus the set {Carrier(vy,) | n = 0} is finite by Theorem E2T] and,
therefore, the sequence of integers (ix)x>o is bounded. U

Theorem is a much better statement that will be the replacement in this paper of
[11, Theorem 5.19].

4.24. Theorem. Let (o, 8) € X° x X°. Let ¢ : [0,1] — IPZZ%X)\ be a continuous map.
Then the set {Carrier(¢(u)) | u € [0,1]} is finite.

Proof. Suppose that the set {Carrier(¢(u)) | v € [0,1]} is infinite. Then there exists a
sequence (t,),>o of [0, 1] such that

Vm,n > 0, m # n = Carrier(y(t,,)) # Carrier(¢(t,)).

In particular, this means that t,, = ¢, implies m = n for all m,n > 0. By extracting
a subsequence, one can suppose that the sequence (t,),>0 converges to some t,, € [0, 1].
And the above condition ensures that the set of carriers {Carrier(¢(¢,)) | n > 0} is still
infinite. Since ¢ is continuous, the sequence of execution paths (¢(t,)),>0 converges to
(tso) In IP’Z’,%X , and therefore in (IP’Z)’%X A)eo because of the continuous map IP’Z)’%X N =

( Z’% X\)eo- That contradicts Theorem F2T1 =

Theorem [4.24] enables us to understand the difference between Raussen’s naturalization
of |24, Definition 2.14] and the globular naturalization of Definition ET4l

4.25. Corollary. Let (o, 8) € X° x X°. Let ¢ : [0,1] — IPZZ%X)\ be a continuous map.
Then the set of natural lengths of ¥(u) for w running over [0, 1] is bounded.

Proof. 1t is due to the fact that the set {Carrier(¢)(u)) | u € [0,1]} is finite by Theo-

rem [4.24] O
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The natural lengths of t(u) for « running over [0, 1] have no reason to be constant.
Consider a pushout of P-multipointed d-spaces

GlobP(S) ——— TP % P

|

Glob” (D) ’/X

where 77’ * 77’ means that the final state of the left copy of the directed segment is
identified with the initial state of the right copy of the directed segment (see Notation [.1)
and where the top horizontal map (it is not unique) takes the initial (final resp.) state
of Glob”(8%) to the initial (final resp.) state of TP« TP. Then the natural length of
an execution path of X going from the initial to the final state is 2 on the boundary of
Clob” (D) and 1 inside Glob” (D).

Corollary .28 shows the difference of behavior between the natural length in the globu-
lar setting and the length of the naturalization of a directed path between two vertices in
the geometric realization of a precubical set. Indeed, the latter is constant by continuous
deformation preserving the extremities [24, Section 2.2.1] |25, Proposition 2.2]. See also
[15, Proposition 3.6].

5. CHAIN OF GLOBES

5.1. Notation. Let Z;,...,Z, be p nonempty topological spaces with p > 1. Consider
the P-multipointed d-space

X = Clob”(Zy) * - - - Glob” (Z,)

with p > 1 where the * means that the final state of a globe is identified with the initial
state of the next one by reading from the left to the right. Let {ap,a1,...,,} be the
set of states such that the canonical map Glob”(Z;) — X takes the initial state 0 of
Glob”(Z;) to a;_; and the final state 1 of Glob” (Z;) to .

5.2. Notation. Each carrier ¢ = [c,,,...,¢,,] gives rise to a map of P-multipointed
d-spaces from a chain of globes to X

g ¢ Glob”(D™1) x - Glob” (D) —» X,

by “concatenating” the attaching maps of the globular cells ¢,,,...,c,,. Let a;1 (o
resp.) be the initial state (the final state resp.) of Glob”(D™i) for 1 < i < n in
Glob” (D™1) % - - - % Glob” (D™n). Tt induces a continuous map

PG, : X = Py?,, (Glob”(D™1) # - % Glob” (D"n)) — P X,

= «Q,0n
As a consequence of the associativity of the semimonoidal structure on P-spaces and

of [10, Proposition 5.16], we have

5.3. Proposition. Let Uy,...,U, be p topological spaces with p > 1. Let ¢1,...,¢, > 0.
There is the natural isomorphism of P-spaces

FIU®...® FZ""UP ~ IFZT___HP(Ul X ... xUp).
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5.4. Proposition. ([]1 Proposition 6.3] for G and M) Let Zy,...,Z, be p topological
spaces of Top with p > 1. Consider the P-multipointed d-space X GlobP(Zl) -k
Glob”(Z,) with p > 1. There is a homeomorphism

PP X 2 P(1,p) X Zy X ... X Z.

ag,op

The case p = 1 is treated in Proposition B.I7. The proof of Proposition [(.4lis a modified
version of the proof of [11, Proposition 6.3], the latter working only for the case P = G.
Like in the proof of Proposition [3.17, the verification of the continuity in one direction is
different from the proof of [11, Proposition 6.3] because of the possible presence, in the
case P = M, of stop intervals.

Proof. The Moore composition of paths induced a map of P-spaces

Py, Glob”(Z1) ® ... ® Py ,Glob” (Z,) — P, , X.

ag,op

By Proposition .17, there is the isomorphism of P-spaces
P, Glob”(Z) = F{" Z
for all topological spaces Z. We obtain a map of P-spaces

"z .. @F "2, — P . X.

ag,op

By Proposition (.3 and since IP’}YO’apX = PP, X by definition of the functor P, , X,
we obtain a continuous map

{\11: P(Lp) X Z1 X ... X Zp — PP X
<¢7217"'7ZP) (521¢1> (Zp¢p>

where ¢; € P({;,1) with >, ¢; = 1 and ¢ = ¢1®. . .®@¢, being a decomposition given by the
third axiom of reparametrization category. The map W is bijective by Theorem The
continuous maps Z; — {0} for 1 < i < p induce by functoriality a map of P-multipointed
d-spaces X — I'Px---x I'7 (p times) and then a continuous map

{k: P, X — P (TP ... TP)=P(1,p

( Z1¢1) (5zp¢p) = (Ood1) * - % (Oogp) = 91 ® ... @ Py

Consider the set map

k: IP’g’g’aX—>Zl X Z,
(02,01) % -+ % (02,0p) = (21, .., 2p).
Let i € {1,...,p}. Suppose that the composite set map pr, k : PP, — Zi is not

continuous where pr; is the projection on the i-th factor. All involved topological spaces
being sequential, there exist 2 € Z;, an open neighborhood V of z* in Z;, and a
sequence ((0,p@7)* -+ * (0.p @} ) )0 Which converges to (9,00 93°) - - % (0,20 45°) such that
2z € Z\V for alln > 0. Let ¢" = ¢7 ® ... @ ¢y for n > 0 and ¢ = ¢° @ ... ® @Y.
Choose tg € [0, 1] such that ¢>(t) €]i — 1,4[. The sequence

((Gapem) oo () (1), _,
converges to

((54’0(25?0) ook (5zg°¢;°))(to) = (5zf° ek 5zg°)(¢oo(to))-
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By continuity of the map k : Pi? , X — P(1,p), the sequence (¢"(to))n=0 of [0, p] con-
verges to ¢>(ty) €]i — 1,7[. It implies that there exists N > 0 such that for all n > N,
¢"(to) €]i — 1,i[. We obtain that the sequence ((z7,¢"(ty) — i + 1)),>n converges to
(22,6 (to) —i+1) in |Glob” (Z;)|\{0, 1}. By considering the well-defined projection (the

left-hand term being equipped with the relative topology)
|Glob”(Z)|\{0, 1} — Z;,

we obtain that the sequence (2}

Mnsn converges to z°, and therefore that z° € Z;\V, the
latter set being closed in Z;: contradiction.

This means that the composite set map pr; k is continuous for all i € {1,...,p}, and
therefore, by the universal property of the product, that the set map k : P X —

OlO,Cl{p
Zy X ... X Zyis continuous. It implies that the set map

U= (k, k) ¢ (020 01) %+ % (02,8p) = (1 ® ... @y, 21, ., 7).

is continuous and that W is a homeomorphism. 0

5.5. Corollary. Let Zy,...,Z, be p topological spaces of Top with p > 1. Consider
the P-multipointed d-space X = Glob” (Z;) * --- % Glob”(Z,) with p > 1. There is a
homeomorphism

Poga, X E Z1 X ... X Z,

D+

Proof. There are the homeomorphisms

Hﬂ(?(l,p) X 2y X ... X Zp> = (hg?(l,p)) XZy X oo X Ly 22y X oo X D,
7)1 7)1

the left-hand homeomorphism since Top is cartesian closed and the right-hand home-
omorphism by Proposition B.IIl The proof is complete thanks to Proposition [(b.4] and
Proposition O

5.6. Lemma. (11, Lemma 6.10] Let Uy, ..., U, be p first-countable A-Hausdorff A-generated
spaces with p > 1. Let (ul),>o be a sequence of U; for 1 < i < p which converges to
ul, € U;. Then the sequence ((ul, ..

for the product calculated in Top.

S uP))pso converges to (ul,, ... ub)) € Uy x ... x U,

[oop)

5.7. Notation. Let ¢ be the carrier of some execution path of X,. Using the identification
provided by the homeomorphism of Proposition 5.4, we can use the notation

(Pt‘”’g;)(gb, 2L, 2") = (G 01 % -+ % Gy, Oun ).

Lemma 5.8 is implicitly used in [11, Theorem 6.11 and Theorem 7.3] and in |16, Theo-
rem 7.7].

5.8. Lemma. Let X be a sequential topological space. Let xo, € X. Let (z,)n>0 be a
sequence such that x., is a limit point of all subsequences. Then the sequence (xp)n>o
converges t0 Tog.

Proof. Otherwise, consider an open neighborhood V' of z,, such that for all n > N,
x, ¢ V for some N > 0. This means that 2., € X\V, the subset X\V being sequentially
closed in X: contradiction. U

5.9. Theorem. Let ¢ be the carrier of some execution path of X,.
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(1) Consider a sequence (vg)g=0 of the image of P'Pg. which converges pointwise to Yoo
in PP X, . Let
Ve = (]P)wpg\g)(gbkv Zlia R ZIZL)
with ¢r € P(1,n) and z,’ﬁ e D™ forl1 < i < nand k > 0. Then there exist
boo € P(1,n) and z', € D™ for 1 < i < n such that

Yoo = (PPGe) (Poos 200 - - 5 200)

and such that (¢oo, 2L, ..., 2%) is a limit point of the sequence ((dr, 24, - -, 21))k=0-

) Yoo

(2) The image of P*Pg, is closed in P'PX.

Proof. The case P = G is treated in [11, Theorem 6.11]. Let us suppose that P = M.
The proof is similar but simpler because it is not necessary to verify anymore that some
limit execution paths are regular.

(1) By a Cantor diagonalization argument, we can suppose that the sequence (z})r=o
converges to 2!, € D™: for each 1 < i < n and that the sequence (¢ (r))r=o converges to
a real number denoted by ¢o.(r) € [0, n] for all rational numbers r € [0,1]N Q. Since the
sequence of execution paths (7x)g=0 converges pointwise to .., we obtain

Voo () = (Gor 021, * -+ * G0z, ) (P (1))

for all r € [0,1] N Q. For r; <1y € [0,1] N Q, ¢r(r1) < ¢p(re) for all k > 0. Therefore by
passing to the limit, we obtain ¢ (1) < ¢oo(r2). Note that ¢ (0) = 0 and ¢ (1) = n
since 0,1 € Q. For t €]0, 1], let us extend the definition of ¢, as follows:

Poo(t) = sup{ooo(r) [ r €]0,] N Q}.
By continuity, we deduce that

Yoo () = (Gor 021, * -+ # G 0, ) (Do (1))

for all t € [0,1]. It is easy to see that the set map ¢, : [0,1] — [0, n] is nondecreasing
and that it preserves extremities. By definition of the Moore composition, there exist
0=ty <t; <...<t,=1such that for all 1 <i < n,
Yt € [tim1, il Yoo(t) = G (25, Goo(t) — i+ 1).

It implies that the restriction of ¢, to [t;_1,t;] is surjective. We deduce that the non-
decreasing set map ¢, : [0,1] — [0,n] is surjective, and therefore that ¢, € M(1,n).
Let ¢t € [0,1]\Q. The sequence (¢(t))r=o0 has at least one limit point ¢. There exists
a subsequence of (¢g(t))r=0 which converges to ¢. We obtain: Vr € [0,t] N Q,Vr €
(6, 1] NQ, poo(r) < € < Poo(r’). Since ¢, € M(1,n) and by density of Q, we deduce that
{ = ¢oo(t) necessarily. Using Lemma [5.8) we deduce that the sequence (¢ )r=0 converges
pointwise to ¢n. Using Proposition 6] we deduce that (¢ )r>o converges uniformly to
boo- We deduce that (¢oo, 2L, ..., 27%) is a limit point of the sequence ((¢, 21, - - -, 21) k=0
in M(1,n) x D™ x ... x D™ by Proposition 2.6l and Lemma [5.6]

(2) Let (P"Pg.(T'y))n=0 be a sequence of (P*?g.)(X,) which converges in P*?X,. The
limit 7., € P X, of the sequence of execution paths (P*?g.(T,,)),>0 is also a pointwise
limit. We can suppose by extracting a subsequence that the sequence (I';),>o of X,

converges in X.. Thus, by continuity of P'”g,, we obtain v, = (P"?g.)(I's) for some
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' € X.. We deduce that PPg,(X,) is sequentially closed in PP X,. Since P'PX, is

sequentiz;l, being a A-generated space, the proof is complete. O

As a corollary of Theorem [5.9, we obtain:

5.10. Corollary. Suppose that Xy is a finite cellular P-multipointed d-space, i.e. X° is
finite and X is a finite ordinal. If Xy has no loops, then the topology of PP Xy is the
topology of the pointwise convergence which is therefore A-generated.

Proof. Tt is mutatis mutandis the proof of |11, Corollary 6.12]. O

6. LOCALLY FINITE CELLULAR MULTIPOINTED D-SPACE

We want to give an application of Theorem [4.21] and Theorem before addressing
the main subject of this paper. The reading of this section is not necessary to understand
Section [7l A cellular P-multipointed d-space X, is fixed.

6.1. Definition. The cellular P-multipointed d-space space X is locally finite if for all
v < A, theset {V/ < X|é&yNe, # @} is finite and each state meets a finite number of ¢,.
In other terms, the underlying topological space | X|, which is cellular by Proposition [£.5],
is locally finite.

Lemma [6.2]is a consequence of |3, Proposition 3.4] and |3, Proposition 3.10]. It can be
easily proved without using diffeological spaces.

6.2. Lemma. Fvery A-generated space is locally path-connected.

Proof. Let U be an open subset of a A-generated space X. Then U equipped with the
relative topology is A-generated by [12, Proposition 2.4]. Therefore U equipped with the
relative topology is homeomorphic to the disjoint sum of its path-connected components
by [8, Proposition 2.8]. Thus X is locally path-connected. O

6.3. Definition. A topological space X is weakly locally path-connected if for every x €
X and every neighborhood W of z, there exists a path-connected neighborhood (not
necessarily open) W’ of z such that W' C W.

6.4. Lemma. (well-known) Every weakly locally path-connected space is locally path-
connected.

Proof. Let W be a neighborhood of x € X. Then there exists a path-connected neighbor-
hood W’ of x such that W’ C W. This means that W’ is included in the path-connected
component C' of x in W. Therefore z is in the interior of C'. Thus C is open and X is
locally path-connected. 0

6.5. Proposition. Let A be an ordinal. Let Z : A — Top be a colimit-preserving functor
such that Zy is cellular for the g-model structure of Top. If the cellular space Zy is locally
finite, then the topological space Zy is metrizable.

Sketch of proof. The technique used in [7] to reorganize and regroup the cells in a CW-
complex using the notion of star of a subset [7, Example 2] works in the same way for
cellular topological spaces, even when A is not countable. Assume first that 7, is path-

connected. By [7, Proposition 1.5.12], the ordinal X is countable, Z) being locally finite.
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Using [7, Proposition 1.5.13], the cells are reorganized so that A = Xy and so that each
Z,, for n finite is a finite cellular topological space (i.e. built using finitely many cells).

Moreover, for all n > 0, the space Z,, is contained in the interior Z, ., of Z,,.; for the
topology of Z, and there is the equality

UZn= 2, = 2.

n=0 n=0
Using |7, Theorem 1.5.16], we deduce that Z) is metrizable and that it can be embedded
in the Hilbert cube equipped with the ¢? metric. This means that the metric of 7, is
bounded, namely by the constant m/+/6 which does not depend on Z,. In the general
case, the A-generated space Z) is homeomorphic to the disjoint sum of its path-connected
components by |8, Proposition 2.8]. Thus, the metric on each path-connected component
being bounded by 7/+/6, the disjoint sum is metrizable. O

In fact, we could prove the equivalence for cellular topological spaces of the condi-
tions locally finite, metrizable, locally compact and first-countable as it is done in [T,
Proposition 1.5.10 and Proposition 1.5.17] for CW-complexes.

6.6. Corollary. Assume Xy locally finite. Let (o, 3) € X° x X°. Then the topological
space (IPZZ%XA)CO is metrizable, and therefore sequential and first-countable.

Proof. By Proposition 6.0 the topological space | X,| is metrizable, X, being locally finite
by hypothesis. The space (IP’ZZ%X ) co 18 therefore metrizable by [18, Proposition A.13]. O

6.7. Proposition. Assume Xy locally finite. Let (o, B) € X°x X°. The space (P%X))co
is locally path-connected.

Proof. By Lemmal6.4] it suffices to prove that (IP’?%X A)eo 18 weakly locally path-connected.
Consider an execution path 7., of PZZ%X x- Let  be an open subset of (PZZ%X ) eo CONtain-
ing V.. Then 2 is an open subset of IP’Z%X A since the A-kelleyfication adds open subsets.
Let T be the set of all carriers of all execution paths of IP’ZZ%X »- Consequently, for each
carrier ¢ € T and for each T' € (P"P§,) ! (74 ), there exists an open neighborhood Qr of
I" such that (P*Pg,.)(Qr) C Q. By Lemma 6.2 we can suppose that Qr is path-connected.
Consider
v-U U @,
CE€T Te(Ptorge) ! (vo0)

Then U is path-connected and U C (2. Suppose that 7., is not in the interior of U
in (IP’ZZ%X Aeo- The space (Pz%X A)eo being sequential by Corollary [6:6] there exists a
sequence (7Y,)ns0 of execution paths not belonging to U converging to 7., in (PZZ” X)) co-
Since the set {Carrier(vy,) | n > 0} is finite by Theorem 21|, we can always suppose that
the sequence of carriers (Carrier(7,))n,=o0 is constant and e.g. equal to some ¢ € T by
extracting a subsequence. Therefore we can write v, = (P*?g,)(T,) with ', € X, (see
Notation 5.2]). The sequence of execution paths (7, ),>0 converges pointwise to v,,. Thus,
by Theorem [5.9] we can suppose that the sequence (I',),>0 converges to ', € X, after
extracting a subsequence again. By continuity, we obtain the equality v, = (P*?g.) ().
There exists N > 0 such that for alln > N, T, € Qr_, i.e. v, = (P*g.)(T,,) € U for all

n > N. Contradiction. Thus 7. is in the interior of U. O
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P -1 Mp(g)
M7”(Glob” (S"!)) = Glob(D) ——

| lf

MP” (Glob” (D")) = Glob(FE)

FIGURE 1. Definition of X

6.8. Theorem. Assume X locally finite. Let (o, 3) € X° x X°. The topological space
(IP’ZZ%X,\)CO equipped with the compact-open topology is A-generated. The topological space

Prx,= ] P5X,
(a,8)EXO% X0
is metrizable with the distance of the uniform convergence. The underlying topology is
the compact-open topology.

Proof. By Corollary [6.6] the topological space (IP’ZZ%X Ao 1s first-countable. The space
(IP’ZZ%X \)eo 18 locally path-connected by Proposition Using [3, Proposition 3.11], we
deduce that (IP’Z’%X Ao 18 A-generated. The set of all execution paths equipped with the
compact-open topology (PP X})., satisfies
R N | I
(a,3)€EX0x X0

because XV is a discrete subspace of | X,|. Hence (PP X} )., is A-generated and metrizable
by the distance of the uniform convergence. O

7. MULTIPOINTED D-SPACE AND MOORE FLOW

Consider a pushout diagram of P-multipointed d-spaces

Glob”(sm 1) — 2 A

Glob” (D) _ i Ly
with n > 0 and A cellular. Note that A° = X% Let D = F7”S" ! and £ = F""D".
Consider the P-flow X defined by the pushout diagram of Figure [Il where the two equal-
ities
M” (Glob” (S"71)) = Gloh(D)
M” (Glob” (D)) = Glob(FE)
come from Proposition and where the map v is induced by the universal property

of the pushout.
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The P-space of execution paths of the Moore flow X can be calculated by introducing
a diagram of P-spaces D’ over a Reedy category P99V ( A%) whose definition is recalled
now. It was introduced for the first time in [12, Section 3]. Let S be a nonempty set. Let
Puv(S) B be the small category defined by generators and relations as follows:

e u,v € S (uand v may be equal).
e The objects are the tuples of the form

m = ((UO, €1, ul)a (U/l) €2, u2)7 ey (un—17 €n, un))

withn > 1, ug,...,u, €S, €,...,€6, € {0,1} and
Vi such that 1 <i < n,e=1= (u—1,u;) = (u,v).
e There is an arrow

Cn41 - (ma (l’, O)?/)) (?/7 07 Z)aﬂ) — (ma ("L‘a Oa Z)aﬂ)
for every tuple m = ((uo, €1, u1), (u1,€2,u2), ..., (Up_1, €n, up,)) With n > 1 and
every tuple n = ((ug, €}, u)), (U}, €y, ul), ..., (uly_y, €, ul,)) with ' > 1. It is
called a composition map.

e There is an arrow

Ingr s (my, (u,0,0),0) — (m, (u,1,v),n)
for every tuple m = ((uo, €1, u1), (U1, €2,u2), ..., (Up_1, €n,up,)) With n > 1 and
every tuple n = ((ug, €}, u)), (W), €y, ul), ..., (uly_y, €, ul,)) with n/ > 1. It is
called an inclusion map.

e There are the relations (group A) ¢;.c; = ¢j_1.¢; if i < j (which means since ¢; and
c¢; may correspond to several maps that if ¢; and ¢; are composable, then there
exist ¢;_; and ¢; composable satisfying the equality).

e There are the relations (group B) I,.I; = [;.I; if i # j. By definition of these

maps, I; is never composable with itself.
e There are the relations (group C)

Ij—l-ci lf] >Z+2
Ci-[j =
By definition of these maps, ¢; and I; are never composable as well as ¢; and ;4.

By [12, Proposition 3.7], there exists a structure of Reedy category on P“*(S) with the
N-valued degree map defined by

d((uo, €1, u1), (U1, €2,u2), . - ., (Un—1, €n, Up)) = 1+ Z €;-

The maps raising the degree are the inclusion maps. The maps decreasing the degree are
the composition maps.

3The use of the letter P here has nothing to do with the reparametrization category P. It is a bit
unfortunate but I prefer to not change the notation.
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Let T be the P-space defined by the pushout diagram of [P, Top]o

PM7” (g)
D ——— Py0) gyM” (A)

Pf
E 7 g
Consider the diagram of spaces Df : P99 (A%) — [P Top], defined as follows:

Df<<U0, €1, Ul), (ul, €9, Ug), ey (un,l, €n, un)) = Zuo,u1 ® Zul,ug ® e ® Zun_hun
with

A o Pui_l,uiMP(A) if € — 0
R ife; =1
In the case ¢; = 1, (ui_1,u;) = (9(0),g(1)) by definition of P91 (A% The inclusion
maps I/s are induced by the map Pf : Py 41yM”(A) — T. The composition maps ¢}s
are induced by the compositions of paths of the Moore flow M”(A).

7.1. Theorem. (10, Theorem 9.7] We obtain a well-defined diagram of P-spaces
Df . pIO9(A%) 5 [PP Top),.
There is the isomorphism of P-spaces ling ~PX.

By the universal property of the pushout, we obtain a canonical map of P-spaces
Py : lim D/ — PMPX.

7.2. Definition. Let 2 be an element of some vertex of the diagram of spaces D/. We
say that z € D/ (n) is simplified if

d(n) = min {d(m) | 3m € Obj(P/D9M(A%) and 3y € D/ (m),y =z € ligl)f}.

7.3. Theorem. Under the hypotheses and the notations of this section. The map of
P-spaces
Py : lim DF — PM” (X))

s an isomorphism.

Proof. The structure of the proof is the same as the one of the proofs of [11, Theorem 7.2
and Theorem 7.3]. At first it must be proved that the map Py is an objectwise bijection.
The role of [11, Theorem 5.20] is played by Theorem [£I7 Then it must be proved that
the map P is an objectwise homeomorphism. The roles of [11, Theorem 5.19] and [11,
Theorem 6.11] are played by Theorem and Theorem respectively.

The map ¢ of Figure [l is obtained by the universal property of the pushout. Thus, it
is bijective on states. It then suffices to prove that the map

Pty : lim D/(1) — P'MP(X) = PPX

is a homeomorphism since G C P. By Theorem [A.17], every execution path of X can be
written as a finite Moore composition (fivyiug,) * -+« % (fuYntte,) with n > 1 such that

li+ -+ /¢, =1 and such that f; = f and ; is an execution path of A or f; = g and
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v = 0,,¢; with z; € D"\S""! and some ¢; € P(1,1). Let fi=gif fi=gand f; = f if
fi=fforic{1,...,n}. It gives rise to the execution path Pf(y1ie,) * - - * Pfo(ntie,)
of the Moore flow X. By the commutativity of the diagram of Figure [ we obtain the
equality

(Frvse) * - % (faYnbte,) = (P'e) <Pﬁ(%uel) ok Pﬁ(%%))-

This means that the map of Moore flows ¢ : X — M” (X)) induces a surjective continuous
map from P'X to PP X. In other terms, the map P'4) is a surjection.

Let n = (ug, €1, u1), (u1, €2,u3), .. ., (Un_1, €, up)). By [10, Corollary 5.13], the topolog-
ical space (Zyguy @ Zuyup @ - @ Zy, ) (1) is the quotient of

[T PQG A+ 4 0,) X Zugu (1) X oo X Zy ()

by the equivalence relation generated by the identifications

<¢7x1¢17 s 7xp¢p) ~ (((bl D...0 ¢p)¢7 Ty, 7xp)
for p e P(L, 04+ ---+4p), ¢ € P(4;,0) and x; € Z,,, , 4, (¢) for 1 <i < n. Assume that

(D, Y15 osYn) €EP(L b 4+ 0n) X Zyguy (1) X oo X Zypp o ()

is a representative of z in D/ (n) with z simplified. Then

Ply(z) = () * - (faya) )&
with f; = fif ¢, =0and f; = g if ¢, = 1. Using Proposition 8] write ¢ = ¢; ® ... ® ¢,
with ¢; : €; — £; for 1 < ¢ < n for some ¢,..., ¢, such that ¢] +---+¢;, = 1. Then one
has

(@715 vm) ~ (Idi, 71610, Y dn)

in D/ (n) and therefore

Plyp(z) = (fimdr) * - . - (faVndn)-
Recall that

d((ug, €1,u1), (U1, €2,u2), ..., (Up_1,€n,Up)) =N+ Z €.

As already explained in the proof of |11, Theorem 7.2] with a lot of details in the case
P = G, since z is simplified by hypothesis, it is impossible to have ¢; = ¢;,1 = 0 for some
1 <i < n. There is a composition map starting from n in P9)-91)(A%) otherwise, which
identifies z to some y € Df(m) in lim D/ (1) with d(m) < d(n), and it is a contradiction.
As also already seen in the proof of [711, Theorem 7.2] in the case P = G, if ¢, = 1, then
v = g0, with z; € D"\S"! and v¢; € P(¢;,1). Indeed, if z; € S, then there is
an inclusion map whose image contains x, which means also that z is identified to some
y € D/(m) in liﬂDf(l) with d(m) < d(n), which contradicts the fact that z is simplified.

This means that the finite Moore composition ( fiy1¢1) *. .. (fnYa®s) is one of the finite
Moore compositions given by Theorem EI7. Consider another simplified element z’ in
D’ (n') such that Ply(z) = Plp(z'). It gives rise to another finite Moore composition
(fimidy) * ... (fl,7,¢n) as the ones given by Theorem I7. Using Theorem [LI7, we
deduce that n = n’ and that

(R) V1 <i < n,r; = nat® () = nat¥ (), v = rims, ) = ran,
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and

(P) (me1) @ ... ® (Nupn) = (MN101) @ ... @ (1,8,)-

We then obtain in (Zy,u; ® Zuju, @ ... ® Zy, ,u,)(1) the following sequence of identifi-
cations:

<¢7/717 o 7/7n) ~ ((771 ®. & nn)(bv 1. 7Tn)
= ((771 ®..Q U;L)ﬁblﬂ“la cee 7Tn)
~ (@7 m)s
the first and third identifications by (R and |10, Corollary 5.13] and the equality by (PJ).
This means that z = 2’ in ling (1) and, therefore, that the map P is one-to-one.

At this point, it is proved that the map P : hﬂDf (1) — PX is a continuous
bijection with liﬂDf (1) equipped with the final topology. If we work with the category
of A-Hausdorff A-generated spaces, we deduce that @Df (1) equipped with the final
topology is A-Hausdorff as well, the space P?X being A-Hausdorff. So whether we
work with A-Hausdorff or not A-generated spaces, the topology of ling (1) is always
the final topology.

By |11, Corollary 2.3], we must now prove that for all set maps ¢ : [0,1] — ling(l),
if the composite map (P*)¢ : [0, 1] — PPX is continuous, then the set map € : [0,1] —
ling (1) is continuous as well. By Theorem [£.24] the set of carriers

T = {Carrier((P'¢)¢(w)) | u € [0,1]}

is finite. For each carrier ¢ € T, let

U.={u € [0,1] | Carrier({(u)) = c}.

Consider the closure U, of U, in [0,1]. We obtain a finite covering of [0,1] by the closed
subsets /U; for ¢ running over 7. Each /U; is compact, metrizable and therefore sequential.
Note that (79 has no reason to be A-generated: it could be e.g. the Cantor set which is
not A-generated because it is not homeomorphic to the disjoint sum of its path-connected
components. Fix the carrier c.

The end of the proof is the third reduction and sequential continuity sections of the
proof of [11, Theorem 7.3] with the use of Theorem B9 instead of [11, Theorem 6.11]. The
argument is sketched for the ease of the reader. It suffices to prove that the restriction

¢: U — lim D/ (1)

is sequentially continuous to complete the proof. Let (u,),>0 be a sequence of /U; which
converges to us. Then the sequence of execution paths (P'¢(£(uy)))ns0 converges to
P (& (uso)), and therefore, it converges pointwise. All execution paths P4 (£(u,,)) for
n > 0 and P (€(us)) belong to the image of PPg, (see Notation [£.2)), this image being
closed in P*PX, by Theorem 5.9 Besides, each subsequence of (P'4(&(uy)))ns0 has a
limit point by Theorem This limit point is unique since

Pty - lim D/ (1) — PPX
is a bijection. The proof is complete thanks to Lemma [5.8| O
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7.4. Corollary. Suppose that A is a cellular P-multipointed d-space. Consider a pushout
diagram of P-multipointed d-spaces

Glob”(8" 1) ———— A

Glob” (D™) J X
with n > 0. Then there is the pushout diagram of Moore flows
MP (Glob” (8" 1)) = Glob(FP”S""1) ———— MP(A)

MP (Glob” (D")) = Glob(F7”"D") 4,>T\417’(X).

7.5. Theorem. Consider the adjunction M + M” between P-multipointed d-spaces and
P-flows. Then the unit map and the counit map induce isomorphisms on q-cofibrant
objects. This adjunction is a Quillen equivalence between the g-model structures of P-
multipointed d-spaces and of P-flows.

Proof. From Corollary [[.4land Theorem [4.8, we deduce that the unit map and the counit
map are isomorphisms on cellular objects, and then, on g-cofibrant objects since the
retract of an isomorphism is an isomorphism. From this fact and the fact that all objects
are g-fibrant, we deduce that the Quillen adjunction is a Quillen equivalence. See the
proofs of [11, Theorem 7.6, Corollary 7.9 and Theorem 8.1] for further details. O

7.6. Definition. The category of small topologically enriched semicategories is isomorphic
to the category of 1-flows. This category is denoted by Flow and its objects are called
flows (without using the prefixes Moore or 1).

7.7. Notation. Let C be a small category. The constant diagram functor is denoted by
A¢ : C — Top.
By [10, Proposition 10.5], the constant diagonal functor induces a functor denoted by
M : Flow — PFlow

such that M(X)? = X° and such that P, sM(X) = Apor (P, 4 X) for all (o, 8) € X x X°.
We refer to [10, Proposition 10.5] for further details.

7.8. Corollary. ([11, Theorem 8.14] for G and M) Let X be a P-multipointed d-space.
There exists a flow cat(X) with cat(X)? = X9, P, scat(X) = P, 3X (see Notation[3.9)

and the composition law * : P, 53X X Pg X — P, X is for every triple (o, B,7) €
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X% x XY x X the unique map making the following diagram commutative:

to to *N to
apX X PP ——— PP X
[(—la,s%[=]8,~ [~lay

PosX x Py X ——— Py, X

where *xy 1s the normalized composition (cf. Definition[31]). The mapping X — cat(X)
induces a functor from PdTop to Flow. [t takes q-cofibrant P-multipointed d-spaces to
g-cofibrant flows. Its total left derived functor in the sense of [4] induces an equivalence
of categories between the homotopy categories of the g-model structures.

Proof. The existence of the functor cat : PdTop — Flow is proved in [8, Theorem 7.2]
for P = G. The last part is mutatis mutandis the proof of [11, Theorem 8.14] by replacing
G by P and by using Theorem [[.5 We recall the definition of the functors in what follows
for the ease of the reader:

_yeof
(Lcat) : PdTop o, PdTop —*— Flow

cof

— MmP
(Leat) ! : Flow —— PFlow - PFlow — - PdTop

where (—)“/ is a q-cofibrant replacement functor. 0

Proposition [.9should have been put in [10] as an application of the results of the latter
paper: it is an omission. It is used in Theorem [.T0. The inclusion functor i : G C M
induces an enriched functor

i* . [M  Top] — [G”, Top]

from M-spaces to G-spaces. It is a right adjoint between the underlying categories, the
left adjoint being the enriched left Kan extension along ¢ given by the formula

Lan(D) = /ZM(—,z’(é)) x D(0).
7.9. Proposition. The functor i* : [M°, Top| — [G, Top| induces a functor
" : MFlow — GFlow
which is a right Quillen equivalence between the g-model structures of MFlow and GFlow.

Proof. By [10, Section 6], a P-flow consists of a set of states X°, for each pair (a, 3) of
states a P-space P, 3 X of [P, Top|, and for each triple («, 3,7) of states an associative
composition law * : PﬁlﬁX X IP’%NX — P{H2 X which is natural with respect to (f1,(3) in
an obvious way. From a M-flow D, we therefore obtain a G-flow i*(D) with D° = *(D)°
and P, 3i* (D) = i*(P, sD). By the explicit calculation of limits in MFlow and in GFlow
made in [10, Theorem 6.8], and since limits are calculated objectwise in [M Top],
and [G°, Top|o by [9, Proposition 5.3], the functor i* : MFlow — GFlow is limit-
preserving. By [10, Theorem 6.13], the P-space of execution paths functor P : PFlow —
[P, Top|y of Definition T3] is a right adjoint for any reparametrization category P B

4Note that this fact holds because we work with locally presentable categories: see [12, Theorem 5.10].
34



Therefore it is accessible by [1, Theorem 1.66]. Since colimits are calculated objectwise in
[M°P, Top], and [G, Top|y by [9, Proposition 5.3|, the functor i* : MFlow — GFlow
is then accessible. Therefore it is a right adjoint by [I, Theorem 1.66]. The functor
1" : MFlow — GFlow preserves g-fibrations and trivial g-fibrations by definition of the
g-model structures. Consequently, it is a right Quillen adjoint. Thus the commutative
diagram of right adjoints

Top =——= Top

AMop ‘/ ‘/Agop

¥

[M?P, Top] —— [, Top]
gives rise by [10, Proposition 10.7] to the commutative diagram of right Quillen adjoints

Flow ——— Flow

Ml lM
MFlow —-— GFlow

where Flow is equipped with its gq-model structure. By [10, Theorem 10.9], the two
vertical right Quillen adjoints are right Quillen equivalences. The proof is complete
thanks to the two-out-of-three property. 0

We conclude with the following comparison theorem:

7.10. Theorem. The inclusion functori:G C M induces a functor
j : MdTop — GdTop.

There is the commutative square of right Quillen equivalences between the four g-model
structures

MdTop ., GdTop

MMl lMg

MFlow ——— GFlow

Proof. Tt is easy to see that the diagram is commutative: each functor is a forgetful func-
tor indeed. The forgetful functor 2 : PdTop — MTop from P-multipointed d-spaces
to multipointed spaces being topological by Theorem for P equal to G or M, the
functor 7 : MdTop — GdTop is limit-preserving and finitely accessible: finitely be-
cause a multipointed d-space is equipped with a set of execution paths and because the
Q-final structure is given by the finite Moore compositions by Theorem 316l By [1, Theo-
rem 1.66], the functor j : MdTop — GdTop is therefore a right adjoint. It takes (trivial
resp.) g-fibrations to (trivial resp.) g-fibrations by definition of them. Thus it is a right
Quillen adjoint. The two vertical functors are right Quillen equivalences by Theorem
The bottom horizontal functor is a right Quillen equivalence by Proposition [(.9. The

proof is complete thanks to the two-out-of-three property. 0
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7.11. Notation. Write ]-"é\" : GdTop — MdTop for the left adjoint of the inclusion
functor j : MdTop C GdTop.

The unit of the adjunction
X — j(F(X))
preserves the underlying space and the set of states. It induces a map from the space
of execution paths of X to its closure under the reparametrization by all maps of M.
It is a weak homotopy equivalence when X is a g-cofibrant G-multipointed d-space by
Theorem [T.10F this assertion is also a consequence of Corollary [7.4] and Theorem and
of the fact that
F(Glob?(Z)) = Glob™(2)

for all topological spaces Z. The counit map
F6(Y) —Y

is an isomorphism for all M-multipointed d-spaces Y by definition of }'_é"‘. By Theo-
rem [7.10, we deduce that FZ1(j(Y)*’) is a g-cofibrant replacement of Y in MdTop
where j(Y )/ is a g-cofibrant replacement of j(Y) in GdTop. The latter fact can be
proved directly by obtaining a g-cofibrant replacement by the small object argument.
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