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Introduction

Au début des années 2000, un nouveau concept de réducteurs de vibrations a été développé [START_REF] Gendelman | Energy pumping in nonlinear mechanical oscillators : Part I -Dynamics of the underlying hamiltonian systems[END_REF] [START_REF] Vakakis | Energy pumping in nonlinear mechanical oscillators : Part II -Resonance capture[END_REF]. Il s'agit d'absorbeurs de type non linéaire qui fonctionnent suivant un phénomène appelé pompage énergétique ou transfert d'énergie ciblé (appelé aussi dans la littérature Targeted Energy Transfer (TET)). L'absorbeur est constitué d'un élément élastique purement non linéaire et dissipatif qui couplé au système permet un transfert irréversible d'énergie du système primaire vers l'absorbeur qui la dissipe en limitant l'amplitude la réponse du système primaire. L'absorbeur non linéaire fonctionne, alors, comme un puits où il y a une localisation du mouvement et d'énergie (il est appelé dans la littérature Nonlinear Energy Sink (NES)). L'avantage de ce type d'absorbeur par rapport aux absorbeurs linéaires traditionnels est qu'il peut être efficace dans une bande de fréquence large grâce à sa nature non-linéaire. Par contre, le transfert d'énergie ne se produit que quand l'énergie contenue dans le système primaire a dépassé un certain seuil. On trouvera une description complète du concept dans [START_REF] Vakakis | Nonlinear targeted energy transfer in mechanical and structural systems[END_REF]. Des applications en vibration sont décrites par exemple dans [START_REF] Gourdon | Nonlinear energy pumping under transient forcing with strongly nonlinear coupling : Theoretical and experimental results[END_REF] [START_REF] Nucera | Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame : Experimental results[END_REF].

Dans le cadre de la réduction du bruit, le concept de TET constitue une opportunité de développer des systèmes passifs de réduction du bruit efficaces à basse fréquence. La mise en évidence du TET en acoustique a été présentée dans [START_REF] Cochelin | Experimental evidence of energy pumping in acoustics[END_REF]. Le système primaire était un milieu acoustique, le NES une membrane viscoélastique soumise à des grandes amplitudes et fixée sur une paroi d'une boîte reliée sur le coté apposé au milieu acoustique. L'air contenu dans la boîte permettait le couplage entre le milieu acoustique et le NES. L'étude expérimentale complète est décrite dans [START_REF] Bellet | Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber[END_REF]. Plus récemment, des travaux ont montré qu'un haut-parleur utilisé comme piston suspendu et travaillant au-delà de son domaine linéaire pouvait être utilisé comme NES [START_REF] Mariani | Toward an adjustable nonlinear low frequency acoustic absorber[END_REF]. Le principal avantage de la technologie hautparleur par rapport à la technologie membrane réside dans la perspective de pouvoir ajuster de façon indépendante divers paramètres du NES (par exemple la masse mobile ou l'amortissement).

Ce travail concerne l'étude de l'efficacité d'un NES quand il est utilisé sans boîte de couplage. Le milieu acoustique est constitué d'un tube incluant un évent latéral recouvert d'une membrane viscoélastique. La modélisation retenue permet de considérer le milieu acoustique comme un système multimodal. Une analyse modale non linéaire du système complet (milieu acoustique+NES) non amortie et non forcée est réalisée. Elle permet d'analyser l'influence de la position de la membrane le long du tube. Une analyse des réponses forcées périodiques permet de mesurer l'efficacité du NES sur les résonances successives du tube. Le lien entre modes non linéaires et réponses forcées est mis en évidence sur l'ensemble des résonances. Ce travail numérique est réalisé dans le domaine des fréquences à l'aide la méthode par équilibrage harmonique.

Description du problème 2.1 Géométrie

On considère ici le milieu acoustique schématisé sur la figure 1. Il est constitué d'un tube de section S t , fermé à son abcisse x = 0 et ouvert à son extrémité x = L. A l'abcisse x = αL le tube présente une ouverture, fermée par une membrane de section S m , de masse m m . Une pression acoustique p s (t) est imposée en x = L. Le tube peut être décomposé en 3 parties. Dans les parties 1 et 3, le comportement est celui d'un tube classique. Dans la partie 2 la membrane affecte le comportement acoustique. Afin de simplifier les notations, nous considérerons la partie 2 comme étant de largeur nulle. Le problème n'est pas modifié, mais la description acoustique dans la zone autour de x = αL s'écartera probablement de la réalité physique. 
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Equations de base

Nous utilisons les équations classiques de l'acoustique

∂ 2 p(x,t) ∂t 2 = c 2 0 ∂ 2 p(x,t) ∂x 2 , ρ ∂v(x,t) ∂t = -∂p(x,t) ∂x (1)
avec les notations usuelles : p(x, t) la pression, x la variable d'espace, t le temps, c 0 la célérité des ondes acoustiques dans l'air, et v(x, t) la vitesse de l'air.

Les conditions aux limites sont : côte fermé -vitesse nulle, côté ouvert -pression nulle v(0, t) = 0, p(L, t) = 0.

(

) 2 
Nous utilisons la décomposition de la pression acoustique p(x, t) = p p (x, t) + p r (x, t) sous la forme d'une onde progressive p p (x, t) et d'une onde rétrograde p r (x, t).

En x = αL, nous imposons les lois de continuité de la pression et de conservation du débit

p -(t)(= p p (α -L, t) + p r (α -L, t)) = p + (t)(= p p (α + L, t) + p r (α + L, t)) = p(t) (3) 
S t [v + (t) -v -(t)] = 1 2 S m q (4)
avec respectivement p -et v -la pression et la vitesse prises en x = αL par valeurs inférieures, et p + et v + la pression et la vitesse prises en x = αL par valeurs supérieures et les relations suivantes pour

p p et p r p p (α -L, t) = p r (α -L, t - 2α -L c 0 ), (5) 
p p (α + L, t) = p s (t + 2(1 -α + )L c 0 ) -p r (α + L, t - 2(1 -α + )L c 0 ). ( 6 
)
Le comportement non linéaire de la membrane est décrit par l'équation du mouvement (voir [START_REF] Bellet | Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber[END_REF])

m m q + C q(t) + k 1 q + k 3 q 3 = 1 2 S m p(αL, t) (7) 
où q représente le déplacement du centre de la membrane suivant la normale extérieure et m m , C, k 1 et k 3 caractérisent la masse, l'amortissement et l'élasticité de la membrane.

Le problème acoustique peut être appréhendé intuitivement en représentant graphiquement la forme de l'onde suivant le tube. Pour une vibration de fréquence proche du premier mode de la cavité sans membrane, en présence de la membrane l'amplitude de vibration prend la forme représentée figure 1.

Equations du mouvement dans le domaine des fréquences

En combinant l'équation (3) et l'équation (4) préalablement dérivée par rapport au temps, la pression acoustique p(t) et le déplacement de la membrane q(t) sont reliés dans le domaine des fréquences par la relation

P (ω) = ω S m S t ρc 0 cos ω αL c0 sin ω (1-α)L c0 cos ω L c0 Q(ω) + P s (ω) cos ω αL c0 cos ω L c0 (8) 
où P (ω) (respectivement Q(ω) et P s (ω)) désigne la transformée de Fourier de p(t) (respectivement q(t) et p s (t)).

En reportant, l'expression (8) dans l'équation [START_REF] Bellet | Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber[END_REF], le déplacement de la membrane vérifie la relation

Q(ω)   iωC -m m ω 2 + k 1 - ω 2 S 2 m S t ρc 0 cos ω αL c0 sin ω (1-α)L c0 cos ω L c0   + k 3 T F (q 3 )(ω) = S m 2 P s (ω) cos ω αL c0 cos ω L c0 (9) 
où T F (f ) désigne la transformée de Fourier de la fonction temporelle f .

Les équations (8)(9) modélisent le système vibroacoustique représenté sur la figure 1 dans le domaine des fréquences. L'équation (8) est simplement linéaire alors que l'équation (9) est une fonction implicite du déplacement de la membrane. Cette formulation permet d'étudier le système pour les fréquences de résonance successives. Les modes non linéaires associés au système étudié sont caractérisés par le système (8)(9) pour C = 0 et P s (ω) = 0.

3 Analyse du comportement acoustique L'étude est menée ici pour les valeurs numériques suivantes des paramètres : L = 1 m, S t = 0, 63 m 2 , S m = 0, 063 m 2 , m m = 14 g, k 1 = 0, k 3 = 1, 18 × 10 6 N/m 3 et C = 3 × 10 -4 kg/s. Ces valeurs numériques correspondent à la configuration nominale discutée dans [START_REF] Bellet | Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber[END_REF]).

Modes non linéaires

Dans un premier temps nous nous intéressons aux modes non-linéaires. Nous choisissons de résoudre l'équation (9) par équilibrage harmonique en ne considérant qu'un seul terme dans le développement en série Fourier des solutions périodiques. On peut alors exprimer Q à partir de l'équation (9) sous la forme

Q = 1 3k 3   m m ω 2 -k 1 + ω 2 S 2 m S t ρc 0 cos ω αL c0 sin ω (1-α)L c0 cos ω L c0   . (10) 
L'analyse de l'expression ci-dessus, illustrée par la figure 2, donne plusieurs informations. En premier lieu, on identifie une asymptote linéaire d'expression mm 3k3 ω. Ensuite on remarque l'annulation du dénominateur du terme de droite pour les modes propres du tube d'ordre impair, correspondant à des asymptotes verticales à ces fréquences. Enfin, le numérateur de ce même terme présente la possibilité de changer de signe selon les valeurs de α et ω, ce qui ouvre la possibilité de solutions nulles ou non existantes à certaines valeurs de ω. Ces annulations correspondent à un changement de signe entre Q et P la première composante de Fourier de p(t). C'est le passage d'une situation où q(t) et p(t) sont en phase (Q + ) à une situation où ils sont en opposition de phase (Q -). Autour de chaque fréquence de résonance, ces observations sont compatibles avec le comportement d'un système de type masseressort à un degré de liberté. La particularité du système étudié ici est qu'il présente une infinité de résonances, avec un passage continu d'une résonance à l'autre. Figure 2 -Gauche : composante de Fourier de q(t). Droite : fréquence en fonction de l'énergie mécanique du système et de ses éléments (α = 0, 9). La partie droite de la figure présente la fréquence en fonction de l'énergie mécanique du système (E m ) et de ses composantes E mN ES , E m (x < αL) et E m (x > αL), respectives à la membrane, à la partie gauche et droite du tube. Son comportement est lui aussi semblable à d'autres systèmes non-linéaires. On remarque en particulier les zones au dessus des modes impairs du tube où le rebroussement de E - m est compatible avec un phénomène de pompage.

La figure 3 illustre l'effet de α. Pour α = 1/3 on constate la disparition du mode de résonance dont le noeud est situé à l'emplacement de la membrane. Pour les autres valeurs de α le rebroussement observé sur E - m est plus ou moins marqué. On peut aussi remarquer qu'il existe des fréquences auxquelles l'énergie s'annule pour l'une des deux portions du tube. A ces fréquences, l'énergie est localisée sur la membrane et sur une unique portion du tube. La phase relative des composantes à droite et à gauche de la membrane s'inverse -leurs composantes de Fourier changent de signe relatif-, et comme leur expression est continue l'une d'elles s'annule nécessairement.

Le cas extrême α = 1 annule le terme en √ ω dans l'expression (10), il ne reste plus qu'une courbe continue proche de l'asymptote en ω. 

Réponses forcées périodiques

On s'intéresse maintenant aux réponses forcées périodiques résultant d'une source acoustique sinusoidale. L'équation (9) est toujours résolue par équilibrage harmonique en ne considérant qu'un seul terme dans le développement en série Fourier des solutions périodiques. Les solutions sont valables dans le cadre des hypothèses de l'acoustique linéaire non dispersive, en particulier avec une amplitude et une fréquence source suffisamment faibles devant les dimensions du problème. Pour α = 0.9, les figures 4 et 5 illustrent l'effet de l'amplitude de la source sur les réponses suivant la pression (figure 4) et le déplacement de la membane (figure 5) autour des trois premières résonances du système acoustique. Pour faciliter l'analyse de ces courbes, nous avons reporté en rouge l'évolution des modes non linéaires. Pour les trois zones en fréquence, on constate qu'à faible niveau d'excitation le système résonne à la pulsation du système acoustique seul. Passé un certain seuil d'excitation, la résonance se décale sur la gauche avec une limitation de l'amplitude de la pression (zone de pompagedeuxième colonne de la figure 4). Pour des niveaux supérieurs d'excitation, le système résonne suivant l'autre mode non linéaire. Ces comportements sont typiques du comportement TET. 

Conclusions

Les modes non linéaires du système décrit ici présentent certaines similitudes (asymptotes et résonances) avec des systèmes de type masse-ressort. Le couplage tube-membrane direct est particulier, ainsi que la localisation de l'énergie mécanique préférentiellement dans les portions résonantes du tube. On note aussi l'annulation de la résonance dont le noeud de pression est placé sous la membrane. La réponse forcée montre la possibilité de pompage à plusieurs fréquences avec un seul NES, pour des paramètres accessibles expérimentalement. Des travaux numériques et expérimentaux abordant la stabilité, ou des réponses spectrales plus complexes, sont envisagés.
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 1 Figure 1 -Milieu acoustique avec le NES (gauche) et forme d'onde (droite).
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 3 Figure 3 -Q(ω) et ω(E m ) pour α valant respectivement 0,3 ; 1/3 ; 0,4.
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 4 Figure 4 -Réponses forcées périodiques en pression P (ω) (α = 0.9)
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 5 Figure 5 -Réponses forcées périodiques en déplacement Q(ω) (α = 0.9)