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Standalone Event-B models analysis relying on
the EB4EB meta-theory
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INPT-ENSEEIHT/IRIT, University of Toulouse, France
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Abstract. Event-B is a state-based correct-by-construction system de-
sign formal method relying on proof and refinement where system models
are expressed using set theory and First Order Logic (FOL). Through
the generation and discharging of proof obligations (POs), Event-B na-
tively supports the establishment of properties such as safety invariant,
convergence and refinement. Other properties, relevant to system ver-
ification, may be studied as well, but need to be explicitly formalised
by the designer, or expressed in another formal method. This process
compromises reusability and is error-prone, especially on larger systems.
Recently, the reflexive EB4EB framework has been proposed for formal-
ising Event-B concepts as first-class objects. It allows manipulating these
concepts using FOL and set theory in Event-B. In this paper, we pro-
pose a rigorous methodology for extending the EB4EB framework, to
support new system analysis mechanisms associated to properties that
are not natively present in core Event-B. Thanks to the reflexive nature
of this framework, new generic and reusable system properties and their
associated POs are expressed once and for all, and for any refinement
level. For specific systems, designers instantiate these properties and the
associated POs are automatically generated and submitted to Event-B’s
provers. This methodology is used to define three analyses: deadlock-
freeness, invariant weakness analysis and reachability, all of which are
demonstrated on a case study.

Keywords: Reflection · Refinement and Proof · Meta-theory · Reachability ·
Deadlock-Freeness · Invariant weakness · EB4EB framework · Event-B.

1 Introduction

Context. The refinement and proof state-based Event-B formal method [1] sup-
ports complex system development using a correct-by-construction approach. It
is based on set theory and First Order Logic (FOL) for describing state transition
systems. It relies on an inductive proof process to discharge a set of proof obliga-
tions (POs) expressing various properties. Basically, core Event-B offers built-in
modelling constructs to express invariants, event convergence, simulation, guard
⋆ The authors thank the ANR-19-CE25-0010 EBRP:EventB-Rodin-Plus project.
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strengthening and event feasibility. POs associated to these constructs are auto-
matically generated and are discharged using automatic and interactive provers.

In order to enrich the method’s expressiveness, Event-B has been extended
with the ability to define new algebraic data-types resulting in a richer type
system [2, 11], through the introduction of Theories. This extension allows the
formalisation of complex systems at a higher level of abstraction.
Motivation. Event-B theories make it possible to formalise new data types, but
they do not allow the definition of new POs that correspond to properties other
than the usual ones (i.e., invariants preservation, event convergence, etc.).

Indeed, when properties such as deadlock-freeness, event scheduling, liveness,
and so on need to be proved, they are explicitly formalised by the designer, or
expressed in another formal method. This process compromises reusability and
is error-prone, especially on large systems. The designer shall formalise each
desired property for each system under design using the native Event-B POs.
This process may be cumbersome, must be repeated for each model to be anal-
ysed (not reusable) and results in formal developments scattered across multiple
heterogeneous frameworks and semantics.

To incorporate such properties in Event-B once and for all and allow the
automatic generation of property-specific POs, it is necessary to embed, in the
Event-B engine, the POs associated to these new properties. Such embedding re-
quires the manipulation, in Event-B, of Event-B concepts as first-order objects
(i.e., through a reflexive meta-model). We have recently proposed a reflexive
EB4EB framework [29,30] that formalises Event-B concepts as first-class objects
in Event-B. It allows manipulating these concepts in Event-B using first-order
logic and set theory. It is built on an algebraic meta-theory formalised as an
Event-B theory, where each Event-B feature can be handled at the meta-model
level, as first-class citizen. This framework also formalises Event-B’s trace-based
semantics and offers constructs for machines, states, and events together with
a set of operators for manipulating them. Consequently, the EB4EB framework
makes it possible to formally express, at any abstraction level (i.e. in the re-
finement chain), new reusable and automatically generated POs and high-level
constructs, easing the development of complex systems with specific properties
or semantics. Furthermore, it opens the door to formally embed Event-B’s se-
mantics in other formal methods and exploit their respective strengths.
Objective of this paper. This paper extends and enriches our previously developed
EB4EB framework [29, 30] to support new analysis mechanisms (possibly non-
intrusive), formalised as logic properties not available in native Event-B nor in
its base PO generator. It extends the EB4EB Event-B meta-theory with new
operators formalising such new properties. The POs associated to each operator
are automatically generated. Adding the desired property, corresponding to a
specific analysis, to an Event-B model is performed by invoking an operator.
Designers do not need to formalise this property explicitly in the model.
Structure of the paper. The paper is organised as follows. Section 2 describes the
Event-B method and the Theory mathematical extension. Section 3 introduces
the EB4EB framework and its Event-B meta-theory, as well as the case study
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Context Machine Theory
CONTEXT Ctx MACHINE M THEORY Th
SETS s SEES Ctx IMPORT Th1, ...
CONSTANTS c VARIABLES x TYPE PARAMETERS E, F , ...
AXIOMS A INVARIANTS I(x) DATATYPES
THEOREMS Tctx THEOREMS Tmch(x) Type1(E, ...)
END VARIANT V (x) constructors

EVENTS cstr1(p1: T1, ...)
EVENT evt OPERATORS

ANY α Op1 <nature> (p1: T1, ...)
WHERE Gi(x, α) well−definedness WD(p1, ...)
THEN direct definition D1

x :| BAP(α, x, x′) AXIOMATIC DEFINITIONS
END TYPES A1, ...
... OPERATORS

END AOp2 <nature> (p1: T1, ...): Tr
well−definedness WD(p1, ...)

AXIOMS A1, ...
THEOREMS T1, ...
PROOF RULES R1, ...
END

(a) (b) (c)

Table 1: Global structure of Event-B Contexts, Machines and Theories

(1) Ctx Theorems (ThmCtx) A(s, c) ⇒ Tctx (For contexts)
(2) Mch Theorems (ThmMch) A(s, c) ∧ I(x) ⇒ Tmch(x) (For machines)
(3) Initialisation (Init) A(s, c) ∧ BAP(x′)⇒ I(x′)
(4) Invariant preservation (Inv) A(s, c) ∧ I(x) ∧ G(x, α)∧ BAP(x, α, x′) ⇒ I(x′)
(5) Event feasibility (Fis) A(s, c) ∧ I(x) ∧ G(x, α)⇒ ∃x′ · BAP(x, α, x′)
(6) Variant progress (Var) A(s, c) ∧ I(x) ∧ G(x, α)∧ BAP(x, α, x′) ⇒ V (x′) < V (x)

Table 2: Relevant POs for Event-B contexts and machines

used throughout this paper. Three externally defined Event-B analyses and POs
are introduced in Section 4 and applied to the case study. The positioning of
this work with respect to the state of the art and its advantages are discussed
in Section 5. Finally, Section 6 concludes the paper and discusses future work.

2 Event-B

Event-B [1] is based on set theory and FOL. It relies on an expressive state-based
modelling language where a set of events models state changes.

2.1 Contexts and machines (Tables 1.a and 1.b)

A Context (Table 1.a) describes the static part of a model. It introduces carrier
sets s and constants c, and their properties using axioms A and theorems Tctx .
A Machine (Table 1.b) describes the model behaviour as a transition system. A
set of events evt , possibly guarded by G and/or parameterized by α, is used to
modify a set of state variables x using Before-After Predicates (BAP) to record
state changes. A machine may define invariants I(x), theorems Tmch(x) and
variants V (x) to capture particular properties (e.g., safety and convergence).
Model consistency is ensured via a set of generated POs, given in Table 2.
Refinements. Refinement decomposes a machine into a less abstract one with
more design decisions (refined states and events) moving from an abstract level to
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a less abstract one (simulation relationship). Gluing invariants relating abstract
and concrete variables ensure property preservation.
Core Well-definedness (WD). In addition to machine-related POs, each operator
is associated to a WD, that must be established for expressions to be meaningful.
Once proved, these WD conditions are used as hypotheses to prove further POs.

2.2 Event-B extensions with Theories

To handle more complex and abstract concepts beyond set theory and FOL,
an Event-B extension for externally defined mathematical objects has been pro-
posed [2,11]. It introduces user data types with new types, operators, theorems
and associated rewrite and inference rules, all bundled in so-called theories. Close
to proof assistants like Coq [5], Isabelle/HOL [25] or PVS [26], this capability is
convenient to model, as data types, concepts unavailable in core Event-B.
Theory description (See Table 1.c). Theories define new data types, operators,
and theorems. Data types (DATATYPES clause) define constructors to build in-
habitants of the defined type. It may define various operators further used in
Event-B expressions as FOL predicates or expressions producing actual values
(<nature> tag). Operators may be used in theories, contexts and machines.

Operators may be defined explicitly in the DIRECT DEFINITION clause (con-
structive definition), or axiomatically in the AXIOMATIC DEFINITIONS clause (a
set of axioms). Last, a theory defines a set of axioms, completing the definitions,
as well as theorems and proof rules. Theorems and proof rules are proved from
the definitions and axioms used by the proof system. Many theories have been
defined for sequences, lists, groups, reals, differential equations, etc.
Well-definedness (WD) in Theories. An important feature provided by Event-
B theories is the possibility to define Well-Definedness (WD) conditions (close
to Type-Correctness Condition (TCC) conditions in PVS [26]). TCC must be
discharged before the corresponding theory types correctly. Similarly, in Event-B
theories, each defined operator (thus partially defined) is associated with a user-
defined condition ensuring its well-formedness. Note that, when an operator is
applied, it automatically invokes its WD condition and generates a PO requiring
to establish that this condition holds, i.e., the operator is used correctly and that
its parameters belong to its definition domain.
Event-B proof system and its IDE Rodin. Rodin is an open source IDE for mod-
elling in Event-B. It offers resources for model editing, automatic PO generation,
project management, refinement and proof, model checking, model animation
and code generation. The Event-B theories extension is available as a plug-in.
Theories are tightly integrated in the proof process. Depending on their defini-
tion (direct or axiomatic), operator definitions are expanded either using their
direct definition (if available) or by enriching the set of axioms (hypotheses in
proof sequents) using their axiomatic definition. Theorems may be imported as
hypotheses and used in proofs like other theorems. Many provers for first-order
logic as well as SMT solvers are plugged to Rodin for helping the proof process.
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3 The EB4EB framework

The main objective of the EB4EB reflexive framework [29, 30] is to provide
explicit manipulation of Event-B components as first-class objects, making it
possible to reason on these objects and define new Event-B analyses. For this
purpose, the concept of Event-B machine is formalised as a data-type in a theory
(a meta-theory), together with a set of operators that guarantee the correctness,
relative to Event-B semantics, of instances of this data-type. The meta-theory
formalises the semantics of Event-B, as described in the Event-B Book [1], i.e. a
set of states and guarded events defined as a relation between states. In addition,
the meta-theory is equipped with relevant proved (once and for all) theorems
useful for discharging the generated POs. These additional theorems are available
to help users reduce proof efforts and aid in system development and analysis.

Event-B machines (models) are defined using the meta-theory mentioned
above, by instantiating the machine data-type and providing appropriate values
for each of its fields: states, events, guards, before-after predicates, invariants,
variant and so on. At instantiation, operators of the meta-theory are used in
theorems; the related POs ensure the defined machine’s consistency, including
invariant preservation, event feasibility, variant progress, etc.

As previously stated, the goal of this paper is to demonstrate that the meta-
theory can be extended with new operators for manipulating machine elements of
the meta-theory, in order to define so-called analyses, expressed with new POs.
Based on the work presented in [3], such analyses allow the system designer
to check new properties, obtain feedback about their behaviour, enrich model
design phases and check new properties that are not available in core Event-B.

This section summarises the main features of the Event-B meta-theory (List-
ings 1, 2 and 3), and presents the case study used to illustrate our approach
throughout this paper.

3.1 The Event-B Meta-theory

Machine structure. Listing 1 shows the Machine data-type, defined using type
THEORY EvtBTheo
TYPE PARAMETERS STATE,EV ENT
DATATYPES
Machine(STATE,EV ENT )
CONSTRUCTORS
Cons_machine(
Event : P(EV ENT ),
State : P(STATE),
Init : EV ENT,
Progress : P(EV ENT )
AP : P(STATE),
Grd : P(EV ENT × STATE),
BAP : P(EV ENT × (STATE × STATE)),
Inv : P(STATE)
Thm : P(STATE),
V ariant : P(STATE × Z),
Ordinary : P(EV ENT ),
Convergent : P(EV ENT ))

Listing 1: Machine Data-type

parameters for abstracting event la-
bels (EVENTS) and states (STATES).
It is built using the Cons_machine
single constructor with a parameter
for each machine component, and de-
fines a state-transition system with
state State (constrained by invari-
ants Inv and theorems Thm) and a
set of, possibly parameterised, events
(Event), with an initialisation event
Init and progress events Progress, split
into ordinary Ordinary and convergent
Convergent events. State changes are



6 P. Rivière, N. K. Singh, Y. Aït-Ameur, and G. Dupont

recorded using an after-predicate (AP) for initialisation and a set of before-after
predicates (BAP) associated to progress events, possibly guarded (Grd). Finally,
integer variants for event convergence are introduced as well (Variant).
Well-Constructed machines. To ensure machines are structurally well-defined,
the meta-theory introduces several predicate operators (Listing 2): BAP_WellCons
to check that each progress event is associated to a BAP, Grd_WellCons to check
that progress events are possibly guarded, and Event_WellCons to check that
machine events are composed of an initialisation (Init) and progress (Progress)
events. The Machine_WellCons predicate operator, defined as a conjunction of
the previous operators (and others), ensures that a machine is well-structured
(static semantics).

BAP_WellCons <predicate> (m : Machine(STATE,EV ENT ))
direct def init ion dom(BAP (m)) = Progress(m)

Grd_WellCons <predicate> (m : Machine(STATE,EV ENT ))
direct def init ion dom(Grd(m)) = Progress(m)

Event_WellCons <predicate> (m : Machine(STATE,EV ENT ))
direct def init ion partition(Event(m), {Init(m)}, Progress(m))
. . .

Machine_WellCons <predicate> (m : Machine(STATE,EV ENT ))
direct def init ion

BAP_WellCons(m) ∧ Grd_WellCons(m) ∧ Event_WellCons(m) ∧ . . .

Listing 2: Operators to check well-defined data-type (static semantics)
Machine POs (behavioural semantics). The Machine data-type offers operators
to access and handle its components. In addition to structural consistency, ma-
chine correctness is also encoded, through its behavioural semantics and cor-
rectness criteria. Formally, this is done by providing an operator for each PO of
Event-B (see Table 2), as shown in Listing 3. Such operators are usually defined
inductively on the structure of a machine (for initialisation and progress events).

Mch_THM <predicate> . . .
Mch_INV_Init <predicate> (m : Machine(STATE,EV ENT ))

direct def init ion AP (m) ⊆ Inv(m)
Mch_INV_One_Ev <predicate> (m : Machine(STATE,EV ENT ), e : EV ENT )

well−definedness e ∈ Progress(m)
direct def init ion BAP (m)[{e}][Inv(m) ∩ Grd(m)[{e}]] ⊆ Inv(m)

Mch_INV <predicate> (m : Machine(STATE,EV ENT ))
direct def init ion

Mch_INV _Init(m) ∧ (∀e · e ∈ Progress(m) ⇒ Mch_INV _One_Ev(m, e))
Mch_FIS_Init <predicate> (m : Machine(STATE,EV ENT ))

direct def init ion Inv(m) ∩ AP (m) ̸= ∅
Mch_FIS_One_Ev <predicate> (m : Machine(STATE,EV ENT ), e : Event)

well−definedness e ∈ Progress(m)
direct def init ion Inv(m) ∩ Grd(m)[{e}] ⊆ dom(BAP (m)[{e}])

Mch_FIS <predicate> (m : Machine(STATE,EV ENT ))
direct def init ion

Mch_FIS_Init(m) ∧ (∀e · e ∈ Progress(m) ⇒ Mch_FIS_One_Ev(m, e))
Mch_VARIANT_One_Ev <predicate> . . .
Mch_VARIANT <predicate> . . .
Mch_NAT_One_Ev <predicate> . . .
Mch_NAT <predicate> . . .

Listing 3: Well defined Data-type operators (behavioural semantics)
The details of the invariant preservation (INV - 3 and 4 in Table 2) and

feasibility (FIS - 5 in Table 2) POs are shown in Listing 3. Three operators are
associated to the definition of these POs: Mch_INV_Init, stating that an invari-
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ant holds at initialisation (i.e., states after the AP are included in the invariant
states, AP (m) ⊆ Inv(m)); Mch_INV_One_Ev, stating that any event e charac-
terised by its guard and BAP preserves the invariant (e.g. the image of invari-
ant states through BAP is included in invariant states, BAP (m)[{e}][Inv(m) ∩
Grd(m)[{e}]] ⊆ Inv(m)); and Mch_INV, the conjunction of these two opera-
tors, where Mch_INV_One_Ev must hold for all progress events. Similarly, three
operators Mch_FIS_Init, Mch_FIS_One_Ev and Mch_FIS_Init define the event
feasibility PO (existence of a next state after AP or BAP of progress events).
The other POs in Table 2 are defined in the same manner.

The POs of an Event-B machine are gathered in the conjunctive predicate
check_Machine_Consistency, with Machine_WellCons as well-definedness (see
Listing 4). It formalises machine’s behavioural semantics and general correctness.

check_Machine_Consistency <predicate> (m : Machine(STATE,EV ENT ))
well−definedness Machine_WellCons (m)
direct def init ion Mch_THM(m)∧

Mch_INV (m) ∧ Mch_FIS(m)∧
Mch_V ARIANT (m) ∧ Mch_NAT (m)

Listing 4: Operator encoding Event-B machine consistency
When this operator is used in a theorem clause, two POs, corresponding

to its definition and WD condition, are automatically generated. Proving the
theorem ensures the consistency of the machine, defined as an instance of the
meta-theory.
Instantiation of the meta-theory. Specific Event-B machines are defined by in-
stantiating the meta-theory. The instantiation process presented in this paper is
so-called deep, as it relies solely on set theory and FOL with a set of axioms and
theorems. It consists in defining an Event-B context with witnesses (sets) for
type parameters STATE and EVENT defined as sets using Cons_machine. Opera-
tors may be used in theorems, triggering the generation of POs ensuring machine
consistency. Another instantiation process qualified as shallow has also been de-
fined [29,30]. It relies on the definition of an Event-B machine and its refinement.
It is not reviewed here as it is not used in this paper.

3.2 The Clock Example

This section presents a case study adapted from Lamport’s clock case study [19].
It is used to demonstrate the application of the proposed framework, including
meta-theory instantiation and definition of new POs. Note that this simple case
study is chosen to demonstrate the usability of the new extended mechanism.

The functional requirements of the clock state that minutes and hours pro-
gress by 1 and hours are represented in a 24-hour format. The clock must con-
verge to midnight, and never stop. Listing 5 gives a model of the clock as an
Event-B machine. In this model, variables m and h represent minutes and hours,
respectively. A safety property (inv2) ensures that minutes m (resp. hours h) are
always less than 60 (resp. 24). The clock’s behaviour is expressed through three
events: tick_min (progressing minutes by 1), tick_hours (progressing hours
by 1) and tick_midnight (resetting the clock to midnight).
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MACHINE Clock
VARIABLES m , h
INVARIANTS

inv1 : m ∈ N ∧ h ∈ N
inv2 : m < 60 ∧ h < 24

EVENTS
INITIALISATION
THEN act1 : m,h :| m′ = 0 ∧ h′ = 0
END
tick_min
WHERE grd1 : m < 59
THEN act1 : m :| m′ = m + 1
END
tick_hour
WHERE grd1 : m = 59 ∧ h < 23
THEN act1 :

m,h :| m′ = 0 ∧ h′ = h + 1
END
tick_midnight
WHERE grd1 : m = 59 ∧ h = 23
THEN act1 : m,h :| m′ = 0 ∧ h′ = 0
END

END

Listing 5: Clock as Event-B machine

CONTEXT ClockMachineInstance
SETS Ev , Z × Z
CONSTANTS clock , tick_min , tick_hour ,

tick_midnight , init
AXIOMS

axm1 : clock ∈ Machine(Z × Z,Ev)
axm2 :partition(Ev , {init}, {tick_midnight},

{tick_hour}, {tick_min})
axm3 :State(clock) = Z × Z
axm4 :Event(clock) = Ev
axm5 : Init(clock) = init
axm6 : Inv(clock) = {m 7→ h | m ∈ N ∧ h ∈ N

∧m < 60 ∧ h < 24}
axm7 :AP(clock) = {m 7→ h | m = 0 ∧ h = 0}
axm8 :Grd(clock) = {e 7→ (m 7→ h) |

(e = tick_min ∧ m < 59)∨
(e = tick_hour ∧ m = 59 ∧ h < 23)∨
(e = tick_midnight ∧ m = 59 ∧ h = 23)}

axm9 :BAP(clock) =
{e 7→ ((m 7→ h) 7→ (m′ 7→ h′)) |
(e = tick_min ∧ m′ = m + 1 ∧ h′ = h)∨
(e = tick_hour ∧ m′ = 0 ∧ h′ = h + 1)∨
(e = tick_midnight ∧ m′ = 0 ∧ h′ = 0)}

. . .
THEOREMS

thm1 : check_Machine_Consistency(clock)
END

Listing 6: Clock as meta-theory instance

While the previous example does not show parameterised events, however,
our approach handles such events. The same approach has been successfully
applied to complex case studies in [21] for critical interactive systems.

3.3 The clock machine as an instance of EvtBTheo theory

Listing 6 shows the Event-B context ClockMachineInstance instantiating the
meta-theory EvtBTheo. First, axm1 defines the clock machine with the sets Ev
(set of events enumerated in axm2) and Z×Z (for m and h). axm3−axm9 define
associated machine components. Note that invariant is defined (axm6) on the
state as a set of pairs m 7→ h, AP is defined on the initialisation event axm7 and
guards and BAPs are associated with an event and a state and defined (axm8
and axm9) on a set of triples e 7→ m 7→ h. In the case of BAPs, it is necessary
to record before (m 7→ h) and after (m′ 7→ h′) states (axm9).

Last, theorem thm1 uses check_Machine_Consistency (see Listing 4). It is
associated with a well-definedness (WD) PO, Machine_WellCons(clock), and
a theorem (THM) PO for machine correctness.

4 POs for new properties: Extending the Meta-Theory

The meta-theory EvtBTheo presented in Section 3.1 is highly extensible: every
Event-B feature is explicitly formalised, and can be manipulated using operators,
making it possible to define specific development operations or new reasoning
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mechanisms as new operators. Doing so is non-intrusive (self-contained), in the
sense that no modification is needed to the classical development of Event-B
models, as machines are handled as instances of the meta-theory.

The main design principle for such Event-B machine analyses, including the-
ories with required operators, definitions, and WD conditions, is given below.

4.1 Analysis principle: New POs

In the proposed extension to the EB4EB framework, a model analysis is defined
as a PO and must meet two requirements: 1) it must be reusable, and 2) it must
be generated automatically. The first requirement is met by formalising the PO
at the meta-theory level, while the second one is met by leveraging automatically
generated well-definedness (WD) and theorem (THM) POs.
Event-B machine analysis pattern. Listing 7 depicts a generic pattern for defining
new POs for Event-B machine analysis. Theo4PO theory imports the meta-
theory EvtBTheo and introduces a third, optional type parameter TArgs possibly
needed by the analysis, depending on the nature of new POs (e.g. guards, BAP,
etc.). The PO associated to the analysis is formalised as a predicate operator
[PO]_Definition. Then, checking the PO is done using the check_Machine[PO]
predicate, which is well-defined when machine m is consistent.
THEORY Theo4PO IMPORT EvtBTheo
TYPE PARAMETERS STATE,EV ENT, TArgs

OPERATORS
[PO]_Definition <predicate> (m : Machine(STATE,EV ENT ), args : TArgs)

well−definedness condition . . .
direct def init ion . . .

check_Machine_[PO] <predicate> (m : Machine(STATE,EV ENT ), args : TArgs)
well−definedness condition Machine_WellCons(m)
direct def init ion [PO]_Definition(m, args)

END

Listing 7: Analyses Theory Pattern
CONTEXT MachinePO
EXTENDS MachineInstance
THEOREMS

thmPO : check_Machine_[PO](m, args)
END

Listing 8: Analyses Machine

Checking PO context pattern. Listing 8
shows an Event-B context pattern for
checking the newly defined PO. A consis-
tent instance machine context Machine-
Instance, that defines the Event-B ma-
chine m by instantiation of the meta-theory EvtBTheo, is extended by context
MachinePO instantiating the extended theory Theo4PO. Theorem thmPO per-
forms the check of the defined PO for machine m. The associated WD and THM
POs are automatically generated.

Following this idea, this section introduces new reasoning mechanisms, not
natively present in Event-B, based on the EB4EB framework and the EvtBTheo
meta-theory, in the form of analyses that handle Event-B components. Three
analyses are detailed: deadlock-freeness, invariant weakness analysis (tracking
model holes) and reachability. The key points of using this framework are that:
1) WD conditions ensure elements are used correctly, 2) meta-properties on these
analyses are established once and for all, and 3) these analyses can be performed
without altering the machine’s behaviour, in a non-intrusive way.
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Note that only the definition of the [PO]_Definition operator is given, as
check_Machine_[PO] is derived by replacing [PO] with the proposed PO name.

4.2 Deadlock-freeness

Requirements. Deadlock-freeness states that a machine m can always progress;
i.e., there is always at least one enabled event in machine m, or more formally
when the invariant holds then the disjunction of the guards holds.
PO Definition. The PO states that, for a machine m, there exists a progress
event e such that any correct state s ∈ Inv(m) verifies the guard of e (s ∈
Grd(m)[{e}]). When expressed using the meta-theory operators, it is formalised
as Inv(m) ⊆ Grd(m)[Progress(m)]. This operator does not require any addi-
tional argument for args.
THEORY Theo4Deadlock IMPORT EvtBTheo
TYPE PARAMETERS STATE,EV ENT
OPERATORS

DeadlockFreeness_Definition <predicate> (m : Machine(STATE,EV ENT ))
direct def init ion Inv(m) ⊆ Grd(m)[Progress(m)]

. . .
END

Listing 9: DeadlockFree Theory
CONTEXT ClockDeadlockFree
EXTENDS ClockMachineInstance
THEOREMS

thmDeadlock : check_Machine_DeadLock(clock)
END

Listing 10: Clock DeadlockFreeness

Following the defined pat-
tern, Listing 9 introduces a new
theory Theo4Deadlock with two
new operators together with the
required WD condition.
Deadlock-freeness PO for Clock model. Listing 10 shows the context with thm-
Deadlock theorem generating WD and THM POs of the clock machine.

4.3 Invariant Weakness as a Non-intrusive Analysis

Requirements. A deployed system may present a number of vulnerabilities, that
tick_M5
WHERE grd1 :m < 55
THEN act1 :m :| m′ = m + 5
END

Listing 11: An Bad-event:
progress by 5 min.

can be exploited by opponents (or make it weak to
the environment) to modify its behaviour. These vul-
nerabilities usually come from under-specification,
i.e., “holes” in the system’s requirements or in its
formal specification. To address this issue, a non-
intrusive analysis of the model’s specification is im-
plemented, that does not alter its behaviour. It consists in investigating the
robustness of the model’s invariants with regard to bad-events, that model po-
tential attacks (under-specification) against the system (model holes). If the
system’s invariant is preserved by the bad-event, it implies that the invariant is
not strong enough to prevent the attack. For instance, the bad event of List-
ing 11 can be added to the clock machine without falsifying its original invariant.
Similarly, other bad-events may be introduced: the event tick_H5 guarded by
h < 19 with action m,h :| m′ = 0 ∧ h′ = h+ 5 and the event tick_HM1 guarded
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by h < 23 ∧m < 59 with action m,h :| m′ = m + 1 ∧ h′ = h + 1. Note that a
class of bad events could be added using two parameters hn ̸= 1 and mn ̸= 1
and a corresponding action of the form m,h :| m′ = m+mn ∧ h′ = h+ hn.
Bad-events PO definition. This PO is formalised with the AllowedMachineHole-
Sub_Definition operator (Listing 12), with the bad-events as parameters.

THEORY EvtBTheorySubs IMPORT THEORY EvtBTheory
TYPE PARAMETERS STATE,EV ENT
OPERATORS

AllowedMachineHoleSub_Definition <predicate> (m : Machine(STATE,EV ENT ),
nGrd : P(STATE), nBAP : P(STATE × STATE))

direct def init ion nBAP[ Inv (m)∩nGrd ]⊆Inv (m)
. . .

END

Listing 12: Weak specification analysis theory
Each bad-event is characterised by its guard nGrd and its BAP nBAP . This
operator defined as nBAP [Inv(m)∩ nGrd] ⊆ Inv(m) states that the bad-event
preserves the invariant. So, if the given PO is proved, the bad-event represents
a successful attack, and the defined invariant is not strong enough.
Bad events PO for clock model. The analysis to Check the clock specification for-
bids minutes from progressing by 5 rather than 1, is handled by theorem thmIn-
spectInvEVTM5 of Listing 13, using the AllowedMachineHoleSub_Definition
operator, where the bad-event is enabled when minutes are below 55 and thus
progresses by 5. This corresponds to adding event tick_M5 of Listing 11. Similar
theorems are written for the tick_H5 and tick_HM1 bad-events.

CONTEXT ClockInspect Inv EXTENDS ClockMachineInstance
THEOREMS

thmInspectInvEVTM5 : check_Machine_AllowedMachineHoleSub(clock ,
{m 7→ h | h ∈ Z ∧ m < 55} ,
{(m 7→ h) 7→ (m′ 7→ h′) | m′ = m + 5 ∧ h′ = h ∧ h ∈ Z})

thmInspectInvEVTH5 : check_Machine_AllowedMachineHoleSub · · ·
thmInspectInvEVTHM1 : check_Machine_AllowedMachineHoleSub · · ·

END

Listing 13: Performing analysis on clock model
Note that the thmInspectInvEVTM5, thmInspectInvEVTH5 and thmInspect-

InvEVTHM1 theorems are proven for the clock model of the ClockMachine-
Instance corresponding to the Event-B machine of Listing 5. As a conclusion, the
original model is insufficiently strong and does not provide sufficient constraints
on the safe evolution of variables.
A strengthened machine. The designer strengthens the original machine, through
instantiation, resulting in the new model shown in Listing 14. New state variables
mb and hb are introduced to explicitly record the value of minutes and hours
before a tick event occurs. In addition, the events are required to explicitly link
these variables as m = mb+ 1 and h = hb+ 1.

CONTEXT ClockInvStrong
SETS Ev ,Z × Z × Z × Z
CONSTANTS c lock , tick_min , tick_hour , tick_midnight , i n i t
AXIOMS

axm1 : clock ∈ Machine(Z × Z × Z × Z,Ev) . . .
axm2 : . . .
axm3 : State(clock) = Z × Z × Z × Z
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axm4−5 : . . .
axm6 : Inv(clock) = {m 7→ h 7→ mb 7→ hb | m ∈ N ∧ h ∈ N ∧ m < 60 ∧ h < 24∧

(m = mb + 1 ∧ hb = h) ∨ (m = 0 ∧ (h = hb + 1 ∨ h = 0))}
axm7 : AP(clock) = {m 7→ h 7→ mb 7→ hb | m = 0 ∧ h = 0 ∧ mb ∈ Z ∧ hb ∈ Z}
axm8 : BAP(clock) = {t 7→ ((m 7→ h 7→ mb 7→ hb) 7→ (m′ 7→ h′ 7→ mb′ 7→ hb′)) |

(t = tick_min ∧ m′ = m + 1 ∧ h′ = h ∧ hb′ = h ∧ mb′ = m ∧ mb ∈ Z ∧ hb ∈ Z)∨
(t = tick_hour ∧ m′ = 0 ∧ h′ = h + 1 ∧ hb′ = h ∧ mb′ = m ∧ mb ∈ Z ∧ hb ∈ Z)∨
(t = tick_midnight ∧ m′ = 0 ∧ h′ = 0 ∧ hb′ = h ∧ mb′ = m ∧ mb ∈ Z ∧ hb ∈ Z)}

. . .
THEOREMS

thm1 : check_Machine_Consistency(clock)
thmInspectInvEVTM5 : ¬check_Machine_AllowedMachineHoleSub(clock ,

{m 7→ h 7→ mb 7→ hb | mb ∈ Z ∧ hb ∈ Z ∧ h ∈ Z ∧ m < 55} ,
{(m 7→ h 7→ mb 7→ hb) 7→ (m′ 7→ h′ 7→ mb′ 7→ hb′) |

m′ = m + 5 ∧ h′ = h ∧ hb′ = h ∧ mb′ = m ∧ mb ∈ Z ∧ hb ∈ Z})
thmInspectInvEVTH5 : ¬check_Machine_AllowedMachineHoleSub . . .
thmInspectInvEVTMH1 : ¬check_Machine_AllowedMachineHoleSub . . .

END

Listing 14: Clock resulting after the strengthening of the invariant
To guarantee that the identified bad-events are no longer triggerable, the

predicates are negated in thmInspectInvEVTM5, thmInspectInvEVTH5 and thm-
InspectInvEVTHM1. These theorems are proven to hold, demonstrating that the
provided specification prohibits the presented inconsistent behaviour.

4.4 Reachability

Requirements. The reachability property is not natively available in Event-B.
Such a property can be expressed using the EB4EB framework. Reachability
property asserts that particular states can be attained under given constraints.
The definition used below asserts that there exists a trace where a given state
is reachable. This definition differs from the eventually operator of LTL. Note
that a formalisation of the eventually operator of LTL is available in [21,31].

THEORY Theo4Reachabi l i ty IMPORT THEORY EvtBTheory
TYPE PARAMETERS STATE,EV ENT
OPERATORS
// At l e a s t one " t rgSe t " event i s t r i g g e r a b l e a f t e r " src " event

At_Least_One_Triggerable_Evt <predicate> (m : Machine(STATE ,EVENT) ,
src : EVENT , trgSet : P(EVENT)) . . .

// Al l "SubSetEvt" events decrease the " var iant "
VariantDecrease <predicate> (m : Machine(STATE ,EVENT) ,variant : P(STATE × Z),

SubSetEvt : P(EVENT)) . . .
// For a l l "SubSetEvt" events , the " var iant " i s a Natural number

NaturalVariant <predicate> (m : Machine(STATE ,EVENT) ,variant : P(STATE × Z) ,
SubSetEvt : P(EVENT)) . . .

// When " var iant " i s not nul l , there e x i s t s a "SubSetEvt" t r i g g e r a b l e
event

One_Next_Evt_Is_Triggerable <predicate> (m : Machine(STATE ,EVENT) ,
variant : P(STATE × Z) ,SubSetEvt : P(EVENT)) . . .

// " t rg " event i s reachab le from "src" event through at l e a s t one "
SubSetEvt" event

Evt_Is_Reachable_From_Definition <predicate> (m : Machine(STATE ,EVENT) ,
src : EVENT , trg : EVENT ,SubSetEvt : P(EVENT) ,variant : P(STATE × Z))

well−definedness Machine_WellCons(m) , trg ∈ Progress(m) ,src ∈ Event(m) ,
Inv(m) ◁ variant ∈ Inv(m) → Z ,Mch_INV (m),SubSetEvt ⊆ Progress(m)

direct def init ion
NaturalVariant(m, variant,SubSetEvt)∧ // Preserve the " var iant " natura l
VariantDecrease(m, variant,SubSetEvt)∧ // "SubSetEvt" decrease the "

var iant "
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Next_Conv_Evt_Is_Triggerable(m, variant,SubSetEvt)∧ // the " var iant " are
always po s s i b l e to decrease

At_Least_One_Triggerable_Evt(m, src,SubSetEvt)∧ // " src" can t r i g g e r a "
SubSetEvt"

variant−1[Z \ N] ∩ Inv(m) ⊆ Grd(m)[{trg}] // " var iant"=0 can t r i g g e r " t rg "
. . .

END

Listing 15: Thoery of reachable property in Event-B
A trace σ of a machine m is a sequence of states s0, s1, . . . where s0 is in

the AP of the initialisation event and, for two consecutive state si, si+1 in the
trace, si must satisfy the guards of at least one event and (si, si+1) must satisfy
the before-after predicate of this event. For k ≥ 0, σ(k) denotes the k-th state
sk of the trace. Then, sj is reachable from si (denoted siRsj) if and only if
∃σ, k, n · n ≥ 0 ∧ σ(n) = si ∧ k > 0 ∧ σ(n+ k) = sj .
Reachability PO definition. The reachability property siRsj is encoded using
the Event-B meta-theory (Listing 15). The Theo4Reachability theory begins
by defining the At_Least_One_Triggerable_Evt predicate, which states that,
for any state reached after the source event, the guard of at least one target event
is enabled. Then, the predicates VariantDecrease and NaturalVariant are de-
fined. The former is satisfied only if, for machine m, each event of the SubSetEvt
set decreases the given variant; the latter ensures that the guards of the SubSet-
Evt events imply that the variant is a natural number. The One_Next_Evt_Is_-
Triggerable predicate evaluates to true in machine m if the given variant is
positive and at least one event in SubSetEvt is activated.

These four operators formalise the induction-based definition of reachabil-
ity. They are used to define the main predicate, Evt_Is_Reachable_From_-
Definiton, stating that, in machine m, target event trg can be triggered after
a (finite) sequence of SubSetEvt event triggers for the given variant, beginning
with src event. Formally, triggering src activates at least one event in SubSetEvt
and each event of SubSetEvt decreases the variant and enables at least one other
event of SubSetEvt, and then trg is enabled when the variant reaches 0.
CONTEXT ClockReachab i l i ty EXTENDS ClockMachineInstance
THEOREMS

thmReach : check_Machine_Evt_Is_Reachable_From(clock, init, tick_midnight,
{tick_min, tick_hour}, {m 7→ h 7→ v | v = 24 ∗ 60 − 2 − (m + h ∗ 24)})

END

Listing 16: Clock machine with a reachable property checked
Clock machine reachability PO for clock model. In the clock model of Listing 6, it
is worth checking that midnight is reachable from the initial event. This analysis
is performed with theorem thmReach (see Listing 16), that checks whether the
event tick_midnight is reachable from the event init, via events tick_min and
tick_hours. The proposed variant is then v = 24∗60−2− (m+h∗24). Proving
the generated POs for this theorem establishes reachability.

4.5 Proof assessment

The defined operators of the proposed framework have been designed in the
spirit of Event-B, i.e., 1) complex analyses are decomposed into simple ones
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(case of reachability in Section 4.4) and 2) expressed in a single semantic setting:
the one of Event-B (reflexive modelling) with set theory. This formalisation is
influenced by two characteristics of the proof process, that 1) the Rodin prover
is efficient when handling set expressions, and 2) theories may define customised
proved rewrite rules, that may be summoned manually or automatically in the
proof. Automatic rewriting rules that substitute operators by definitions are
automatically generated. These rules are written to extract relevant information
from machine objects, add them to the hypotheses, and produce multiple simpler
goals. They are defined to be applied automatically and chained together, greatly
improving proof automation. Indeed, these rewrite rules are included in Rodin’s
user-defined proof tactics, once and for all, increasing automation when proving
the theorems formalising the newly defined POs.

Model PO Max Depth Nodes
Interac- Number

tive of Tactic
Nodes application

DeadlockFree clock thmDeadlock (THM) 169 221 1 2

Reachability clock thmReach (WD) 112 577 0 1
thmReach (THM) 191 731 4 5

Inspect Inv clock
thmInspectInvEVTM5 (THM) 111 167 0 1
thmInspectInvEVTH5 (THM) 112 169 0 1

thmInspectInvEVTMH1 (THM) 113 171 0 1

Strong Inv clock
thmInspectInvEVTM5 (THM) 105 158 0 1
thmInspectInvEVTH5 (THM) 118 171 0 1

thmInspectInvEVTHM1 (THM) 128 181 0 1

Table 3: Proof statistic for the Clock model and its analyses
Table 3 presents the proof statistics for each analysis. The important number

of nodes (representing atomic steps) in the proof trees is due to the extensive
use of theory operators which the prover cannot handle directly, and thus their
definitions must be unfolded. The introduction of the rewrite rules in a proof
tactic perform automatically these unfold and reductions, making almost all
steps fully automatic despite the introduction of the meta level (An entry of
0 in the interactive nodes column of Table 3). The rightmost column provides
the number of tactic applications (iterations) during the proof. Indeed, a single
tactic application may not be sufficient to fully discharge the proof goals.

5 Positioning this approach

5.1 Related work

Formalising model analyses has been addressed by several authors: Riccobene
et al. [28] presented the ASM-Metamodel (AsmM) for Abstract State Machine
(ASM) models considering core modelling constructs and semantics, expressed as
an API manipulating ASM-related concepts like abstract machines, signatures,
terms, rules, and so on. It is used to embed ASM in another formal method.
This work resulted in a number of analyses, tools, and extensions for a variety of
purposes [17]. A similar approach exists for VDM with MURAL, an interactive
mathematical reasoning environment extended to support VDM [6] specifications
based on meta-modelling concepts, and designed to offer a theorem prover for
VDM models. Similarly, the Rodin tool offers an API for handling Event-B
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models, intended to be used to develop plug-ins. This API is used by ProB [20] as
well as by plug-ins handling model development [18] and code generation [16,22].

Ebner et al. [14] described the meta-programming framework used in Lean,
which is an interactive theorem prover based on dependent type theory. This
framework provides a means for reflecting object-oriented expressions into a
meta-language by extending Lean’s object language, based on Lean’s modelling
constructs. In [27], the authors present reflection in Agda in the style of Lisp,
MetaML, and Template Haskell, as well as several typed programming applica-
tions. The MetaCoq [32] project proposed a certified meta-programming envi-
ronment in Coq based on meta-modelling Coq concepts, including typing and
operational semantics. This certified meta-modelling environment was also used
in the development of the CertiCoq [4] certified compiler project. Similarly, this
reflection principle [15] is implemented in Isabelle/HOL to build a HOL model
within HOL to analyse and reason about various modelling concepts such as
infinite hierarchy of large cardinals, polymorphism, verifying systems with self-
replacement functionality, etc. In PVS, Miltra et al. [23] proposed strategies for
proving abstraction relations between automata, based on theories and tem-
plates. This mechanism generalises proofs, making them highly reusable. With
regard to Event-B, the formalisation of contexts (and only contexts) in the Event-
B language has been proposed [7]. In related approaches, the B method has been
embedded in PVS [24], to benefit from the modelling power of B, while accessing
the proving power of the PVS theorem prover. However, this embedding is not
formalised, and leads to the use of two separate methods.

Abstract interpretation showed its power to check system properties (absence
of runtime errors, dead code, ...). Frameworks like [9, 10, 12] apply to programs
through the definition of parameterised abstract domains corresponding to model
analyses. The correctness of these analyses is expressed outside the framework.

The proposed approach is based on reflecting Event-B in itself i.e. its elements
can be used as first-class objects in models. This is similar in Coq and HOL based
approaches using dependent types, except that 1) it relies on set theory and FOL,
easing transfer to other formalisms and 2) it is defined in the same setting as
the state-transitions model of the system to be designed.

5.2 Advantages of the approach

This paper highlights several advantages of the EB4EB framework.
- Formal modelling and verification integrated in EB4EB. This frame-
work enables the simultaneous use of two approaches for both modelling (op-
erational with machines or axiomatic with contexts) and proving (meta-theory-
based and model/induction-based) allowing users to use one or the other non-
intrusively on pre-existing models. The proposed theories of the EB4EB frame-
work can be easily extended following the methodology introduced in this paper,
to handle new reusable models analyses by introducing, in Event-B, new auto-
matically generated POs that preserve the semantics of Event-B.
- Easing proof process. The EB4EB reflexive framework enables the explicit
manipulation of Event-B components by introducing meta-elements such as re-
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quired datatypes, operators and theorems, extremely useful for expressing com-
plex problems as well as proposing new reasoning mechanisms. However, due to
the lack of advanced level proof engines such as SMTs, this resulted in enormous
manual proof efforts. The introduced proved proof rules reduce interactive proof
efforts while increasing proof automation.
- On-the-fly analysis. The EB4EB framework, which includes reasoning ex-
tensions, enables on-the-fly model analysis as well as advanced reasoning level for
each Event-B model in the refinement chain. Note that the majority of Event-B
models consist of several refinement layers, where each model of a given abstrac-
tion level can be analysed; i.e, the model is lifted as an instance of the EB4EB
meta-level and is submitted for performing model analyses, at an advanced rea-
soning level, ensured by new POs generation.
- Correctness of the defined analyses. The EB4EB framework associates a
trace to any Event-B machine (trace-based semantics). Such semantics is used
to prove the correctness of the defined analyses. Indeed, a theorem stating that
the property specifying a given model analysis holds on the traces of a machine
is defined for this purpose. Such a correctness theorem has been proved for each
of the analyses introduced in Section 4.

6 Conclusion

This paper presented a technique allowing a designer to define new POs for
Event-B corresponding to model analyses that are not available in core Event-
B. It is based on the extension of the reflexive EB4EB framework and its
meta-theory EvtBTheo. The defined extended reasoning mechanisms and POs
are not available in core Event-B. They have been defined as Event-B meta-
modelling concepts allowing to express deadlock-freeness, bad-events and in-
variant strengthening, and reachability. It is demonstrated that non-intrusive
analysis for Event-B models formalised in Event-B can be performed, at any ab-
straction level in the refinement chain, and without resorting to another formal
method, which would require additional proofs to ensure the correct embedding
of Event-B in that method. Moreover, the proof process has been enriched with
relevant and proved rewrite rules, included in tactics, leading to a high level
of proof automation. All the developments shown in this paper are completely
formalised and all the proofs are realised1.

Two future directions extending this work have been identified. The first
one consists in defining domain-specific engineering theories in order to define
specific domain-oriented properties as POs to be satisfied by system models.
Such an approach opens towards standard conformance and certification. The
second future direction exploits the fact that EB4EB defines an Event-B machine
as an instance of a meta-theory as a set of axioms and theorems instances in FOL
and set theory. This format can be exported into the higher order framework
Dedukti [8, 13], and thus makes way for the design of correct import in, and
export from Event-B of formal models through Dedukti.
1 https://www.irit.fr/~Peter.Riviere/models/

 https://www.irit.fr/~Peter.Riviere/models/
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