

High Entropy Alloys reinforced by TaC or HfC carbides

Patrice Berthod

Institut Jean Lamour & Faculté des Sciences et Technologies, Université de Lorraine, 2 allée André Guinier, 54000 NANCY, France

Introduction / Objectives

Results:

Elaboration

Microstructures

Oxidation behaviours

Mechanical properties

Conclusions / Outlooks

Introduction

Aerospace and Aeronautics Research Conference 2023 27-29 MARCH 2023 | ROME, ITALY

Superalloys: metallic alloys with exceptional properties for hot components:

* for turbine disks and blades, combustion chamber...

* to resist against severe mechanical and chemical solicitations at elevated temperature

https://www.publicdomainpictures.net/fr/viewimage.php?image=23201&picture=dans-un-moteur-jet

https://commons.wikimedia.org/wiki/File:Turbor%C3%A9acteur_DC_DF_%C3%A 0_Fort_Taux_Dilution.jpg

Properties needed at high temperature (T>1000°C):

good resistances against thermal fatigue, creep... and corrosion by melts, oxidation by gases at high temperature...

Enhance the specific power and/or the energy efficiency \rightarrow increase the turbine inlet temperature and the pressure ratio

Go beyond γ/γ single crystalline superalloys (limited to 1100°C because of γ dissolution problems)

Solutions exist among polycristalline cast superalloys strengthened by carbides, derived from some rather old ones

Objectives of this work: to explore new matrix × carbides systems

→ HEA × (TaC or HfC) inspired by the most creep–resistant MC–reinforced Ni–based or Co–based alloys

Berthod; March 27th, 2023

ROME, ITALY

27-29 MARCH 2023

Results: elaboration/

Microstructures in the as–cast state & obtained chemical compositions

Equimolar CoNiFeMnCr + TaC or HfC

Elaborated by high frequency induction foundry under inert atmosphere (Ar) from pure elements

Equimolar CoNiFeMnCr + TaC

Matrix: FCC, rather homogeneous (Mn segregation), containing 2wt.%Ta; Carbides: TaC (pre-eutectic and eutectic)

Aerospace and Aeronautics Research Conference 2023 27-29 MARCH 2023 | ROME, ITALY

Equimolar CoNiFeMnCr + HfC

Matrix: FCC, rather homogeneous (Mn segregation), Hf–free; Carbides: HfC (pre-eutectic and eutectic)

Whole alloy	Wt.% Co	Wt.% Ni	Wt.% Fe	Wt.% Mn	Wt.% Cr	Wt.%Hf
Average content	19.0	19.9	18.1	17.0	19.1	7.0
Standard deviation	0.4	0.5	0.3	0.3	0.2	0.8
Matrix	Wt.% Co	Wt.% Ni	Wt.% Fe	Wt.% Mn	Wt.% Cr	Wt.%Hf

Matrix	W		WE./OTC			••••
Average content	18.9	23.2	16.6	22.7	18.6	0.0
Standard deviation	2.7	3.6	4.4	6.0	2.5	0.0

Results: properties/

Oxidation behaviours at 1000 and 1100°C

CoNiFeMnCr + TaC after 50 h at 1000°C

Oxides: external mixed of Mn and Cr, internal mixed of Cr and Ta; TaC disappearance (ext.) and fragmentation (int.); holes due to oxidation (Kirkendall effect possibly)

CoNiFeMnCr + TaC after 50 h at 1100°C

Globally the same phenomena as at 1000°C but more extended depths

CoNiFeMnCr + TaC after 50 h at 1100°C

Chemical changes in the oxidation–affected subsurface (Xmaps): Mn empoverishment (Mn has more diffused than Cr)

CoNiFeMnCr + HfC after 50 h at 1000°C

Oxides: external mixed of Mn and Cr with various ratio, internal oxidation of Hf; HfC oxidized in situ; rare small holes due to oxidation

CoNiFeMnCr + HfC after 50 h at 1100°C

Globally the same phenomena as at 1000°C but more extended depths

CoNiFeMnCr + HfC after 50 h at 1100°C

Chemical changes in the oxidation–affected subsurface (X-maps): Oxidation of Mn, Cr and Hf only

Results: properties/

Room temperature hardness

Vickers indentation (load 10kg)

5 tests \rightarrow average ± standard deviation

Hardness higher than for the carbides–free HEA alloy And low enough to allow machining easiness

Ην _{10kg}	CoNiFeMnCr	CoNiFeMnCr + TaC	CoNiFeMnCr + HfC
Av. value	121	194	162
Std dev	2	5	5

Results: properties/

High temperature creep: in progress

Aerospace & Aeronautics

Aerospace and Aeronautics Research Conference 2023 27-29 MARCH 2023 | ROME, ITALY

First promising results with other HEA+MC alloys (with two times less MC carbides)

CoNiFeMnCr +TaC (0.25C-3.7Ta) and CoNiFeMnCr +HfC (0.25C-3.7Hf) \rightarrow significant strengthening due to MC carbides

Conclusions / Outlooks

Aerospace and Aeronautics Research Conference 2023 27-29 MARCH 2023 | ROME, ITALY

Conclusions

Interesting matrix & MC associations Correct high temperature oxidation behaviors Hardness maintained at an acceptable level Promising creep behavior at 1100°C

Outlooks

Kinetic of H.T. oxidation (thermogravimetry) *in progress* **Complementary creep tests (alloys, T, σ)** *in progress* **Other HEAs & other MC (e.g. CoNiFeCuCr/Al, ZrC)** *in progress*

Invitation to submit

Fabrication, Structures and Properties of High Entropy Alloys and Refractory **High Entropy Alloys**

Guest Editor Prof. Dr. Patrice Berthod

Deadline Extended to 31 December 2022 **Special**sue 30 June 2023 mdpi.com/si/125455

https://www.comune.fianoromano.rm.it/la-storia-del-paese/

🛹 Aerospace & Aeronautics

Aerospace and Aeronautics Research Conference 2023 ROME, ITALY 27-29 MARCH 2023

Thank you for your attention!