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Figure 1. The “Man on the Moon” incorrectly classified as a “shovel” by an ImageNet-trained ResNet50. Heatmap generated by a
classic attribution method [55] (left) vs. concept attribution maps generated with the proposed CRAFT approach (right) which highlights the
two most influential concepts that drove the ResNet50’s decision along with their corresponding locations. CRAFT suggests that the neural
net arrived at its decision because it identified the concept of “dirt” • commonly found in members of the image class “shovel” and the
concept of “ski pants” • typically worn by people clearing snow from their driveway with a shovel instead the correct concept of astronaut’s
pants (which was probably never seen during training).

Abstract

Attribution methods, which employ heatmaps to identify
the most influential regions of an image that impact model
decisions, have gained widespread popularity as a type of ex-
plainability method. However, recent research has exposed
the limited practical value of these methods, attributed in
part to their narrow focus on the most prominent regions of
an image – revealing "where" the model looks, but failing
to elucidate "what" the model sees in those areas. In this
work, we try to fill in this gap with CRAFT – a novel ap-
proach to identify both “what” and “where” by generating
concept-based explanations. We introduce 3 new ingredients
to the automatic concept extraction literature: (i) a recursive
strategy to detect and decompose concepts across layers, (ii)
a novel method for a more faithful estimation of concept
importance using Sobol indices, and (iii) the use of implicit
differentiation to unlock Concept Attribution Maps.

We conduct both human and computer vision experi-
ments to demonstrate the benefits of the proposed approach.
We show that the proposed concept importance estimation
technique is more faithful to the model than previous meth-
ods. When evaluating the usefulness of the method for hu-
man experimenters on a human-centered utility benchmark,
we find that our approach significantly improves on two
of the three test scenarios. Our code is freely available:
github.com/deel-ai/Craft

1. Introduction
Interpreting the decisions of modern machine learning

models such as neural networks remains a major challenge.
Given the ever-increasing range of machine learning ap-
plications, the need for robust and reliable explainability

* Equal contribution
Proceedings of the IEEE / CVF Computer Vision and Pattern Recognition
Conference (CVPR), 2023.

1

https://github.com/deel-ai/Craft


Figure 2. CRAFT results for the prediction “chain saw”. First, our method uses Non-Negative Matrix Factorization (NMF) to extract the
most relevant concepts used by the network (ResNet50V2) from the train set (ILSVRC2012 [10]). The global influence of these concepts
on the predictions is then measured using Sobol indices (right panel). Finally, the method provides local explanations through concept
attribution maps (heatmaps associated with a concept, and computed using grad-CAM by backpropagating through the NMF concept values
with implicit differentiation). Besides, concepts can be interpreted by looking at crops that maximize the NMF coefficients. For the class
“chain saw”, the detected concepts seem to be: • the chainsaw engine, • the saw blade, • the human head, • the vegetation, • the jeans and •
the tree trunk.

methods continues to grow [11, 35]. Recently enacted Euro-
pean laws (including the General Data Protection Regulation
(GDPR) [37] and the European AI act [43]) require the as-
sessment of explainable decisions, especially those made by
algorithms.

In order to try to meet this growing need, an array of
explainability methods have already been proposed [14, 50,
59, 61, 62, 66, 69, 71, 76]. One of the main class of meth-
ods called attribution methods yields heatmaps that indicate
the importance of individual pixels for driving a model’s
decision. However, these methods exhibit critical limita-
tions [1, 27, 63, 65], as they have been shown to fail – or
only marginally help – in recent human-centered bench-
marks [8, 26, 41, 49, 60, 64]. It has been suggested that their
limitations stem from the fact that they are only capable of
explaining where in an image are the pixels that are criti-
cal to the decision but they cannot tell what visual features
are actually driving decisions at these locations. In other
words, they show where the model looks but not what it sees.
For example, in the scenario depicted in Fig. 1, where an
ImageNet-trained ResNet mistakenly identifies an image as
containing a shovel, the attribution map displayed on the left
fails to explain the reasoning behind this misclassification.

A recent approach has sought to move past attribution
methods [40] by using so-called “concepts” to communicate
information to users on how a model works. The goal is to
find human-interpretable concepts in the activation space of
a neural network. Although the approach exhibited potential,
its practicality is significantly restricted due to the need for
prior knowledge of pertinent concepts in its original formula-
tion and, more critically, the requirement for a labeled dataset
of such concepts. Several lines of work have focused on try-
ing to automate the concept discovery process based only on
the training dataset and without explicit human supervision.

The most prominent of these techniques, ACE [24], uses a
combination of segmentation and clustering techniques but
requires heuristics to remove outliers. However, ACE pro-
vides a proof of concept that it might be possible to discover
concepts automatically and at scale – without additional la-
beling or human supervision. Nevertheless, the approach
suffers several limitations: by construction, each image seg-
ment can only belong to a single cluster, a layer has to be
selected by the user to be used to retrieve the relevant con-
cepts, and the amount of information lost during the outlier
rejection phase can be a cause of concern. More recently,
Zhang et al. [77] proposes to leverage matrix decompositions
on internal feature maps to discover concepts.

Here, we try to fill these gaps with a novel method
called CRAFT which uses Non-Negative Matrix Factoriza-
tion (NMF) [46] for concept discovery. In contrast to other
concept-based explanation methods, our approach provides
an explicit link between their global and local explanations
(Fig. 2) and identifies the relevant layer(s) to use to represent
individual concepts (Fig. 3). Our main contributions can be
described as follows:

(i) A novel approach for the automated extraction of high-
level concepts learned by deep neural networks. We validate
its practical utility to users with human psychophysics ex-
periments.

(ii) A recursive procedure to automatically identify con-
cepts and sub-concepts at the right level of granularity –
starting with our decomposition at the top of the model and
working our way upstream. We validate the benefit of this
approach with human psychophysics experiments showing
that (i) the decomposition of a concept yields more coherent
sub-concepts and (ii) that the groups of points formed by
these sub-concepts are more refined and appear meaningful
to humans.
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(iii) A novel technique to quantify the importance of
individual concepts for a model’s prediction using Sobol
indices [34, 67, 68] – a technique borrowed from Sensitivity
Analysis.

(iv) The first concept-based explainability method which
produces concept attribution maps by backpropagating con-
cept scores into the pixel space by leveraging the implicit
function theorem in order to localize the pixels associated
with the concept of a given input image. This effectively
opens up the toolbox of both white-box [15,59,62,66,69,71,
78] and black-box [14, 47, 55, 57] explainability methods to
derive concept-wise attribution maps.

2. Related Work
Attribution methods Attribution methods are widely used
as post-hoc explainability techniques to determine the input
variables that contribute to a model’s prediction by gener-
ating importance maps, such as the ones shown in Fig.1.
The first attribution method, Saliency, introduced in [62],
generates a heatmap by utilizing the gradient of a given
classification score with respect to the pixels. This method
was later improved upon in the context of deep convolu-
tional networks for classification in subsequent studies, such
as [66, 69, 71, 76]. However, the image gradient only reflects
the model’s operation within an infinitesimal neighborhood
around an input, which can yield misleading importance
estimates [22] since gradients of large vision models are no-
toriously noisy [66]. That is why several methods leverage
perturbations on the input image to probe the model and cre-
ate importance maps that indicate the most crucial areas for
the decision, such as Rise [55], Sobol [14], or more recently
HSIC [50].

Unfortunately, a severe limitation of these approaches
– apart from the fact that they only show the “where” – is
that they are subject to confirmation bias: while they may
appear to offer useful explanations to a user, sometimes
these explanations are actually incorrect [1, 23, 65]. These
limitations raise questions about their usefulness, as recent
research has shown by using human-centered experiments
to evaluate the utility of attribution [8, 26, 41, 49, 60].

In particular, in [8], a protocol is proposed to measure the
usefulness of explanations, corresponding to how much they
help users identify rules driving a model’s predictions (cor-
rect or incorrect) that transfer to unseen data – using the con-
cept of meta-predictor (also called simulatability) [11,18,39].
The main idea is to train users to predict the output of the sys-
tem using a small set of images along with associated model
predictions and corresponding explanations. A method that
performs well on this this benchmark is said useful, as it
help users better predict the output of the model by provid-
ing meaningful information about the internal functioning
of the model. This framework being agnostic to the type of
explainability method, we have chosen to use it in Section 4

in order to compare CRAFT with attribution methods.

Concepts-based methods Kim et al. [40] introduced a
method aimed at providing explanations that go beyond
attribution-based approaches by measuring the impact of
pre-selected concepts on a model’s outputs. Although this
method appears more interpretable to human users than stan-
dard attribution techniques, it requires a database of images
describing the relevant concepts to be manually curated.
Ghorbani et al. [24] further extended the approach to extract
concepts without the need for human supervision. The ap-
proach, called ACE [24], uses a segmentation scheme on
images, that belong to an image class of interest. The authors
leveraged the intermediate activations of a neural network
for specific image segments. These segments were resized
to the appropriate input size and filled with a baseline value.
The resulting activations were clustered to produce proto-
types, which they referred to as "concepts". However, some
concepts contained background segments, leading to the in-
clusion of uninteresting and outlier concepts. To address
this, the authors implemented a postprocessing cleanup step
to remove these concepts, including those that were present
in only one image of the class and were not representative.
While this improved the interpretability of their explana-
tions to human subjects, the use of a baseline value filled
around the segments could introduce biases in the explana-
tions [28, 31, 42, 70].

Zhang et al. [77] developed a solution to the unsupervised
concept discovery problem by using matrix factorizations in
the latent spaces of neural networks. However, one major
drawback of this method is that it operates at the level of
convolutional kernels, leading to the discovery of localized
concepts. For example, the concept of "grass" at the bot-
tom of the image is considered distinct from the concept of
"grass" at the top of the image.

3. Overview of the method
In this section, we first describe our concept activations

factorization method. Below we highlight the main differ-
ences with related work. We then proceed to introduce the
three novel ingredients that make up CRAFT: (1) a method
to recursively decompose concepts into sub-concepts, (2) a
method to better estimate the importance of extracted con-
cepts, and (3) a method to use any attribution method to
create concept attribution maps, using implicit differentia-
tion [4, 25, 44].

Notations In this work, we consider a general supervised
learning setting, where (x1, ...,xn) ∈ Xn ⊆ Rn×d are
n inputs images and (y1, ..., yn) ∈ Yn their associated la-
bels. We are given a (machine-learnt) black-box predictor
f : X → Y , which at some test input x predicts the output
f(x). Without loss of generality, we establish that f is a
neural network that can be decomposed into two distinct
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Figure 3. (1) Neural collapse (amalgamation). A classifier needs to be able to linearly separate classes by the final layer. It is commonly
assumed that in order to achieve this, image activations from the same class get progressively “merged” such that these image activations
converge to a one-hot vector associated with the class at the level of the logits layer. In practice, this means that different concepts get
ultimately blended together along the way. (2) Recursive process. When a concept is not understood (e.g., C), we propose to decompose it
into multiple sub-concepts (e.g., C1, C2, C3) using the activations from an earlier layer to overcome the aforementioned neural collapse issue.
(3) Example of recursive concept decomposition using CRAFT on the ImageNet class “parachute”.

components. The first component is a function g that maps
the input to an intermediate state, and the second component
is h, which takes this intermediate state to the output, such
that f(x) = (h ◦ g)(x). In this context, g(x) ⊆ Rp repre-
sents the intermediate activations of x within the network.
Further, we will assume non-negative activations: g(x) ≥ 0.
In particular, this assumption is verified by any architecture
that utilizes ReLU, but any non-negative activation function
works.

3.1. Concept activation factorization.

We use Non-negative matrix factorization to identify a
basis for concepts based on a network’s activations (Fig.4).
Inspired by the approach taken in ACE [24], we will use
image sub-regions to try to identify coherent concepts.

The first step involves gathering a set of images that one
wishes to explain, such as the dataset, in order to generate
associated concepts. In our examples, to explain a specific
class y ∈ Y , we selected the set of points C from the dataset
for which the model’s predictions matched a specific class
C = {xi : f(xi) = y, 1 ≤ i ≤ n}. It is important to
emphasize that this choice is significant. The goal is not
to understand how humans labeled the data, but rather to
comprehend the model itself. By only selecting correctly
classified images, important biases and failure cases may be
missed, preventing a complete understanding of our model.

Now that we have defined our set of images, we will
proceed with selecting sub-regions of those images to iden-
tify specific concepts within a localized context. It has been
observed that the implementation of segmentation masks sug-
gested in ACE can lead to the introduction of artifacts due to
the associated inpainting with a baseline value. In contrast,
our proposed method takes advantage of the prevalent use of
modern data augmentation techniques such as randaugment,
mixup, and cutmix during the training of current models.
These techniques involve the current practice of models be-

ing trained on image crops, which enables us to leverage
a straightforward crop and resize function denoted by π(·)
to create sub-regions (illustrated in Fig.4). By applying π
function to each image in the set C, we obtain an auxiliary
dataset X ∈ Rn×d such that each entries Xi = π(xi) is an
image crop.

To discover the concept basis, we start by obtaining the
activations for the random crops A = g(X) ∈ Rn×p. In
the case where f is a convolutional neural network, a global
average pooling is applied to the activations.

We are now ready to apply Non-negative Matrix Factor-
ization (NMF) to decompose positive activations A into a
product of non-negative, low-rank matrices U ∈ Rn×r and
W ∈ Rp×r by solving:

(U,W) = argmin
U≥0,W≥0

1

2
∥A−UWT∥2F , (1)

where || · ||F denotes the Frobenius norm.
This decomposition of our activations A yields two matri-

ces: W containing our Concept Activation Vectors (CAVs)
and U that redefines the data points in our dataset accord-
ing to this new basis. Moreover, this decomposition in this
new basis has some interesting properties that go beyond the
simple low-rank factorization – since r ≪ min(n, p). First,
NMF can be understood as the joint learning of a dictionary
of Concept Activation Vectors – called a “concept bank” in
Fig. 4 – that maps a Rp basis onto Rr, and U the coeffi-
cients of the vectors A expressed in this new basis. The
minimization of the reconstruction error 1

2∥A−UW∥2F en-
sures that the new basis contains (mostly) relevant concepts.
Intuitively, the non-negativity constraints U ≥ 0,W ≥ 0
encourage (i) W to be sparse (useful for creating disentan-
gled concepts), (ii) U to be sparse (convenient for selecting
a minimal set of useful concepts) and (iii) missing data to be
imputed [56], which corresponds to the sparsity pattern of
post-ReLU activations A.

It is worth noting that each input xi can be expressed
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as a linear combination of concepts denoted as Ai =∑r
j=1 U(i,j)W

T
j . This approach is advantageous because

it allows us to interpret each input as a composition of the
underlying concepts. Furthermore, the strict positivity of
each term – NMF is working over the anti-negative semir-
ing, – enhances the interpretability of the decomposition.
Another interesting interpretation could be that each input is
represented as a superposition of concepts [13].

While other methods in the literature solve a similar prob-
lem (such as low-rank factorization using SVD or ICA), the
NMF is both fast and effective and is known to yield con-
cepts that are meaningful to humans [20, 74, 77]. Finally,
once the concept bank W has been precomputed, we can
associate the concept coefficients u to any new input x (e.g.,
a full image) by solving the underlying Non-Negative Least
Squares (NNLS) problem minu≥0

1
2∥g(x)−uWT∥2F , and

therefore recover its decomposition in the concept basis.
In essence, the core of our method can be summarized

as follows: using a set of images, the idea is to re-interpret
their embedding at a given layer as a composition of con-
cepts that humans can easily understand. In the next section,
we show how one can recursively apply concept activation
factorizations to preceding layer for an image containing a
previously computed concept.

3.2. Ingredient 1: A pinch of recursivity

One of the most apparent issues in previous work [24,77]
is the need for choosing a priori a layer at which the activa-
tion maps are computed. This choice will critically affect
the concepts that are identified because certain concepts get
amalgamated [53] into one at different layers of the neural
network, resulting in incoherent and indecipherable clusters,
as illustrated in Fig. 3. We posit that this can be solved
by iteratively applying our decomposition at different layer
depths, and for the concepts that remain difficult to under-
stand, by looking for their sub-concepts in earlier layers by
isolating the images that contain them. This allows us to
build hierarchies of concepts for each class.

We offer a simple solution consisting of reapplying our
method to a concept by performing a second step of concept
activation factorization on a set of images that contain the
concept C in order to refine it and create sub-concepts (e.g.,
decompose C into {C1, C2, C3}) see Fig. 3 for an illustrative
example. Note that we generalize current methods in the
sense that taking images (x1, ...,xn) that are clustered in the
logits layer (belonging to the same class) and decomposing
them in a previous layer – as done in [24, 77] – is a valid
recursive step. For a more general case, let us assume that
a set of images that contain a common concept is obtained
using the first step of concept activation factorization.

We will then take a subset of the auxiliary dataset points
to refine any concept j. To do this, we select the subset
of points that contain the concept Cj = {Xi : U(i,j) >

λj , 1 ≤ i ≤ n}, where λj is the 90th percentile of the
values of the concept U(1,j), . . . ,U(n,j). In other words,
the 10% of images that activate the concept j the most are
selected for further refinement into sub-concepts. Given this
new set of points, we can then re-apply the Concept Matrix
Factorization method to an earlier layer g′(·) to obtain the
sub-concepts decomposition from the initial concept – as
illustrated in Fig.3.

3.3. Ingredient 2: A dash of sensitivity analysis

A major concern with concept extraction methods is that
concepts that makes sense to humans are not necessarily the
same as those being used by a model to classify images. In
order to prevent such confirmation bias during our concept
analysis phase, a faithful estimate the overall importance of
the extracted concepts is crucial. Kim et al. [40] proposed
an importance estimator based on directional derivatives:
the partial derivative of the model output with respect to
the vector of concepts. While this measure is theoretically
grounded, it relies on the same principle as gradient-based
methods, and thus, suffers from the same pitfalls: neural
network models have noisy gradients [66, 71]. Hence, the
farther the chosen layer is from the output, the noisier the
directional derivative score will be.

Since we essentially want to know which concept has the
greatest effect on the output of the model, it is natural to
consider the field of sensitivity analysis [9, 33, 34, 67, 68].
In this section, we briefly recall the classic “total Sobol
indices” and how to apply them to our problem. The com-
plete derivation of the Sobol-Hoeffding decomposition is
presented in Section D of the supplementary materials. For-
mally, a natural way to estimate the importance of a con-
cept i is to measure the fluctuations of the model’s output
h(UWT) in response to meaningful perturbations of the
concept coefficient U(1,i), . . . ,U(n,i). Concretely, we will
use perturbation masks M = (M1, ...,Mr) ∼ U([0, 1]r),
here an i.i.d sequence of real-valued random variables, we
introduce a concept fluctuation to reconstruct a perturbed ac-
tivation Ã = (U⊙M)WT where ⊙ denote the Hadamard
product (e.g., the masks can be used to remove a concept
by setting its value to zero). We can then propagate this
perturbed activation to the model output Y = h(Ã). Sim-
ply put, removing or applying perturbation of an important
concept will result in a substantial variation in the output,
whereas an unused concept will have minimal effect on the
output.

Finally, we can capture the importance that a concept
might have as a main effect – along with its interactions with
other concepts – on the model’s output by calculating the ex-
pected variance that would remain if all the concepts except
the i were to be fixed. This yields the general definition of
the total Sobol indices.

Definition 3.1 (Total Sobol indices). The total Sobol index
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Figure 4. Overview of CRAFT. Starting from a set of crops X containing a concept C (e.g., crops images of the class “parachute”), we
compute activations g(X) corresponding to an intermediate layer from a neural network for random image crops. We then factorize these
activations into two lower-rank matrices, (U,W). W is what we call a “concept bank” and is a new basis used to express the activations,
while U corresponds to the corresponding coefficients in this new basis. We then extend the method with 3 new ingredients: (1) recursivity –
by proposing to re-decompose a concept (e.g., take a new set of images containing C1) at an earlier layer, (2) a better importance estimation
using Sobol indices and (3) an approach to leverage implicit differentiation to generate concept attribution maps to localize concepts in an
image.

STi , which measures the contribution of a concept i as well
as its interactions of any order with any other concepts to
the model output variance, is given by:

STi =
EM∼i

(VMi
(Y|M∼i))

V(Y)
(2)

=
EM∼i

(VMi
(h((U⊙M)WT)|M∼i))

V(h((U⊙M)WT))
. (3)

In practice, this index can be calculated very effi-
ciently [36, 48, 52, 58, 72], more details on the Quasi-Monte
Carlo sampling and the estimator used are left in appendix D.

3.4. Ingredient 3: A smidgen of implicit differenti-
ation

Attribution methods are useful for determining the re-
gions deemed important by a model for its decision, but they
lack information about what exactly triggered it. We have
seen that we can already extract this information from the
matrices U and W, but as it is, we do not know in what
part of an image a given concept is represented. In this sec-
tion, we will show how we can leverage attribution methods
(forward and backward modes) to find where a concept is
located in the input image (see Fig. 2). Forward attribution
methods do not rely on any gradient computation as they
only use inference processes, whereas backward methods
require back-propagating through a network’s layers. By
application of the chain rule, computing ∂U/∂X requires
access to ∂U/∂A.

To do so, one could be tempted to solve the linear sys-
tem UWT = A. However, this problem is ill-posed since
WT is low rank. A standard approach is to calculate the
Moore-Penrose pseudo-inverse (WT)†, which solves rank

deficient systems by looking at the minimum norm solu-
tion [2]. In practice, (WT)† is computed with the Singu-
lar Value Decomposition (SVD) of WT. Unfortunately,
SVD is also the solution to the unstructured minimization of
1
2∥A−UWT∥2F by the Eckart-Young-Mirsky theorem [12].
Hence, the non-negativity constraints of the NMF are ig-
nored, which prevents such approaches from succeeding.
Other issues stem from the fact that the U,W decomposi-
tion is generally not unique.

Our third contribution consists of tackling this problem to
allow the use of attribution methods, i.e., concept attribution
maps, by proposing a strategy to differentiate through the
NMF block.

Implicit differentiation of NMF block The NMF prob-
lem 1 is NP-hard [73], and it is not convex with respect to
the input pair (U,W). However, fixing the value of one of
the two factors and optimizing the other turns the NMF for-
mulation into a pair of Non-Negative Least Squares (NNLS)
problems, which are convex. This ensures that alternating
minimization (a standard approach for NMF) of (U,W)
factors will eventually reach a local minimum. Each of
this alternating NNLS problems fulfills the Karush-–Kuhn-
–Tucker (KKT) conditions [38, 45], which can be encoded
in the so-called optimality function F from [4], see Eq. 10
Appendix C.2. The implicit function theorem [25] allows us
to use implicit differentiation [3, 25, 44] to efficiently com-
pute the Jacobians ∂U/∂A and ∂W/∂A without requiring
to back-propagate through each of the iterations of the NMF
solver:

∂(U,W, Ū,W̄)

∂A
= −(∂1F)−1∂2F. (4)
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Figure 5. Qualitative Results: CRAFT results on 6 classes of ILSVRC2012 [10] for a trained ResNet50V2. The results showcase the top 3
most important concepts for each class. This is done by displaying crop images that activate the concept the most (using U) and also feature
visualization [51] of the associated CAVs (using W).

7



However, this requires the dual variables Ū and W̄,
which are not computed in scikit-learn’s [54] popular imple-
mentation. Consequently, we leverage the work of [32] and
we re-implement our own solver with Jaxopt [4] based on
ADMM [5], a GPU friendly algorithm (see Appendix C.2).

Concretely, given our concepts bank W, the concept at-
tribution maps of a new input x are calculated by solving
the NNLS problem minU≥0

1
2∥g(x) −UWT∥2F . The im-

plicit differentiation of the NMF block ∂U/∂A is integrated
into the classic back-propagation to obtain ∂U/∂x. Most
interestingly, this technical advance enables the use of all
white-box explainability methods [59, 62, 66, 69, 71, 78] to
generate concept-wise attribution maps and trace the part of
an image that triggered the detection of the concept by the
network. Additionally, it is even possible to employ black-
box methods [14, 47, 55, 57] since it only amounts to solving
an NNLS problem.

4. Experimental evaluation
In order to evaluate the interest and the benefits brought

by CRAFT, we start in Section 4.1 by assessing the practi-
cal utility of the method on a human-centered benchmark
composed of 3 XAI scenarios.

After demonstrating the usefulness of the method using
these human experiments, we independently validate the 3
proposed ingredients. First, we provide evidence that recur-
sivity allows refining concepts, making them more meaning-
ful to humans using two additional human experiments in
Section 4.2. Next, we evaluate our new Sobol estimator and
show quantitatively that it provides a more faithful assess-
ment of concept importance in Section 4.3. Finally, we run
an ablation experiment that measures the interest of local ex-
planations based on concept attribution maps coupled with
global explanations. Additional experiments, including a
sanity check and an example of deep dreams applied on the
concept bank, as well as many other examples of local expla-
nations for randomly picked images from ILSVRC2012, are
included in Section B of the supplementary materials. We
leave the discussion on the limitations of this method and on
the broader impact in appendix A.

4.1. Utility Evaluation

As emphasized by Doshi-Velez et al. [11], the goal of
XAI should be to develop methods that help a user better
understand the behavior of deep neural network models. An
instantiation of this idea was recently introduced by Colin
& Fel et al. [8] who described an experimental framework
to quantitatively measure the practical usefulness of explain-
ability methods in real-world scenarios. For their initial
setup, these authors recruited n = 1, 150 online participants
(evaluated over 8 unique conditions and 3 AI scenarios) –

Scikit-learn uses a block coordinate descent algorithm [7, 17], with a
randomized SVD initialization.

making it the largest benchmark to date in XAI. Here, we
follow their framework rigorously to allow for the robust
evaluation of the utility of our proposed CRAFT method and
the related ACE. The 3 representative real-world scenarios
are: (1) identifying bias in an AI system (using Husky vs
Wolf dataset from [57]), (2) characterizing the visual strat-
egy that are too difficult for an untrained non-expert human
observer (using the Paleobotanical dataset from [75]), (3)
understanding complex failure cases (using ImageNet “Red
fox” vs “Kit fox” binary classification). Using this bench-
mark, we evaluate CRAFT, ACE, as well as CRAFT with
only the global concepts (CRAFTCO) to allow for a fair
comparison with ACE. To the best of our knowledge, we are
the first to systematically evaluate concept-based methods
against attribution methods.

Results are shown in Table 1 and demonstrate the bene-
fit of CRAFT, which achieves higher scores than all of the
attribution methods tested as well as ACE in the first two
scenarios. To date, no method appears to exceed the base-
line on the third scenario suggesting that additional work
is required. We also note that, in the first two scenarios,
CRAFTCO is one of the best-performing methods and it
always outperforms ACE – meaning that even without the
local explanation of the concept attribution maps, CRAFT
largely outperforms ACE. Examples of concepts produced
by CRAFT are shown in the Appendix E.1.

4.2. Validation of Recursivity

To evaluate the meaningfulness of the extracted high-
level concepts, we performed psychophysics experiments
with human subjects, whom we asked to answer a survey
in two phases. Furthermore, we distinguished two different
audiences: on the one hand, experts in machine learning,
and on the other hand, people with no particular knowledge
of computer vision. Both groups of participants were volun-
teers and did not receive any monetary compensation. Some
examples of the developed interface are available the ap-
pendix E. It is important to note that this experiment was
carried out independently from the utility evaluation and
thus it was setup differently.
Intruder detection experiment First, we ask users to iden-
tify the intruder out of a series of five image crops belonging
to a certain class, with the odd one being taken from a differ-
ent concept but still from the same class. Then, we compare
the results of this intruder detection with another intruder
detection, this time, using a concept (e.g., C1) coming from
a layer l and one of its sub-concepts (e.g., C12 in Fig.3)
extracted using our recursive method. If the concept (or
sub-concept) is coherent, then it should be easy for the users
to find the intruder. Table 2 summarizes our results, showing
that indeed both concepts and sub-concepts are coherent, and
that recursivity can lead to a slightly higher understanding
of the generated concepts (significant for non-experts, but
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Husky vs. Wolf Leaves “Kit Fox” vs “Red Fox”

Session n◦ 1 2 3 Utility 1 2 3 Utility 1 2 3 Utility

Baseline 55.7 66.2 62.9 70.1 76.8 78.6 58.8 62.2 58.8
Control 53.3 61.0 61.4 0.95 72.0 78.0 80.2 1.02 60.7 59.2 48.5 0.94

A
ttr

ib
ut

io
ns

Saliency [62] 53.9 69.6 73.3 1.06 83.2 88.7 82.4 1.13 61.7 60.2 58.2 1.00
Integ.-Grad. [71] 67.4 72.8 73.2 1.15 82.5 82.5 85.3 1.11 59.4 58.3 58.3 0.98
SmoothGrad [66] 68.7 75.3 78.0 1.20 83.0 85.7 86.3 1.13 50.3 55.0 61.4 0.93
GradCAM [59] 77.6 85.7 84.1 1.34 81.9 83.5 82.4 1.10 54.4 52.5 54.1 0.90
Occlusion [76] 71.0 75.7 78.1 1.22 78.8 86.1 82.9 1.10 51.0 60.2 55.1 0.92
Grad.-Input [61] 65.8 63.3 67.9 1.06 76.5 82.9 79.5 1.05 50.0 57.6 62.6 0.95

C
on

ce
pt

s ACE [24] 68.8 71.4 72.7 1.15 79.8 73.8 82.1 1.05 48.4 46.5 46.1 0.78
CRAFTCO (ours) 82.4 87.0 85.1 1.38 78.8 85.5 89.4 1.12 55.5 49.5 53.3 0.88
CRAFT (ours) 90.6 97.3 95.5 1.53 86.2 86.6 85.5 1.15 56.5 50.6 49.4 0.87

Table 1. Utility scores on 3 datasets from [8]. Their Utility benchmark evaluates how well explanations help users identify general rules
driving classifications that readily transfer to unseen instances. At training time, users are asked to infer rules driving the decisions of the
model given a set of images, and their associated predictions and explanations. At test time, the Utility metric measures the accuracy of
users at predicting the model decision on novel images averaged over 3 sessions, and normalized by the baseline accuracy of users trained
without explanations. The higher the Utility score, the more useful the explanation, and the more crucial the information provided is for
understanding –and thus predicting the model’s output– on novel samples. CRAFTCO stands for “CRAFT Concept Only” and designates an
experimental condition where only global concepts are given to users, without local explanations (i.e., the concept attribution maps). The
first and second best results above the baseline are in bold and underlined, respectively.

Experts (n = 36) Laymen (n = 37)

Intruder

Acc. Concept 70.19% 61.08%
Acc. Sub-Concept 74.81% (p = 0.18) 67.03% (p = 0.043)

Binary choice

Sub-Concept 76.1% (p < 0.001) 74.95% (p < 0.001)
Odds Ratios 3.53 2.99

Table 2. Results from the psychophysics experiments to validate
the recursivity ingredient.

not for experts) and might suggest a way to make concepts
more interpretable.
Binary choice experiment In order to test the improvement
of coherence of the sub-concept generated by recursivity
with respect to the larger parent concept, we showed par-
ticipants an image crop belonging to both a subcluster and
a parent cluster (e.g., π(x) ∈ C11 ⊂ C1) and asked them
which of the two clusters (i.e., C11 or C1) seemed to accom-
modate the image the best. If our hypothesis is correct, then
the concept refinement brought by recursivity should help
form more coherent clusters. The results in Table 2 are sat-
isfying since in both the expert and non-expert groups, the
participants chose the sub-cluster more than 74% of the time.
We measure the significance of our results by fitting a bino-
mial logistic regression to our data, and we find that both
groups are more likely to choose the sub-concept cluster (at
a p < 0.001).

4.3. Fidelity analysis

We propose to simultaneously verify that identified con-
cepts are faithful to the model and that the concept impor-
tance estimator performs better than that used in TCAV [40]
by using the fidelity metrics introduced in [24, 77]. These
metrics are similar to the ones used for attribution methods,
which consist of studying the change of the logit score when
removing/adding pixels considered important. Here, we do
not introduce these perturbations in the pixel space but in the
concept space: once U and W are computed, we reconstruct
the matrix A ≈ UWT using only the most important con-
cept (or removing the most important concept for deletion)
and compute the resulting change in the output of the model.
As can be seen from Fig. 6, ranking the extracted concepts
using Sobol’s importance score results in steeper curves than
when they are sorted by their TCAV scores. We confirm
that these results generalize with other matrix factorization
techniques (PCA, ICA, RCA) in Section F of the Appendix.
5. Conclusion

In this paper, we introduced CRAFT, a method for au-
tomatically extracting human-interpretable concepts from
deep networks. Our method aims to explain a pre-trained
model’s decisions both on a per-class and per-image basis by
highlighting both “what” the model saw and “where” it saw
it – with complementary benefits. The approach relies on 3
novel ingredients: 1) a recursive formulation of concept dis-
covery to identify the correct level of granularity for which
individual concepts are understandable; 2) a novel method
for measuring concept importance through Sobol indices to
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Figure 6. (Left) Deletion curves (lower is better). (Right) Insertion
curves (higher is better). For both the deletion or insertion metrics,
Sobol indices lead to better estimates (calculated on >100K images)
of important concepts.

more accurately identify which concepts influence a model’s
decision for a given class; and 3) the use of implicit differ-
entiation methods to backpropagate through non-negative
matrix factorization (NMF) blocks to allow the generation
of concept-wise local explanations or concept attribution
maps independently of the attribution method used. Using a
recently introduced human-centered utility benchmark, we
conducted psychophysics experiments to confirm the validity
of the approach: and that the concepts identified by CRAFT
are useful and meaningful to human experimenters. We hope
that this work will guide further efforts in the search for
concept-based explainability methods.
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A. Limitations and broader impact
A.1. Limitations

Although we believe concept-based XAI to be a promis-
ing research direction, it isn’t without pitfalls. It is capable
of producing explanations that are ideally easy to understand
by humans, but to what extent is a question that remains
unanswered. The fact that there is no way to mathematically
measure this prevents researchers from easily comparing the
different techniques in the literature other than through time
consuming and expensive experiments with human subjects.
We think that developing a metric should be one of the field’s
priorities.

With CRAFT, we address the question of what by show-
ing a cluster of the images that better represent each concept.
However, we recognize that it’s not perfect: in some cases,
concepts are difficult to clearly define – put a label on what
it represents –, and might induce some confirmation and
selection bias. Feature visualization [51] might help in bet-
ter illustrating the specific concept (as done in appendix
B.3), but we believe there’s still space for improvement. For
instance, an interesting idea could be to leverage image cap-
tioning methods to describe the clusters of image crops, as
textual information could help humans in better understand-
ing clusters.

Although we believe CRAFT to be a considerable step
in the good direction for the field of concept-based XAI, it
also have some pitfalls. Namely, we chose the NMF as the
activation factorization, which, while drastically improving
the quality of extracted concepts, also comes with it’s own
caveats. For instance, it is known to be NP-hard to compute
exactly, and in order to make it scalable, we had to use
a tractable approximation by alternating the optimization
of U and W through ADMM [5]. This approach might
indeed yield non-unique solutions. Our experiments (section
4.3), have shown a low variance on between the runs, which
comforts us about the stability of our results.However the
absence of formal guarantee for uniqueness must be kept
in mind: this subject is still an active topic of research and
improvement could be expected in the near future. Namely,
sparsity constraints and regularization seem to be promising
paths. Naturally, we also need enough samples of the class
under study to be available for the factorization to construct
a relevant concept bank, which might affect the quality of
the explanations on frugal applications where data is very

scarce.

A.2. Broader impact

We do hope that CRAFT helps in the transition to more
human-understandable ways of explaining neural network
models. It’s capacity to find easily understandable concepts
inside complex architectures and providing an indication of
where they are located in the image is – to the best of our
knowledge – unmatched. We also think that this method’s
structure is a step towards reducing confirmation bias: for
instance dataset’s labels are never used in this method, only
the model’s predictions. Without claiming to remove con-
firmation bias, the method focuses on what the model sees
rather than what we expect the model to see. We believe
this can help end-users build trust on computer vision mod-
els, and at the same time, provide ML practitioners with
insights into potential sources of bias in the dataset (e.g. the
ski pants in the astronaut/shovel example). Other methods
in the literature obtaining similar results require very spe-
cific architectures [6] or to train another model to generate
the explanations [21], so CRAFT provides a considerable
advantage in the matter of flexibility in comparison.

B. More results of CRAFT
B.1. Qualitative comparison with ACE

Figure S1 compares the examples of concepts found by
CRAFT against those found by ACE [24] for 3 classes of
Imagenette. For each class the concepts are ordered by
importance (the highest being the most important). ACE uses
a clustering technique and TCAV to estimate importance,
while CRAFT uses the method introduced in 3 and Sobol to
estimate importance. These examples illustrate one of the
weaknesses of ACE: the segmentation used can introduce
biases through the baseline value used [19,70]. The concepts
found by CRAFT seem distinct: (vault, cross, stained glass)
for the Church class, (dumpster, truck door, two-wheeler)
for the garbage truck, and (eyes, nose, fluffy ears) for the
English Springer.

B.2. Most important concepts.

We show more example of the 4 most importants concepts
for 6 classes: ‘Chain saw’, ‘English springer’, ‘Gas pump’,
‘Golf ball’, ‘French horn’ and ‘Garbage Truck’ (Figure S2).
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Figure S1. Qualitative comparison. We compare concepts found by our method (top) to those extracted with ACE [24] (bottom) for the
classes Church, Garbage truck and English springer from ILSVRC2012 [10].
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Figure S2. CRAFT most important concepts. The 4 most important concepts ranked by importance (left to right) for the following classes:
‘English springer’, ‘Chain saw’, ‘Gas pump’, ‘Golf ball’, ‘French horn’, and ‘Garbage truck’.
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B.3. Feature Visualization validation

Another way of interpreting concepts – as per [40] – is to
employ feature visualization methods: through optimization,
find an image that maximizes an activation pattern. In our
case, we used the set of regularization and constraints pro-
posed by [51], which allow us to successfully obtain realistic
images. In Figures [S3-S5], we showcase these synthetic
images obtained through feature visualization, along with
the segments that maximize the target concept. We observe
that they do reflect the underlying concepts of interest.

Concretely, to produce those feature visualization, we are
looking for an image x∗ that is optimized to correspond to
a concept from the concept bank Wi. We use the so called
‘dot-cossim’ loss proposed by [51], which give the following
objective:

x∗ = argmax
x∈X

⟨g(x),Wi⟩
⟨g(x),Wi⟩2

||g(x)|| ||Wi||
− R(x)

WithR(·), the regularizations applied to x – the default
regularizations in the Xplique library [16]. As for the spe-
cific parameters, we used Fourier preconditioning on the
image with a decay rate of 0.8 and an Adam optimizer
(lr = 1e− 1).

here

Figure S3. Feature visualization for chainsaw CRAFT concepts.

Figure S4. Feature visualization for english springer CRAFT
concepts.

Figure S5. Feature visualization for golf CRAFT concepts.
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C. Backpropagating through the NMF block
C.1. Alternating Direction Method of Multipliers

(ADMM) for NMF

We recall that NMF decomposes the positive features
vector A ∈ Rn×p of n examples lying in dimension p, into
a product of positive low rank matrices U(A) ∈ Rn×r and
W(A) ∈ Rp×r (with r << min(n, p)), i.e the solution to
the problem:

min
U≥0,W≥0

1

2
∥A−UWT ∥2F . (5)

For simplicity we used a non-regularized version of the
NMF objective, following Algorithms 1 and 3 in paper [32],
based on ADMM [5]. This algorithm transforms the non-
linear equality constraints into indicator functions δ. Aux-
iliary variables Ũ,W̃ are also introduced to separate the
optimization of the objective on the one side, and the sat-
isfaction of the constraint on U,W on the other side. The
equality constraints Ũ = U,W̃ = W are linear and easily
handled by the ADMM framework through the associated
dual variables Ū,W̄. In our case, the problem in Equation 5
is transformed into:

min
U,Ũ,W,W̃

1

2
∥A− ŨW̃T ∥2F + δ(U) + δ(W),

s.t. Ũ = U,W̃ = W

with δ(H) =

{
0 if H ≥ 0,

+∞ otherwise.

(6)

Note that Ũ and U (resp. W̃ and W) seem redun-
dant: they are meant to be equal thanks to constraints
Ũ = U,W̃ = W. This is standard practice within ADMM
framework: introducing redundancies allows to disentangle
the (unconstrained) optimization of the objective on one
side (with Ũ and W̃) and constraint satisfaction on the
other side with U and W. During the optimization pro-
cess the variables Ũ,U (resp. W̃,W) are different, and
only become equal in the limit at convergence. The dual
variables Ū,W̄ control the balance between optimization
of the objective 1

2∥A − ŨW̃T ∥2F and constraint satisfac-
tion Ũ = U,W̃ = W. The constraints are simplified at
the cost of a non-smooth (and even a non-finite) objective
function 1

2∥A− ŪW̄T ∥2F + δ(U) + δ(W) due to the term
δ(U) + δ(W). ADMM proceeds to create a so-called aug-
mented Lagrangian with l2 regularization ρ > 0:

L(A,U,W, Ũ,W̃, Ū,W̄) =

1

2
∥A− ŨW̃T ∥2F + δ(U) + δ(W)

+ ŪT (Ũ−U) + W̄T (W̃ −W)

+
ρ

2

(
∥Ũ−U∥22 + ∥W̃ −W∥22

)
.

(7)

This regularization ensures that the dual problem is well
posed and that it remain convex, even with the non smooth
and infinite terms δ(U) + δ(W). Once again, this is stan-
dard practice within ADMM framework. The (regularized)
problem associated to this Lagrangian is decomposed into
a sequence of convex problems that alternate minimization
over the U, Ũ, Ū and the W,W̃,W̄ triplets.

Ut+1 = argmin
U=Ũ

1

2
∥A− ŨWT

t ∥2F + δ(U) +
ρ

2
∥Ũ−U∥22.

(8)

Wt+1 = argmin
W=W̃

1

2
∥A−UtW̃

T ∥2F + δ(W) +
ρ

2
∥W̃ −W∥22.

(9)

This guarantees a monotonic decrease of the objective
function ∥A − ŨtW̃

T
t ∥2F . Each of these sub-problems is

thus solved with ADMM separately, by alternating minimiza-
tion steps of 1

2∥A−ŨWT
t ∥2F +ŪT (Ũ−U)+ ρ

2∥U−Ũ∥22
over Ũ (i), with minimization steps of δ(U) + ρ

2∥U− Ũ∥22
over U (ii), and gradient ascent steps (iii) on the dual vari-
able Ū ← Ū + (Ũ − U). A similar scheme is used for
W updates. Step (i) is a simple convex quadratic program
with equality constraints, whose KKT [38, 45] conditions
yield a linear system with a Positive Semi-Definite (PSD)
matrix. Step (ii) is a simple projection of Ũ onto the convex
set δ−1(0). Finally, step (iii) is inexpensive.

Concretely, we solved the quadratic program using Con-
jugate Gradient [30], from jax.scipy.sparse.linalg.cg. This
indirect method only involves matrix-vector products and
can be more GPU-efficient than methods that are based on
matrix factorization (such as Cholesky decomposition). Also,
we re-implemented the pseudo code of [32] in Jax for a fully
GPU-compatible program. We used the primal variables
U0,W0 returned by sklearn.decompose.nmf as a warm start
for ADMM and observe that the high quality initialization
of these primal variables considerably speeds up the conver-
gence of the dual variables.

C.2. Implicit differentiation

The Lagrangian of the NMF problem reads
L(U,W, Ū,W̄) = 1

2∥A −UWT ∥2F − ŪTU − W̄TW,
with dual variables Ū and W̄ associated to the constraints
U ≥ 0,W ≥ 0. It yields a function F based on the KKT
conditions [38, 45] whose optimal tuple U,W, Ū,W̄ is a
root.

For single NNLS problem (for example, with optimiza-
tion over U) the KKT conditions are:
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∇U

(
1
2∥A− ŨW̃T ∥2F + ŪT (−U)

)
= 0, stationarity,

−U ≤ 0, primal feasability,
Ū⊙U = 0, complementary slackness,
Ū ≥ 0, dual feasability.

(10)
By stacking the KKT conditions of the NNLS problems

the we obtain the so-called optimality function F :

F ((U,W, Ū,W̄),A) =


(UWT −A)W − Ū,

(WUT −AT )U− W̄,

Ū⊙U,

W̄ ⊙W.
(11)

The implicit function theorem [25] allows us to use im-
plicit differentiation [3, 25, 44] to efficiently compute the
Jacobians ∂U

∂A and ∂W
∂A without requiring to back-propagate

through each of the iterations of the NMF solver:

∂(U,W, Ū,W̄)

∂A
= −(∂1F )−1∂2F . (12)

Implicit differentiation requires access to the dual vari-
ables of the optimization problem in equation 1, which
are not computed by Scikit-learn’s popular implementation.
Scikit-learn uses Block coordinate descent algorithm [7, 17],
with a randomized SVD initialization. Consequently, we
leverage our implementation in Jax based on ADMM [5].

Concretely, we perform a two-stage backpropagation Jax
(2))Tensorflow (1) to leverage the advantage of each frame-
work. The lower stage (1) corresponds to feature extraction
A = hl(X) from crops of images X, and upper stage (2)
computes NMF A ≈ UWT .

We use the Jaxopt [4] library that allows efficient com-
putation of ∂(U,W,Ū,W̄)

∂A = −(∂1F )−1∂2F . The matrix
(∂1F )−1 is never explicitly computed – that would be too
costly. Instead, the system ∂1F

∂(U,W,Ū,W̄)
∂A = −∂2F is

solved with Conjugate Gradient [30] through the use of Ja-
cobian Vector Products (JVP) v 7→ (∂1F )v.

The chain rule yields:

∂U

∂X
=

∂A

∂X

∂U

∂A
.

Usually, most Autodiff frameworks (e.g Tensorflow, Py-
torch, Jax) handle it automatically. Unfortunately, combining
two of those framework raises a new difficulty since they are
not compatible. Hence, we re-implement manually the two
stages auto-differentiation.

Since r is far smaller (r = 25 in all our experiments)
than input dimension X (typically 224× 244 for ImageNet

images), back-propagation is the preferred algorithm in this
setting over forward-propagation. We start by computing
sequentially the gradients∇XUi for all concepts 1 ≤ i ≤ r.
This amounts to compute v = ∇AUi with Implicit Differen-
tiation in Jax, convert the Jax array v into Tensorflow tensor,
and then to compute∇XUi =

∂A
∂X∇AUi = ∇X(hl(X)·v).

The latter is easily done in Tensorflow. Finally we stack the
gradients∇XUi to obtain the Jacobian ∂U

∂X .

D. Sobol indices for concepts
We propose to formally derive the Sobol indices for the es-

timation of the importance of concepts. Let us define a prob-
ability space (Ω,F ,P) of possible concept perturbations. In
order to build these concept perturbations, we start from an
original vector of concepts coefficient Û ∈ Rr and use i.i.d.
stochastic masks M = (M1, ...,Mr) ∼ U([0, 1]r), as well
as a perturbation operator τ (·) to create stochastic perturba-
tion of Û that we call concept perturbation U = τ (Û,M).

Concretely, to create our concept perturbation we con-
sider the inpainting function as our perturbation operator (as
in [14, 55, 57]) : τ (U,M) = U⊙M+ (1−M)µ with ⊙
the Hadamard product and µ ∈ R a baseline value, here zero.
For the sake of notation, we will note f : F → R the func-
tion mapping a random concept perturbation U from an inter-
mediat layer to the output. We denote the set U = {1, ..., r},
u a subset of U , its complementary ∼ u and E(·) the expec-
tation over the perturbation space. Finally, we assume that
f ∈ L2(F ,P) i.e. |E(f(U))| < +∞.

The Hoeffding decomposition allows us to express the
function f into summands of increasing dimension, denoting
fu the partial contribution of the concepts Uu = (Ui)i∈u

to the score f(U):

f(U) = f∅

+

r∑
i

fi(Ui)

+
∑

1⩽i<j⩽r

fi,j(Ui, Uj) + · · ·

+ f1,...,r(U1, ..., Ur)

=
∑
u⊆U

fu(Uu).

(13)

Eq. 13 consists of 2r terms and is unique under the fol-
lowing orthogonality constraint:

∀(u,v) ⊆ U2 s.t. u ̸= v, E
(
fu(Uu)fv(Uv)

)
= 0.

(14)
Furthermore, orthogonality yields the characterization

fu(Uu) = E(f(U)|Uu) −
∑

v⊂u fv(Uv) and allows us
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to decompose the model variance as:

V(f(U)) =

r∑
i

V(fi(Ui))

+
∑

1⩽i<j⩽r

V(fi,j(Ui, Uj))

+ ...+ V(f1,...,r(U1, ..., Ur))

=
∑
u⊆U

V(fu(Uu)).

(15)

Building from Eq. 15, it is natural to characterize the
influence of any subset of concepts u as its own variance
w.r.t. the total variance. This yields, after normalization by
V(f(U)), the general definition of Sobol’ indices.

Definition D.1 (Sobol indices [67]). The sensitivity index
Su which measures the contribution of the concept set Uu

to the model response f(U) in terms of fluctuation is given

by:

Su =
V(fu(Uu))

V(f(U))

=
V(E(f(U)|Uu))−

∑
v⊂u V(E(f(U)|Uv))

V(f(U))
.

(16)

Sobol indices give a quantification of the importance of
any subset of concepts with respect to the model decision,
in the form of a normalized measure of the model output
deviation from f(U). Thus, Sobol indices sum to one :∑

u⊆U Su = 1.

Furthermore, the framework of Sobol’ indices enables us
to easily capture higher-order interactions between features.
Thus, we can view the Total Sobol indices defined in 2 as
the sum of of all the Sobol indices containing the concept
i : STi =

∑
u⊆U,i∈u Su. Concretely, we estimate the total

Sobol indices using the Jansen estimator [36] and Quasi-
Monte carlo Sequence (Sobol LPτ sequence).
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E. Human experiments
We first describe how participants were enrolled in our

studies, then the general experimental design they went
through.

E.1. Utility evaluation

Participants The participants that went through our
experiments are users from the online platform Amazon
Mechanical Turk (AMT), specifically, we recruit users with
high qualifications (number of HIT completed = 5000 and
HIT accepted > 98%). All participants provided informed
consent electronically in order to perform the experiment
(∼ 5− 8 min), for which they received 1.4$.

For the Husky vs. Wolf scenario, n = 84 participants
passed all our screening and filtering process, respectively
n = 32 for CRAFT, n = 22 for ACE and n = 22 for
CRAFTCO.

For the Leaves scenario, after filtering, we analyzed data
from n = 87 participants, respectively n = 32 for CRAFT,
n = 24 for ACE and n = 31 for CRAFTCO.

For the "Kit Fox" vs. "Red Fox" scenario, the results
come from n = 79 participants who passed all our screening
processes, respectively n = 22 for CRAFT, n = 31 for ACE
and n = 26 for CRAFTCO.

General study design We followed the experimental de-
sign proposed by Colin and Fel et al. [8], in which explana-
tions are evaluated according to their ability to help training
participants at getting better at predicting their models’ deci-
sions on unseen images.

Each of those participants are only tested on a single
condition to avoid possible experimental confounds.

The main experiment is divided into 3 training sessions
(with 5 training samples in each) each followed by a brief
test. In each individual training trial, an image was presented
with the associated prediction of the model, together with
an explanation. After a brief training phase (5 samples),
participants’ ability to predict the classifier’s output was
evaluated on 7 new samples during a test phase. During the
test phase, no explanation was provided. We also use the

reservoir that subjects can refer to during the testing phase
to minimize memory load as a confounding factor.

We implement the same 3-stage screening process as in
[8]: First we filter participants not successful at the practice
session done prior to the main experiment used to teach them
the task, then we have them go through a quiz to make sure
they understood the instructions. Finally, we add a catch
trial in each testing phase –that users paying attention are
expected to be correct on– allowing us to catch uncooperative
participants.

E.2. Validation of Recursivity

Participants Behavioral accuracy data were gathered from
n = 73 participants. All participants provided informed
consent electronically in order to perform the experiment
(∼ 4− 6 min). The protocol was approved by the University
IRB and was carried out in accordance with the provisions of
the World Medical Association Declaration of Helsinki. For
each of the 2 experiment tested, we had prepared filtering
criteria for uncooperative people (namely based on time),
but all participants passed these filters.

General study design For the first experiment – consisting
in finding the intruder among elements of the same concept
and an element from a different concept (but of the same
class, see Figure S7b) – the order of presentation is random-
ized across participants so that it does not bias the results.
Moreover, in order to avoid any bias coming from the par-
ticipants themselves (one group being more successful than
the other) all participants went through both conditions of
finding intruders in batches of images coming from either
concepts or sub-concepts. Concerning experiment 2, the
order was also randomized (see Figure S7c).

The participants had to successively find 30 intruders (15
block concepts and 15 block sub-concepts) for experiment
1 and then make 15 choices (sub-concept vs concept) for
experiment 2, see Figure S7a.

The expert participants are people working in machine
learning (researchers, software developers, engineers) and
have participated in the study following an announcement
in the authors’ laboratory/company. The other participants
(Laymen) have no expertise in machine learning.
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(a) Utility experiment. Training trials taken from the Husky vs. Wolf scenario (left) and the Leaves scenario (right).

(a) Recursivity Experiment Website.

(b) Binary choice experiment.

(c) Intruder experiment.
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F. Fidelity experiments

Figure S8. (1) Deletion curves for different concept extraction methods, Sobol outperforms TCAV not only for NMF to correctly
estimate concept importance (lower is better). (2) Insertion curves for different concept extraction methods, Sobol outperforms
TCAV to correctly estimate concept importance (higher is better).

For our experiments on the concept importance measure, we focused on certain classes of ILSRVC2012 [10] and used
a ResNet50V2 [29] that had already been trained on this dataset. Just like in [24, 77], we measure the insertion and
deletion metrics for our concept extraction technique – as well as concepts vectors extracted using PCA, ICA and RCA
as dimensionality reduction algorithms, see Figure S8 – and we compare them when we add/remove the concepts as
ranked by the TCAV score [40] and by the Sobol importance score. As originally explained in [55], the objective of
these metrics is to add/remove parts of the input according to how much an explainability method considers that it is
influential and looking at the speed at which the logit for the predicted class increases/decreases.
In particular, for our experimental evaluations, we have randomly chosen 100000 images from ILSVRC2012 [10] and
computed the deletion and insertion metrics for 5 different seeds – for a total of half a million images. In Figure S8, the
shade around the curves represent the standard deviation over these 5 experiments.
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G. Sanity Check
Following the work from [1], we performed a sanity check

on our method, by running the concept extraction pipeline
on a randomized model. This procedure was performed
on a ResNet-50v2 model with randomized weights. As
showcased in Figure S9, the concepts drastically differ from
trained models, thus proving that CRAFT passes the sanity
check.

Figure S9. Sanity check of the method: we ran the method on
a Resnet50 with randomized weights, and extracted the 3 most
relevant concepts for the class ‘Chain saw’. When weights are
randomized, concepts are mainly based on color histograms.
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