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a b s t r a c t

Coherent vortices are important building blocks of complex flows on all scales, governing
dynamics in various applications from geophysics over engineering to the coherent-
structures’ paradigm of turbulence. As a commonly studied prototype of this configura-
tion, we consider a large-scale, line vortex evolving in a background flow of small-scale,
incoherent turbulence, which, nevertheless, naturally occurs in trailing vortices and
tornadoes. The main unsteadiness of the large-scale vortex in this configuration is called
meandering. Despite a common observation in experiments since the 1970s and a mul-
titude of studies, its origin and physical mechanism remain puzzling as of this writing.
Nevertheless, we do have considerable experimental evidence that, in the range of
typically assumed parameters, vortex meandering shares four universal characteristics;
namely, (i) fluctuations of the vortex-centre position obey a Gaussian distribution with
(ii) monotonously growing standard deviation downstream. Besides, (iii) the fluctuation
kinetic energy and enstrophy increase downstream, whereas the main contribution
comes from a dipolar vorticity fluctuation pattern confined to the vortex core. This
corresponds to the (iv) typical spectral signature of power spectra spanning all resolved
scales, whereas the variance level increases monotonously towards the low frequencies.
We present the first theoretical model to explain all four experimental cornerstones of
vortex meandering in one theory. Starting from the definition of the vortex centre, we
first show that the meandering motion is linearly proportional to the leading expansion
coefficients of a Karhunen–Loève decomposition of the vorticity field. This has been
conjectured before but has never been shown. The configuration strongly suggests scale
separation between the response times of the vortex and the surrounding turbulence.
On this assumption, we derive a Langevin equation for the slow, large scales driven by
the fast, small scales, represented as a stochastic forcing. The particular phenomenon of
vortex meandering therewith is found to belong to the large class of Gauss–Markov
processes. That is, vortex meandering is an (abstract) Brownian motion. From this
understanding, we infer immediately that the Gaussian statistics are a consequence
of the central limit theorem and that the growing standard deviation follows from a
competition between external forcing and intrinsic resistance. In the equilibrium limit,
we derive the spectral signature of the large scales as a power law of the frequency,
response time and forcing variance. Eventually, comparing our theoretical model with
an experimental database gathered at the ONERA, we find good overall agreement.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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. Introduction

Einstein and Smoluchowski’s theoretical work on Brownian motion [1,2], experimentally confirmed by [3], laid the
oundation for the general acceptance of an atomistic reality of matter. According to this understanding, the homogeneity
f matter is apparent, while it is actually a discontinuous composition of recurrent, elementary building blocks [3]. We
ee a conceptual parallel in the coherent-structures’ paradigm of turbulence. While formally described by continuous
ield equations, there is the common expectation that turbulence can in fact be understood as an interplay between some
ecurrent, elementary building blocks, called coherent structures [4,5].

The dynamics of an isolated slender line vortex embedded in incoherent background turbulence of much shorter and
maller scale is a common abstraction for studying coherent structures [6–8], trailing vortices in the intermediate wake
defined as the downstream range where the vortex is fully formed, while the mutual influence of the vortex pair is
et negligible) [9,10] and comparable configurations [11,12]. As a common feature, this dynamics is characterised by an
rregular, erratic motion of the coherent vortex spanning all resolved scales with the variance levels increasing towards
he slow frequencies. The bulk contribution to the variance stems from a slow, lateral undulation of the vortex as a
hole called meandering. This motion constitutes the main manifestation of vortex unsteadiness and can be seen as the
rototype of unsteady vortex dynamics in the intermediate wake behind lifting surfaces [13]. Nevertheless, we expect the
overning dynamics of (vortex) meandering to hold beyond this particular configuration; namely, whenever the actual
low problem can faithfully be abstracted as being the slow response of a persistent large-scale coherent structure to fast
mall-scale forcing.
With this generalisation in mind, for definiteness, we consider the dynamics of an isolated trailing vortex evolving

n the intermediate wake as an experimental means to realise the vortex–turbulence interaction. Vortex meandering is
bserved in experimental realisations of this configuration since the 1970s [14,15], however, the reason for its occurrence
emains puzzling in essential aspects as of this writing [16–18]. While early studies attributed vortex meandering mainly
o the disturbing effect of the unavoidable residual turbulence in wind-tunnel experiments [14,15,19], the last twenty
ears showed manly attempts to explain its origin through (linear) deterministic vortex dynamics, namely some sort of
n intrinsic amplification mechanism [13,18,20–22]. However, to the best of our knowledge, none of these approaches
as able to explain vortex meandering in its essential features. It seems that one major problem that hampered an earlier
xplanation is that, despite the phenomenon being intuitively tangible, vortex meandering lacks a definition. Rather than
ttempting a definition, we maintain that vortex meandering is associated with a small number of universal characteristics
f which we possess considerable experimental evidence. We then develop a theoretical model that explains these
xperimental key features.

.1. The universal meandering characteristics

In order to elucidate these generic features, let us first recall that meandering designates the lateral displacement of
he vortex as a whole. We emphasise the integral character of this notion, bearing a conceptual similarity to the motion
f a macroscopic particle. It follows at once the equivalence of meandering to the motion of any fixed point in the vortex.
t is customary to consider the space–time series of the vortex-centre position X(n, t) ∈ R2 (as defined in Section 3),
here n and t , respectively, denote the measurement and evolution time (proportional to the downstream coordinate z)

as defined in Section 2. In order to account for the strong variability, we assume (n, t) ↦→ X(n, t) to be a centred random
process. We have unanimous experimental evidence that the vortex centre obeys the Gaussian distribution

Xi(t) ∼ N (0, σ 2
i (t)) (i = 1, 2) (1)

over all experimentally probed measurement ranges so far. The standard deviation σi(t) :=

√
X2
i (t) (i = 1, 2) is called

meandering amplitude. Gaussian distribution was in fact already inferred by [15] and was later assumed in the studies
of [19]. Experimental validation of (1) are due to [16,23]. For the standard deviation, all experiments indicate monotonic,
algebraic growth [16,17,19,24]. In analogy to Taylor’s law for the diffusion of a particle in homogeneous turbulence [24,25]
proposed the empirical law√

X2
i (t)

l1
∼

u

U∞

√
zU∞

Γ
, t = zU−1

∞
(i = 1, 2) (2)

for the meandering amplitude (normalised on the initial vortex-core radius l1). Herein, uU−1
∞

and Γ denote the turbulence
intensity of the (wind-tunnel) experiment and the vortex circulation, respectively. A comparison of (2) with data extracted
from the literature is displayed in Fig. 1, showing good agreement for very different settings. In fact, already [15] suggested
to model meandering as a diffusion dynamics, the amplitude of which evolves as σi(t) ∼

√
νet for some effective viscosity

νe. It is easy to see that both models can be related by a simple mixing-length argument. For completeness, we mention
that [19] assumed a similar law as part of their correction algorithm.

The growth of the meandering amplitude is parallelled by the amplification of fluctuation kinetic energy and enstrophy
in the vortex core [22,23,26]. Karhunen–Loève (KL) decomposition reveals that the bulk contribution to the variance stems
from a pair of orthogonally rotated dipole patterns in the fluctuation vorticity confined to the vortex core [22,23,27–29].
2
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Fig. 1. Meandering-amplitude growth according to (2) compared with data extracted from the literature. The parameters used in the normalisation
are listed in Table A.2 of Appendix.

As a last fundamental characteristic, vortex meandering is always associated with a broadband spectral signature
panning all resolved scales, whereas the variance levels increase towards the low frequencies [13,19,30,31]. In particular,
he meandering frequencies are much lower than those associated with the turbulent motion [23]. Some controversy was
entred around the interpretation of these power spectra. While early studies took the broadband signature as evidence
or excitation by the free-stream turbulence [14], variance amplification at low frequencies and the peaky structure of
remultiplied power spectra led to the expectation that one meandering frequency could be identified [27,28,31]. Within
he scope of the model introduced in the following, we can decide in this question.

The paper is organised as follows. In Section 2 we introduce the canonical experiment leading to vortex meandering and
uggest a stochastic interpretation. On this basis, we start the derivation of our meandering model with the experimentally
dmissible definition of the vortex-centre position Xi in Section 3 and show that in a fixed measurement plane Xi(t) ∼ ci(t)

(i = 1, 2), when ci(t) are the leading KL expansion coefficients. Assuming scale separation between the forcing and
response scales, we show that the ci are governed by a Langevin equation in Section 4, the solutions of which are different
Gauss–Markov processes depending on the integration time. In the equilibrium limit (in the measurement time), we derive
the response power spectrum and the corresponding correlation function. We compare this vortex-meandering model
with an experimental database in Section 5. Finally, we discuss some immediate features and corollaries of the developed
theory before concluding in Section 6.

2. The canonical experiment and the conceptual model

We understand vortex meandering as a fundamentally stochastic phenomenon, the framework of which we set out
in this section. First, we elaborate an interpretation of the canonical (wind-tunnel) experiment in terms of a random
experiment. We then discuss our phenomenological model in which we understand meandering to be a manifestation of
a Brownian motion of the vortex as a consequence of a random excitation by the free-stream turbulence.

2.1. The canonical experiment

To the best of our knowledge, vortex meandering has been observed for all experimental settings, facilities and with
all measurement techniques, provided the study region extends somewhere between completion of roll up and the onset
of secondary dynamics (e.g. mutual instabilities, breakdown, etc..). Therefore, without loss of generality, we can restrict
to the canonical experiment of the flow past a rectangular lifting surface of chord length c being mounted at rest in a
wind tunnel. The wind tunnel is running at the mean inflow velocity U∞, set such that Rc := cU∞/ν ≫ 1. Perturbations
contained in the free stream (e.g. originating from the installation) are globally characterised by the turbulence intensity
uU−1

≪ 1, assumed to be small.

∞

3
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Fig. 2. Leading KL modes of the fluctuation vorticity (arbitrary units) in the last measurement plane of the experiment (cf. Section 5), aligned with
the eigenvectors v1, v2 of the vortex-centre covariance matrix. The inner and outer circle delimit the vortex core (radius l1) and support (radius l),
respectively.

We take the outermost vertex of the trailing edge as the origin of the coordinate system, choosing x3 = z to point in
the direction of the mean inflow velocity U∞. We call the transverse planes for which x3 = z is everywhere normal a
measurement plane M ⊂ R2 and use two sets of orthogonal coordinates as a span; x, y denote the coordinates pointing
inwards and vertically upwards, respectively, while it is further convenient to identify x1, x2 with the coordinates along the
principal axes of the meandering vortex-centre process (see Section 3). Evidently, x, y and x1, x2 are two sets of orthogonal,
mutually rotated coordinates and we write x ∈ M for both sets if the distinction is obvious or inessential.

Although trailing vortices inevitably form as a counter-rotating pair of equal strength, the mutual influence in the
measurement range of interest only amounts to the induction of a mean motion. We can therefore restrict to an isolated
vortex subject to down- and inward drift [19]. Vortex meandering may be understood as the leading-order error that the
vortex be found on this mean-drift trajectory.

As an experimentally accessible characteristic length scale, we defined the vortex-core radius l1 := argmaxr ūθ (r),
where r is the radial coordinate from the vortex centre and ūθ the mean azimuthal velocity in the meandering frame of
reference. We expect the characteristic (coherent-vortex) meandering length scale l to be somewhat larger, ∼ 2 . . . 3× l1,
cf. Fig. 2 In the meandering frame, the vortex diffuses at an almost viscous rate so that l is approximately constant over
the dynamical scales of interest. We thus assume a dichotomy of the whole fluid domain into the vortex (core), being
associated with the fluid contained in the cylinder of radius l around the vortex centre, and its set complement called
free stream.

Experiments usually provide us with Eulerian fields of the kind f (n, x, y, z), where n ∈ [0,N − 1] denotes the
measurement time (in practice a discrete sample) and x = (x, y) are the coordinates in the measurement plane M at
some fixed z downstream of the wing. We suppose that the experiment has been started at a time n0 and let n0 → −∞

in order that the initial condition has been forgotten and the dynamics has settled to a stationary state where the vortex is
in equilibrium with the surrounding perturbations. By the ergodic hypothesis, we may think of z ↦→ (x ↦→ f (n)(x, z)) as the
nth realisation of the vector-valued random process in z (with values in an appropriate function space F over M) [32]. This
suggests that it is actually the downstream coordinate that should be interpreted as the evolution time t . We therefore
assume a Galilean transformation into the reference frame moving at the velocity U∞ = const to equate downstream and
temporal evolution, noting t = zU−1

∞
. Validity of this association is supported by the experimental finding that typically√

u′2
z U

−1
∞

≪ 1 [26,30,33,34] and the streamwise correlation analysis of [13]. We are thus to consider random processes of
the form t ↦→ f (n)(t) ∈ F , where n runs over the various realisations of the experiment in one plane (i.e. for fixed evolution
time t) and t corresponds to measurements being taken in planes which are located gradually farther downstream.

2.2. Conceptual model: vortex meandering as a form of Brownian motion

All previous attempts to explain vortex meandering broadly belong to either one of two families which we may call
extrinsic and intrinsic dynamics. Regarding the former, we notice that (1)–(2) are the typical signature of a diffusion
dynamics. In its simplest form, this would be consistent with the early held idea that meandering is the ‘‘beating about’’
of the vortex by the surrounding free-stream turbulence [14,15,19]. We emphasise the passive role played by the vortex
in this picture, while it is typically attributed primary importance for the governance of fluid flows.
4



T. Bölle Physica A 612 (2023) 128473

a
A
a
t
h
t

d
m
s
f
(
p
s

T
b
s
h
o
a
m

s
r
a
s
c
p
a
a
.
u

e
v
t
a
b
s
o

d
d
m
W
c
t
c
e

3

d
e
(

In this vein and on account of the typically weak turbulence levels in experiments, meandering was argued to be
due to an intrinsic vortex dynamics. Moreover, structural resemblance of the leading vortex-response mode with the
least damped, stable eigenfunctions of the linearised Navier–Stokes operator of rotational symmetry |m| = 1 with m the
zimuthal wave number [35,36], was considered as indicating an instability as the origin of vortex meandering [17,18,22].
lbeit, [16] concluded that vortex meandering is essentially stochastic and core fluctuations of helical symmetry merely
secondary effect of the self induction exerted by the meandering vortex on itself. In any event, experimental vortices

end to be highly stable and to the best of our knowledge a definite relation between meandering and a linear instability
as never been established. In fact, in an externally driven dynamics, we must search for the stabilising features rather
han for an instability [37,38].

Indeed, a closer look into the typical scaling behaviour of vortex meandering suggests an interplay between external
riving and intrinsic stabilising mechanisms. To this end, we recall the unanimous experimental evidence that vortex
eandering is amplified as the turbulence intensity u in the experiment is increased, while meandering is weaker the
tronger the vortex (commonly quantified in terms of the circulation Γ ) is. This is indicative of vortex meandering in
act being the result of two competing mechanisms: (i) an external forcing that drives the vortex out of equilibrium and
ii) the intrinsic resistance of the vortex to such deflections. We find this competition expressed in (2), which is directly
roportional to u, while it depends reciprocally on Γ . We also note that this proportionality with respect to the forcing
trength indicates a linear dynamics.
Concerns about the validity of (2) have been raised by [16] namely for the fact that u appears as a constant (due to

aylor’s assumption of homogeneous turbulence) and that meandering must vanish in the absence of external forcing
y the free stream u → 0+. We address these points in the following, however, emphasise an, in our eyes, still more
erious issue; namely, a random process for which the standard deviation increases according to (2) for all t is non-
omogeneous, meaning that the vortex position gradually diverges without bound. Our results show that this behaviour
nly applies for intermediate times (in a definite sense), while the amplitude depends on the initial condition for t → 0+

nd approaches an asymptotic equilibrium state in the hypothetical situation that the experimental conditions can be
aintained stochastically unchanged.
We find in vortex meandering the paradigm of low-frequency, small-amplitude variability of a comparably large-scale

tructure in an otherwise rapidly fluctuating environment. This slow response of a large-scale system to fast excitation is
eminiscent of a Brownian motion. It is well known that the theory of Brownian motion extends far beyond the original
pplication of a particle suspended in a fluid [1,39]. In fact, the omnipresence of Brownian motion for all macroscopic
ystems subject to agitation by an environment of relatively small-scale objects independently of the experimental
onfiguration has been identified as one of the main characteristics [2]. Notable applications include finance, fluid–
article dispersion [25], cosmology [40], quantum mechanics [41], climate modelling [37] as wall as biology, chemistry
nd sociology [42,43]. Meandering therefore does not appear as the apparently highly special problem but integrates into
large family of problems. [44] resumes, ‘‘nonequilibrium systems, when they deviate only slightly from equilibrium,

. . are well described on the macroscopic level by a Gauss–Markov process’’. To the best of our knowledge, the idea to
nderstand vortex meandering as a manifestation of an abstract Brownian motion was proposed only recently by [45].
Our qualitative model is as follows. We imagine one large-scale vortex evolving in a bath of very many small-scale

ddies distributed at random (modelling the free-stream turbulence). The eddies exert minute stretching events on the
ortex in a very rapid, apparently random, succession. This is associated with a series of slight random displacements of
he vortex in the measurement plane. We may think of the vortex doing random steps to the sides, the step length being
function of the external fluctuation level and the internal resistance. On account of the scale separation, the vortex
ehaves like an integrator summing up the sequence of minute random events. While we cannot resolve every single
tep, the piled-up effect of very many random steps becomes visible at the macroscopic level and manifests in the form
f meandering.
Brownian motion, as the prototype of a diffusion dynamics, is principally consistent with (1)–(2). Surprisingly, Gaussian

istribution (1) of the meandering motion has received very little attention besides its use in the correction technique
evised by [19] but can be understood straightforwardly in the proposed framework. By our above qualitative model,
eandering can be seen as a random walk where the vortex does small steps to the left or to the right (say) at random.
hile we do not know the probability for a step to the left or right, we do know the probability to find the vortex in a

ertain location after it did very many steps. This is the essence of the central limit theorem, which guarantees convergence
owards a Gaussian distribution irrespective of the probability to make a certain step. Probably the first application of the
entral limit theorem to turbulence is due to [46] to explain the Gaussian distribution in the final phase of decay and
nergy-containing eddies. The applicability is further discussed in [47–49].

. Derivation of the model I: Kinematic-dynamic equivalence

The foregoing discussion suggests to consider the vortex-centre time series t ↦→ Xi(t) as the central quantity
etermining meandering. As detailed in Section 2, we identify the canonical (wind-tunnel) experiment with a random
xperiment, the outcome of which is the realisation of one particular meandering trajectory t ↦→ X (n)

i (t). Running the
wind-tunnel) experiment over a certain measurement time N , is equivalent to repeating the same random experiment N
times to yield an ensemble of meandering trajectories {t ↦→ X (n)

i (t)}n=0,...,N−1. As usual, we assume all trajectories to start
off from the same initial condition (thus, a sure event) and only to diverge gradually. The corresponding (conditional)

(·)
a0 if a denotes the initial state. A detailed discussion is postponed to Section 4.
average is expressed as 0

5
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.1. Characterisation of the meandering motion in terms of vorticity moments

Vorticity is generally not space filling but rather tends to concentrate in isolated patches. The experimental setting
ntroduced in Section 2 guarantees the existence of one such coherent vortex, the vorticity of which diffuses radially
t an almost viscous time scale [15,24]. We then assume a volume M ⊇ V ∼ l2V centred around the mean drift path
Section 2) such that the vorticity does not diffuse out of ∂V over the time scales of interest.

We assume that the vorticity is a random process, one realisation of which is given by t ↦→ w
(n)
z (t) ∈ L1ρ(V ) ∩ L2ρ(V ),

hich takes values in the space of (polynomially) ρ-weighted integral and square-integrable functions over the integration
omain V ⊆ M . (The practical confinement of vorticity in V in experiments serves as a sufficient condition for the
xistence of all integrals.) We assume the Reynolds decomposition wz(t, x) = w

a0
z (x) + w′

z(t, x) (x ∈ M) and that the
ean is approximately axisymmetric.
The zeroth spatial moment of vorticity is the circulation Γ :=

∫
V d2xw

a0
z (t, x) ≈ const over the considered time interval

(due to the above definition of V ).1 Formally identifying vorticity with a mass distribution, the circulation corresponds to
the total mass of the vortex (particle) contained in V . A dynamics of vortex systems has been derived on the basis of this
analogy by [50].

From measurements of the Eulerian vorticity field, we can compute the linear first-order spatial moment

(R2
∋)X(t) :=

1
Γ

∫
V
d2x xw′

z(t, x), (3)

corresponding to the centre of ‘mass’ of the vorticity patch V . We call X(t) the vortex centre. Randomness of the vorticity
implies that X(t) is a vector-valued random process. Since the integral in (3) is skew-symmetric (due to x), the mean
vorticity drops out and X(t) is a centred random process (fluctuation).

In order to characterise the meandering motion, define the vector-valued covariance matrix (an asterisk ∗ denoting
conjugate transpose)

X(t)X∗(t)
a0

=
1

Γ 2

∫
V
d2x

∫
V
d2x′ xx′∗w′

z(t, x)w′
z(t, x′)

a0
. (4)

The vortex-centre covariance matrix (4) is amenable to the eigenvalue problem

X(t)X∗(t)
a0

v(t) = σ 2(t)v(t). (5)

Symmetry of the covariance matrix guarantees real eigenvalues and orthogonal eigenvectors. Since the eigenvectors can
always be normalised to unity, their time dependence (if any) amounts to a mere rotation between different measurement
planes.

Denoting x1, x2 the coordinates along the principal axes of X(t), the components X1(t), X2(t) are uncorrelated and the
covariance matrix X(t)X∗(t)

a0 has diagonal form. Representation in the principal axes decouples the covariance matrix
and each variance can be considered independently (i = 1, 2)

σ 2
i (t) := X2

i

a0
(t) =

∫
V
d2x

∫
V
d2x′ xix′

i w
′
z(t, x)w′

z(t, x′)
a0

. (6)

The standard deviation (6) is called meandering amplitude. According to (6), the meandering amplitude is equivalent to
the linearly weighted integral over the two-point vorticity correlations in V at one time.

3.2. Development of the vorticity field in Karhunen–Loève modes

Recall from above, that w′
z(t) ∈ L2(V ), endowed with the inner product (a, b)L2(V ) :=

∫
V d2x a(x)b(x) and induced norm

∥a∥2
L2(V )

:= (a, a)L2(V ) for a, b ∈ L2(V ) [51]. Since the space of square-integrable functions is separable [51], we can assume
an expansion of the vorticity fluctuation into the series

w′

z(t, x) =

∞∑
i=1

ci(t)φi(t, x), (7)

that is, a linear combination of the random process t ↦→ w′
z(t) for any given t into deterministic spatial patterns

x ↦→ φi(t, x) on V superposed at random according to the expansion coefficients ci(t) := (w′
z(t), φi(t))L2(V ).

Our previous analysis reveals that we are mainly interested in the second-order statistics of the vorticity. The optimal
representation of the variance among all possible linear expansions is in terms of the Karhunen–Loève (KL) decomposition.
For this reason, we take the modes φi in (7) as defined by a KL decomposition of the vorticity [32,47,52]; that is,∫

V
d2x′ w′

z(t, x)w′
z(t, x′)

a0
φ(t, x′) = λ(t)φ(t, x) (8)

1 Since the integral is even, the bulk contribution to the circulation automatically comes from the mean.
6
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(φi(t), φj(t))L2(V ) = δij (9)

and

ca0i (t) = 0, ci(t)cj(t)
a0

= λi(t)δij (10)

as a consequence of Hilbert–Schmidt theory [51]. In (9)–(10) we see a double orthogonality; namely, deterministic
orthogonality with respect to the L2(V )-inner product holds for the eigenfunctions φi(t), while the expansion coefficients
are stochastically orthogonal (uncorrelated). The eigenvalues λi(t) = c2i

a0
(t) are real-valued and non-negative; we

herefore assume them to be ordered in a decreasing sequence λ1(t) ≥ λ2(t) ≥ · · · ≥ 0 in terms of their contribution to
he variance.

For the eigenfunctions (or KL modes), the same remark as above for the eigenvectors of the vortex-centre covariance
atrix (5) applies. That is, for different times t , the eigenfunctions (of interest) only differ by a mutual rotation. The

eading eigenfunctions are shown in Fig. 2 for the last measurement plane of the experiment discussed in Section 5. The
attern is structurally identical (up to a rotation) for all measurement planes in the experiment (not shown) in agreement
ith all previous findings discussed in Section 1.
In other words, the KL mode φi(t, x) describes a volumetric pattern in the three-dimensional flow domain as a down-

tream succession of dipolar structures shown in Fig. 2 subject to a gradual mutual rotation. Due to current limitations
n the downstream resolution of experiments, t only takes values in a small and rather coarsely sampled interval, so
hat we possess only of a small number of spatial snapshots (five measurement planes at zc−1

∈ {2, 4, 12, 20, 26} in the
xperiment of Section 5). Although principally compatible with the proclaimed |m| = 1 symmetry (cf. Section 1), we
annot give a definite conclusion. Actually, the KL modes in the five measurement planes turn out to have very similar
rientation almost aligned with the x, y axes. We therefore agree to suppress explicit dependence of the φi on t in the
ollowing.

Inserting expansion (8) into the covariance function (4) we get

X(t)X∗(t)
a0

=
1

Γ 2

∫
V
d2x

∫
V
d2x′ xx′∗

[c21
a0
(t)φ1(x)φ1(x′) + c22

a0
(t)φ2(x)φ2(x′) + · · · ]

n account of the mutual uncorrelatedness of the expansion coefficients (10).
The leading KL modes have a dipole pattern, mutually rotate by π/2, thus aligned with the eigendirections of the

ortex-centre covariance matrix (Fig. 2). As introduced above, let x1 and x2 be the coordinates in the directions of v1 and
v2, respectively. We then see from Fig. 2 that the first KL mode φ1 is an odd function of x1 and an even function of x2
round the centre, while it is the opposite for the second KL mode φ2. On account of this symmetry, in the principal axes

of X(t) thus holds

X2
i

a0
(t) =

1
Γ 2

∫
V
d2x

∫
V
d2x′ xix′

i

∞∑
j=1

c2j
a0
(t)φj(x)φj(x′) =

=
c2i

a0
(t)

Γ 2

∫
V
d2x

∫
V
d2x′ xix′

iφi(x)φi(x′) + O(c23
a0
(t)) (11)

he analysis shows that the leading error can at most be of the order of the largest neglected KL eigenvalue λ3(t). However,
he typically multipolar structure of the higher-order KL modes cause deformation of the vortex rather than displacement
nd should therefore contribute only insignificantly to vortex meandering [27,28]. The actual error is therefore most likely
ess than O(c23

a0
(t)). Writing this error under the integral in (11), we see that it goes to zero as c23

a0
(t)/c2i

a0
(t) → 0+

(i = 1, 2), i.e. as the leading KL modes have a larger share of the variance. In experiments, we find that c23
a0
(t) ≈ const

or all t (i.e. over the downstream measurement range), while, as we show below, c21
a0
(t) ≈ c22

a0
(t) ∼ t , such that the

rror gradually looses importance at a linear rate.
The two spatial integrals in (11),

Iii :=

∫
V
d2x

∫
V
d2x′ xix′

i φi(x)φi(x′) > 0 (i = 1, 2),

are merely geometrical form factors of dimension ∼ l4. To see this, let us suppose in a first approximation that
φ1(x1, x2) = f (x1)g(x2) ∼ l−1

[sin 2πx1
2l cos πx2

2l ] in a square of edge length 2l and φ1(x1, x2) = 0 else (cf. Fig. 2). Integrating
over a square V of edge length 2lV , lV ≥ l, we find ∥φi∥L2(V ) = 1 and

∫
V d2xφi(x) = 0, consistent with the normalisation

9) and the above remark that the leading KL modes do not contribute to the circulation. We can then compute the

ntegral analytically using Fubini’s theorem and integration by parts to obtain Iii ∼

(
8

π2

)2
l4 ∼ l4 [51]. We maintain that

evaluating the integral for any particular experimental result should follow this scaling up to a proportionality constant
7
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Fig. 3. Realisations (index n) of the vortex-centre position and of the leading vortex KL expansion coefficients for fixed evolution time t t−1
a = zc−1

=

6.

k2 > 0 measuring the quality of the analytical approximation. (We expect that k ∼ 1 which we confirm in Section 5.)
hus, writing for the spatial integrals Iii = k2l4, it then follows for the two components

X2
i

a0
(t) = Iii

c2i
a0
(t)

Γ 2 (i = 1, 2). (12)

rom (12), we see that X2
i

a0
(t) ∼ c2i

a0
(t), (i = 1, 2). That is, vortex meandering is the manifestation of what may be called a

kinematic-dynamic duality as it describes at the same time the (material) vortex-centre motion in the fluid domain, while
being equivalent to meandering in the phase space of the dynamics. This is further supported by directly comparing the
measurement-time series (realisations) of Xi(n, t) with ci(n, t) over n ∈ [0,N − 1] and for fixed t in Fig. 3 (data from the
experiment of Section 5). The two curves clearly collapse (up to a constant scaling implied by (12)). We also note that
the KL expansion coefficients that can be obtained from KL decomposition of the velocity field identically collapse (up
to constant scaling) with the curves shown in Fig. 3. We conclude that the vorticity (enstrophy) and velocity (energy)
dynamics are represented for the same mechanism and that these dynamics manifest in the kinematic motion of vortex
meandering.

In passing we note that (12) indicates an efficient means for meandering correction. While a direct correspondence
between meandering of the vortex centre Xi(t) and the leading KL modes [27] and expansion coefficients ci(t) (i =

1, 2) [28] has been speculated before, our above derivation leading to (12) establishes a definite proportionality for the
first time to our knowledge. This implies that to leading order Eulerian fields can be corrected for vortex meandering by
subtracting the leading two terms in the KL-expansion.

4. Derivation of the model II: Linear response theory of a Gauss–Markov process

We note that by (12), we have shifted the kinematic problem of finding the law governing X2
i

a0
(t) to the dynamics

f an extensive state variable, namely c2i
a0
(t) = λi(t) in V , i.e. the integral fluctuation enstrophy of the large scales. (Or

integral fluctuation energy by the above observation.)
Unless otherwise stated, we assume Einstein’s summation convention over repeated indices in what follows.

4.1. The phenomenological model: assumption of time-scale separation

Formally, the dynamics represented by ci(t) evolves in an infinite-dimensional phases space. However, we do not
search to know the dynamics in all its details but rather are interested in a possibly small number of degrees of freedom
associated with the dynamics of interest—vortex meandering in our case. Indeed, as we have seen in (11), the experimental
8
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anifestation of meandering can (to leading order) be attributed to the dynamics of the leading KL mode pair. This
uggests a dichotomy of the whole dynamical system ci(t) into a set of r resolved {ai}i=1,...,r and u unresolved {bi}i=1,...,u
degrees of freedom, such that c(t) = (a1, . . . , ar , b1, . . . , bu)(t) and r + u = m if m is the total number of degrees of
freedom [37,53]. Taking the leading KL modes as the resolved dynamics is a typical and sensible choice, since they are
usually associated with the slowest decay rates [54].

The particular interest of this dichotomy is perhaps best appreciated by considering the following abstraction of the
experimental configuration. We suppose a fluid domain (the wind tunnel) of arbitrary lateral extension (stretching to
infinity), in which one large-scale vortex is embedded into a surrounding fluid composed from a huge number of much
smaller vortices (called eddies to make the distinction with the vortex) distributed at random. A similar model has been
employed by [46] to model the dynamics of the energy-containing scales in turbulence. We assume the vorticity of the
large vortex to be much larger than that of all other eddies. Recalling the formal analogy between vorticity and mass
motivated in Section 3 [already suggested by 50], we obtain a problem similar to the encounter of a large, heavy planet
with a large number of much smaller cosmological objects in an unbounded universe [40].

Let us suppose that the dynamics of the vortex is associated with the resolved scales ai(t), while we are lacking detailed
knowledge about the dynamics of the surrounding eddies bi(t). Nevertheless, the large difference of the spatial scales and
vorticity content suggests that the vortex and the surrounding eddies are associated with very different response time
scales. We thus assume that

O

(
ai

(
dai
dt

)−1
)

=: ts ≫ tf := O

(
bi

(
dbi
dt

)−1
)

, (13)

eaning that ai(t) is a slow dynamics, while bi(t) constitutes a fast process. This means that we are interested in
he slow, large-scale dynamics of a fluid volume concentrating almost all of vorticity, as it results from the integral,
umulative effect of a sequence of numerous minute excitations exerted by the surrounding fast, small-scale vorticity
lements. Scale separation and the restriction to the large-scale dynamics by a Mori–Zwanzig projection is known as
oarse graining [55–57]. The associated degrees of freedom are also called collective variables or order parameters [42].

.2. Averaging

We understand wake-vortex dynamics as a random experiment with every experimental realisation labelled n ∈

[0,N − 1] (N → ∞), drawn at random from an abstract sample space consisting of all admissible outcomes that are
compatible with the boundary conditions. The realisation of the nth random experiment is the vector-valued random
process t ↦→ a(n)i (t) (i = 1, 2, . . . , r), where a(n)i (t) is the actually measured state of the system in the nth repetition of the
random experiment in the measurement plane defined by t = const. By definition, the random process ai(t) on t ∈ [0, T ] is
completely determined if the distribution functions pt1,t2,...,tm (a1, a2, . . . , am) of (a1, a2, . . . , am) = (a(t1), a(t2), . . . , a(tm))
or any m elements t1, t2, . . . , tm in [0, T ] are known [32,39]. The mean is defined by āi(t) :=

∫
∞

−∞
dra aipt (a) and does not

epend on t if ai is stationary. The two-point covariance is defined as ai(t1)bj(t2) :=
∫

∞

−∞
dra

∫
∞

−∞
dub aibjpt1,t2 (a, b) and

epends only on the time difference if ai, bj are stationary. (The variance is a2i (t) =
∫

∞

−∞
dra a2i pt (a).) Higher multi-point

oments depend on higher joint probability distributions.
Consideration of only the one-point statistics pt (a) completely describes a random process only if there is absolutely

no correlation between subsequent elements of the sequence; that is, for a white-noise process. Markov processes are
fully specified when all one- and two-point probability distributions are known, i.e. pt (a) and pt0,t1 (a0, a1) or pt (a) and
the conditional (transition) probability p(t1, a1|t0, a0) [39]. The conditional probability distribution p(t, a|a0) corresponds
to repeating the same (random) experiment infinitely often, starting from the same identical initial condition a0. It will
be convenient in the following analysis to consider in addition to p(t, a|a0) its two limiting probability distributions, that
result from the limiting processes as t → 0+ and t → ∞, respectively.

As a matter of fact, the random process of interest here is non-stationary for intermediate times. The associated
probability density is governed by a partial differential equation which we find to be of Fokker–Planck type. Thus, the
probability density p(t, a | a0) is the fundamental solution (Green’s function) assuming the initial condition to be a sure
event (viz. p(t, a | a0) → Π r

i=1δ(ai − ai,0) as t → 0+) [40,58]. We denote the mean of a(t) with respect to this probability
distribution as

aia0 (t) :=

∫
dra p(t, a | a0)ai (i = 1, 2, . . . , r), (14)

here integration extends over all of a-space [53,59,60].
In order to introduce the short-time average, we anticipate that ai(t) represent the r coarse-grained variables, driven

y u unresolved scales bi(t), which we assume to be stationary and rapidly fluctuating. Hence, it exists macroscopically
nfinitesimal time intervals over which ai = ai,0 while bi(t) runs over all possible states. This is known as the adiabatic
approximation, which we can assume to hold for sufficiently short times after the initial condition [37,53]. We thus define

abi (t) :=

∫
dub p(t, b | a0)ai (i = 1, 2, . . . , r). (15)
9
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Eventually, noise-driven, linearly stable dynamics approaches an equilibrium state as t → ∞. The corresponding
probability distribution is stationary and equivalent to the Maxwell–Boltzmann distribution [60]. We write for averages
taken with respect to the equilibrium distribution

aeqi :=

∫
dra peq(a)ai (i = 1, 2, . . . , r), (16)

hich is independent of the initial condition.

.3. Langevin equation: time-domain analysis

Irrespective whether ci represents vorticity or velocity, the quadratic non-linearity of the Navier–Stokes equation
mplies that the dynamics is necessarily governed by a deterministic system of the type

dci
dt

= −Lijcj + Nijkcjck, ci(0) = ci,0. (17)

y the above considerations, we split (17) into two sets of equations describing the dynamics in the slow ai and fast bi
anifold, respectively. The two sets of equations form a coupled system by virtue of the non-linearity of (17). While the
hole system (17) is intractable, restricting to the coarse-grained variables ai(t), we can appropriately formulate their
ynamics in terms of a stochastic process where the fast scales bi(t) appear as random forcing [60]. Anticipating our
elow results, it is in fact this spatio-temporal coarse graining that leads to the Markov property of the resolved scales
hich behave like a diffusion process [56].
Thus, as is commonly done, identifying non-linearity with a stochastic forcing [5,36,61], (17) in the slow manifold

eads2

dai
dt

= −Lijaj + fi, ai(0) = ai,0, (18)

here the initial condition is supposed to be a sure event imposed at a definite position in t (t = 0, say) [58]. By appeal to
he scale separation (13), this is the Langevin equation describing the dynamics of an abstract Brownian particle [39]. We
mphasise the crucially different nature of the two terms on the right-hand side, leading to competing contributions of (i) a
tochastic forcing fi(t) that drives the dynamics out of equilibrium which is counteracted by (ii) a deterministic, stabilising
linear friction’ [4,38,42]. This latter contribution has been interpreted in terms of feedback that becomes activated as
he dynamics is gradually driven away from the reference state by the random force [37]. Against the backdrop of (18),
revious studies tried to explain meandering by concentrating on either one of the two terms. The theory of meandering
eing the consequence of a ‘‘passive beating about’’ of the vortex by free-stream disturbances is obtained by neglecting
he stabilising effect of Lijaj. On the other hand, approaches to vortex dynamics by all kinds of linear instabilities follows
rom assuming fi to be zero. We shall show in the following that experimental vortex meandering is in fact a competition
etween both effects. As far as we know, this point was first stressed by [45].

.3.1. Short times t < ts: Wiener process
In restricting to times t < ts which are short with respect to the slow vortex response time scale, no feedback (’friction’)

rom the linear term in (18) is to be expected and the fluctuation dynamics is driven by the random forcing alone. In order
o obtain the statistics of the coarse-grained, slow variables ai(t), we need to know the statistical properties of the forcing
i(t). We assume fi(t) to be stationary with zero mean f

b
i (t) = 0 and fi(s)fj(t)

b
= 2Dijδ(t − s), noting that the forcing

ecomes uncorrelated on the time scales of interest as a consequence of the scale separation (13) [39,40,59]. The solution
o (18) follows from integrating from 0 to t < ts, yielding

∆ai(t) = ai(t) − ai,0 = −

∫ t

0
ds Lijaj(s) +

∫ t

0
ds fi(s) = −Lijaj,0t +

∫ t

0
ds fi(s), (19)

ince the slow variables ai(t) do not change appreciably over time (adiabatic approximation, slaving principle; [42]).
plitting the deviation from the initial condition ∆ai(t) = ∆a

b
i (t) + ∆a′

i(t) into mean and fluctuation, it follows from
19) that

∆a
b
i (t) = abi (t) − ai,0 = −Lijaj,0t, (20)

∆a′

i(t) = a′

i(t) =

∫ t

0
ds fi(s). (21)

e recall that the initial condition ai,0 is known with certainty [58]. In (21) we recognise the kinematic problem of a
assive particle suspended and dispersing in a fluid as studied by [25]. From this, we could in fact directly infer the
tatistical properties of ai(t) and fi(t) in the time range tf < t < ts. On account of the time-scale separation (13), there

2 It is well known that (18) has to be understood in a generalised sense since f (t) is no regular function [32].
i

10
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lways exists an intermediate time ∆t for which the double limiting process tf ≪ ∆t ≪ ts holds; we say that ∆t is at
the same time microscopically large while it is macroscopically small [40]. With this, we write (21) as

a′

i(t) =

∫ t

0
ds fi(s) =

K∑
k=1

∫ k∆t

(k−1)∆t
ds fi(s) =

K∑
k=1

dBi(∆t) (22)

and note that (22) reduces the continuous problem to a succession of discrete increments or steps, viz. a random
walk [40,62].

The scale separation implies that on the time scale of analysis, the strongly fluctuating process fi(t) has asymptotically
vanishing correlation tf ≪ ∆t (as ∆t → ∞) and therefore can be idealised as a white-noise process. Vortex meandering
therewith becomes the integral response to a stationary white-noise process modelling external forcing by a great number
of minute excitations. The integral of an uncorrelated stationary random process is a non-stationary random process with
stationary and uncorrelated increments [32].

Since fi(t) is a strongly fluctuating process with correlation time tf ≪ ∆t , exerting numerous minute stretching events
that destroy any correlation, subsequent increments in the series (22) tend to be stochastically independent (as ∆t → ∞)
and the response process becomes memoryless [48,62]. Stationarity of fi(t) suggests to consider each small-scale forcing
event as identically distributed [32,48]. Finally, from ∆t ≪ t and t = K ∆t we conclude that K ≫ 1. That is, the
low response variation a′

i(t) is the sum of a large number of identically distributed, stochastically independent random
xcitations. (Each step dBi(∆t) in the random walk (22) is the (in principle) experimentally observed net result of very

many minute variations, e.g. random microscopic stretching events.) These are the requirements for the central limit
theorem to apply. We thus conclude that each increment dBi(∆t) ∼ N (0, 2D∆t) and also the whole response process

′

i(t) ∼ N (0, 2Dt) are normally distributed [40,56,62].
We therefore find in vortex meandering a manifestation of the central limit theorem, telling us that the piled-

p response of a linear system driven by a statistically stationary forcing consisting of a large number of statistically
ndependent excitations becomes Gaussian. It is important to note that this result is true independent of the detailed
tatistical structure of the forcing process and therefore does not depend on the particular experimental setup.
The covariance matrix is given by [25,59]

a′

ia
′

j
b
(t) = 2Dijt where Dij :=

1
2

∫
∞

−∞

dτ fi(t + τ )fj(t)
b
. (23)

A process a′

i(t) is called Brownian-motion or Wiener process if it has independent Gaussian increments satisfying
a′

i(t) − a′

i(s)
b

= 0 and (a′

i(t) − a′

i(s))2
b

= 2Dii|t − s| for all tf ≪ s < t ≪ tf . This is equivalent to say that a′

i(t) is
Gaussian with independent increments. Independent increments are sufficient for a process to be memoryless, so that
a′

i(t) is Markovian [32,52,62].

4.3.2. Arbitrary times t ≥ O(ts): Ornstein–Uhlenbeck process
As shown above, the forcing is a Gaussian random process characterised by the following stochastic moments,

f
a0
i (t) = 0 and fi(s)fj(t)

a0
= 2Dijδ(t − s),

where Dij symmetric, non-negative [53,57,59].
In going to evolution times t of the order of O(ts) and beyond, we have to account for the instationarity of the process

ai(t). By virtue of (22), the general solution of (18) reads [40,59]

a(t) − e−tLa0 =

∫ t

0
dτ e−(t−τ )L f (τ ) = e−tL

∫ t

0
dτ eτL f (τ ) = e−tL

∫ t

0
eτLdB(τ ), (24)

which is true whatever t ≥ 0. The matrix exponential is defined in [63]. As shown in Section 4.3.1, dBi(t) is a Wiener
rocess of strength 2Di. It is well known that the response ai(t) for arbitrary time then is an Ornstein–Uhlenbeck
rocess [59].
Consider the average over an ensemble of trajectories (24) all started from the identical initial condition. The mean of

he slow scales evolves as

aa0 (t) = e−tLa0 ∀t ≥ 0, (25)

ecalling that ai,0 is a sure event. Expanding the propagator into a Taylor series e−tL
= 1 − tL + O(t2) (t → 0+), where 1

s the identity matrix, it is readily seen that (20) follows as the short-time asymptotic from (25) in the limit as t t−1
s → 0.

his was precisely our requirement in Section 4.3.1. Asymptotic stability of L further implies that aa0 (t) → 0 as t → ∞;
his is consistent with the expectation that in the equilibrium distribution aeq

= 0 [60]. The trivial case that ai,0 = 0
implies that aa0i (t) = 0 for all t > 0 and aeqi = 0 by (25). In the general case, we deduce directly from (25) that the
fluctuation around the mean, α(t) = a(t)−aa0 (t) = a(t)−e−tLa0, is identical to the particular part of the general solution
(24). The covariance matrix of the Ornstein–Uhlenbeck process follows from (24) as

C (t) := α(t)α∗(t)
a0

=

∫ t

dτ
∫ t

dτ ′ e(τ−t)L f (τ )f ∗(τ ′)
a0e(τ

′
−t)L∗

= 2
∫ t

dτ e(τ−t)LDe(τ−t)L∗

.

0 0 0

11
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he evolution equation for the covariance matrix is readily derived from differentiating the covariance matrix with respect
o t and applying Leibniz’ rule of parametric integrals

dC (t)
dt

= 2D − LC (t) − C (t)L∗, C (0) = 0, (26)

and has the general solution

C (t) = C eq − e−tLC eqe−tL∗

∀t ≥ 0, (27)

which is actually the vector-valued generalisation of the variance of the scalar Ornstein–Uhlenbeck process for general L.
Herein, C eq denotes the covariance of αi(t) for the equilibrium distribution,

C eq := αα∗
eq

= 2
∫

∞

0
dt e−tLDe−tL∗

= C (t → ∞), (28)

that must be attained in the limit as t → ∞ [57]. According to the equipartition theorem, in equilibrium the variance
(e.g. fluctuation kinetic energy) must become equally distributed over all degrees of freedom; that is, C eq ∼ u21 or
component-wise α2

i

eq
∼ u2 for all i [59].

Since αi(t) is stationary in equilibrium, C (t → ∞) = C eq must be independent of time and (26) becomes

LC eq + C eqL∗
= 2D. (29)

his result can alternatively be derived directly from (28). Eq. (29) is known as the fluctuation–dissipation theorem [57]
r generalised Einstein relation [53] and expresses a fundamental relation between the stochastic and systematic part of
he driving force [56]. The left-hand side of (29) is symmetric by construction, although L is in general not. Decomposing
= S + W , S = S∗ and W = −W ∗, in (29) yields

SC eq + C eqS = 2D → SC eq = C eqS = D, (30)

[W , C eq] := WC eq − C eqW = 0. (31)

ymmetry of D implies symmetry of SC eq, which is a form of Onsager’s reciprocal relations [53,57].
We recall that we do not assume any particular symmetry of Lij, in particular, [L, L∗

] := LL∗
− L∗L ̸= 0 in the linear

dynamics of coherent line vortices [20,36]. This seems to preclude any further simplification of the equations beyond this
point. In particular, L is not orthogonally diagonalisable such that we must expect all degrees of freedom to be linearly
coupled. Stochastic-forcing analysis thus progresses by computing the KL decomposition of (28) [21,64].

We would like to make the analogy with the Ornstein–Uhlenbeck variance of scalar Brownian motion more explicit.
However, the essential difficulty encountered here is that, since L and L∗ do not commute, etLetL

∗

̸= et(L+L∗) [63]. Rather
han deriving the numerical value of the variance in any particular experiment at hand, our aim is to find an estimate for
he general law governing the variance evolution of the coarse-grained variables which is valid for all experiments that
re compatible with our assumptions.
Recall from Section 3 that, by construction, we work in the slow linear manifold spanned by the leading KL modes.

n this representation, C (t) = αα∗
a0 (t) is diagonal with all entries α2

i

a0
(t) being mutually uncorrelated. We maintain that

this is true for all t and, in particular, also holds for the equilibrium covariance. This is consistent with the theoretical
results of [21,36]. This means that (27) reads in index notation

α2
(i)

a0
(t)δij = α2

(i)

eq
δij − e−tLikα2

(k)

eq
δkle−tLjl = α2

(i)

eq
δij − α2

(k)

eq
e−tLike−tLjk ,

where summation is not implied over indices in parentheses. We recognise in e−tLe−tL∗

the kernel of the controllability
Gramian C eq used in stochastic-forcing approaches to derive a hierarchy of spatial structures as they contribute to the
variance of the equilibrium state [64]. Likewise, recalling that the eigenvalue problem of e−tL∗

e−tL yields the optimal initial
perturbation (for given t > 0), we note that the same analysis of e−tLe−tL∗

yields the corresponding perturbation at t . All
previous studies known to the author unanimously find a vortex response mode very similar in structure to those shown
in Fig. 2 [see 20,21,36, and references therein]. This suggests that e−tLe−tL∗

is (close to) diagonal in the coarse-grained
coordinates.

By virtue of the equipartition theorem, assume that C eq ∼
(
u

l

)2
l21 ∼ u21, so that

α2
(i)

a0
(t)δij = u

2 [δij − e−tLike−tLjk
]
.

Or equivalently in vector notation,

C (t) = u
2
[
1 − e−tLe−tL∗

]
= u

2
[
1 − e−t(L+L∗)+ t2

2 [L,L∗
]+···

]
. (32)

he second identity of the matrix exponential holds even if [L, L∗
] ̸= 0 by the Baker–Campbell–Hausdorff formula. Even

ore, if [L, [L, L∗
]] = [L∗, [L, L∗

]] = 0 the argument in the exponential of (32) can exactly be truncated after the quadratic
erm [65]. Writing 2S := L + L∗, we expand the matrix exponential in a Taylor series to get

C (t) = u
2
[1 − (1 − 2tS + O(t2))] ≈ 2u2St. (33)
12
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e note that (33) is consistent in that C and S are both real, symmetric, non-negative definite (as a consequence of the
assumed) linear stability of vortex dynamics). For C (t) being diagonal, S is diagonal. We denote the ith diagonal element
y si. This means that the linear vortex response, the KL modes shown in Fig. 2 and the eigenvectors of the strain-rate
ensor are structurally similar. We thus obtain

α2
i

a0
(t) ∼ 2u2sit ∼ 2u2 t

ts
, (34)

where we recognise s−1
i as the response time ts of the slow variables.

4.4. Langevin equation: frequency–space analysis

Spectral analysis of vortex meandering is a commonly employed tool, which has been used frequently to characterise
the dynamics. We give a brief account on some aspects of this analysis in the following.

Let there be given an experimental time series that we judge representative of the meandering motion. This
choice is not obvious and past studies considered various different time series, partly motivated by limitations in the
experimentally available data due to the measurement device. Studies using hot-wire measurements usually relied on the
streamwise component of the fluctuation velocity in the mean vortex centre [13,19,30], while studies based on particle
image velocimetry measurements commonly considered the leading KL expansion coefficients [28] or the vortex-centre
position [16].

Whether the streamwise velocity in the mean vortex-centre position is fully representative of the meandering motion
may be doubted and we have evidence that it is indeed incompatible with some of the fundamental meandering
characteristics discussed above. For instance, the streamwise component of the fluctuation kinetic energy seems to decay
with t (i.e. downstream) [13,30] and the spectral signature in the relevant range for meandering probably does not comply
with the characteristic signature derived below. Some additional discussion on this topic can be found in [45].

In any event, we observe a remarkable universality of the spectral signature across all documented experiments.
In particular, we note that the power spectra seem to scale with the turbulence intensity, while they are essentially
independent of the characteristic scales of the free-stream turbulence. This fact is unanimously observed in experiments
on vortex dynamics in grid turbulence [16,17,24,30]. Previous studies exclusively focused on describing the signature of
the power spectra in the inertial range. From these analyses, we have considerable evidence that the power spectra obey
a power-law decay roughly proportional to the third power of the frequency in the inertial range, which is reminiscent
of two-dimensional turbulence [13,16,19,30]. However, it seems that no study so far addressed the spectral signature of
the low-frequency range which is associated with the energy-carrying scales [48]. Our above analysis and the theory of
Brownian motion suggest that it is precisely this range which is associated with the meandering motion. In the following,
we derive the expected spectral signature of vortex meandering in this low-frequency range.

The theory of Brownian motion is tightly coupled with the development of harmonic analysis of random functions. As
a matter of fact, a spectral representation in terms of a Fourier integral exists for every stationary random process [32,62].
We have seen above that (n, t) ↦→ ai(n, t) is not stationary in the evolution time t (in other words, on the downstream
range z of interest), while it is stationary in the measurement time n. (This is a consequence of the initial condition [32,53].)
eeping t fixed (that is an Eulerian point of view in one measurement plane), we assume the following problem

dat

dn
= −Lat + f (n), at (n = 0) =

∫ 0

−∞

dmemL f (m). (35)

This definition reflects our requirement that the solution has forgotten the initial condition and is stationary in n, viz.

at (n) =

∫ n

−∞

dme−(n−m)L f (m).

This means that at n = 0 an equilibrium between forcing and vortex response dynamics has been reached.
In what follows, we consider the stationary, zero-mean sequence αi(n, t = const) in a fixed measurement plane

= const and suppress t dependence if unambiguous. The covariance function is defined as Rij(ν) := αi(n)αj(n + ν) =

imN→∞ N−1∑N−1
n=0 αi(n)αj(n + ν) in terms of the (discrete) time average. Due to stationarity we can always write n = 0

n the covariance function. According to a multi-dimensional generalisation of Khintchine’s theorem [66], Rij(ν) is the
ovariance function of a continuous, stationary random process if and only if

Rij(ν) =

∫
∞

−∞

eiωνdGij(ω) =

∫
∞

−∞

dω Gij(ω)eiων, (36)

here the dGij(ω) are of bounded variation in R. The second equality holds if Rij(ν) → 0 sufficiently rapidly as |ν| → ∞

o guarantee that
∫

∞

−∞
dν |Rij(ν)| < ∞ [32]. The inverse transform reads

Gij(ω) =
1
∫

∞

dν Rij(ν)e−iων .

2π −∞

13
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The covariance function for fluctuations about the equilibrium falls of exponentially as

R(ν) = e−|ν|LR(0), (37)

s follows from (35) upon multiplication by ai(n = 0) (stationarity), subsequent averaging and recalling that ai(n = 0) is
random variable, too [53].
The forcing power spectrum is f̂i(ω)f̂j(ω′) = Fij(ω)δ(ω − ω′), where stochastic orthogonality between different Fourier

modes (with zero mean) is necessary and sufficient for a stationary process [32]. For times long compared to the fast
time scale tf , or equivalently for ωtf ≪ 1, we can approximate Fij(ω) → Fij(0) = 2Dij by a constant. This is the spectral
signature of a white-noise process (cf. Section 4.3.1). Taking the Fourier transform of the Langevin equation (18) and its
adjoint, the response power spectrum corresponding to (37) is readily shown to be

G(ω, ω′) := α̂(ω)α̂∗(ω′) = (L + iω)−1 f̂ (ω)f̂
∗

(ω′)(L∗
− iω′)−1

= (L + iω)−12D(L∗
− iω)−1, (38)

since the forcing has asymptotically white-noise spectrum on the time scales of interest. If we assume that Dij ∼ Dδij and
that we can find a single response time scale ts = λ−1 for L, (38) simplifies to

G(ω) =
2D

(λ + iω)(λ − iω)
=

2D
λ2 + ω2 , (39)

hich is the spectral signature of the stationary Ornstein–Uhlenbeck process for fluctuations about the equilibrium [32,
2]. For λ → 0, that is for infinitely slow response time ts → ∞, we readily see from (39) that G(ω)

λ→0
−→ F (0)ω−2 (ω ̸= 0),

hich is the response power spectrum of the Wiener process. Assuming F (0) < ∞, this implies that G(ω) → ∞ as ω → 0
if λ → 0.

Alternatively, by direct computation of the Fourier transform of an exponentially-correlated stationary random process
of variance A, we obtain G(ω) =

A
π

λ

λ2+ω2 [32]. Comparison between the different forms of the response power spectrum
shows that F (0) = 2D =

Aλ
π
. This shows again that the spectral signature of the forcing is directly related to the

macroscopic diffusion constant, which is essentially the ratio of the fluctuation level A and the response time scale λ−1.

. Comparison with experiments of trailing vortices

We compare our theoretical results with an experimental database gathered in the F2 wind tunnel of the ONERA
entre in Le Fauga-Mauzac. A detailed account of the experiment can be found in [34], the configuration being almost
dentical to the one described in [26]. Among the different configurations probed, the setting of interest here is the flow
ast a NACA 0012 wing of chord length c = 0.125m suspended on a rigid support structure from the tunnel roof at
n angle of incidence of 9°. The inflow velocity being fixed at U∞ = 20m s−1, yielding a chord-based Reynolds number

Rc := cU∞/ν = 1.7× 105. The turbulence intensity in the facility is uU−1
∞

≲ 5× 10−3 and the vortex-core radius, defined
n Section 2, is l1 ≈ 5 × 10−3 m. This latter value agrees with previous findings of [19,24,26,31,67]. Fig. 2 suggests that
lc−1

≈ 0.1, which is corroborated by the circulation characteristics discussed below.
Three-dimensional, high-speed stereo particle image velocimetry (PIV) measurements are taken in five measurement

lanes located at zc−1
∈ {2, 4, 12, 20, 26} at a sampling rate of fs = 3 kHz. A totality of N = 4096 samples are thus

ecorded and the same experiment has been repeated in ten identically prepared runs.
The radial profile of the circulation increases monotonously, taking values in Γ (r)/cU∞ = 0.1 . . . 0.3 for r = l1 . . . ∞.

onotony and range are in agreement with the findings of [19,24,26,31,67] for the same wing model, similar Reynolds
umber and angle of incidence. The circulation increases rapidly over r = 0, . . . , l, where l≈ 2 l1 is the support radius,
ndicating that most of the vorticity is confined to this range [24,31]. According to Section 3, we take the integration
olume V larger than this range of rapid change. Due to the much slower circulation increase outside the vortex support,
his value of the circulation is rather insensitive to the particular size of the integration volume. We also note that the
irculation profiles are practically constant over the measurement range as also found by [19]. As an order-of-magnitude
stimate, we set Γ /cU∞ ∼ 0.1, which is a representative value for the present [34] and typical experiments (cf. Table A.2
n Appendix).

We conclude that all flow variables closely match previous findings and that the variance is consistent with the
ifferences in the experimental parameters (e.g. Reynolds number, angle of incidence). We thus consider the present
xperiment as representative for the phenomenon under study.
From the experimental parameters, we derive the actual values of the time scales governing the dynamics. The result

s resumed in Table 1. The slow response time scale ts is the reciprocal of the eigenvalues si of the symmetric part S of
the linear friction matrix L (to leading order). To get an idea of the governing dynamics, we recall that L has contributions
from advection by the mean, vortex stretching or energy production by the mean-velocity gradient and viscous diffusion.
In general, we can decompose L = S+W , where the skew-symmetric part W contains advection and the skew-symmetric
part of the mean-velocity gradient (rotation). The symmetric part comprises the symmetric part of the velocity gradient
and viscous diffusion. For rotation-dominated flow at high Reynolds numbers, we expect two characteristic time scales,
viz. the shear scale t−1

s ∼ ∇ū + ∇
∗ū governing growth or decay and the rotation scale t−1

r ∼ ∇ū − ∇
∗ū characteristic

of conservative redistribution. In terms of experimentally measurable quantities, the rotation time scale is approximated
by tr ≈ 2π l21 /Γ . Analysis of the spectra of the linearised Navier–Stokes operator around the Lamb–Oseen vortex suggest
that t should be about two orders of magnitude larger than t , e.g. [35]. In general, t = κ t for some κ > 1.
s r s r

14



T. Bölle Physica A 612 (2023) 128473

e
s
p

w

Table 1
Experimental time scales.
Time scale Estimate

Advection time ta := cU−1
∞

= 6.25 × 10−3 s
Rotation time tr := 2π l21 Γ −1

≈ 0.05 cU−1
∞

≈ 0.3 × 10−3 s
Slow response time ts = κ tr ≈ 102tr ≈ 5 cU−1

∞
≈ 30 × 10−3 s (:= λ−1)

Fig. 4. Temporal (downstream) evolution of the square root of the two leading eigenvalues of the vorticity covariance function normalised on U∞ .
Comparison of the different experimental runs (small grey dots), the arithmetic mean growth (large black dot) and the graph of the amplitude law
(34) (thick line). A slight anisotropy of the order of ±O(10−4) in the experimental data has been corrected for by a corresponding scaling constant.

5.1. Vorticity fluctuations

In Section 4, the variance of the large-scale vorticity fluctuations was shown to obey (34). For the present experimental
parameters and the response time scale given in Table 1, in particular using uU−1

∞
= 5 × 10−3 and si = 5−1c−1U∞, we

obtain

a2i
a0
(t)

U2
∞

∼

(
u

U∞

)2

sit ∼ 25 × 10−6 tU∞

5c
∼ 5 × 10−6 t

ta
.

A comparison of (34) with the experiment is shown in Fig. 4. We find a good agreement between the model (thick line)
and the mean vorticity variance growth taken over all experimental runs (large black dots). The variance in each of the
individual runs is shown by small grey dots. From (34), we have that a2i

a0
(t = ts) ∼ u2, so that we expect the integral

nstrophy level at about five chords from the origin to be of the same order of magnitude as the turbulence intensity
quared; which is indeed the case in Fig. 4. This indicates that the vortex is in equilibrium with the surrounding at this
oint, which may serve as a fictitious starting point of the meandering experiment.
We also deduce from Fig. 4 that the slow variables ai only slightly deviate from their initial value on average,

hich was the requirement of the adiabatic approximation in Section 4.3.1. As a first estimate, we note (
√
a2i

a0
(25) −√

a2i
a0
(5))/

√
a2i

a0
(5) ∼ 1.

We can further estimate the length scale l of the large-scale vorticity from this finding. It is a well-known result
due to G. I. Taylor that the local enstrophy in homogeneous isotropic turbulence at very high Reynolds number is

of the order w′2
z

a0
∼

(
u

lT

)2
, where u is the turbulence intensity (proportional to the amount of kinetic energy in

the large-scale turbulence) and lT the Taylor microscale [33,46,48]. However, this scale estimate holds for the small,
dissipative scales. The appropriate scales of the considered large-scale meandering motion should be the integral scale
l and u as before [4,6]. Since a2

a0
represents the integral enstrophy in V associated with KL mode φ , we expect that
i i
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Fig. 5. Temporal (downstream) evolution of the spanwise and vertical meandering amplitude normalised on l. Comparison of the different
xperimental runs (small grey dots), the arithmetic mean growth (large black dot) and the graph of the amplitude law (40) (thick line). A slight
nisotropy of the order of ±O(10−3) in the experimental data has been corrected for by a corresponding scaling constant.

a2i
a0

∼ l2
(
u

l

)2
∼ u2 on account of the (practically) compact-support argument of Section 3. This is consistent with our

model and the experimental results.
In Section 3, we argued that the leading contributions to the fluctuation velocity variability obey the same meandering

signature as the vorticity. At this point, let us merely mention that the leading two eigenvalues of the velocity covariance
function follow a qualitatively identically behaviour as is shown in Fig. 4.

5.2. Meandering amplitude

The scaling law of the meandering amplitude follows from combining (12) with (34) as

X2
i

a0
(t)

l2
∼

[
2k2 l2

Γ 2

]
u
2sit (i = 1, 2),

where the term in brackets is the proportionality constant between meandering in phase and physical space. We see that
the length of one step in the random walk is proportional to the turbulence intensity u, while it is reciprocally dependent
on the vortex resistance Γ . The term in brackets is estimated using Γ /cU∞ ∼ 10−1, lc−1

∼ 10−1 as introduced above
and k ∼ π in agreement with our remark in Section 3. This yields the scaling law of the meandering amplitude√

X2
i

a0
(t)

l
∼ 10−2

√
t
ta

(i = 1, 2). (40)

A comparison between the meandering amplitudes in the experiment with the model law (40) is shown in Fig. 5 using
the same line and point styles as in Fig. 4 for the vorticity variance.

The bivariate frequency distribution of the vortex-centre position is shown in Fig. 6 for the last measurement plane and
over all runs. Histograms of the respective marginal probability densities are well approximated by Gaussian distributions
(cf. Section 4). The probability to find the vortex centre in [xi, xi +dxi ] obeys a bivariate Gaussian distribution in all other
measurement planes, too. Decreasing standard deviation (meandering amplitude) as we approach the wing according to
(40) implies progressively narrowing probability densities. This is indeed the case and consistent with Fig. 5 (not shown).
Downstream widening probability densities are also reported in [17,23,31].

Rather than searching for the probability of finding the vortex in an interval dxi around a definite point xi, it may be
more interesting to know the probability with which the vortex is in a certain radial annulus [r, r + dr ] from the mean
position. This is the original question of the random walk due to K. Pearson (1905, Nature), solved in a reply by Lord
16
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Fig. 6. Marginal frequency distributions of the spanwise and vertical vortex-centre position in the last measurement plane. Histograms of individual
runs (different grey shadings) and the fit of the mean over the runs to a Gaussian probability density (thick line).

Rayleigh [40]. If Xi is normally distributed, the norm (or radius coordinate) of the vortex-centre position must consequently
be Rayleigh-distributed, viz. R := ∥X∥ ∼ R(σ ). The probability density of the Rayleigh distribution reads

p(r)dr =
r
σ 2 e

−
r2

2σ2 dr ∀r ≥ 0, (41)

ith the scale parameter σ 2
=

2
4−π

Var R in terms of the variance Var R of the radius coordinate [32]. Fig. 7 shows that
he frequency distributions obtained for the individual runs in the last measurement plane are indeed well approximated
n average by the Rayleigh probability density (41).
In Section 4.4, we have derived the simplified signature of the meandering motion as an Ornstein–Uhlenbeck process

n the equilibrium limit. Assuming that the dynamics can be identified with one response time scale ts = λ−1, we recall
hat the result can be expressed equivalently in (measurement-)time domain in terms of the autocorrelation function
cf. (37))

Rii(ν; t)
Rii(0; t)

= e−λ|ν|, ts = λ−1, (42)

r (see (39)) as the response power spectrum in frequency domain (A(t) := Rii(0; t) is the local variance in t)

G(ω; t) =
A(t)
π

λ

λ2 + ω2 =
F (0; t)
λ2 + ω2 ,

where in each case the measurement plane t is kept fixed [32]. Using λ as given in Table 1 and for the variance in the
ast measurement plane A(t)l−2

∼ 25 × 10−4 (from (40) and Fig. 5), we estimate

G(ω; t t−1
a = 26)

U∞

l2c
∼

2 × 10−4

λ2 + ω2 where F (0; t) =
A(t)λ

π
∼ 2 × 10−4 l

2U∞

c
. (43)

Fig. 8 shows a comparison between the theoretical model (42)–(43) and the experiment. The experimental power
spectra are averaged over all runs in each measurement plane. A low-pass filter has been applied to remove high-
frequency noise not associated with the slow motion of interest. We obtain a good fit in both cases for λ = 30 cU−1

∞
which

is consistent with the above assumption (see Table 1). The plateau value of the response power spectrum is obtained in
the limit as ω → 0, that is G(ω; t)

ω→0
−→

A(t)
πλ

∼ 4 × 10−3 l2c
U∞

in the last measurement plane (see Fig. 8) [32]. Fits to the
other power spectra follow from setting A(t) to the local variance level in the respective measurement planes. Eventually,
we note that the sharp cusp in the autocorrelation as ν → 0+ is indicative of a very short relaxation time scale of the
fast dynamics t [53].
f
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t
λ

Fig. 7. Frequency distribution of the radial vortex-centre position in the last measurement plane. Histograms of individual runs (different grey
shadings) and the fit of the mean over the runs to a Rayleigh probability density (thick line).

Fig. 8. Autocorrelation and power spectrum of X(n, t = const). Autocorrelation in the five measurement planes over time lags ν of the measurement
ime, compared with e−|λ|ν for λ = 30 cU−1

∞
(thick line). Comparison of the power spectra with F (0)/(λ2

+ ω2) (thick line). The dashed line at
ta = t−1

s ta roughly marks the extension of the plateau.
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. Corollaries and conclusion

.1. Features and consequences of the meandering model

Framing vortex meandering in the theory of Gauss–Markov processes, we can immediately deduce a couple of crucial
spects to characterise the dynamics. It is further possible to infer some corollaries that are necessarily implied by the
heory. We shall give a brief account of some of these points in the following.

Despite turbulence, as governed by the Navier–Stokes equation, being inherently non-linear, linear (stochastic)
pproaches are capable of identifying key structures and mechanisms [61]. The pertinence and reliability of these results
s naturally open to debate and has been questioned [5]. We have shown that under the assumption of scale separation
he dynamics of one isolated coherent vortex structure embedded into incoherent turbulence is governed by a linear
ynamics. The resulting theory of Gauss–Markov processes provides us with unambiguous characteristics of the dynamics,
he validity of which we have confirmed by comparison with an experimental database and the literature. Conjectures
f the linearity of coherent-structure dynamics thus far were based on the qualitative similarity of experimental and
heoretical vortex response structures (cf. Fig. 2) [18,22]. This is a necessary but not sufficient criterion and the suggested
odels at best explained some of the key experimental features, while being in contradiction with others (e.g. growth

ates, spectral signature). To the best of our knowledge, we are the first to provide convincing arguments for the linearity
f vortex dynamics in real flow problems. The elements form one consistent theory that explains all key aspects of
xperimental vortex meandering and provide clear criteria for the limitations of the model. In particular, on the time
cales of interest, Brownian motion is driven by the particular rather than the homogeneous solution, meaning that vortex
ynamics constitutes a continuous forcing not an initial-value problem [40].
The here developed theory implies that no meandering is expected for ideally vanishing free-stream turbulence and

he remaining dynamics would be perfectly deterministic. In the Brownian-motion analogy, this would correspond to the
easing motion of a particle suspended in a liquid at the absolute zero temperature. The fact that the stochastic meandering
s typically weak is a consequence of the conventionally low turbulence intensity (∼ low-temperature dynamics) which
allows deterministic dynamics to dominate the overall behaviour. Nevertheless, ‘‘[Brownian motion] excludes . . . the
existence of ‘‘hidden periodicities’’ [or] ‘‘signals’’’’ [39], or as put by [38]—‘‘stochastic processes are neither finite nor
periodic’’. That is, if one accepts the stochastic Brownian-motion model of coherent-vortex dynamics, the expectation to
identify the meandering frequency must be refuted.

It is a fundamental characteristic of the statistics of turbulence that, in general, none of the stochastic moments vanishes
and a complete description of the dynamics would require knowledge of the whole infinite system—this is known as the
closure problem [33]. In particular, second central moments (i.e. correlations) are insufficient to determine the whole
probability distribution. However, this is the case for Gaussian distributions which turn out to occur very often in practice
as a consequence of the central limit theorem [32]. We have shown that this is indeed the case for the large-scale dynamics
of strong isolated line vortices for which the closure problem ceases. In other words, the presented model contains the
entire information of the dynamics.

6.2. Conclusion

Meandering is the paradigm of the unsteady dynamics of isolated large-scale line vortices embedded into an envi-
ronment of weak small-scale turbulence. Despite its intrinsic interest as a model of a coherent structure, we find natural
realisations of this flow situation with primary importance in engineering and geophysics, such as trailing or inlet vortices
and tornadoes. Most experiments explore trailing vortices, so that we implicitly rely on this setting in the present study,
however, expect that the results are readily generalised to comparable configurations. As such, we dispose of a large set
of experimental and numerical studies, providing us with the unequivocal evidence that vortex meandering is associated
with four universal main characteristics. Namely, (i) the vortex-centre position obeys a Gaussian probability distribution
that (ii) monotonously broadens downstream of the vortex generator. This increase in standard deviation of the vortex-
centre position is parallelled by (iii) an amplification of the fluctuation kinetic energy and enstrophy in the vortex core,
whereas the leading-order contribution has a dipolar spatial pattern in the vorticity. Eventually, (iv) experimental vortex
dynamics is associated with a broadband spectral signature spanning all resolved scales, whereas the variance level
increases towards the low frequencies.

We present the first closed theory that explains all experimental key features in one model. Conceptually, this theory
is based on the recognition that vortex meandering constitutes an integral property of a distinct large-scale object, which
suggests a (Lagrangian) particle-like approach, although in an abstract sense.

Starting from the definition of the vortex centre, we first show a direct correspondence between the leading KL-mode
pair of the vorticity covariance function and the (material) meandering motion observed in experiments. This association
has been conjectured before, but has never been derived as far as we know. It implies that the visible meandering of the
physical vortex in experiments is a manifestation of the same meandering motion in the phase space of the dynamics
and that the meandering motion is truly low (viz. two) dimensional (to leading order).

On account of a scale-separation argument, we then show that the universally observed Gaussian statistics of the
vortex position are a consequence of the central limit theorem. To this end, we formulate vortex meandering as a random-

walk problem. It is important to realise that the thus resulting Gaussian probability distribution is a purely mathematical
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onsequence of summing up a very large number of subsequent (independent and identically-distributed) random steps,
hich is completely independent of the local probability of the vortex to make a ‘step’ in a certain direction.
Restriction to the leading two KL modes and scale separation allow us to write the dynamical system governing the

eandering motion in the form of an abstract Langevin equation. Considering the short-time limit, this equation is solved
y a Wiener process, while we get an Ornstein–Uhlenbeck process if we do not impose time restrictions. This latter
ncludes a linear friction, or feedback term that assures convergence to an asymptotic equilibrium state in the infinite-
ime limit. In the light of previous explanation approaches, we conclude that the dynamics is neither completely driven
y the free-stream turbulence nor due to an intrinsic vortex instability but rather a competition between external driving
nd internal resistance.
As of the power spectra, we show that, in equilibrium, the low-frequency range must fall off as the second power of

requency, shifted by the second power of the reciprocal vortex response time scale. This is the spectral signature of a
eal, symmetric autocorrelation function with exponential decay.

Comparison of our model predictions with an experimental database gathered at the ONERA leads to very good overall
greement. The experiment is consistent with all previous findings reported in the literature and the data available in these
ublications collapse with the derived laws. We conclude that the presented theory indeed explains experimental vortex
eandering.

RediT authorship contribution statement

Tobias Bölle: Conceptualization, Methodology, Formal analysis, Investigation, Writing.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
ppeared to influence the work reported in this paper.

ata availability

The authors do not have permission to share data.

ppendix. Parameters of Fig. 1

The normalisation of the meandering amplitude in Fig. 1 is based on the parameters listed in Table A.2, which have been
aken from the original publications. All values agree with those used in Section 5 in terms of their order of magnitude
nd trends upon modification of the experimental configuration.

Table A.2
Experimental parameters for meandering-amplitude scaling of Fig. 1.

Symbol uU−1
∞

Γ /cU∞ Angle of incidence

[19] □ 10−2 12 × 10−2 7.5◦

□ 10−3 8 × 10−2 5◦

□ 10−3 6 × 10−2 3.75◦

□ 10−3 4 × 10−2 2.5◦

[26] × 5 × 10−3 10 × 10−2 9◦

[31] ◦ 2 × 10−3 18 × 10−2 5◦

◦ 15 × 10−3 12 × 10−2 5◦

◦ 25 × 10−3 8 × 10−2 5◦

[67] △ 7.5 × 10−3 10 × 10−2 8◦

[24] ▽ 5 × 10−3 25 × 10−2 –
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