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Abstract— We study a formation control problem of non-
holonomic vehicles which consists in making a group of
them gather around a given rendezvous set-point and ac-
quire a common orientation. This task may be regarded as
part of a more complex maneuver, e.g., requiring the robots
to advance in a scouting mission on a path composed of
straight lines and occasional turns. The control approach
relies on addressing separately the problems of stabiliza-
tion (on the plane) and of orientation consensus. For the
former we use individual controllers involving smooth time-
varying terms and for the latter we use distributed consen-
sus control, under the assumption that the robots form a
directed graph that contains a spanning tree.

Index Terms— Formation consensus, non-holonomic
constraints, Lyapunov stability

I. INTRODUCTION

FORMATION control of nonholonomic vehicles is a well-
studied problem in multi-disciplinary literature, but one

which has different interpretations and motivations. One per-
tains to formation-consensus in which case it is required for the
networked-interconnected vehicles to reach a consensual, non-
predefined posture. This is inherently a set-point stabilization
problem (with the well-known technical difficulties that this
implies for nonholonomic systems [1], [2]) that may involve
full consensus in position and orientation [3]–[6] or partial,
either in orientation [7] or in position [1], [8], [9]. The term
formation control, however, may also refer to the case in which
a group of robots are required to follow a leader, real or virtual,
while keeping a formation [10]–[16]. We may generically refer
to this scenario as that of leader-follower formation-tracking
control.

In the case of formation-consensus the equilibrium is not
pre-defined, but it depends on the topology of the network,
as well as on the initial postures and the nonlinearities of the
systems. In leader-follower-based formation-control problems
the vehicles are meant to track a leader, so both problems
are fundamentally different, are motivated by distinct practical
applications and, from a control viewpoint, demand very
different approaches. A well-known fact, e.g., is that smooth
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controllers must rely on persistency of excitation [17] both
in stabilization and tracking control tasks [2]. However, the
two problems are not solvable simultaneously via the same
controller [2].

Now, besides the difficulties imposed by the nonholonomic
constraints, controlling networked autonomous vehicles im-
poses challenges related to the network’s topology. Even
though the literature on consensus is very rich and covers
a wide range of graph topologies, this is so mostly for
linear systems. Alternatively, in the context of formation and
consensus of multiple vehicles, most works are restricted
to undirected-graph topologies—see e.g., [4], [6], [7], [9],
[11], [14], [15], [18]–[20]. Articles covering directed-graph
topologies are relatively scarce—see e.g., [3], [21] for for-
mation consensus and formation-tracking control, respectively.
However, in both cases knowledge of the Laplacian is needed.
Leader-follower-based schemes are often restricted to graphs
that consist in (do not simply contain) a spanning tree [5],
[12], [22], [23].

In this letter we study a problem of formation control that
consists in all the robots converging to a static formation with
a pre-imposed reference position on the Cartesian plane and
acquiring a non-predefined orientation. This is a task that
involves both stabilization and orientation consensus, so, as
in [1], [7]–[9] we solve a problem of partial consensus. Our
main contribution resides in that we consider that the systems
are interconnected over a generic directed graph, i.e., that it
contains a spanning tree. Hence, from a network-topology
viewpoint, the leader-follower scenarii are covered. Relative
to [3], [21] we stress that our controller is fully distributed.
Formation-tracking control is out of scope, but the problem
that we address may be regarded as part of a more complex
maneuver. For instance, as a byproduct of our main statement,
we show that our controller applies also in simple tasks that
require a group of vehicles to advance in formation; not
following a target or a leader, as in [10], [13], [21], but
advancing with constant forward speed, along paths composed
of straight-lines—cf. [12] and predefined turns.

II. PROBLEM FORMULATION

Let us consider a group of N nonholonomic vehicles
modeled by the kinematic equations

ẋi = cos(θi)vi (1a)
ẏi = sin(θi)vi (1b)
θ̇i = ωi, i ≤ N, (1c)



where (xi, yi) := pi denote the Cartesian coordinates of the
center of mass of the ith robot on the plane, θi denotes
its orientation relative to the abscissae; these variables are
measured and are to be controlled. The forward velocity vi
and the angular velocity ωi constitute the control inputs.

It is assumed that each system has access to its own
coordinates pi and θi, as well as the orientation of neighbor
vehicles, θj , where j ∈ Ni and Ni is the set of indexes
corresponding to the neighbors of the ith vehicle. In that
regard, we assume that through their interconnections the
systems form a directed graph that contains a spanning tree.
We stress that such condition is necessary for consensus and,
therefore, cannot be relaxed. In particular it is satisfied in
leader-follower configurations [5], [12], [22] in which the
graph consists in a spanning tree and cycles are excluded.
For these systems, we address the following problem.

Formation-stabilization with orientation consensus: Let p∗ :=
[p∗x p∗y]

⊤ be a given reference constant set-point on the plane.
Let δi := [δxi δyi]

⊤ be a given offset relative to p∗, so that,
defining p̄i := pi − δi − p∗, we have that p̄i = 0 for all
i ≤ N means that all the vehicles are positioned in a geometric
formation with center at p∗. Then, the formation-stabilization-
with-common-orientation control problem consists in design-
ing decentralized control laws such that

lim
t→∞

|p̄i(t)| = 0, lim
t→∞

θi(t) = θc, (2a)

lim
t→∞

vi(t) = 0, lim
t→∞

ωi(t) = 0, ∀i ∈ {1, · · · , N}, (2b)

where θc is a non-given constant that depends on the system’s
dynamics, initial conditions, and the networkś topology. This is
a problem of partial consensus control—cf. [1], [7]–[9]; from
a practical viewpoint, it is pertinent, e.g., as the first part of
a more complex maneuver [24] which may consist in making
the robots gather and advance in formation, for instance in a
scouting mission—see Section III-C.

III. CONTROL APPROACH AND MAIN RESULTS

A. Rationale

Formation control with consensual orientation, as stated
above, may be solved by designing a formation-stabilization
and a consensus controller independently. However, this
presents two difficulties: the first stems from the fact that
nonholonomic systems are known not to be stabilizable via
smooth time-invariant feedback; the second is that of ana-
lyzing consensus over generic directed graph-networks for
highly nonlinear systems, such as nonholonomic integrators.
To circumvent the first difficulty we use the approach of so-
called δ-persistently-exciting (δ-PE) controllers [12], which
are designed to inject an external time-varying perturbation
that is persistently exciting [17], as long as a certain function
of the state is away from the origin. To achieve the consensus
goal we use the control law

ωi = −kw
∑
j∈Ni

aij(θi − θj), kw > 0, (3)

where aij = 1 if an interconnection from the node j to
the node i exists and aij = 0 if otherwise. Note that since

the interconnections are directed, in general, aij ̸= aji.
Disregarding the stabilization task, orientation consensus is
achieved provided that the network’s graph contains a directed
spanning tree [25]. That is, (3) guarantees that θi → θj → θc
for all i, j ≤ N , where θc is constant.

Now, in relation to the stabilization objective we start by
introducing the error coordinates

zi :=

[
ϕ(θi)

⊥

ϕ(θi)
⊤

]
p̄i,

ϕ(θi) =
[
cos(θi) sin(θi)

]⊤
ϕ(θi)

⊥ =
[
− sin(θi) cos(θi)

]
.

(4)

Note that ϕ(θi)⊥ϕ(θi) ≡ 0, so, after (4) and (1), we have

żi =

[
ż1i
ż2i

]
=

[
−z2iωi

z1iωi + vi

]
(5)

and since the matrix in (4) is globally invertible, we have that
zi = 0 if and only if p̄i = 0, so the formation-stabilization
objective boils down to ensuring that zi → 0 holds for (5). To
that end, we remark that Equations (5) may be assimilated to
those of a stable (oscillatory) system with input vi. Hence, for
any ωi ̸= 0, the control law

vi = −k2iz2i + (k1i − 1)ωiz1i, k1i, k2i > 0, (6)

makes zi → 0. To see this more clearly note that the closed-
loop system takes the form[

ż2i
ż1i

]
=

[
−k2i k1iωi

−ωi 0

] [
z2i
z1i

]
, (7)

which has a structure familiar in adaptive control—cf. [12].
Hence, it may be showed that if k2i > 0, z2i → 0 (see the
proof of our main result below). Moreover, if ωi depended only
on t, it would be sufficient to make ωi persistently exciting
(PE), i.e., to ensure that there exist µ and T > 0 such that∫ t+T

t

|ωi(s)|ds ≥ µ ∀ t ≥ 0,

to ensure that z1i → 0. Making ωi be PE, however, means
that θi cannot converge to a constant value, which is in clear
conflict with the orientation-consensus objective. In summary,
persistency of excitation is needed to attain the formation
control objectives, while it is required that ωi converge to
zero to achieve orientation consensus. To overcome this co-
nundrum, we endow the angular-motion consensus control law
(3) with an oscillatory perturbation that persists as long as
|z1i| ≠ 0. That is, with a δ-persistently exciting function—cf.
[12]. Hence, we redesign the consensus control law (3) to take
the form

ωi = −kw
∑
j∈Ni

aij(θi − θj) + fi(t)βi(zi), kw > 0. (8)

In the previous expression, fi : R≥0 → R is designed to
be twice continuously differentiable, bounded with bounded
derivatives, and ḟi is persistently exciting, that is, there exist
T , µ > 0 such that∫ t+T

t

|ḟi(s)|ds ≥ µ ∀ t ≥ 0. (9)

In addition, the function βi : R2 → R is chosen to be
twice continuously differentiable and to satisfy βi(zi) = 0



if and only if zi = 0. Loosely speaking, the purpose of
the term fi(t)βi(zi) is to prevent ωi from vanishing to zero
(achieving consensus) as long as zi ̸= 0 (the stabilization
task has not been achieved). Indeed, provided that zi(t)
is bounded, fi(t)βi(zi) acts as a bounded disturbance that
vanishes only if both objectives, consensus and stabilization
are attained simultaneously. This rationale is formalized in
following statement given next.

B. Formation stabilization
Proposition 1 (Formation stabilization): Consider a net-

work of autonomous vehicles modeled as in (1), communi-
cating over a directed-graph containing a directed spanning
tree, in closed loop with the controller (6)-(8), where for
each i ≤ N , fi : R≥0 → R is twice continuously differ-
entiable, bounded with bounded derivatives, and satisfies (9),
whereas βi : R2 → R is twice continuously differentiable
and satisfies βi(zi) = 0 if and only if zi = 0. Then, the
formation-stabilization-with-common-orientation goals in (2)
are attained. □

Proof: Replacing the control laws (6)-(8) in the kinematics
equations (5)-(1c) we obtain the closed-loop system

ż1i = −ωiz2i (10a)
ż2i = k1iωiz1i − k2iz2i (10b)

θ̇i = −kw
∑
j∈Ni

aij(θi − θj) + fi(t)βi(zi). (10c)

To establish the statement of the proposition we start by
showing that zi ∈ L∞, where zi := [z1i z2i]

⊤. To that end,
we use the positive-definite, decrescent Lyapunov function

Vz(z) =
1

2

N∑
i=1

[k1iz
2
1i + z22i]. (11)

Its total derivative along the trajectories of (10a)-(10b) yields

V̇z(z(t)) = −k2i

N∑
i=1

z2i(t)
2 ≤ 0. (12)

Integrating on both sides of V̇z(z(t)) ≤ 0, from to ≥ 0 to
t, we obtain [k1iz1i(t)

2 + z2i(t)
2] ≤ [k1iz1i(to)

2 + z2i(to)
2]

which implies that

|zi(t)|2 ≤ max{k1i, 1}
min{k1i, 1}

|zi(to)|2. (13)

That is, zi is uniformly globally bounded.
Strictly speaking, the latter holds only on the interval of

existence of t 7→ ω(t). Say, for a certain ∞ > tf > to, any
to ≥ 0 and for all t ∈ [to, to+ tf ). In the sequel we show that
tf = +∞, that ω := [ω1 · · · ωN ]⊤ is also uniformly bounded
and, therefore, the arguments above hold for all t ≥ to ≥ 0.

To that end, we start by rewriting (8) in multi-variable
compact form,

ω = −Lθ + α(t, z), (14)

where α(t, z) := [ f1(t)β1(z1) · · · fN (t)βN (zN ) ]⊤, θ :=
[ θ1 · · · θN ]⊤, and

L := [ℓij ] ∈ RN×N , ℓij :=

{
−aij ∀ i ̸= j∑

k∈Ni
aik, ∀ i = j

(15)

is the Laplacian matrix. Then, following [26], we introduce
the synchronization errors

eθ = [IN − 1Nv⊤ℓ ]θ, (16)

which correspond to the vector eθ := [eθ1 · · · eθN ]⊤, where
eθi := θi − v⊤ℓ θ, vℓ is the left eigenvector associated to the
unique zero eigenvalue of L, and v⊤ℓ θ is a weighted average
of θ. That is, consensus is reached if θi → v⊤ℓ θ for all i ≤ N
or, equivalently, eθ → 0.

Remark 1: The errors eθ satisfy

ėθ = −Leθ + [IN − 1Nv⊤ℓ ]α(t, z). (17)

To see this, we note that from (16),

ėθ = −L[IN − 1Nv⊤ℓ ]θ + [IN − 1Nv⊤ℓ ]α(t, z),

so (17) follows observing that L1N = 0. •
Next, let us assume that the graph contains a directed

spanning tree then the statement of [26, Lemma 2] generates
P = P⊤ ∈ RN×N on solving, for any matrix QL ∈
RN×N , QL = Q⊤

L > 0 and for σ > 0, the equation

PL+ L⊤P = QL − σ[P1Nv⊤ℓ + vℓ1
⊤
NP ], (18)

where vℓ is the left eigenvector associated to the single zero
eigenvalue of L. Then, consider the Lyapunov function Veθ =
e⊤θ Peθ. Its total derivative along the trajectories of (17) yields

V̇eθ = −e⊤θ [PL+ L⊤P ]eθ + 2e⊤θ P [IN − 1Nv⊤ℓ ]α(t, z),

so, using (18), we obtain

V̇eθ =− e⊤θ
[
QL − σ[P1Nv⊤ℓ + vℓ1

⊤
NP ]

]
eθ

+ 2e⊤θ P [IN − 1Nv⊤ℓ ]α(t, z).

However, since v⊤ℓ 1N = 1, the second term on the right-hand
side of the equation above equals to zero. Indeed, after (16),
P1Nv⊤ℓ eθ = P1Nv⊤ℓ [IN −1Nv⊤ℓ ]θ = P [1Nv⊤ℓ −1Nv⊤ℓ ]θ =
0N . Therefore,

V̇eθ = −e⊤θ QLeθ + 2e⊤θ P [IN − 1Nv⊤ℓ ]α(t, z).

Now, let ∆ := 2|P [IN − 1Nv⊤ℓ ]| where | · | denotes here the
induced matrix norm. For any tf > 0, let

∥α∥tf := sup
t∈[to,to+tf )

|α(t, z(t))|.

Then, defining qm := λmin(QL), we have

V̇eθ (eθ(t)) ≤ −qm|eθ(t)|2 +∆|eθ(t)|∥α∥tf (19)

for all t ∈ [to, to + tf ). We show by contradiction that tf =
+∞, so all of the above holds for all t ≥ to.

Assume that |ω(t)| → ∞ as t → tf < ∞. Then, since
θ(t) =

∫ t

to
ω(t)dt we have |θ(t)| → ∞ as t → tf . On the other

hand, Veθ (eθ(t)) := θ(t)⊤[IN − 1Nv⊤ℓ ]
⊤[IN − 1Nv⊤ℓ ]θ(t),

so Veθ (eθ(t)) → ∞ as t → tf . Next, defining ν(s) :=
Veθ (eθ(s)), after (19), we have

ν̇(t) ≤ ∆2

2qm
∥α∥2tf . (20)



Integrating on both sides of (20), from to to tf , we obtain

lim
t→tf

ν(t) ≤ ∆2

2qm
∥α∥2tf [tf − to] + ν(to).

By assumption tf < ∞, so the right-hand side of the inequality
above is finite, whereas

lim
t→tf

ν(t) = lim
t→tf

Veθ (eθ(t)) = +∞,

which is a contradiction. We conclude that tf = +∞ so (12)
holds along trajectories for all t ≥ to and zi(t) is uniformly
globally bounded. Also, in view of the latter, the continuity of
α(t, ·) and the uniform boundedness of α(·, z), t 7→ α(t, z(t))
is uniformly bounded, that is, ∥α∥2∞ < ∞. From this and
integrating on both sides of (19) along the trajectories, from
to to ∞, we obtain that eθ is uniformly globally bounded.

We show next that ω is also uniformly globally bounded.
For this, we note that the Laplacian matrix L admits the
decomposition L = UMU−1 where U is a matrix whose
columns are the right eigenvectors of L, i.e., U = [1N U1],
U−1 = [vℓ U†⊤

1 ]⊤, and M contains the Jordan blocks
corresponding to the eigenvalues of L. The first eigenvalue
of M being zero and simple, we also have L = U1M̄U†

1 ,
where M̄ contains all the Jordan blocks of L corresponding
to the non-zero eigenvalues. It follows that Lθ = U1M̄U†

1θ,
so |Lθ| ≤ λmax(L)|U1U

†
1θ| = λmax(L)|[IN − 1Nv⊤ℓ ]θ| =

λmax(L)|eθ|. We conclude that |Lθ(t)| is uniformly globally
bounded. From this, and the boundedness of fi and α(t, z(t)),
it follows that ω in (14) is also uniformly globally bounded,
and so is θ̇ = ω. Consequently, żi is uniformly globally
bounded as it is a function of zi and ωi—see Eq. (7).

In addition, for further development, we remark that ω̇ is
also globally uniformly bounded, since so are all the terms on
the right hand side of

ω̇i = −kw
∑
j∈Ni

aij(ωi − ωj) + fi(t)
∂βi(zi)

∂zi
żi + ḟi(t)βi(zi).

(21)
Next, we establish the convergence of z and Lθ. This part

of the proof relies on a recursive application of Barbălat’s
Lemma.

First, we integrate on both sides of (12) from to to ∞. Since
z is globally uniformly bounded we obtain that z2 ∈ L2∩L∞.
Since, moreover, ż2 ∈ L∞ we obtain, by [17, Lemma 3.2.5]
that z2 → 0 asymptotically. To establish the convergence
of z1 we proceed by establishing, first, the convergence of
ωiz1i for any i ≤ N . This follows from the fact that both
terms on the right hand side of k1iωiz1i = k2iz2i − ż2i—cf.
(10b), converge to zero. That z2i → 0 was established above,
while the convergence of ż2i follows from Barbălat’s Lemma.
Indeed, on one hand, z̈2i is uniformly globally bounded since
so are all terms on the right hand side of

z̈2i = k1iω̇iz1i + k1iωiż1i − k2iż2i

= k1i

[
− kw

∑
j∈Ni

aij(ωi − ωj) + fi(t)
∂βi(zi)

∂zi
żi

]
z1i

+ k1iḟi(t)βi(zi)z1i − k1iω
2
i z2i − k1ik2iωiz1i + k22iz2i.

(22)

On the other hand,

lim
t→∞

∫ t

to

ż2i(τ)dτ = lim
t→∞

z2i(t)− z2i(to) = −z2i(to).

Now, since |ωiz1i| → 0 and both ωi and z1i are uniformly
globally bounded, either z1i → 0 or ωi → 0. In the first case,
the proof is completed. Hence, let us assume that ωi → 0 and
turn our attention to the term k1iḟi(t)βi(zi)z1i on the right-
hand side of (22). By assumption βi(zi) = 0 if and only if
zi = 0 and ḟi is persistently exciting. Therefore, since t 7→
βi(zi(t)) is uniformly globally bounded we see that z1i → 0
if and only if so does

k1iḟi(t)βi(zi)z1i = z̈2i + k1iω
2
i z2i + k1ik2iωiz1i − k22iz2i

−k1i

[
− kw

∑
j∈Ni

aij(ωi − ωj) + fi(t)
∂βi(zi)

∂zi
żi

]
z1i.

We proceed to establish the convergence of all the terms on
the right-hand side of the previous expression, individually. As
a matter of fact, this has already been done for the second,
third, and fourth terms, since both z2i and ωiz1i converge
to zero. Furthermore, the convergence of the last term on
the right-hand side follows from that of żi and the uniform
boundedness of fi(·) and βi(zi(·)). In addition, by assumption
ωi → 0, so it is only left to show that z̈2 → 0. To that end,
we use Barbălat’s Lemma once more. First, we observe that,
for any to ≥ 0

lim
t→∞

∫ t

to

z̈2i = lim
t→∞

ż2i(t)− ż2i(to) = −ż2i(to). (23)

On the other hand, we observe that t 7→ z̈2i(t) is uniformly
continuous since z

(3)
2i is uniformly globally bounded. Indeed,

so are all the terms bounded on the right-hand side of

z
(3)
2i = k1i

[
− kw

∑
j∈Ni

aij(ω̇i − ω̇j) + ḟi(t)
∂βi(zi)

∂zi
żi

+ fi(t)ż
⊤
i

∂2βi(zi)

∂2zi
żi + fi(t)

∂βi(zi)

∂zi
z̈i

+ f̈i(t)βi(zi) + ḟi(t)
∂βi(zi)

∂zi
żi

]
z1i

+ k1i

[
− kw

∑
j∈Ni

aij(ωi − ωj) + fi(t)
∂βi(zi)

∂zi
żi

+ ḟi(t)βi(zi)

]
ż1i − 2k1iωiω̇iz2i − k1iω

2
i ż2i

− k1ik2iω̇iz1i − k1ik2iωiż1i + k22iż2i.

This completes the proof. ■

C. Application to formation scouting
After Proposition 1, the controller (6)-(8) guarantees that a

group of vehicles meet at a specified rendezvous set-point and
acquire a consensual orientation. This task may be considered
as the starting of a gather-and-scout maneuver in which it is
also required to advance in formation along a path composed
of straight lines and occasional turns. Besides the practical
motivations of such a mission, it is worth noticing that a



formation cannot be rigidly maintained over arbitrary paths,
but it can if they mainly consist in straight lines [27], [28].

This task may be simply achieved by introducing individual
reference models for each vehicle, given by ṗ∗i := ϕ(θi)v

∗

with p∗i (0) = p∗j (0) for all i, j ≤ N , and constant speed v∗.
Then, we redefine the control law (6) as

vi = −k2iz2i + (k1i − 1)ωiz1i + v∗, k1i, k2i > 0. (24)

For the vehicles to agree on a consensual orientation, we add
to the network an orientation leader with dynamics θ̇∗ = ω∗,
where ω∗ is set to zero (to move on a straight line) or to
a constant (to take a turn). More precisely, for ν turns in a
path, let M := 2ν + 1 and, for each k ∈ {1, 2, . . . ,M + 1},
let {tk} be an increasing finite sequence of times, such that
ω∗(t) = 0 for all t ∈ [tk, tk+1) with k odd, and ω∗(t) ̸= 0 for
all t ∈ [tk, tk+1), with k even. In addition, let (tj+1 − tj) ≫
(tj+2− tj+1) for any odd number j ∈ {1, 2, . . . ,M − 2}, and
tM+1 = +∞, so ω∗(t) = 0 for all t ≥ tM .

Since an orientation-leader node is added, we also modify
the orientation-consensus controller so that, on the consensus
manifold {θi = θ∗}, the individual reference models generate
a consensual trajectory, solution of ṗ∗ := ϕ(θ∗)v∗, that is,
p∗i (t) = p∗j (t) for all t ≥ 0 and i, j ≤ N . As a result, they
advance in the same direction while keeping the formation.
The orientation-consensus controller, which is given in the
following statement, is decentralized and modifies the generic
directed graph into one that typically appears in leader-
follower configurations—cf. [21].

Proposition 2 (formation scouting): Let v∗ be a given con-
stant velocity and, for ω∗ as defined above, let θ̇∗ = ω∗ and
ṗ∗i := ϕ(θi)v

∗. In addition, let

ωi = −kw

[∑
j∈Ni

aij(θi−θj)+bi(θi−θ∗)

]
+fi(t)βi(zi), (25)

where βi and fi are as in Proposition 1, bi > 0 for at least
one node from which any other node can be reached while
bi ≥ 0 for any other node, and aij are such that the Laplacian
matrix L defined in (15) contains a unique zero eigenvalue
and all others have strictly positive real parts (the graph
contains a spanning tree). Then, for the closed-loop system,
limt→∞ |p̄i(t)| = 0 and limt→∞ θi(t) = limt→∞ θ∗(t). □

Proof: The closed-loop equations correspond to Eqs.
(10a)-(10b) and, in terms of the synchronization errors, eθ =
θ−1Nθ∗, ėθ = −kw[L+B]eθ +α(t, z)−1Nω∗, where B =
diag[bi]. Under the above-stated assumptions, [L + B] is a
non-singular M -matrix, so for any Q = Q⊤ > 0, there exists
a matrix P = P⊤ > 0 that solves the Lyapunov equation
−P [L + B] − [L + B]⊤P = −Q (for details, see Theorem
4.25 in [29]). By construction, ω∗(t) = 0 for all t ≥ tM , so
the proof follows as in that of Proposition 1.

IV. SIMULATION RESULTS

We simulated two experiments involving a group of eight
vehicles interconnected as in the directed graph showed in
Fig. 1, which contains a directed spanning tree. The first
experiment consists in making all robots meeting around the
origin, so p∗ = (0, 0)⊤, at the vertices of an octagon and

x1

x3

x2 x4

x5x6 x7

x8

Fig. 1. Connection digraph for the eight communicating agents

acquiring a common non pre-imposed orientation θc, so we
use the controller (6)-(8). The initial positions on the plane
are depicted in Fig. 2 with a ‘◦’ while the initial orientations
are set to θ(0) := [π/2 0 π/8 − π/8 π/3 π/5 − π/7 π/6].
The control gains were set to the same values for all robots,
in a way to produce a little oscillatory transient; we used
k1i = 3.5, k2i = 30, and kw = 1. In addition, we used
fi(t) = cos(15t)− sin(35t) and βi(zi) = 22z1i.

The paths followed by the robots on the plane are also
showed in Fig. 2 below, and their final consensual orientation
(θc ≈ 35 [deg]) is illustrated with pointing arrows.
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Fig. 2. Vehicles on the phase plane converging to a rendezvous point
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Fig. 3. Systems’ orientations achieving consensus

In Fig. 3 we show the variation of orientations. The con-
sensus errors in Cartesian positions rapidly become very small
in norm while the orientations take a longer to settle due to
the persistent, but vanishing perturbation fi(t)βi(zi) in (8),
needed to achieve set-point stabilization.

In a second simulated experiment, the robots gather in
an octagonal formation and advance in formation along the
consensual direction, only that in this case a virtual orientation
reference θ̇∗ = ω∗ is accessed only by node 1 so b1 = 1 and



bk = 0, k ∈ {2, · · · , 8}. The squad is required to advance at a
constant speed v∗ = 0.05[m/s] along straight paths and turning
at an angular velocity of ω∗ = 0.1[rad/s] for pre-planned short
periods of time. For this, we used the controller (24)-(25). The
paths followed by the vehicles are showed in Fig. 4.
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Fig. 4. Systems’ paths on the phase plane converging to a formation
and moving with constant speed

V. CONCLUSIONS

The decentralized controller for formation-stabilization and
orientation consensus in Section III-B addresses, individually
for each robot, the problem of formation stabilization and,
in a decentralized multi-agent fashion, orientation-consensus
control. With such controller, moreover, a simple task of
formation-scouting may be achieved. Our contributions, how-
ever, are limited as they do not cover the case of full-consensus
formation control, i.e., including position-consensus, nor for-
ward velocity consensus. Specifically for the latter, the use
of second-order models appears imperative. Designing a fully
distributed controller to address these problems over a directed
graph containing a spanning-tree for nonholonomic systems is
to the best of our knowledge an open problem. The Lyapunov-
based analysis that we provide may serve as basis to extend
our results to these scenarii and, in turn analyze robustness
with respect to input disturbances.
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