
HAL Id: hal-04049688
https://hal.science/hal-04049688v1

Preprint submitted on 28 Mar 2023 (v1), last revised 30 Oct 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A δ-persistently-exciting formation controller for
non-holonomic systems over directed graphs

Maitreyee Dutta, Antonio Loria, Elena Panteley, Sukumar Srikant, Emmanuel
Nuño

To cite this version:
Maitreyee Dutta, Antonio Loria, Elena Panteley, Sukumar Srikant, Emmanuel Nuño. A δ-persistently-
exciting formation controller for non-holonomic systems over directed graphs. 2023. �hal-04049688v1�

https://hal.science/hal-04049688v1
https://hal.archives-ouvertes.fr


SUBMITTED TO IEEE LETTERS ON CONTROL SYSTEMS, MARCH 17, 2023 1

A δ-persistently-exciting formation controller for
non-holonomic systems over directed graphs
Maitreyee Dutta Antonio Lorı́a Elena Panteley Srikant Sukumar Emmanuel Nuño

Abstract— We present a simple smooth time-varying for-
mation controller for autonomous vehicles, both in leader-
less and leader-follower scenario. The controller is effica-
cious for scouting missions in which a group of robots is
required to meet at a specified rendezvous location and
acquire a non-specified consensual orientation, with the
purpose of advancing in formation at the pace of a virtual
leader. Hence, the controller that we propose achieves
stabilization in Cartesian coordinates and consensus in
orientation, for robots interconnected over generic directed
graphs. To overcome the effect of the nonholonomic con-
straints it relies on persistency of excitation.

Index Terms— Formation consensus, non-holonomic
constraints, Lyapunov stability

I. INTRODUCTION

THE control of multiple vehicles with non-holonomic con-
straints brings about two problems related to consensus.

One is partial consensus, in which case the vehicles are
controlled to acquire either a common position [1], [2] or
a common orientation [3]. The other is full consensus, i.e.,
consensus both in position and orientation is staked for all the
vehicles [4]–[7].

On the consensus manifold, all the robots may stabilize
at a common equilibrium point [4]–[9] or follow a common
time-varying trajectory [10]–[18]. The first scenario is a static
formation control problem in which the vehicles are required
to form a geometric shape called formation with a non-pre-
specified center and a common non-predefined orientation.
These are determined by the graph topology, the systems’
initial conditions and their dynamics—see [4], [6], [7], [8],
and [9]. In a leader-follower scenario, a specified posture is
imposed [2], [19]. In the case of formation-tracking control a
desired trajectory for the common centroid of the formation is
predominantly dictated by a single leader or the root node of
the network. The well-known difficulty to control nonholo-
nomic systems is that they are not stabilizable by smooth
time-invariant feedback. Therefore, numerous works have been
proposed, relying either on time-varying controllers—see [4],
[7], [9], and [8] or on non-smooth controllers, as seen, e.g., in
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[5], [19]. As a matter of fact, smooth controllers must rely on
persistency of excitation [20] both in stabilization and tracking
control tasks [21]. Such controllers are increasingly popular
since their first appearance in the literature, for tracking [22],
as for stabilization [23].

Besides the difficulties imposed by the nonholonomic con-
straints, controlling a group of such autonomous vehicles
is stymied by the additional encumbrances introduced by
the nature of the connectivity among the vehicles. In this
regard, the literature on consensus is very rich, specifically
for linear systems. Many works also address problems of
formation and consensus of multiple robots interacting over a
communications network, but the vast majority pertain to the
case in which the network’s topology is undirected, whether in
tracking or stabilization problems— see, e.g., [2], [5], [7], [8],
[10], [12], [13], [16], [17], [19], [24], and [25]. Comparatively,
there are relatively few works on consensus-based stabilization
of multitude of vehicles interacting via a generic directed
network, if not for particular directed topologies [4] popular
leader-follower scenario which, in terms of graph theory,
pertains to the case in which the graph consists in a spanning-
tree graph [6]. See also [1] and [9].

In this letter we address a problem of stabilization and
formation consensus. The problem may be recast as part
of a complex multi-vehicle maneuver in which a group of
robots is required to stabilize around a pre-specified set-
point on the plane and acquire a common non-pre-specified
orientation (leaderless orientation consensus). The solution of
such problem naturally extends to other typical scenarii of
formation control, such as one in which the robots are required
to advance in formation, as in a scouting mission. This is
because our approach consists in separating the stabilization-
on-the-plane and consensus-orientation tasks.

There are many works that provide solutions to such prob-
lems [16], specially under a leader-follower approach [6], [10],
[12], [14], [17]–[19]. The main advantage of our controller is
that it applies to generic directed-topology networks under the
assumption that the graph contains a directed spanning-tree,
but does not need to correspond to one, as in a leader-follower
formulation. In addition, our controller is fully distributed; it
does not rely on information on the overall network—cf. [4].
From a control theory viewpoint, we stress that our results hold
for any initial conditions, as opposed, e.g., to schemes that
ensure semi-global stabilization [9]. As other works on partial
consensus (e.g., [1]) we focus on consensus of orientation only.
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II. PROBLEM FORMULATION

We consider the problem of formation control (stabilization
and tracking) and orientation consensus for a group of N
nonholonomic vehicles modeled by the equations

ẋi = cos(θi)vi (1a)
ẏi = sin(θi)vi (1b)
θ̇i = ωi, i ≤ N, (1c)

where (xi, yi) =: pi denote the Cartesian coordinates of the
center of mass of the ith robot on the plane, θi denotes
its orientation relative to the abscissae; these variables are
measured and are to be controlled. The forward velocity vi
and the angular velocity ωi constitute the control inputs.

The control goal consists in making the systems acquire a
formation around a specified reference point p∗i := (x∗

i , y
∗
i ),

which may be static or moving on the plane with forward
velocity vr and angular velocity ωr, both considered piece-
wise constant or zero (for set-point stabilization). In addition,
it is required that all the robots acquire and maintain a non-
pre-specified orientation θc. To that end, it is assumed that the
robots exchange their orientation measurement with a group of
neighbors in an unilateral fashion. In other words, the robots
form a directed-graph (digraph) network.

For the robots to achieve a formation we define for each of
them an offset δi := (δxi, δyi), relative to p∗i and the errors
p̄i := pi−δi−p∗i . Then, the formation control and orientation-
consensus control goals consist in ensuring that

lim
t→∞

|p̄i(t)| = 0, lim
t→∞

θi(t) = θc. (2)

This problem may be considered as part of a more complex
maneuver in which a group of initially scattered robots are first
summoned to a predefined rendezvous set-point and acquire
a common orientation. In this case p∗i may be set to a
constant. If the robots are required to advance in formation,
the reference point p∗i may be made move forward with
(piece-wise) constant velocity vr and, if required to change
orientation, a fictitious orientation-leader, with orientation θr
generated by θ̇r = ωr, may be incorporated in the network,
as long as at least one robot has access to θr.

Now, as is customary, the network may be modeled using
graph theory. Let aij = 1 if an interconnection from the node
j to the node i exists and aij = 0 if otherwise. Then, the
so-called Laplacian matrix L := [ℓij ] ∈ RN×N , where

ℓij :=

{
−aij ∀ i ̸= j∑

k∈Ni
aik, ∀ i = j

and Ni = {j ∈ {1, · · · , N} | (j, i) ∈ E}. In general, aij ̸= aji,
so L is not symmetric. We assume, however, that the digraph
contains a directed spanning tree, so the following statements
hold true.

Lemma 1: [26] If the directed graph G has a rooted
spanning tree then its associated Laplacian matrix L has a
simple null eigenvalue and 1N :=

[
1 · · · 1

]⊤
is its associated

right eigenvector of dimension N . In addition, all of the
remaining eigenvalues lie in the open right-half complex plane.
□

Lemma 2: [27] Let G be a directed graph of order N
and L ∈ RN×N be the associated non-symmetric Laplacian
matrix. Then, the following statements are equivalent:

1) the graph G has a spanning tree,
2) for any matrix QL ∈ RN×N , QL = Q⊤

L > 0 and for
σ > 0, there exists matrix P = P⊤ > 0 such that

PL+ L⊤P = QL − σ[P1Nv⊤ℓ + vℓ1
⊤
NP ], (3)

where vℓ is the left eigenvector associated to the single
zero eigenvalue of L. □

III. CONTROL APPROACH AND MAIN RESULTS

As is well-known [28], nonholonomic vehicles are not
stabilizable asymptotically via smooth control, unless it is
time-varying or non-smooth. In this letter we use the approach
of so-called δ-persistently-exciting (δ-PE) controllers [23].
These controllers are designed to inject an external time-
varying perturbation that is persistently exciting [20], as long
as a certain function of the state is away from the origin. The
control design is described next.

First, we introduce the error coordinates

zi :=

[
z1i
z2i

]
=

[
− sin(θi) cos(θi)
cos(θi) sin(θi)

] [
xi − δxi − p∗xi
yi − δyi − p∗yi

]
, (4)

which, in compact form, may be written as

zi :=

[
ϕ⊥(θi)
ϕ⊤(θi)

]
p̄i, p̄i :=

[
xi − δxi − p∗xi
yi − δyi − p∗yi

]
, (5)

where ϕ(θi) :=
[
cos(θi) sin(θi)

]⊤
and ϕ⊥(θi) =[

− sin(θi) cos(θi)
]
. The latter is the annihilator of the for-

mer: ϕ⊥(θi)ϕ(θi) ≡ 0. Then, after (5) and (1), we obtain[
ż1i
ż2i

]
=

[
−z2iωi

z1iωi + vi

]
−

[
ϕ⊥(θi)
ϕ⊤(θi)

]
ṗ∗i , (6)

where, for stabilization, we set ṗ∗i = 0 whereas for tracking,
we define ṗi∗ := ϕ(θi)vr, with vr piece-wise constant. In
either case, since ϕ⊥ϕ = 0 and ϕ⊤ϕ = 1,[

ż1i
ż2i

]
=

[
−z2iωi

z1iωi + vi − vr

]
(7a)

θ̇i = ωi. (7b)

Since the matrix in (4) is globally invertible, we have that
zi = 0 if and only if p̄i = 0, so the formation control problem
boils down to ensuring that zi → 0 and is decoupled from that
of achieving orientation consensus, that is, that θi → θj →
θc for all i, j ≤ N . Now, the consensus objective alone is
achieved by the common control law

ωi = −kw
∑
j∈Ni

aij(θi − θj), kw > 0, (8)

under the assumption that the graph contains a directed span-
ning tree.

On the other hand, to achieve, separately, the stabilization
objective, we see that the equations (7a) may be assimilated
to those of a stable (oscillatory) system with input vi − vr.
Hence, for any ωi ̸= 0, the control law

vi = −k2iz2i + (k1i − 1)ωiz1i + vr, k1i, k2i > 0, (9)
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makes zi → 0. To see this more clearly note that the closed-
loop system takes the form[

ż2i
ż1i

] [
−k2i k1iωi

−ωi 0

] [
z2i
z1i

]
,

which has a structure familiar in adaptive control—cf. [23].
Hence, it may be showed that if k2i > 0, z2i → 0 (see the
proof of our main result below). Moreover, if ωi depended only
on t, it would be sufficient to make ωi persistently exciting
(PE) [22], i.e., to ensure that there exist µ and T > 0 such
that ∫ t+T

t

|ωi(s)|ds ≥ µ ∀ t ≥ 0,

to ensure that z1i → 0. Making ωi be PE, however, means that
θi cannot converge to a constant value, which is part of the
orientation-consensus objective. In summary, persistency of
excitation is needed to attain the formation control objectives,
while it is required that ωi converge to zero to achieve orien-
tation consensus. To overcome this conundrum, we endow the
angular-motion consensus control law (8) with an oscillatory
perturbation that persists as long as |z1i| ≠ 0. That is, with a
δ-persistently exciting function [23].

A. Formation stabilization

Let vr = 0, that is, consider the problem of stabilizing all
the robots at around a fixed set-point p∗i .

Proposition 1 (Formation stabilization): Consider a net-
work of autonomous vehicles modeled as in (1), communi-
cating over a directed-graph containing a directed spanning
tree, in closed loop with the controller

vi =(k1i − 1)ωiz1i − k2iz2i, k1i, k2i > 0 (10a)

ωi =−kw
∑
j∈Ni

aij(θi − θj) + fi(t)βi(zi), kw > 0, (10b)

where

• for each i ≤ N , fi : R≥0 → R is twice continuously
differentiable, bounded with bounded derivatives, and ḟi
is persistently exciting, that is, there exist T , µ > 0 such
that ∫ t+T

t

|ḟi(s)|ds ≥ µ ∀ t ≥ 0;

• βi : R2 → R is twice continuously differentiable and
satisfies βi(zi) = 0 if and only if zi = 0.

Then, the formation set-point stabilization and orientation
consensus objectives (2) are fulfilled, while vi → 0 and
ωi → 0. □
Proof: Replacing the control laws (10) in the kinematics
equations (7), with vr = 0, we obtain the closed-loop system

ż1i = −ωiz2i (11a)
ż2i = k1iωiz1i − k2iz2i (11b)

θ̇i = −kw
∑
j∈Ni

aij(θi − θj) + fi(t)βi(zi). (11c)

We start by showing that zi ∈ L∞, where zi := [z1i z2i]
⊤.

To that end, we use the positive-definite, decrescent Lyapunov
function

Vz(z) =
1

2

N∑
i=1

[k1iz
2
1i + z22i]. (12)

Its total derivative along the trajectories of (11a)-(11b) yields

V̇z(z(t)) = −k2i

N∑
i=1

z2i(t)
2 ≤ 0. (13)

Integrating on both sides of V̇z(z(t)) ≤ 0, from to ≥ 0 to
t, we obtain [k1iz1i(t)

2 + z2i(t)
2] ≤ [k1iz1i(to)

2 + z2i(to)
2]

which implies that

|zi(t)|2 ≤ max{k1i, 1}
min{k1i, 1}

|zi(to)|2. (14)

That is, zi is uniformly globally bounded.
Strictly speaking, the latter holds only on the interval of

existence of t 7→ ω(t). Say, for a certain ∞ > tf > to, any
to ≥ 0 and for all t ∈ [to + tf ). In the sequel we show that
tf = +∞, that ω := [ω1 · · · ωN ]⊤ is also uniformly bounded
and, therefore, the arguments above hold for all t ≥ to ≥ 0.

To that end, we start by rewriting (10b) in multi-variable
compact form, i.e.,

ω = −Lθ + α(t, z), (15)

where α(t, z) := [ f1(t)β1(z1) · · · fN (t)βN (zN ) ]⊤ and
θ := [ θ1 · · · θN ]⊤. Then, following [27], we introduce the
synchronization errors

eθ = [IN − 1Nv⊤ℓ ]θ, (16)

which correspond to the vector eθ := [eθ1 · · · eθN ]⊤, where
eθi := θi − v⊤ℓ θ and v⊤ℓ θ is a weighted average of θ. That is,
consensus is reached if θi → v⊤ℓ θ for all i ≤ N or eθ → 0.

Remark 1: The errors eθ satisfy

ėθ = −Leθ + [IN − 1Nv⊤ℓ ]α(t, z). (17)

To see this, we note that from (16),

ėθ = −L[IN − 1Nv⊤ℓ ]θ + [IN − 1Nv⊤ℓ ]α(t, z),

so (17) follows observing that L1N = 0. •
Consider now the Lyapunov function Veθ = e⊤θ Peθ, where

P = P⊤ ∈ RN solves (3). Its total derivative along the
trajectories of (17) yields

V̇eθ = −e⊤θ [PL+ L⊤P ]eθ + 2e⊤θ P [IN − 1Nv⊤ℓ ]α(t, z),

so, using (3), we obtain

V̇eθ =− e⊤θ
[
QL − σ[P1Nv⊤ℓ + vℓ1

⊤
NP ]

]
eθ

+ 2e⊤θ P [IN − 1Nv⊤ℓ ]α(t, z).

However, since v⊤ℓ 1N = 1, the second term on the right-hand
side of the equation above equals to zero. Indeed, after (16),
P1Nv⊤ℓ eθ = P1Nv⊤ℓ [IN −1Nv⊤ℓ ]θ = P [1Nv⊤ℓ −1Nv⊤ℓ ]θ =
0N . Thus,

V̇eθ = −e⊤θ QLeθ + 2e⊤θ P [IN − 1Nv⊤ℓ ]α(t, z).
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Now, let ∆ := |P [IN − 1Nv⊤ℓ ]| where | · | denotes here the
induced matrix norm. For any tf > 0, let

∥α∥tf := sup
t∈[to,to+tf )

|α(t, z(t))|.

Then, defining qm := λmin(QL), we have

V̇eθ (eθ(t)) ≤ −qm|eθ(t)|2 +∆|eθ(t)|∥α∥tf (18)

for all t ∈ [to, to + tf ). We show by contradiction that tf =
+∞, so all of the above holds for all t ≥ to.

Assume that |ω(t)| → ∞ as t → tf < ∞. Then, since
θ(t) =

∫ t

to
ω(t)dt we have |θ(t)| → ∞ as t → tf . On the other

hand, Veθ (eθ(t)) := θ(t)⊤[IN − 1Nv⊤ℓ ]
⊤[IN − 1Nv⊤ℓ ]θ(t),

so Veθ (eθ(t)) → ∞ as t → tf . Next, defining ν(s) :=
Veθ (eθ(s)), after (18), we have

ν̇(t) ≤ ∆2

2qm
∥α∥2tf . (19)

Integrating on both sides of (19), from to to tf , we obtain

lim
t→tf

ν(t) ≤ ∆2

2qm
∥α∥2tf [tf − to] + ν(to).

By assumption tf < ∞, so the right-hand side of the inequality
above is finite, whereas

lim
t→tf

ν(t) = lim
t→tf

Veθ (eθ(t)) = +∞,

which is a contradiction. We conclude that tf = +∞ so (13)
holds along trajectories for all t ≥ to and zi(t) is uniformly
globally bounded. Also, in view of the latter, the continuity of
α(t, ·) and the uniform boundedness of α(·, z), t 7→ α(t, z(t))
is uniformly bounded, that is, ∥α∥2∞ < ∞. From this and
integrating on both sides of (18) along the trajectories, from
to to ∞, we obtain that eθ is uniformly globally bounded.

We show next that ω is also uniformly globally bounded.
For this, we note that the Laplacian matrix L admits the
decomposition L = UMU−1 where U is a matrix whose
columns are the right eigenvectors of L, i.e., U = [1N U1],
U−1 = [v⊤ℓ U†

1 ]
⊤, and M contains the Jordan blocks corre-

sponding to the eigenvalues of L. The first eigenvalue of M
being zero and simple, we also have L = U1M̄U†

1 , where M̄
contains all the Jordan blocks of L corresponding to the non-
zero eigenvalues. It follows that Lθ = U1M̄U†

1θ, so |Lθ| ≤
λmax(L)|U1U

†
1θ| = λmax(L)|[IN − 1Nv⊤ℓ ]θ| = λmax(L)|eθ|.

We conclude that |Lθ(t)| is uniformly globally bounded. From
this, and the boundedness of fi and α(t, z(t)), it follows that
ω in (15) is also uniformly globally bounded, and so is θ̇ = ω.

Finally, for further development, we remark that ω̇ is also
globally uniformly bounded, since so are all the terms on the
right hand side of

ω̇i = −kw
∑
j∈Ni

aij(ωi − ωj) + fi(t)
∂β(zi)

∂zi
żi + ḟi(t)β(zi).

(20)
Next, we establish the convergence of z and Lθ. This part

of the proof relies on a recursive application of Barbălat’s
Lemma.

First, we integrate on both sides of (13) from to to ∞.
Since z is globally uniformly bounded we obtain that z2 ∈ L2.

Since, moreover, ż2 ∈ L∞ we obtain, by [20, Lemma 3.2.5]
that z2 → 0 asymptotically. To establish the convergence of
z1 we proceed by establishing, first, the convergence of ωiz1i
for any i ≤ N . This follows from the fact that both terms on
the right hand side of

k1iωiz1i = k2iz2i − ż2i

—cf. (11b), converge to zero. That z2i → 0 was established
above, while the convergence of ż2i follows from Barbălat’s
Lemma. Indeed, on one hand, z̈2i is uniformly globally
bounded since so are all terms on the right hand side of

z̈2i = k1iω̇iz1i + k1iωiż1i − k2iż2i

= k1i

[
− kw

∑
j∈Ni

aij(ωi − ωj) + fi(t)
∂β(zi)

∂zi
żi

]
z1i

+ k1iḟi(t)β(zi)z1i − k1iω
2
i z2i − k1ik2iωiz1i + k22iz2i.

(21)

On the other hand,

lim
t→∞

∫ t

to

ż2i(τ)dτ = lim
t→∞

z2i(t)− z2i(to) = −z2i(to).

Now, since |ωiz1i| → 0 and both ωi and z1i are uniformly
globally bounded, either z1i → 0 or ωi → 0. In the first case,
the proof is completed. Hence, let us assume that ωi → 0 and
turn our attention to the term k1iḟi(t)β(zi)z1i on the right-
hand side of (21). By assumption βi(zi) = 0 if and only if
zi = 0 and ḟi is persistently exciting. Therefore, since t 7→
βi(zi(t)) is uniformly globally bounded we see that z1i → 0
if and only if so does

k1iḟi(t)β(zi)z1i = z̈2i + k1iω
2
i z2i + k1ik2iωiz1i − k22iz2i

−k1i

[
kw

∑
j∈Ni

aij(ωi − ωj)− fi(t)
∂β(zi)

∂zi
żi

]
z1i.

We proceed to establish the convergence of all the terms on
the right-hand side of the previous expression, individually. As
a matter of fact, this has already been done for the second,
third, and fourth terms, since both z2i and ωiz1i converge
to zero. Furthermore, the convergence of the last term on
the right-hand side follows from that of żi and the uniform
boundedness of fi(·) and βi(zi(·)). In addition, by assumption
ωi → 0, so it is only left to show that z̈2 → 0. To that end,
we use Barbălat’s Lemma once more. First, we observe that,
for any to ≥ 0

lim
t→∞

∫ t

to

z̈2i = lim
t→∞

ż2i(t)− ż2i(to) = −ż2i(to). (22)

On the other hand, we observe that t 7→ z̈2i(t) is uniformly
continuous since z

(3)
2i is uniformly globally bounded. Indeed,

so are all the terms bounded on the right-hand side of

z
(3)
2i = k1i

[
− kw

∑
j∈Ni

aij(ω̇i − ω̇j) + ḟi(t)
∂β(zi)

∂zi
żi

+ fi(t)ż
⊤
i

∂2β(zi)

∂2zi
żi + fi(t)

∂β(zi)

∂zi
z̈i
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+ f̈i(t)β(zi) + ḟi(t)
∂β(zi)

∂zi
żi

]
z1i

+ k1i

[
− kw

∑
j∈Ni

aij(ωi − ωj) + fi(t)
∂β(zi)

∂zi
żi

+ ḟi(t)β(zi)

]
ż1i − 2k1iωiω̇iz2i − k1iω

2
i ż2i

− k1ik2iω̇iz1i − k1ik2iωiż1i + k22iż2i.

This completes the proof. ■

B. Formation tracking
Complementary to the formation stabilization and orienta-

tion consensus tasks that are ensured by the controller (10),
consider now the problem of making a group of robots acquire
a formation around a pre-specified rendezvous point, with
common orientation, and to advance in formation with piece-
wise constant forward velocity vr. This task is achieved by
setting each reference trajectory to ṗ∗i := ϕ(θi)vr and using
the linear-motion controller (9), as described in Section III.
Then, if in addition the robots are required to change direction,
a virtual orientation leader may be incorporated. This is
accomplished by modifying (8) into

ωi = −kw

(∑
j∈Ni

aij(θi − θj) + bir(θi − θr)

)
+ fi(t)βi(zi).

(23)
Then, we have the following.

Proposition 2 (Formation tracking): Let vr and ωr be
piece-wise constant functions of t such that, after a certain
T > 0, vr → 0 and ωr → 0 exponentially. Consider a network
of autonomous vehicles modeled as in (1), communicating
over a directed-graph containing a directed spanning tree GT ,
in closed loop with the controller defined by (9) and (23),
with θ̇r = ωr, bir ≥ 0 for all i ≤ N and bkr > 0, where k
is the index of the root node of GT . Under the conditions of
Proposition 1, (2) holds with θc = θr. □

Proof: The closed-loop equations correspond to Eqs.
(11a)-(11b) and, in terms of the synchronization errors, eθ =
θ − 1Nθr, ėθ = −kw[L + B]eθ + α(t, z) − 1Nωr, where
B = diag[bir]. Under the above-stated assumptions, [L + B]
is a non-singular M -matrix, so for any Q > 0, there exists
a matrix P > 0 that solves the Lyapunov equation −P [L +
B]−[L+B]⊤P = −Q (for details, see Theorem 4.25 in [29]).
Then, since ωr → 0 exponentially, the proof follows as in that
of Proposition 1.

IV. SIMULATION RESULTS

We simulated two experiments involving a group of eight
vehicles interconnected as in the directed graph showed in
Fig. 1, which contains a directed spanning tree. The first
experiment consists in making all robots meeting around the
origin, so xr = (0, 0), at the vertices of an octagon and
acquiring a common non pre-imposed orientation θc. The
initial positions on the plane are depicted in Fig. 2 with a ‘◦’
while the initial orientations are set to θ(0) := [π/2 0 π/8 −
π/8 π/3 π/5 − π/7 π/6]. The control gains were set to the
same values for all robots, as follows: k1i = 3.5, k2i = 30,

x1xr

x3

x2 x4

x5x6 x7

x8

Fig. 1. Connection digraph for the eight communicating agents and one
virtual leader xr .

and kw = 1. In addition, we used fi(t) = cos(15t)− sin(35t)
and βi(zi) = 22z1i.

The paths followed by the robots on the plane are also
showed in Fig. 2 below, and their final consensual orientation
(θc ≈ 35 [deg]) is illustrated with pointing arrows.

-10 -5 0 5

-6

-4

-2

0

2

4

6 Robot 1
Robot 2
Robot 3
Robot 4
Robot 5
Robot 6
Robot 7
Robot 8

Fig. 2. Vehicles on the phase plane converging to a rendezvous point

0 0.2 0.4 0.6 0.8 1 1.2

-5

0

5

Fig. 3. Systems’ error trajectories in Cartesian coordinates

0 10 20 30 40 50

-1

0

1

2

Fig. 4. Systems’ orientations achieving consensus

In Figs. 3 and 4 we show the stabilization errors in Carte-
sian coordinates x̄i and ȳi, as well as the orientations. The
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consensus errors in Cartesian positions rapidly become very
small in norm while the orientations take a longer to settle
due to the persistent, but vanishing perturbation fi(t)βi(zi) in
(23), needed to achieve set-point stabilization.

In a second simulated experiment, the robots gather in
an octagonal formation and advance in formation along the
consensual direction, only that in this case a virtual orienta-
tion leader is incorporated. The virtual leader advances with
velocity vr = 0.05[m/s] either on straight paths, or makes turns
at an angular velocity of ωr = 0.1[rad/s] for short periods of
time. The paths followed by the robots are showed in Fig. 5.

-5 0 5 10 15 20

-5

0

5

10

15

Robot 1
Robot 2
Robot 3
Robot 4
Robot 5
Robot 6
Robot 7
Robot 8

Fig. 5. Systems’ paths on the phase plane converging to a formation
and moving with piece-wise constant velocities.

V. CONCLUSIONS

We presented a simple δ-persistently-exciting formation
controller for nonholonomic vehicles. The controller is effi-
cacious to stabilize a group of robots around a rendezvous
point with a common orientation, hence for the purpose of
executing scouting missions. In that regard, we showed how a
simple modification may be performed for tasks in which the
robots are required to advance in formation on straight lines
with common orientation and performing planned turns.

Further research is carried out to address the general prob-
lem of full consensus, in stabilization and orientation, for
robots over directed graphs.
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[21] D. A. Lizárraga., “Obstructions to the existence of universal stabilizers
for smooth control systems,” Mathematics of Control, Signals and
Systems, vol. 16, pp. 255–277, 2004.

[22] E. Panteley, E. Lefeber, A. Lorı́a, and H. Nijmeijer, “Exponential
tracking of a mobile car using a cascaded approach,” in IFAC Workshop
on Motion Control, (Grenoble, France), pp. 221–226, 1998.

[23] A. Lorı́a, E. Panteley, and A. Teel, “A new persistency-of-excitation
condition for UGAS of NLTV systems: Application to stabilization of
nonholonomic systems,” in Proc. 5th. European Contr. Conf., (Karlsrühe,
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