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On Global Asymptotic Stability of Heterogeneous Modular Networks
with Three Time-Scales

Anes Lazri Elena Panteley Antonio Lorı́a

Abstract— We analyse the collective bahaviour of relatively
large networks with the characteristic that nodes may be
compartmentalised in modules. These are groups of systems
that may be regarded as subnetworks in which each group
of nodes achieves consensus with a certain rapidity. The
dynamics of such networks exhibits, at least, two time-scales,
for which singular perturbations methods may be used to
assess the overall behaviour. In this paper, we demonstrate that
there are actually three natural time-scales and, accordingly,
three interconnected dynamical systems with distinct speeds of
convergence coexist. Our main statement establishes conditions
for global asymptotic stability of the origin in such networked
systems. In particular, we focus on bilinear heterogeneous
systems and provide an illustrative example concerning chaotic
oscillators.

I. INTRODUCTION

Modular networks are, generally speaking, networks of
a large number of nodes that are compartmentalised in
groups of nodes called modules. These are sparsely con-
nected among themselves and the nodes contained within
are densely interconnected [1], [2], [3]. Because of their
complexity and large dimension, they are difficult to analyse;
one approach consists in considering many agents in a
module as a single node. This approach has been used both
for undirected [4], [5], [6] and directed networks [7], [8].
This view is specially fit in networks such that agents within
a module reach consensus relatively fast, before achieving
consensus with nodes of other modules. Or, in other words,
modules that have reached their own individual consensus
find agreement among themselves at a slower pace [6], [9].
This is specially true if the coupling gain within a module
is considerably larger than the one amongst modules.

Such considerations lead naturally to multi-time scale
models that can be studied using singular-perturbation theory
[10], using the inverse of the coupling gain as singular
parameter [11]. In the latter, is used to define a two-time
scale modelling of a heterogeneous network ; the authors
show that the emergent dynamics correspond to a slow
subsystem while the synchronisation errors form a fast
subsystem. Singular perturbation is also used in [12] to
show that, for interconnected linear systems with switching
interconnection topology and linear coupling, if the coupling
gain is sufficiently high, the synchronised behaviour can be
approximated by a reduced order switching system.
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Using time-scale separation for sparse dynamic networks
goes back to [13], where the authors focus on the consensus
problem for linear systems and develop a two-time scale
model of the network, allowing to approximate the overall
behaviour of a clustered network. This idea is extended
in [4], where a nonlinear network of internally dense and
externally sparse interconnections is studied. The densely
connected nodes in these areas synchronise in the fast time
scale, and behave as aggregate nodes that dominate the
slow dynamics of the network. A fundamental assumption is
that the interaction network consists of sparsely connected
modules of densely connected agents.

In addition to control problems, analysis problems have
also been addressed for systems with three different time
scales. In [14] the authors study the synchronisation of linear
systems interconnected over a modular network. In order
to explain the three-time scales behaviour, the authors use
transformations taking into account the spectral properties
of the network Laplacian.

In order to explicit the dynamics of variables evolving
on different time scales, the authors generally resort to
numerous transformations. In [15], the authors propose a
projection-based model reduction method for multi-agent
systems defined on a graph. The proposed method allows to
gather many nodes of a graph into one and gives a maximum
bound of the H2-norm comparing the input-output behaviour
of the original system and the reduced system, for simple
integrators. Moreover, many projections by eigenvalue as-
signment can also be found in the literature. In [16], based
on the eigenvalues of the Laplacian, the authors propose
a method of order reduction allowing to obtain a reduced
model of the same structure (the coupling remains diffusive)
and thus to keep the synchronisation properties for a network
with linear dynamics.

In this paper, we present a three-time scales modelling
of undirected modular networks based on the values of the
interconnection gains within clusters and between clusters,
but also on the intensity of interconnections within clusters.
The goal of this modelling is to facilitate the demonstration
of conditions allowing to obtain the global stability of the
origin for the dynamics of such networks.

The remainder of this paper is organised as follows. In
section II we lay down our main hypotheses; in Section III
we describe develop the three-timescales network model; in
Section IV we present our main statement; numerical simu-
lation results are provided in Section IV; and we conclude
with some remarks in Section VI.



II. PROBLEM FORMULATION

We consider the problem of stabilising a (large) group
of N heterogeneous dynamical systems interacting over a
network under the following

Standing assumption: The network’s graph is connected
and undirected and the network’s topology is invariant.

It is further assumed that the network comprises mod-
ules, which consist in subgroups of nodes that are densely
interconnected and the modules themselves are sparsely
connected—see Figure 1. Such types of networks are com-
mon, e.g., in large-scale power networks [13]. In the latter,
subnetworks concentrated in smaller geographical regions
comprise many more links than there are connecting one
region to another.
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Fig. 1. Schematic representation of an undirected modular network com-
posed of N nodes and m modules; the nodes within one module are densely
connected while the modules are sparsely connected among themselves

Under the standing assumption, the network’s topology is
captured by the properties of the so-called Laplacian matrix
L ∈ RN×N , which posses a unique zero eigenvalue and all
the others have positive real part. Furthermore, in view of
the modular structure of the network the Laplacian may be
decomposed into two matrices that we refer to as internal
and external Laplacians ans are defined, respectively, as

LI = blockdiag
[
LI1 L

I
2 · · · LIm

]
, LIk ∈ RNk×Nk , k ≤ m

and LE = L−LI . The entries of LIk and L are respectively
given by

`Iki,j =


−aIkij , i 6= j
Nk∑
` = 1
` 6= i

aIki` , i = j , `i,j =


−aij , i 6= j
N∑

` = 1
` 6= i

ai`, i = j

where aIkij > 0 if there is a link between the nodes belonging
to the kth module, labelled (k, i) and (k, j) and aIkij = 0
otherwise. For the Laplacian L, as is customary, aij > 0
if there is a link between the ith and jth nodes within the
entire network, i.e., for all i, j ≤ N and aij = 0 otherwise.

Assumption 1: For each agent the influence between the
agents of the same cluster is higher than the influence among
clusters, i.e., σE |LE | < σI |LI |, where | · | denotes the
induced L2 norm. •

We address the problem of stability analysis and set-point
stabilisation of the origin for such networks of nonlinear
systems with dynamics given by

ẋk,i = Ak,i(xk,i)xk,i + uk,i, k ≤ m, i ≤ Nk, (1)

where m denotes the number of modules in the network,
Nk denotes the number of nodes in the kth module, for each
(k, i), xk,i ∈ Rnx denotes the state of the ith node within the
kth module, uk,i denotes its control input, and Ak,i(xk,i) ∈
Rnx×nx . In addition, we state the following.

Assumption 2: For each (k, i), Ak,i is continuously dif-
ferentiable and of linear growth, that is, there exist β1, β2,
such that

|Ak,i(xk,i)| ≤ β1 + β2|xk,i| ∀xk,i ∈ Rnx . (2)

In addition, the systems’s solutions are bounded. •
Remark 1: The class of systems that we consider includes

a variety of physical systems, notably nonlinear oscillators,
such as bilinear chaotic systems. The assumption on semi-
passivity is imposed to ensure that the solutions are ulti-
mately bounded [17]. •

Now, because of the modular structure of the network,
we consider that it is driven by fully distributed consensus
control laws of the form

uk,i = uIk,i + uEk,i, (3a)

uIk,i = −σI
Nk∑
j=1

aIkij (xk,i − xk,j) (3b)

uEk,i = −σE
m∑

` 6= k
` = 1

Nk∑
j=1

aEij(xk,i − x`,j) (3c)

where σI is the interconnection gain between the agents
within one cluster and σE corresponds to the interconnection
gain among clusters, and aEij denotes each link between the
ith node within the kth module and its neighbours in other
modules, i.e., the jth neighbour within the `th module for
all j ≤ N` and ` ≤ m, with ` 6= k. We have that aEij > 0 if
such link exists and aEij = 0 otherwise.

In multi-variable compact form, these control
laws become uI = −σI [LI ⊗ Inx

]x and uE =
−σE [LE ⊗ Inx

]x and u = uI + uE , where
u :=

[
u>1,1 · · · u>1,N1

· · · u>m,1 · · · u>m,Nm

]
. So,

defining x :=
[
x>1,1 · · · x>1,N1

· · · x>m,1 · · · x>m,Nm

]
,

and A(x) := blockdiag
[
A1,1(x1,1), A1,2(x1,2), · · ·

Am,Nm
(xm,Nm

)
]
, we write the closed-loop dynamics

ẋ = A(x)x− σI [LI ⊗ Inx
]x− σE [LE ⊗ Inx

]x. (4)

After [17], the collective behaviour of a connected network
of nonlinear heterogeneous systems, with associated Lapla-
cian matrix L, may be completely assessed by the study of
an “average” dynamical system with state xs = [v>` ⊗ In]x,
where v` corresponds to the left eigen-vector associated to
the unique zero eigenvalue of L, and dynamics

ẋs = Fs(xs), (5)



and the synchronisation errors e, which are defined relative to
the trajectories of (5), i.e., e := x−[1N⊗In]xs. Then, we say
that the systems tend to dynamic consensus if e→ 0. That is,
if all systems tend to mutually synchronise and, in doing so,
their behaviour approaches asymptotically that of (5). This
means, in particular, that the origin is globally asymptotically
stable for the networked system (4) if, both, the average and
synchronisation error dynamics are globally asymptotically
stable at the origin {(xs, e) = (0, 0)}.

The rest of the paper, is devoted to analysing the stability
of the origin {x = 0}, for Eq. (4). Our main statement is that
for sufficiently large coupling gains σI and σE , the origin
is globally asymptotically stable. The analysis relies on the
fact that by virtue of an appropriate change of coordinates
inspired from [17], Eq. (4) may be written in singular-
perturbations form [10]. As a matter of fact, we demonstrate
that three different scales of time co-exist corresponding to
three underlying dynamics: the fastest corresponds to what
we call the intra-cluster synchronisation errors, a moderately
paced dynamics corresponds to that of the average motion
for each module, and a slow dynamics pertains to that of the
average of average motions. These dynamical models are
described in detail next.

III. TIME-SCALE SEPARATION

In view of the modularity of networks such as the one
depicted in Figure 1 and the fact that nodes within each
cluster synchronise “rapidly”, it results sensible to reduce
the network’s dimension, roughly, by considering that each
module behaves as one node. To that end, as in [15], we
identify the network’s modules and label them Ck. The set
of such modules forms a so-called partition that we denote by
π = {(C1), (C2), ..., (Cm)}, and to this partition corresponds
a characteristic matrix P (π) ∈ RNm defined by

P (π) = blockdiagk≤m{1Nk
} (6)

that may be employed to define new coordinates that lead to
a model reduction of the network [15].

In this paper, we also rely on coordinate transformations,
albeit different from the one used in [15], to exhibit the triple
time-scale separation mentioned above, we perform certain
changes of variable, following [17].

A. Intra-modular dynamics

Consider, for the time-being, the kth module which, itself,
consists in a connected (sub)network with Laplacian LIk and
containing Nk nodes. This matrix contains a unique zero
eigenvalue with associated left eigenvector v`k := 1

Nk
1Nk

,
with 1Nk

:= [1 1 · · · 1]>, and Nk−1 others with positive real
part. Moreover, it admits the Jordan’s decomposition

LIk = Vk

[
0 0
0 ΛIk

]
V >k (7)

where ΛIk ∈ R(Nk−1)×(Nk−1) is positive definite and Vk ∈
RNk×Nk is an invertible transformation matrix defined as
Vk = [1Nk

Qk]. That is, its first column corresponds to the

right eigenvector of LIk and has other Nk−1 linearly inde-
pendent columns gathered in the matrix Qk ∈ RNk×(Nk−1),
which admits the left inverse Q†k := (Q>k Qk)−1Q>k . Thus,
we introduce the new variables ζk ∈ Rnx and ξk ∈ RnxNk−1[

ζk
ξk

]
=

[
[v>`k ⊗ Inx

]

[Q†k ⊗ Inx ]

]
x̄k,

where x̄k := [x>k,1 x
>
k,2 . . . x>k,Nk

]> denotes the vector of
states corresponding to all the nodes in the kth module. The
state variable ζk may be regarded as the weighted average
of the kth module’s nodes’ states while ξk is a projection of
the synchronisation errors, ek ∈ RnxNk , that is,

ek := x̄k − [1Nk
⊗ Inx

]ζk = [Qk ⊗ Inx
]ξk. (8)

Hence, ξk = 0 if and only if the nodes in the kth cluster
synchronise with the dynamics of the corresponding averaged
system.

After the previous observations we have that all the nodes
states in the kth module, xk,i, converge to zero if and
only if so do ξk and ζk. But since the modules are not
isolated, we must study the dynamics of ξk and ζk for all the
modules. To that end, we introduce the variables ζ ∈ Rm,
ζ := [ζ1 · · · ζm] and ξ ∈ RNk−1m, ξ := [ξ>1 · · · ξ>m]>

defined by[
ζ
ξ

]
=

[
[(P>P )−1P>]⊗ Inx

[(Q> Q)−1Q>]⊗ Inx

]
x =

[
P †

Q†

]
x, (9)

where P is defined in (6) and Q = blockdiagk≤m{Qk}
Hence, differentiating on both sides of (9) we obtain

ζ̇ = f1(ζ, ξ) (10a)

ξ̇ = −σI(ΛI ⊗ Inx
)ξ + f2(ζ, ξ), (10b)

for which we used LIP = (P>P )−1P>LI = 0 and ΛI ∈
R(N−m)×(N−m) is defined as ΛI := blockdiagk≤m{ΛIk},

f1(ζ, ξ) = P †A
(
P̄ ζ + Q̄ξ

)
[P̄ ζ + Q̄ξ]

−σEP †[LE ⊗ Inx
]
[
P̄ ζ + Q̄ξ

]
, (11)

f2(ζ, ξ) = Q†A
(
P̄ ζ + Q̄ξ

)
[P̄ ζ + Q̄ξ]

−σEQ†[LE ⊗ Inx ]
[
P̄ ζ + Q̄ξ

]
,

P̄ := (P ⊗ Inx), and Q̄ := (Q⊗ Inx).
From Eqs. (10) and the expressions above, we see the

following. Considering fξ as composed of perturbing terms
depending on ζ and on “output injection” terms depending
on ξ, one may infer that the −ΛI being Hurwitz and the
coupling gain σI being relatively large, such that σI � σE ,
ξ → 0. Then, on the synchronisation manifold {ξ = 0},
all the nodes behave as their respective average dynamics,
comprised in ζ̇ = f1(ζ, 0). This rationale is made more
precise in Section IV.

B. Inter-modular dynamics

Now we investigate the dynamics of (10), which roughly
corresponds to the network of averaged modules. In other
words, we consider the modules as nodes in a reduced
network of m elements—cf. [16],[18], [19]. Then, to asses



the behaviour of this reduced network we apply, again, a
similar change of variable as above. To that end, we start by
observing that the reduced-order network is also connected
and has the associated Laplacian

L̄E =


aE11
N1

−a
E
12

N1
. . . −a

E
1m

N1

...
. . . . . .

...
... . . .

. . .
...

aEm1

Nm

aEm2

Nm
. . .

aEmm

Nm
.

 . (12)

After [15, Lemma 3], the eigenvalues of L̄E satisfy
λ1(L̄E) = 0 and λi(L̄E) > 0, ∀i ∈ {2, 3, ...,m}. Therefore,
as L and LI , LE admits a Jordan decomposition; that is,
there exists a nonsingular matrix W ∈ Rm×m such that

L̄E = W

[
0 0
0 ΛE

]
W−1, (13)

where ΛE ∈ R(m−1)×(m−1) is the diagonal matrix defined
by the eigenvalues of L̄E with positive real part, that is,
ΛE := diagi∈{2,3...,m}{λi(L̄E)}. As a matter of fact,

W = [1m W1], (14)

W−1 =

[
v>`
W †1

]
, W †1 = (W>1 W1)−1W>1 .

Then, as before, following [17], we introduce the new
variables [

xe
η

]
=

[
v>` ⊗ Inx

W †1 ⊗ Inx

]
ζ; (15)

the variable xe ∈ Rnx corresponds to the “weighted average
of averages ζk”, while η is a projection of all the synchroni-
sation errors ζk − xe. That is, the vector of synchronisation
errors corresponds to

eη := ζ − [1m ⊗ Inx
]xe = [W1 ⊗ Inx

]η. (16)

That is, when η = 0 all the states of the reduced network (of
modules) reach consensus with the xe–system. To analyse
the behaviour of eη and xe, we differentiate on both sides
of (15). We obtain

ẋe = fe(xe, η, ξ) (17a)
η̇ = −σEΛ̄Eη + fη(xe, η, ξ), (17b)

where

fe(xe, η, ξ) = [v>` ⊗ Inx ] f1

(
[W ⊗ Inx ]

[
xe
η

]
, ξ

)
fη(xe, η, ξ) = [W †1 ⊗ Inx ] f1

(
[W ⊗ Inx ]

[
xe
η

]
, ξ

)
+ σEΛ̄Eη,

and ΛE ∈ R(m−1)×(m−1) is defined as Λ̄E = ΛE⊗ Inx
. We

remark that in the argument of f1 above, we used (16) and[
v>` ⊗ Inx

W †1 ⊗ Inx

]−1
= [W ⊗ Inx ]. (18)

C. Multi-timescale overall network dynamics

Define εE := 1/σE and εI := 1/σI , which satisfy, by
assumption, εI � εE � 1. After the previous computations,
we see that

ẋe = fe(xe, η, ξ) (19a)

εE η̇ = −Λ̄Eη + εEfη(xe, η, ξ) (19b)

εI ξ̇ = −Λ̄Iξ + εIfξ(xe, η, ξ), (19c)

where fη is defined above and

fξ(xe, η, ξ) = f2

(
[W ⊗ Inx

]

[
xe
η

]
, ξ

)
.

The system (19) is in standard singular perturbation form
[10], albeit with three time-scales. As explained at the end of
Section II, there co-exist three dynamical systems: Eq. (19a),
which is the slowest, corresponds to the weighted average of
all nodes’ states; Eq. (19b), which is moderately fast, corre-
sponds to the projection of the inter-cluster synchronisation
errors; and Eq. (19c), which is the fastest, corresponds to a
projection of the intra-cluster synchronisation errors.

Our main statement, which is presented in the next sec-
tion, establishes global asymptotic stability of the origin
{(xe, η, ξ) = (0, 0, 0)} for (19), which is equivalent to global
asymptotic stability of the origin {x = 0} for (4).

IV. MAIN RESULT

Proposition 1: Consider the networked system (4) under
the Standing Assumption and Hypotheses 1 and 2. In addi-
tion, assume that for the system ẋe = fe(xe, 0, 0), the origin
xe = 0 is globally asymptotically stable and that there exists
a continuously differentiable Lyapunov function:Ve : Rnx →
R≥0 and a class K∞ function α(xe) =

√
q1|xe|2, q1 > 0

such that
∂Ve
∂x>e

fe(xe, 0, 0) ≤ −α(xe)
2 (20)

and c1 > 0 such that, ∣∣∣∣ ∂Ve∂x>e

∣∣∣∣ ≤ c1α(xe). (21)

Then, there exists σE
∗
> 0 and σI

∗
> 0 such that, for all

σI > σI
∗

and σE > σE
∗
, the origin of (4) is GAS. �

Sketch of proof: To analyse the stability of the origin for
(19), we recursively use Lemma 1 from the Appendix. We
use the lemma one first time with x := [x>e η>]>, z := ξ,
ε := εI ,

f(x, z) :=

[
fe(xe, η, ξ)

−σEΛ̄Eη + fη(xe, η, ξ),

]
,

g1(z) := −ΛIξ, and g2(x, z) := fξ(xe, η, ξ) to conclude the
main statement of global asymptotic stability for (x, z) =
(0, 0), that is, for {(xe, η, ξ) = (0, 0, 0)}. To that end,
according to Lemma 1 it must be established that both the
reduced model ẋ = f(x, 0), that is,

ẋe = fe(xe, η, 0) (22a)

η̇ = −σEΛ̄Eη + fη(xe, η, 0), (22b)



and the boundary-layer system

dξ

dτI
= −Λ̄Iξ, τI := t/εI (23)

which is expressed in a new time scale, are both globally
asymptotically stable. For the latter, this is evident since −Λ̄I

is Hurwitz and for (22) we apply Lemma 1 once more.
We consider now the reduced model (22) expressed in its

standard singular-perturbation form (19a)-(19b). In this case,
the boundary-layer system is

dη

dτE
= −Λ̄Eη, τE := t/εE (24)

and the reduced model is ẋe = fe(xe, 0, 0), where
fe(xe, 0, 0) corresponds to [v>` ⊗ Inx

]f1(ζ, ξ) with f1 as
defined in (11) with ζ = [v>` ⊗ Inx

]xe and ξ = 0. That
is, ẋe = fe(xe, 0, 0) is equivalent to

ẋe = Ae(xe)xe, (25)

with Ae(xe) = [v>` ⊗ Inx
]P †A

(
P̄ [v`⊗ Inx

]xe

)
P̄ [v`⊗ Inx

].
Remark 2: It is important to emphasise that the matrix Ae

above satisfies Assumption 2 that is, the averaged dynamics
(25) inherits the characteristics of the individual nodes—cf.
[17]. In particular, it is of linear growth in xe and, in view of
the definition of P—see (6), Ae corresponds to an average
of all the Ak,is. More precisely,

Ae =

m∑
k=1

1

mNk

Nk∑
i=1

Ak,i

( xe√
m

)
. (26)

•

V. SIMULATIONS RESULTS

To illustrate our main result, we performed numerical
simulations, using Matlab, for a modular network of N = 12
agents, compartmentalised into m = 4 modules with Nk = 3
∀k ∈ {1, 2, 3, 4} and interconnected over the undirected
graph showed in Figure 2 below

1,1 2,1 3,1 4,1

1,2 2,2 3,2 4,21,3 2,3 3,3 4,3

1

Fig. 2. Graph representing a modular network of twelve nodes organised
into four modules: nine different Lorenz oscillators and three stable systems
represented by red-circles

All the systems are of dimension three, with state xk,i :=
[xk,i yk,i zk,i]

>; in the numerical example nine of the
individual systems correspond to Lorenz oscillatorsẋk,i

ẏk,i
żk,i

 =

−σk,i σk,i 0
ρk,i −1 −xk,i
0 xk,i −βk,i


︸ ︷︷ ︸

Ak,i(xk,i)

xk,i
yk,i
zk,i

 , (27)

for all (k, i) ∈ {(1, 1) (1, 2) (2, 1) (2, 2) (3, 1) (3, 2) (4, 1)
(4, 2) (4, 3)} and three stable dynamical systems with
dynamics ẋk,i = −αxk,i with α = 15 and (k, i) ∈

{(1, 3) (2, 3) (3, 3)}. Note that for these systems, being either
(chaotic) oscillators or exponentially stable, the solutions
are bounded. Furthermore, it is clear from (27) that Ak,i
satisfies (2), so Assumption (2) holds. Furthermore, the
overall average dynamics (25) yields ẋe = Ae(xe)xe, with

Ae(xe) :=
−1

mNk

m∑
k=1

Nk∑
i=1

α+ 2σk,i −σk,i 0
−ρk,i α+ 1 xk,i

0 −xk,i α+ βk,i

 ,
so the Lyapunov function Ve(xe) = 1

2 |xe|
2 satisfies

V̇e(xe) = x>e [Ae(xe) + Ae(xe)
>]xe ≤ −α2 |xe|

2 for suffi-
ciently large values of α. In other words, if the poles of the
three stable systems are sufficiently far to the right of the
origin in the complex plane, the whole network is globally
asymptotically stable. The chaotic behaviour of the Lorenz
oscillators is “tamed”.

In Figure 3 we depict the trajectories of the system (19)
in singular-perturbation form.

10-3 10-2 10-1 100 101
-1.2

-0.7

-0.2

0.3

0.8

1.3

Fig. 3. Trajectories of the singularly-perturbed system (19) in logarithmic
time scale for better appreciation. The thinner solid lines represent (modulo
a projection) the synchronisation errors of the individual nodes relative to the
modules’ averages, all converging to zero. The dotted thicker lines represent
the synchronisation errors of each module relative to the modules’ average.
The latter, which also corresponds to the trajectories of the overall average
system, is depicted by the dashed thick magenta line. In this simulation we
used σI = 3000, σE = 100

The three-time scales is also appreciated in the behaviour
of the individual systems’ trajectories, which achieve consen-
sus within each module, then the modules achieve consensus
and finally, all of the systems, before converging to zero. See
Figure 4.
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Fig. 4. Trajectories of the nine chaotic oscillators and the three asymptoti-
cally stable systems in closed-loop, i.e., the solutions of (4), with σI = 3000
and σE = 100



Then, we executed a second simulation test using equal
values for the interconnection inter- and intra-modular gains.
In this case, the network is still asymptotically stable at
the origin, but only two time scales appear. The results are
showed in Figure (5).
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Fig. 5. Trajectories of the singularly-perturbed system (19) using the same
nomenclature as in Fig. 3 above. In this case, however, σI = σE = 500,
hence only two time-scales appear

VI. CONCLUSION

Through meaningful changes of coordinates, we exhibit
three different dynamics embeded in a large networked sys-
tem in which groups of rapidly synchronising agents interact.
We demonstrate that these interconnected systems may be
regarded as that of the collective dynamics within modules,
among modules and among all the agents. These systems
evolve in three different time-scales, which leads naturally
to a system that may be analysed via singular-perturbation
theory. A standing assumption for this time separation is
that the interconnection gains, within and among modules
are high. For nonlinear systems, however, rich very different
bahaviours may arise by varying the coupling intensity.
Current research is focused on extending the class of systems
as well as investigating the behaviour of the network in under
relativvely low values of the coupling gains.
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[13] J. Chow and P. Kokotović, “Time scale modeling of sparse dynamic
networks,” IEEE Transactions on Automatic Control, vol. 30, no. 8,
pp. 714–722, 1985.

[14] B. Adhikari, E. Panteley, and I.-C. Morrescu, “Three time scales
modeling of the undirected clustered network,” in 2022 IEEE 61st
Conference on Decision and Control (CDC), 2022, pp. 987–992.

[15] N. Monshizadeh, H. L. Trentelman, and M. K. Camlibel, “Projection-
based model reduction of multi-agent systems using graph partitions,”
IEEE Transactions on Control of Network Systems, vol. 1, no. 2, pp.
145–154, 2014.

[16] L. Yu, X. Cheng, J. M. Scherpen, and J. Xiong, “Synchronization pre-
serving model reduction of multi-agent network systems by eigenvalue
assignments,” in 2019 IEEE 58th Conference on Decision and Control
(CDC), 2019, pp. 7794–7799.

[17] E. Panteley and A. Lorı́a, “Synchronization and dynamic consensus
of heterogeneous networked systems,” IEEE Trans. on Automatic
Control, vol. 62, no. 8, pp. 3758–3773, 2017.

[18] B. Besselink, H. Sandberg, and K. H. Johansson, “Clustering-based
model reduction of networked passive systems,” IEEE Transactions
on Automatic Control, vol. 61, no. 10, pp. 2958–2973, 2016.

[19] X. Cheng, J. M. Scherpen, and B. Besselink, “Balanced truncation of
networked linear passive systems,” Automatica, vol. 104, pp. 17–25,
2019.

APPENDIX: RECALL ON SINGULAR-PERTURBATION
THEORY

Lemma 1 (corollary of Theorem 11.3 in [10]): Consider
a nonlinear autonomous singular perturbed system, where f
and g are continuously differentiable functions.

ẋ = f(x, z) (28a)

εż = g1(z) + εg2(x, z), (28b)

Assume further that the system is semi-passive, let h∗ be
the associated root of g1(z) = 0 defined on Dx ∈ Rn and
y = z − h∗. Assume that there exists Lyapunov functions
V (x) and W (z) such that the following is satisfied on Dx

∂V

∂x
f(x, h∗) ≤ −α1φ1(x)2 (29a)

∂W

∂y
g1(y + h∗) ≤ −α2φ2(y)2 (29b)

∂V

∂x
[f(x, y + h∗)− f(x, h∗)] ≤ β1φ1(x)φ2(y) (29c)

Also, α1, α2, β1, β2, γ are real positive constants and φ1, φ2
are positive definite functions. Then, ∃ε∗ > 0 such that ∀ε <
ε∗ the origin of (28) is asymptotically stable. �
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