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Bipartite Formation over Undirected Signed
Networks with Collision Avoidance

Pelin Şekercioğlu Ioannis Sarras Antonio Lorı́a Elena Panteley Julien Marzat

Abstract— We address the problem of bipartite formation
control, with collision avoidance, for double integrators
with limited sensing ranges. We assume that the systems
are interconnected over an undirected, signed, and bal-
anced network. Then, in order to ensure that the proximity
constraints are satisfied, we design a barrier-Lyapunov-
function-based control law that guarantees connectivity
maintenance for cooperative agents, and inter-agent colli-
sion avoidance. Relying on the edge-based agreement, we
establish asymptotic stability of the bipartite formation con-
trol for signed networks. Finally, we illustrate our theoretical
results via numerical simulations.

Index Terms— Formation consensus, non-holonomic
constraints, Lyapunov stability

I. INTRODUCTION

In spite of the abundant literature on consensus and syn-
chronization of multi-agent systems [1], most of the available
works on distributed control pertain to the case of cooperative
agents. However, there are scenarios in which not all the agents
cooperate, but some compete with each other. This is the case,
e.g., in Robotics, in the context of herding control [2], [3].
In these coopetition networks [4], competitive interactions are
represented by negative weights on the edges and cooperative
ones by non-negative weights. In view of this, the classical
consensus goal (stabilizing over a common equilibrium point)
is unachievable. Instead, the general attainable goal for this
kind of networked systems is multi-partite consensus, also
called fragmentation [4]. More precisely, for structurally bal-
anced undirected networks, the achievable goal is bipartite
consensus [5], in which all agents converge to the same state
in modulus, but with opposite signs. There are various studies
on bipartite consensus control, e.g., for single or double-
integrators [6] and linear high-order dynamics [7].

For autonomous vehicles, in addition to the convergence
towards a desired position/trajectory, a secondary objective is
to guarantee inter-agent collisions, while maintaining the infor-
mation exchange amongst cooperative agents. These objectives
are encoded as inter-agent constraints and are often handled
by artificial potential (navigation or barrier) functions—see
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e.g., [8], [9] and [10]. A barrier Lyapunov function [10] is
a type of Lyapunov function that is used to ensure that the
multi-agent system satisfies certain safety constraints, and to
make sure that the system does not enter a certain unsafe
region. Yet, there are few works in the literature that focus
on ensuring that the inter-agent constraints of a system are re-
spected in a scenario where agents may be in competition. The
connectivity-constrained multi-swarm herding is solved in [2]
using a mixed integer quadratically constrained program, non-
cooperative herding is achieved for single-integrator dynamics
in [3], while preventing some agents to escape from a protected
zone using control barrier functions. Yet, the control law in
[2], [3] are based on optimisation methods and the system is
modeled by a traditional cooperative network. Moreover, in
[3], only a two agents case is considered. In [11] collision
avoidance and connectivity maintenance for bipartite flocking
is achieved with artificial potential functions. The statements
rely on LaSalle’s invariance principle. However, in [11], a
minimal safety distance between agents is not guaranteed.

In this letter, we study the bipartite formation problem for
structurally balanced undirected signed networks of second-
order systems, under relative distance constraints. We propose
a bipartite formation controller that prevents the vehicles both,
from colliding and from separating beyond sensing ranges. Our
control design and analysis rely on the edge-based formulation
for signed networks [12], which allows to recast the problem
into one of stabilization of the origin in error coordinates.
On the other hand, in contrast to all the references mentioned
previously, we use barrier Lyapunov functions and we base our
control law on the gradient of a barrier Lyapunov function for
signed networks.

Thus, relative to the existing literature, we contribute with
a control law that ensures the bipartite formation for struc-
turally balanced signed graphs with guaranteed connectivity
maintenance for cooperative agents and inter-agent collision
avoidance by respecting a minimal safety distance between
any two agent. Our results apply to double integrators and we
establish asymptotic stability of the consensus manifold using
Lyapunov’s direct method, based on the edge-representation.
To the best of our knowledge, this has never been done for
signed graphs.

The remainder of this paper is organized as follows. In
Section II, we present the model and the problem statement
adopting the edge-based representation for signed networks.
The main results are presented in Section III. In Section IV,
we illustrate our numerical simulations, and we conclude the
paper with some closing remarks in Section V.



II. MODEL AND PROBLEM FORMULATION

A. Coopetition Networks

Consider a group of N dynamical systems modeled by

˙̄xi = vi, x̄i, vi ∈ R (1a)
v̇i = ui, ui ∈ R, i ∈ IN , (1b)

where IN := {1, 2, . . . , N}, x̄i = xi − di, where xi ∈ R is
the position of the ith agent with respect to a global frame,
and di is the relative displacement of the ith agent from the
center of a formation.

A commonly pursued initial problem in the literature, whose
solution can serve as a basis to tackle more complex missions
for such systems, is to gather in formation around a non-
specified consensual set-point. In this letter we focus our
attention on the case in which neighboring agents may be
cooperative or competitive. More precisely, we assume that the
agents interact over an undirected signed graph G and the set
of all vertices is V := {ν1, ν2, . . . , νN}. Then, the interaction
of cooperative agents is expressed by aij = 1 and, if it is
competitive, by aij = −1. In this case, formation consensus
is impossible, but the systems may achieve bipartite consensus
[5]. That is, either x̄i → xc or x̄i → −xc or, more precisely,

lim
t→∞

[x̄i − sgn(aij)x̄j ] = 0 (2a)

lim
t→∞

vi = 0 ∀i, j ≤ N. (2b)

In the absence of constraints, bipartite consensus for (1) is
achieved via the distributed control law

ui =− k1

N∑
j=1

|aij |[x̄i − sgn(aij)x̄j ]

− k2

N∑
j=1

|aij |[vi − sgn(aij)vj ]− k3vi, (3)

where k1, k2 > 0, k3 ≥ 0, if and only if G contains a
spanning tree and is structurally balanced [6]. A signed graph
is structurally balanced if it may be split into two disjoint sets
of vertices V1 and V2, where V1 ∪ V2 = V,V1 ∩ V2 = ∅ such
that for every i, j ∈ Vp, p ∈ {1, 2}, if aij ≥ 0, while for every
i ∈ Vp, j ∈ Vq , with p, q ∈ {1, 2}, p 6= q, if aij ≤ 0. It is
structurally unbalanced, otherwise [5].

In [6] it is established that the distributed control law in (3)
guarantees that the synchronization error ēk := [ēxk

ēvk ]>,
defined as

ēxk
:= x̄i − sgn(aij)x̄j , ēvk := vi − sgn(aij)vj , (4)

where k ∈ IM := {1, 2, . . . ,M}, converges to zero, thereby
making two sets of vertices V1 and V2 converge to the same
state in module but opposite in signs. For a structurally
balanced network, that is. However, in [6] neither proximity
constraints nor collision-avoidance are considered.

In realistic application scenarios, however, agents have lim-
ited communication range and must keep a minimum distance
from each other in order to prevent inter-agent collisions. Yet,
the control law in (3) does not guarantee bipartite consensus
under these constraints.

Mathematically, the agent i staying in the sensing zone
of agent j, where i, j ∈ Vl, l = {1, 2}, is expressed as
|xi − xj | < Rk for all i, j ∈ V1, and keeping a minimum
distance to keep to avoid collisions between agents means that
|xi − xj | > ∆k, where ∆k denotes the minimum distance to
keep between agents i and j, so that there are no collisions.
For the multi-agent system, the latter is defined as a set I
consisting of two inter-agent constraint sets. The first pertains
to the connectivity constraints among cooperative agents, and
is defined as

Ir := {xi ∈ R : |δk| < Rk, ∀i, j ∈ Vl, l = {1, 2}}. (5)

The second one is defined by the collision-avoidance con-
straints, i.e.,

Ic := {δk ∈ R : ∆k < |δk|, ∀k ∈ IM}, (6)

where δk := xi − xj .
Remark 1: Connectivity constraints for competitive agents

are not imposed since it is assumed that these have different
objectives and, therefore, they do not need to stay close to
each other. •

Then, for a pair of cooperative agents, the synchronization
errors defined in (4) take the form

ēxk
= x̄i − x̄j = δk − d̄k, i, j ∈ Vl, l = {1, 2}, (7)

while, for two competitive agents xi and xj , the error becomes

ēxk
= x̄i + x̄j = δk − d̄k + 2xj , i ∈ V1, j ∈ V2, (8)

with d̄k = di − sgn(aij)dj .

Thus, the bipartite-consensus objective for (1) is equivalent
to making xi − sgn(aij)xj → di − sgn(aij)dj , or equivalently
ēk → 0 and vi → 0. In that light, we remark that the syn-
chronization errors correspond to edge states [13], which are
particularly well-suited to multi-agent systems under state
constraints, such as (5) and (6). Hence, in this paper, we study
the bipartite consensus problem with constraints in edge-based
representation for signed networks [12]. This representation
has the advantage to recast the consensus problem into that
of stability of the origin in error coordinates ē. Thus, before
presenting our main results, we recall some facts about edge-
based signed graphs, according to [5] and [12] and we present
some new statements that are useful to establish our main
results.

B. The edge-based formulation for signed graphs

The elements of the Laplacian a signed graph, Ls, are

`sij =

{ ∑
h∈IN

|aih| i = j

−aij i 6= j.
(9)

The following definition introduces the incidence matrix of a
structurally balanced signed graph.

Definition 1: Consider a structurally balanced undirected
signed network G that contains N nodes and M edges. The



incidence matrix Es ∈ RN×M of G is defined as

[Es]ik :=



+1, if vi is the initial node of the edge ek;
−1, if vi, vj ∈ Vl, l = {1, 2} and vi is the

terminal node of the edge ek;
+1, if vi ∈ V1, vj ∈ V2 and vi is the

terminal node of the edge ek;
0, otherwise,

where ek = vivj , k ∈ IM , i, j ∈ IN are arbitrarily oriented
edges and V1 and V2 are the two disjoint sets of vertices. •

Using the incidence matrix we may express the synchro-
nization errors in (4), in the vector forms

ēx = E>s x̄, ēv = E>s v. (10)

The incidence matrix is also useful to factorize the node and
edge Laplacians, as established next.

Claim 1: The Laplacian matrix Ls and the edge Laplacian
matrix Les of a structurally-balanced graph G satisfy

Ls = EsE
>
s , Les = E>s Es. (11)

Proof of Claim 1: As the signed graph is structurally balanced,
we apply the gauge transformation on Ls, which consists
in pre- and post-multiplying Ls by the matrix D = diag(σ),
where σ = [σ1 . . . σN ], with σi = {±1}, i ∈ IN to obtain the
Laplacian matrix L of an unsigned network. Then again, we
apply the edge gauge transformation on the incidence matrix
Es of the signed network, using the matrix D = diag(σ) and
De = diag(σe), where σe = [σe1 · · · σeM ], with σei = 1 if
vi ∈ V1 and σei = −1 if vi ∈ V2 with vi being the initial node
of the edge [12, Lemma 4], to obtain the incidence matrix E
of an unsigned network.

Now, from the definition of the Laplacian matrix L = EE>

and the edge Laplacian matrix Le = E>E of an unsigned
network, and by applying the edge gauge transformation on the
incidence matrix E of an unsigned network from [12, Lemma
4], we have L = DEsDe(DEsDe)

> = DEsE
>
s D and Le =

(DEsDe)
>DEsDe = DeE

>
s EsDe as DeD

>
e = IM×M and

D>D = IN×N . Then, the definitions of Ls and Les in (11)
follow. •

Another utility of the incidence matrix, as defined in Def-
inition 1, is that for structurally balanced signed graphs con-
taining a spanning tree (sufficient and necessary condition for
bipartite consensus), it allows to distinguish the state-variables
related to an underlying-tree graph Gt, from the rest of states,
corresponding to the graph Gc := G\Gt. Then, the consensus
problem may be addressed as that of the stabilization of the
origin for a reduced-order system. To better see this, let the
incidence matrix Es be partitioned as

Es = [Ets Ecs ], (12)

where Ets ∈ RN×N−1 is the incidence matrix representing
the edges of the spanning tree of and Ecs ∈ RN×M−(N−1) is
the incidence matrix representing the remaining edges. In the
Proposition 1 below we define Es in terms of Ets . Then, after
(10) and (12) we have

ēx = [(E>ts x̄)> (E>cs x̄)>]>, ēv = [(E>tsv)> (E>csv)>]>,

so we may define ēx =: [ē>xt
ē>xc

]> and ēv =: [ē>vt ē>vc ]>.
The indices t and c refer, respectively, to states of the graphs Gt

and Gc. The Proposition 1 also establishes a relation between
the consensus errors ēx and the spanning-tree errors ēxt

, from
which it follows that the objective (2) is attained if ēxt → 0
and ēvt → 0.

Proposition 1: For a structurally balanced signed graph,
there exists a matrix Rs such that

Es = EtsRs, (13)

where

Rs := [IN−1 Ts], Ts := (E>tsEts)−1E>tsEcs . (14)

�

Proof: Applying the edge-gauge transformation and
using the partition of Es as in (12) we express the incidence
matrix of an unsigned graph E as

E = D[Ets Ecs ]De = [DEtsDet DEcsDec ], (15)

where De = diag([σet , σec ]) with σetj = {±1} and
σecl = {±1} for j < N − 1 and l ≤M −N + 1,
Det = diag(σet) and Dec = diag(σec) are the parts of
the edge-gauge transformation matrix corresponding to the
spanning tree and the remaining edges, respectively. For
an unsigned network, the columns of the incidence matrix
representing the remaining edges, Ec, are linearly dependent
on the columns of the incidence matrix representing the
spanning tree, Et, and this can be expressed using a matrix
T by Ec = EtT [13, Theorem 4.3]. So, replacing Ec and
Et by the expressions in (15) and left multiplying it by
(DEtsDet)

>, we obtain

T = Det(E
>
tsEts)−1E>tsEcsDec .

Then, we define Ts := DetTDec and Rs := [IN−1 Ts], and
the statement in (13) follows.

After Proposition 1, we have

ēx = (EtsRs)
>x̄ = R>s ēxt , (16a)

ēv = (EtsRs)
>v = R>s ēvt , (16b)

so the bipartite consensus objective is attained if ēxt → 0 and
ēvt → 0, as stated above. We show how next.

III. MAIN RESULTS

A. Barrier-Lyapunov-Function-based controller

A barrier Lyapunov function (BLF) [10], [13], [14] is
defined as follows.

Definition 2: Consider the system ẋ = f(x) and let I be
an open set containing the origin. A BLF is a positive definite
function W : I → R≥0, x 7→ W (x), that is C1, satisfies
Ẇ (x) ≤ 0, and has the property that W (x)→∞, ∇W (x)→
∞ as x→ ∂I. •

Now, from (7) and (8), the constraints in (5) and (6) in terms
of the errors in (4) are given by the sets

Ir := {ēxk
∈ R : |ēxk

+ αk| < Rk, ∀k ∈ Im}, (17a)
Ic := {ēxk

∈ R : ∆k < |ēxk
+ αk|, ∀k ∈ IM}, (17b)



where I = Ir ∪ Ic and Im ⊂ IM consists of the index of
m cooperative edges, such that m < M , which are the edges
with strictly positive weights, and αk is defined as

αk :=

{
d̄k if i, j ∈ Vl, l = {1, 2}

δk − ēxk
if i ∈ V1, j ∈ V2.

(18)

Then, for each k ∈ IM, we define a BLF Wk : R→ R≥0, as

Wk(ēxk
) =

1

2
[|ēxk
|2 +Bk(ēxk

)], (19)

where Bk(ēxk
) is the sum of two functions satisfying Def-

inition 2, each of them encoding the constraints in (17),
respectively, i.e.,

Bk(ēxk
) =

1

2
(1 + σk)Brk(ēxk

) +Bck(ēxk
). (20)

In (20) σk = 1 if k ∈ Im if the edge is cooperative, and
σk = −1 otherwise. Moreover, Bk(ēxk

) is non-negative and
satisfies Bk(0) = 0 and Bk(ēxk

) → ∞ as |ēxk
| → ∆k for

all k ≤ M and as |ēxk
| → Rk for k ∈ Im. However, in

view of the constraints defined in (17b), the barrier function
has to be modified so that the solution lies in the interior of
the constraint sets in (17) and that the convergence of the
system to the desired point is ensured. For this purpose, we
use the concept of the gradient recentered barrier function
[15]. Let Ŵk : (∆k,∞) × R → R≥0 for competitive and
Ŵk : (∆k, Rk)×R→ R≥0 for cooperative agents defined as

Ŵk(αk, ēxk
) := Wk(ēxk

+ αk)−Wk(αk)− ∂Wk

∂s
(αk)ēxk

(21)

which satisfies Ŵk(αk, 0) = 0, ∇ēxk
Ŵk(αk, 0) = 0, where

∇ēxk
Ŵk = ∂Ŵk

∂ēxk
, and Ŵk(αk, ēxk

)→∞ as |δk| → ∆k for
k ∈ IM , and as |δk| → Rk for all σk = 1. Moreover,
Ŵk(αk, ēxk

) satisfies κ1

2 ē
2
xk
≤ Ŵk(αk, ēxk

) ≤ κ2[∇ēxk
Ŵk]2.

Now we introduce the BLF-gradient-based bipartite-
consensus control law for the system (1), given by

ui :=− k1

M∑
k=1

[Es]ik∇ēxk
Ŵk − k2

M∑
k=1

[Es]ikēvk

− k3vi − k1

M∑
k=1

[B]ik∇αk
Ŵk, (22)

which, upon defining W̄ (α, ēx) =
∑M
k=1 Ŵk(αk, ēxk

) and

B = (1 + β)(βI + EtsL
−1
etsE

>
ts)−1(E − Es), β > 0, (23)

we write in the vector form as

u = −k1Es∇ēxW̄ − k2Esēv − k3v − k1B∇αW̄ . (24)

Remark 2: In [14] the author proposes a consensus control
law for multi-agent systems under proximity constraints, but
in the simpler scenario in which all the agents are cooperative.
In [14] the control law corresponds to

u′i = −k1

M∑
k=1

[E]ik∇ēxk
Wk − k3vi, (25)

which is a particular case of ui in (22).

It is also important to stress that the last term on the right-
hand side of (22)—see also (23), is added after a Lyapunov
control redesign, i.e., to render negative semidefinite the
derivative of a Lyapunov function for the closed-loop system—
see the proof of Proposition 2. •

B. Asymptotic Stability

In accordance with Section II, we analyze the stability of the
system (1) in closed loop with the bipartite formation control
law (24), expressed in terms of the errors corresponding to
the spanning-tree subgraph, ēt. To that end, we introduce
the function W̃ as W̃ (α, ēxt

) = W̄ (α,R>s ēxt
), where W̄ is

defined above (24). Now, after (16a),

∇ēxt
W̃ =

∂W̃ (α, ēxt)
>

∂ēx

∂ēx
∂ēxt

= ∇ēxW̄>R>s (26)

and, after (13) and (26), the control law in (24) becomes

u = −k1Ets∇ēxt
W̃ − k2EtsRsR

>
s ēvt − k3v − k1B∇αW̃ .

(27)

Then, differentiating on both sides of (10) and using v̇ = u
and (27) we obtain, in spanning-tree coordinates

˙̄ext
=ēvt (28a)

˙̄evt =− k1Lets∇ēxt
W̃ − k2LetsRsR

>
s ēvt

− k3ēvt − k1E
>
tsB∇αW̃ (28b)

Remark 3: E>tsEts = Lets corresponds to the edge Lapla-
cian of a spanning tree and has N − 1 edges. With the edge-
gauge transformation we obtain the edge Laplacian matrix
corresponding to a spanning tree of an unsigned network, i.e.,
Let = DeLetsDe. Also, we have De = D>e = D−1

e and
DeLetsDe is a similarity transformation, so the spectra of Let
and Lets coincide. Consequently, as Let has the N − 1 non-
zero eigenvalues of the Laplacian matrix L, so does Lets . •

Remark 4: RsR>s is a symmetric positive definite matrix
as ē>xt

RsR
>
s ēxt

= ē>x ēx > 0. •
Proposition 2: Consider the system system (1) in closed

loop with the distributed control law (27), under the condi-
tions of Proposition 1 and assume that the resulting network
contains an underlying spanning tree. Let Lets denote the
edge Laplacian corresponding to that spanning-tree. Then, the
origin for the closed-loop system is asymptotically stable for
any initial conditions respecting the constraints in (17), and
|αk(0)| > ∆k for all k ∈ IM . In addition, the constraints
hold for all t. �

Remark 5: The condition on αk(0) is not restrictive. For
cooperative agents, αk = d̄k, so |αk(0)| > ∆k means that the
formation must respect the collision-avoidance constraints (the
formation must be “safe”). For competitive agents, |αk(0)| >
∆k means that |−2xj(0)+d̄k| > ∆k, which restricts the initial
conditions in absolute coordinates, i.e., with respect to a fixed
frame. However, in the scenarii considered in this letter, the
measurements are relative (edge coordinates). That is, absolute
positions are irrelevant. So, xj(0) may be conveniently defined
by replacing the origin of the fixed frame if needed. •



Proof: First, we express the constraints in (17) in terms
of the spanning-tree coordinates. Let It = Irt ∪ Ict , with

Irt := {ēxtk
∈ R : |r>sk ēxtk

+ αk| < Rk, ∀k ∈ Im}, (29)

Ict := {ēxtk
∈ R : ∆k < |r>sk ēxtk

+ αk|, ∀k ∈ IM}. (30)

where rsk is the kth column of Rs.
Next, consider the Lyapunov function candidate

V (α, ēt, v) = (1 + β)k1W̃ (α, ēxt
) +

1

2

[
ē>vtL

−1
ets ēvt + β|v|2

]
.

(31)

We note that V in (31) is positive definite in the state variables
ēxt

and ēvt , uniformly in α and radially unbounded in ēvt .
Also, by construction, V (α, ēt, v)→∞, for any fixed ēvt and
v, as ēxt → ∂It, where ∂It denotes the boundary of It.

Next, we compute the total derivative of V . To that end,
we note that from the definition of α in (18), we have α̇ =
(E − Es)>v and for (1b) and (27), we have

v̇ = −k1Ets∇ēxt
W̃−k2EtsRsR

>
s ēvt−k3v−k1B∇αW̃ . (32)

Then, we have

V̇ (α, ēt, v) = (1 + β)k1∇ext
W̃>ēvt + (1 + β)k1∇αW̃>α̇

+ ē>vtL
−1
ets

[
− k1Lets∇ēxt

W̃ − k2LetsRsR
>
s ēvt

− k3ēvt − k1E
>
tsB∇αW̃

]
+ βv>

[
− k1Ets∇ēxt

W̃ − k2EtsRsR
>
s ēvt

− k3v − k1B∇αW̃
]
. (33)

Hence,

V̇ (α, ēt, v) = (1 + β)k1∇αW̃>(E − Es)>v − k3β|v|2

− k1v
>[EtsL−1

ets
E>ts + βI

]
B∇αW̃

− ē>vt
[
(1 + β)k2RsR

>
s + k3L

−1
ets

]
ēvt . (34)

However, in view of (23), we have
[
EtsL

−1
ets
E>ts + βI

]
B =

(1 + β)(E − Es)>. Thus,

V̇ (α, ēt, v) =− ē>vt
[
(1 + β)k2RsR

>
s + k3L

−1
ets

]
ēvt

− k3β|v|2,

which is negative semidefinite.
Next, we use Barbashin-Krasovskı̆i’s theorem. To that end,

we note that on the set {(ē, v) : V̇ = 0} we have v = 0 and
ēvt = 0. Therefore, α̇ = 0, which means that α is constant.
In turn, after (28b), we have

k1Lets∇ēxt
W̃ = −k1E

>
tsB∇αW̃ . (35)

On the other hand, after (21), we have

∇αW̃ = ∇ēxt
W̃ − ∂

∂α

{
∂W

∂α
(α)

}
ēxt
, (36)

but since we have α ≡ const on {V̇ = 0}, it follows that the
last term of the right hand-side of (36) equals to zero, so (35)
holds if and only if −k1[Lets +E>tsB]∇ēxt

W̃ = 0. The latter
holds since [Lets + E>tsB] is full rank and ∇ēxW̃ vanishes
only at zero. It follows that the only solution of (28) that may

remain in {(ē, v) : V̇ = 0} for all t, is the origin. Asymptotic
stability in the large, on the domain of definition of V follows.

Next we demonstrate inter-agent collision avoidance. From
(29), we remark that ēxt ∈ It implies ēx ∈ I. Then, we
proceed by contradiction to show that It is forward invariant.
Assume that there exist a T > 0 such that ēxt

(T ) /∈ It.
It means that |ēxtk

+ αk| → ∆k, k ∈ IM or |ēxtk
+

αk| → Rk, k ∈ Im for at least one k ≤ M , which makes
W̃k(αk, ēxtk

)→∞, so V (α, ēt, v)→∞ as t→ T . However,
the latter contradicts the fact that V̇ (α, ēt, v) ≤ 0. Inter-agent
collision avoidance follows.

We now show that the set I corresponds to the domain of
attraction for the closed-loop system (28), by showing that
all solutions starting in It converge to the origin. For any
ε1 ∈ (0, Rk) and ε2 ∈ (0,∆k), consider subsets Iεrt ⊂ Irt
and Iεct ⊂ Ict defined as Iεrt := {ēxk

∈ R : |ēxk
+ αk| <

Rk− ε1, ∀k ∈ Im} and Iεct := {ēxk
∈ R : ∆k + ε2 < |ēxk

+
αk|, ∀k ∈ IM} with Iεrt ∪ Iεct = Iεt . From the definition
of the W̃ (α, ēxt

), V (α, ēt, v) is positive definite for all ēxt
∈

Iεt and ēvt ∈ R and satisfies a|ēxt
|2 + b|ēvt |2 + c|v|2 ≤

V (α, ēt, v) ≤ h(|ēxt
|) + d|ēvt |2 + f |v|2 with a, b, c, d, f > 0

and h is a strictly increasing everywhere in Iεt . This means
V (α, ēt, v)→ 0 as ēt → 0 and v → 0. Therefore, we have that
for all trajectories for the closed-loop system starting in Iεt ,
the origin is asymptotically stable. As ε1 and ε2 are arbitrarily
small, taking ε1 → 0 and ε2 → 0, we establish asymptotic
stability of the origin of (28) for all trajectories starting in It.
Thus, bipartite consensus is achieved with inter-agent collision
avoidance and connectivity.

IV. SIMULATION RESULTS

We provide some numerical examples to show the perfor-
mance of our control law in (24) with k1 = 1, k2 = 1.2,
k3 = 1 and the barrier Lyapunov function in (21), with

Brk(s) = ln

(
R2
k

R2
k − |s|2

)
, Bck(s) = ln

(
|s|2

|s|2 −∆2
k

)
.

(37)

The simulation consists of an undirected signed network of
6 agents and 7 edges as the one depicted on Figure 1,
subject to inter-agent collision avoidance and connectivity
maintenance restrictions. We define the orientation of the
edges as follows: e1 = x1 + x2, e2 = x1 − x3, e3 = x1 + x4,
e4 = x2 + x5, e5 = x2 − x6, e6 = x3 + x4 and e7 = x5 + x6.
According to Definition 1, the incidence matrix corresponding
to the graph is

Es =


1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 −1 0 0 0 1 0
0 0 1 0 0 1 0
0 0 0 1 0 0 1
0 0 0 0 −1 0 1

 .

The network can be split the agents into two
disjoint subgroups, such as V1 = {x1, x3, x5} and
V2 = {x2, x4, x6} so the network is structurally
balanced. From the decomposition in (12), edges
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x6
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Fig. 1. An undirected signed network of 6 agents.The black lines represent
cooperative edges and the red line represents the competitive edge.
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Fig. 2. Bipartite formation of system (1) with control input (24).
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Fig. 3. Bipartite formation of system (1) with control input (24) on velocity.
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Fig. 4. Trajectories of the norm of the inter-agent distances with control
input (24). The dashed and dotted lines are the distance constraints for agents.

ei, i ≤ 5 correspond to Gt and the remaining edges e5

and e6 correspond to Gc. The respective agents’ initial
states are x(0) = [3.5, 3.6, −4.5, 5.3, −2, 0]>,
y(0) = [2, 1.7, −2.6, 2, 1, 2]>, vx(0) =
[0.2, 0.4, 0.1, 0.3, 1, 0.3]>, vy(0) =
[0, −0.2, −0.3, 0.1, −0.5, 0]> and the relative

displacements are dx = [−0.4, −0.4, 0.4, 0, 0, 0.4]>

and dy = [0.4, −0.4, 0.4, 0.4, −0.4, −0.4]>. The
constraints sets are ∆ = [0.3, 0.4, 0.3, 0.3, 0.45, 0.3, 0.3]>

and R = [7, 4]>. The paths of each agent up to bipartite
formation is depicted on Figure 2. The agents reach the
desired formation around two symmetric consensus points.
Furthermore, it is clear from Figure 4 that the inter-agent
collision avoidance constraints in (6) are always respected.

V. CONCLUSIONS

We presented a BLF-based control law for structurally
balanced undirected signed networks to address the problem of
bipartite formation control for double integrators. Our control
law ensures inter-agent collision avoidance for any two agents
and connectivity maintenance for cooperative agents. Via a
change of coordinates, we established asymptotic stability of
the system using Lyapunov’s direct method. Further research
is focused on extending these results to structurally unbalanced
and directed signed networks.
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