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ABSTRACT

Kernel methods have been proven to be a powerful tool for the integration and analysis of high-
throughput technologies generated data. Kernels offer a nonlinear version of any linear algorithm
solely based on dot products. The kernelized version of Principal Component Analysis is a valid
nonlinear alternative to tackle the nonlinearity of biological sample spaces. This paper proposes a
novel methodology to obtain a data-driven feature importance based on the KPCA representation
of the data. The proposed method, kernel PCA Interpretable Gradient (KPCA-IG), provides a data-
driven feature importance that is computationally fast and based solely on linear algebra calculations.
It has been compared with existing methods on three benchmark datasets. The accuracy obtained
using KPCA-IG selected features is equal to or greater than the other methods’ average. Also, the
computational complexity required demonstrates the high efficiency of the method. An exhaustive
literature search has been conducted on the selected genes from a publicly available Hepatocellular
carcinoma dataset to validate the retained features from a biological point of view. The results once
again remark on the appropriateness of the computed ranking. The black-box nature of kernel PCA
needs new methods to interpret the original features. Our proposed methodology KPCA-IG proved
to be a valid alternative to select influential variables in high-dimensional high-throughput datasets,
potentially unravelling new biological and medical biomarkers.

Keywords Kernel PCA · Relevant variables · Unsupervised learning · Kernel methods

1 Introduction

The recent advancement in high-throughput biotechnologies is making large multi-omics datasets easily available.
Bioinformatics has recently entered the Big Data era, offering researchers new perspectives to analyse biological
systems to discover new genotype-phenotype interactions.
Consequently, new ad-hoc methods to optimise post-genomic data analysis are needed, considering the high complexity
and heterogeneity involved. For instance, multi-omics datasets pose the additional difficulty of dealing with a multilay-
ered framework making data integration extremely challenging.
In this context, kernel methods offer a natural theoretical framework for the high dimensionality and heterogeneous
nature of omics data, addressing their peculiar convoluted nature (Schölkopf et al., 2003). These methods facilitate
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the analysis and the integration of various types of omics data, such as vectors, sequences, networks, phylogenetic
trees, and images, through a relevant kernel function. Using kernels enables the representation of the datasets in terms
of pairwise similarities between sample points, which is helpful for handling high-dimensional sample spaces more
efficiently than using Euclidean distance alone. Euclidean distance can be inadequate in complex scenarios, as stated in
Duda et al. (2000), but kernels can help overcome this limitation. Moreover, kernel methods have the advantage of
providing a nonlinear version of any linear algorithm which relies solely on dot products. For instance, Kernel Principal
Component Analysis, (Schölkopf et al., 1997), Kernel Canonical Correlation Analysis (Bach and Jordan, 2003), Kernel
Discriminant Analysis (Roth and Steinhage, 1999) and Kernel Clustering (Girolami, 2002) are all examples of nonlinear
algorithms enabled by kernel transformations.
This work will focus on the kernelised version of Principal Component Analysis, KPCA, that provides a nonlinear
alternative to the standard PCA to reduce the sample space dimensions.
However, one of the drawbacks of KPCA and kernel methods, in general, is that they pose new challenges in inter-
pretability. The so-called pre-image problem arises since data points are only addressed through the kernel function,
causing the original features to be lost during the data embedding process. The initial information contained in the
original variables is summarised in the pairwise kernel similarity scores among data sample points. Thus, retrieving the
original input dimensions is highly challenging when it comes to identifying the most prominent features. Even if it is
possible for certain specific kernels to solve the pre-image problem through a fixed-point iteration method, the provided
solution is typically numerically unstable since it involves a non-convex optimisation problem (Schölkopf et al., 1998).
Moreover, in most cases, the exact pre-image does not even exist (Mika et al., 1998).
However, it is possible to find works that aim at finding the pre-image problem solution, like the pre-image based on
distance constraints in the feature space in Kwok and Tsang (2004) or local isomorphism as in Huang et al. (2011).

Instead, this article concentrates on unsupervised feature selection based on kernel PCA. More specifically, we propose
a method to identify the most influential variables for the kernel principal components that account for the majority of
the variability of the data. This procedure provides a computationally fast and stable feature ranking to identify the
most prominent original variables. Unimportant descriptors can be thus ignored, refining the kernel procedure whose
similarity measure can be influenced by irrelevant dimensions (Brouard et al., 2022).

1.1 Existing approaches to facilitate feature interpretability in the unsupervised setting

The literature on unsupervised feature selection is generally less extensive than its supervised learning counterpart.
One of the main reasons for this disparity is that the selection is made without a specific prediction goal, making it
difficult to evaluate the quality of a particular solution. In the same way, the unsupervised feature selection field that
takes advantage of the kernel framework has been found to be less explored than kernel applications with classification
purposes. As mentioned earlier, interpreting kernel PCA requires additional attention as the kernel principal component
axes themselves are only defined by the similarity scores of the sample points. However, the literature has limited
attempts to explain how to interpret these axes after the kernel transformation. Therefore, feature selection methods
based on KPCA are rare.

Among others, Reverter et al. (2014) proposed a method to visualize the original variables into the 2D kernel PCs
plot. For every sample point projected in the KPCA axes, they propose to display the original variables as arrows
representing the vector field of the direction of maximum growth for each input variable or combination of them. This
algorithm does not provide variable importance ranking, requiring previous knowledge about which variables to display.

On the contrary, Mariette and Villa-Vialaneix (2017) proposed a variable importance selection method to identify the
most influential variables for every principal component based on random permutation. The procedure is performed for
all variables, selecting the ones that result in the largest Crone-Crosby (Crone and Crosby, 1995) distance between
kernel matrices, i.e. the variables whose permutations of the observations lead to a significant change in the kernel
Gram matrix values. However, the method does not come with a variable representation and can be computationally
expensive. This method will be denoted as KPCA-permute in the rest of the article.
Another method that takes advantage of the kernel framework is the unsupervised method UKFS with its extension
UKFS-KPCA in Brouard et al. (2022) where the authors propose to select important features through a non-convex
optimization problem with a ℓ1 penalty for a Frobenius norm distortion measure.
As exhaustively described in the overview presented in Li et al. (2017), there are different approaches to assess
variable importance in an unsupervised setting not based on the kernel framework. Among others, we can mention
two methodologies that are based on the computation of a score, the Laplacian Score lapl in He et al. (2005) and its
extension Spectral Feature Selection SPEC in Zhao and Liu (2007). Other alternatives are the Multi-Cluster Feature
Selection MCFS in Cai et al. (2010), the Nonnegative Discriminative Feature Selection NDFS in Li et al. (2021), and
the Unsupervised Discriminative Feature Selection UDFS in Yang et al. (2011). These methods aim to select features
by keeping only the ones that best represent the implicit nature of the clustered data. Then, Convex Principal Feature

2



A PREPRINT - MARCH 28, 2023

Selection CPFS Masaeli et al. (2010) adopts a distinct approach to feature selection, focusing on selecting a subset of
features that can best reconstruct the projection of the data on the initial axes of the Principal Component Analysis.
As mentioned, the present study introduces a novel contribution to the interpretability of variables in kernel PCA,
assuming that the first kernel PC axes contain the most relevant information about the data. The newly proposed
method follows and extends the idea proposed by Reverter et al. (2014), with the fundamental difference that it gives a
data-driven features importance ranking. Moreover, contrarily KPCA-permute in Mariette and Villa-Vialaneix (2017),
it does not have a random nature while being considerably faster. From now on, it will be referred to as KPCA-IG,
which stands for KPCA Interpretable Gradient.

2 Methods

This section presents the formulation behind our proposed method KPCA-IG, starting with describing the kernel
framework.

2.1 Kernel PCA

Given a dataset of n observations x1, . . . ,xn with xi ∈ χ, a function k defined as k: χ × χ −→ IR is a valid
kernel if it is symmetric and positive semi-definite i.e. k(xi,xj) = k(xj ,xi) and c’Kc ⩾ 0, ∀c ∈ IR, where K is the
n× n kernel matrix containing all the data pairwise similarities K = k(xi, xj). The input set χ does not require any
assumption. In this work we consider it to beχ= IRd.
Every kernel function is associated with an implicit function ϕ: χ −→ H which maps the input points into a generic
feature space H, with possibly an infinite dimensionality, with the expression k(xi,xj) = ⟨ϕ(xi), ϕ(xj)⟩. This relation
allows to compute the dot products in the feature space, implicitly applying the kernel function to the input objects,
without explicitly computing the mapping function ϕ.
Principal Component Analysis is a well-established linear algorithm to extract the data structure in an unsupervised
setting (Hastie et al., 2009). However, it is commonly accepted that in specific fields, such as bioinformatics, assuming
a linear sample space may not help to capture the data manifold adequately (Reverter et al., 2014). In other words, the
relationships between the variables may be nonlinear, making linear methods unsuitable. Hence, with high-dimensional
data such as genomic data, where the number of features is usually much larger than the number of samples, nonlinear
methods like kernel methods can provide a valid alternative for data analysis.
A compelling approach to overcome this challenge is through kernel PCA, which was introduced in Schölkopf et al.
(1997). Kernel PCA applies PCA in the feature space generated by the kernel, and as PCA relies on solving an
eigenvalue problem, its kernelized version operates under the same principle. The algorithm requires the data to be
centered in the feature space, and the diagonalization of the centered covariance matrix in the feature space H is
equivalent to the eigendecomposition of the kernel matrix K. The data coordinates in the feature space are unknown as
ϕ is not explicitly computed. Consequently, the required centering of variables in the feature space cannot be done
explicitly. However, it is possible to compute the centered Gram matrix K̃ as K̃ = (K−1nK−K1n+1′

nK1n) with
1n a vector with length n and 1 for all entries. If we express the eigenvalues of K̃ with λ1 ≥ λ2 ≥ . . . ≥ λn and the
corresponding set of eigenvectors a1, . . . ,an, the principal component axes can be expressed as vk =

∑n
i=1 a

k
i ϕ(xi)

with vk and ak orthonormal in H with k = 1, . . . , n. Thus solving nλa = K̃a, it is possible to compute the projection
of the points into the subspace of the feature space spanned by the eigenvectors. The projection of a test point x into the
k-th eigenvector becomes then ρk := ⟨vk, ϕ(x)⟩ =

∑n
i=1 a

k
i k(x,xi). Likewise, utilizing the concise, explicit form of

the centered gram matrix K̃, it is possible to express the projection of an arbitrary point x onto the k-th kernel principal
component as follows:

ρk =

(
k(x,xi)

T − 1

n
1T
nK

)(
In − 1

n
1n1

T
n

)
ṽ

(1)

As we observe, the kernel PCA algorithm can be mathematically represented using only the entries of the kernel matrix.
This means that the algorithm operates entirely on the original input data without requiring the computation of new
data coordinates in the feature space. This technique effectively resolves the issue of potentially high computational
complexity by allowing the input points to be implicitly mapped into the feature space. However, it also introduces
new challenges in terms of interpretation. Determining which input variables have the most significant impact on the
kernel principal components can be highly challenging, making it difficult to interpret them in terms of the original
features. In other words, since the kernel function maps the data to a higher-dimensional feature space, it can be hard to
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understand how the original features contribute to the newly obtained kernel principal components. In the previous
section, we have mentioned the few techniques available in the literature that can be used to gain insight into the original
input variables that had the most influence on the KPCA solution. The following section presents our contribution to
providing practitioners with a data-driven and faster variable ranking methodology.

2.2 Improvement of variable interpretability in KPCA

It is known that gradient descent is one of the most common algorithms for the training phase of most neural networks
(Ruder, 2016). In this framework, the norm of the cost function gradient plays a crucial role as it determines the step
size of the update at each iteration. Together with the direction, its magnitude is a measure of the steepness of the cost
function at a particular point in the parameter space. If the gradient magnitude is high, the cost function changes rapidly;
thus, the parameters must be updated with a larger step size. Conversely, if the gradient magnitude is low, it indicates
that the cost function is changing slowly, and therefore, the parameters need to be adjusted with a smaller step size. In
the same way, we propose to compute at each sample point the norm of the partial derivative of every feature curve
projected into the eigenspace of the Gram matrix. When the norm of the partial derivative of a variable is high, it means
that the variable substantially affects the position of the sample points in the kernel PC axes. Conversely, when the norm
of the partial derivative of a variable is small, the variable can be deemed negligible for the kernel principal axes. Thus,
the main idea is to compute the lengths of the gradient vectors for every variable at each sample point as they represent
how steep the direction given by the partial derivative of the induced curve is. Some works in the neuroimaging and
earth system sciences domain have also shown that kernel derivatives may indicate the influence carried by the original
variables as in Rasmussen et al. (2011) and Johnson et al. (2020). Followingly in this work, we apply this intuition to
the KPCA framework.
Analytically, Reverter et al. (2014) and Sanz et al. (2018) showed how every variable j = 1, . . . , p can be represented
in the input space with a real-valued function f(x)j representing the position of the every sample point x in the input
spaceχ= IRd. This function will be simply addressed as f j for the rest of the work.
We are interested in the projection of these j functions onto the linear subspace of the feature space induced by the
kernel. First, we can express the projection of f j in the feature space through the implicit map ϕ as hj .
In the previous section, we showed how to represent the projection of every mapped sample point ϕ(x) into the subspace
spanned by the eigenvectors of K̃ in Equation (1).
Similarly, every function hj can be further projected from the feature space into the subspace of the kernel PCA.

φj
1×q =

(
k(hj ,xi)

T − 1

n
1T
nK

)(
In − 1

n
1n1

T
n

)
ṽ

(2)

with q the number of kernel PCs. In order to assess the influence of the j-th variable on the coordinates of the data
points into the kernel principal axes, we first compute the derivative of hj with respect to the j-th variable at each
sample point.
Formally, the partial derivative of the projected curves of hj computed at the generic point x can be defined as follows:

wj =
∂φj

∂xj
=

∂k(x,xi)

∂xj

(
In − 1

n
1n1

T
n

)
ṽ

=
[∂k(x,x1)

∂xj
, ...,

∂k(x,xn)

∂xj

]T(
In − 1

n
1n1

T
n

)
ṽ

(3)

As said, the direction of maximal variation associated with the variable j is given by this partial derivative of the
projected curve as exploited in (Reverter et al., 2014).

If φj represents the input variable j locally in the kernel PC axes, wj is the n × q matrix giving the direction and
length of the gradient associated with the j-th variable for each input point. The mean value of the norm of this partial
derivative computed for all the sample points suggests this variable’s influence. Analytically:
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rj =
1

n

√√√√ n∑
i=1

(
∂φj

∂xj
i

)2

=
1

n

n∑
i=1

√√√√ q∑
t=1

(
wj

it

)2
(4)

Thus, rj is the mean of the norm vectors of the partial derivative of φj among all the n sample points, giving an
indication of the overall influence of the j-th variable on the points.
Finally, we can group all the j means in a sorted vector representing the ranking of the original features proposed by the
method, i.e. r = (r1, . . . , rp). Every entry of r is a score that indicates the impact of every variable on the kernel PCA
representation of the data, from the most influential to the least important.
The method is non-iterative, and it only requires linear algebra. Thus, it is not susceptible to numerical instability or
local minimum problems. It is computationally very fast, and it can be applied to any kernel function that admits a
first-order derivative. The described procedure has been implemented on R, and the code can be available upon request
to the authors.

3 Results

We conducted experiments on three benchmark datasets from the biological domain to assess the accuracy of the
proposed unsupervised approach for feature selection. These datasets include two microarray datasets, named
Carcinom and Glioma, which are available in the Python package scikit-feature Li et al. (2017) and the gene
expression data from normal and prostate tumour tissues Chandran et al. (2007), GPL93 from the GEO, a public
functional genomics data repository. Glioma contains the gene expression of 4434 for 50 patients, while Carcinom
9182 for 174 individuals. Both datasets have already been used as a benchmark in numerous studies including
several methods comparisons, such as Li et al. (2017) and Brouard et al. (2022). Then, the dataset GPL93 con-
tains the expression of 12626 genes for 165 patients, and it has been chosen for its complexity and higher dimensionality.

The idea is to compare the proposed methodology KPCA-IG with existing unsupervised feature selection methods
from diverse frameworks, as conducted in Li et al. (2017) and Brouard et al. (2022):

• From He et al. (2005), lapl to include one method that relies on the computation of a score
• NDFS Li et al. (2021), to add one of the methods primarily designed for clustering. It is based on the implicit

assumption that samples are structured into subgroups and demands the a priori definition of the number of
clusters.

• KPCA-permute in Mariette and Villa-Vialaneix (2017) available in the mixKernel R package to include
another methodology from the context of kernel PCA.

To evaluate the selected features provided by the four methods, we measured the overall accuracy (ACC) and normalized
mutual information (NMI) (Danon et al., 2005) based on k-means cluster performance. For each method, the k-means
clustering ACC and NMI have been obtained using several subsets with a different number d of selected features, with
d ∈ {10, 20, . . . , 290, 300}. Thus, the relevance of the selected values has been estimated according to their ability to
reconstruct the clustered nature of the data. More specifically, the three datasets Glioma, Carcinom and GPL93 are
characterized by 4, 11 and 4 groups respectively. Thus, the k-means clustering was computed using the correct number
of clusters in the datasets to obtain a metric for the capability of the selected features to keep this nature. Note that
only the NDFS method is implemented to explicitly obtain an optimum solution in terms of clustering, also requiring
in advance the number of groups in the data. For each method, the k-means clustering was run 20 times to obtain a
mean of the overall accuracy and normalized mutual information for each of the 30 subsets of selected features. Both
our novel method KPCA-IG and KPCA-permute have been employed with a Gaussian kernel with a sigma value
depending on the dataset. The selected features are, in both cases, based on the first 3, 5 and 3 kernel PC axes for
Glioma, Carcinom and GPL93, respectively. The CPU time in seconds required to obtain the feature ranking for all the
methods has also been observed. The experiment was conducted on a standard laptop Intel Core i5 with 16GB RAM.

3.1 Evaluation on benchmarks datasets

In Table 1, we can see the results in terms of mean Accuracy and NMI over 20 runs for different numbers of retained
features d. For the first dataset Glioma lapl seems to show the best performance in terms of NMI and AUC, except
when d = 300 where the Accuracy obtained with KPCA-IG is the highest, even if all the methods seem to behave very
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Table 1: Comparison of the different methods in terms of mean ACC and NMI over 20 runs of a k-means clustering
for several subsets with a different number d of selected features. CPU represents the computational time in seconds
required by the four methods only to find the most influential features.

lapl NDFS KPCA-permute KPCA-IG

Glioma (n = 50, p = 4434)

ACC(10) 0.50 (0.02) 0.37 (0.04) 0.48 (0.03) 0.42 (0.01)
NMI(10) 0.34 (0.02) 0.13 (0.03) 0.31 (0.02) 0.21 (0.01)

ACC(150) 0.56 (0.03) 0.53 (0.04) 0.54 (0.04) 0.56(0.05)
NMI(150) 0.50 (0.02) 0.41 (0.03) 0.48 (0.02) 0.36 (0.05)
ACC(300) 0.54 (0.04) 0.55 (0.04) 0.52 (0.03) 0.57 (0.05)
NMI(300) 0.48 (0.03) 0.41 (0.03) 0.45 (0.02) 0.35 (0.05)
CPU time 0.4 84.6 620.9 2.9

Carcinom (n = 174, p = 9182)

ACC(10) 0.27 (0.02) 0.47 (0.04) 0.48 (0.02) 0.51 (0.01)
NMI(10) 0.23 (0.01) 0.48 (0.03) 0.43 (0.01) 0.49 (0.02)

ACC(150) 0.61 (0.03) 0.68 (0.04) 0.67 (0.03) 0.70 (0.02)
NMI(150) 0.62 (0.03) 0.72 (0.03) 0.69 (0.03) 0.70 (0.03)
ACC(300) 0.69 (0.04) 0.69 (0.04) 0.70 (0.048) 0.69 (0.03)
NMI(300) 0.73 (0.03) 0.73 (0.03) 0.71 (0.03) 0.70 (0.02)
CPU time 1.4 391.8 7937.6 30.5

GPL93 (n = 165, p = 12626)

ACC(10) 0.38 (0.01) 0.41 (0.01) 0.42 (0.01) 0.40 (0.01)
NMI(10) 0.08 (0.01) 0.109 (0.07) 0.11 (0.01) 0.15 (0.01)

ACC(150) 0.38 (0.01) 0.45 (0.01) 0.60 (0.02) 0.58 (0.01)
NMI(150) 0.07 (0.01) 0.18 (0.02) 0.39 (0.01) 0.29 (0.01)
ACC(300) 0.37 (0.01) 0.49 (0.03) 0.56 (0.05) 0.56 (0.01)
NMI(300) 0.07 (0.01) 0.22 (0.02) 0.22 (0.01) 0.31 (0.01)
CPU time 2.1 1277.4 17691.4 39.8

similarly in terms of ACC. Analyzing the results for the other two datasets Carcinom and GPL93 that are considerably
bigger and possibly more complex in terms of sample space manifold, the two methods based on the kernel framework
exhibit to surpass the lapl and NDFS approaches, especially in the GPL93 datasets. The comparison of the different
approaches in terms of NMI and ACC of these two datasets can also be observed in Figure 1 and Figure 2.

Moreover, as shown in Brouard et al. (2022) NDFS and the other cluster-based methods like MCFS and UDFS suffer
if the user selects an incorrect decision for the a priori number of clusters. In our case, we show that the proposed
methodology behaves similarly or even better to a method like NDFS that is specifically optimized for this cluster
setting.

The two kernel-based approaches, namely KPCA-permute and our novel method KPCA-IG, reveal an excellent
performance in this setting, once again displaying the appropriateness of the kernel framework in the context of complex
biological datasets. However, KPCA-IG can provide these above-average performances with a considerably lower
CPU time.

6
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Figure 1: Carcinom ACC and NMI: Comparison of the performance of the four methods on the Carcinom dataset in
terms of Accuracy (left) and Normalized Mutual Information (right) as a function of the number of selected features d.
ACC and NMI are computed for the k-means results using only the d selected features.

Figure 2: GPL93 ACC and NMI: Comparison of the performance of the four methods on the GPL93 dataset in terms of
Accuracy (left) and Normalized Mutual Information (right) as a function of the number of selected features d. ACC and
NMI are computed for the k-means results using only the d selected features.

Only lapl seems as fast as KPCA-IG while showing poorer results in the more complex scenario represented in this case
by the GPL93 dataset. Other methods, such as the concrete autoencoder in Abid et al. (2019), have proven successful
in this context. The results obtained with the concrete autoencoder, as demonstrated in Brouard et al. (2022), were
comparable or even inferior in terms of accuracy and NMI. Furthermore, the computational time required to achieve
these results was on the order of days. As a result, we opted not to include it in our simulations.

7
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4 Application on Hepatocellular carcinoma dataset

Figure 3: Kernel PCA on HCC (GSE102079) Dataset

Liver cancer is a global health challenge, and it is estimated that there will be over 1 million cases by 2025. Hepatocel-
lular carcinoma (HCC) is the most common type of liver cancer, accounting for around 90% of cases (Llovet et al.,
2021). The most significant risk factors associated with HCC are, among others, chronic hepatitis B and C infections,
nonalcoholic fatty disease, and chronic alcohol abuse (Morse et al., 2019). To analyse the use of the KPCA-IG method,
we used the expression profiling by array of an HCC dataset from the Gene expression Omnibus (series GSE102079).

It contains the gene expression microarray profiles of 3 groups of patients. First, 152 patients with HCC who were
treated with hepatic resection between 2006 and 2011 at Tokyo Medical and Dental University Hospital. Then, the
gene expression of normal liver tissues of 14 patients as control (Chiyonobu et al., 2018). The third group contains the
gene expression of 91 patients with liver cancer but of non-tumorous liver tissue. The total expression matrix for the
257 patients contains the expression of 54613 genes, and the data has been normalised by robust multichip analysis
(RMA) as in Gautier et al. (2004) and scaled and centered before applying KPCA. To show the potentiality of KPCA-IG,
we first perform kernel PCA with radial basis kernel with σ = 0.00001, which was set heuristically to maximize the
explained variance and obtain a clear two dimension data representation.

In Figure 3, it is possible to see the application of kernel Principal Component on the HCC dataset. Even if detecting
groups is not the optimization criterion of kernel PCA, it is possible to see that the algorithm catches the dataset’s
clustered structure. For this reason, applying a method like the proposed KPCA-IG can enlighten the kernel component
axes, possibly giving an interpretation of the genes’ influence on the sample points representation. The KPCA-IG
provides a feature ranking based on the KPCA solution, in this case, based on the first 2 kernel Principal Components.
As mentioned before, one of the main advantages of the proposed method is the fast computational time required, as

Figure 4: Distribution of the scores for the ordered 54613 genes, from a maximum of 0.428 to a minimum of 0.05×103
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with this high-dimensional dataset, the CPU time was 654.1 seconds. Table 2 presents the first 25 genes and Figure 4
the distribution of the 54613 variables scores.

One possible way to assess the relevance of the obtained ranking is first to visualize the genes with the method proposed
by Reverter et al. (2014) to see if the bio-medical community has already found the retained genes. For instance, Figure
5 displays the representation of the variable 237350_at (TTC36), the second gene in the ranking provided by KPCA-IG.
The direction of the arrows suggests an upper expression of the gene towards the cluster of patients that do not have
liver cancer or patients whose liver tissue is not tumorous.

Genes Score Symbol

1555797_a_at 0.427972 ARPC5
237350_at 0.426140 TTC36

1559573_at 0.424048 LINC01093
230478_at 0.420690 OIT3
203213_at 0.417682 CDK1

205019_s_at 0.417597 VIPR1
1559065_a_at 0.417234 CLEC4G

205984_at 0.417234 CRHBP
220114_s_at 0.416410 STAB2
202604_x_at 0.416228 ADAM10

220496_at 0.415608 CLEC1B
205866_at 0.414893 FCN3

214895_s_at 0.414887 ADAM10
240963_x_at 0.413698 PLXDC1
234304_s_at 0.413574 IPO11
222077_s_at 0.412939 RACGAP1
223341_s_at 0.411044 SCOC
214710_s_at 0.410616 CCNB1
218009_s_at 0.410610 PRC1
219918_s_at 0.410460 ASPM

226524_at 0.410119 C3orf38
201890_at 0.410097 RRM2

207804_s_at 0.409962 FCN2
210481_s_at 0.409839 CLEC4M
209470_s_at 0.409759 GPM6A

. . . . . .
229461_x_at 0.0520878 NEGR1

230538_at 0.0520119 SHC4
206145_at 0.0507935 RHAG

Table 2: The 25 most relevant genes and the last 3 out of the total number of 54613 according to the proposed KPCA-IG
method. The original scores have been multiplied by 103 for a better visualization

To validate the procedure, we selected relevant literature about the gene TTC36. This gene, also known as HBP21, is
a protein encoder gene. It has been shown that this gene’s encoded protein may function as a tumour suppressor in
hepatocellular carcinoma (HCC) since it promotes apoptosis while it has been proven to be downregulated in HCC
cases (Jiang et al., 2015).
Another gene that shows differential expression in the two groups is 203213_at (CDK1). In this case, Figure 6 suggests
that this gene seems to be upregulated in the presence of cancer tissue. The indication found in multiple studies is
that the increased expression of this gene is indeed linked with a poorer prognosis or outcome, such as high tumour
grade, invasion of lymphovascular or muscularis propria, and the presence of distant metastasis Heo et al. (2022), Li
et al. (2020), Sofi et al. (2022), Li et al. (2020). Liu et al. (2022). In the same way, another of the most critical genes,
according to KPCA-IG, that seems to be prominent in the case of an HCC patient reflecting the same indication in
the medical literature, is 202604_x_at (ADAM10), known to be involved in the RIPing and shedding of numerous
substrates leading to cancer progression and inflammatory disease Krzystanek et al. (2016), and indicated as a target
for cancer therapy Moss et al. (2008), Crawford et al. (2009), while being upregulated in metastasis cancers Lee et al.
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Figure 5: Gene 237350_at (TTC36): Gene visualization obtained using the procedure described in Reverter et al. (2014)

Figure 6: Gene 203213_at (CDK1): Gene visualization obtained using the procedure described in Reverter et al. (2014)

(2010), Gavert et al. (2007). Rac GTPase activating protein 1 gene RACGAP1 (222077_s_at) selected by KPCA-IG
shares a similar behaviour with ADAM10 and CDK1. The literature concerning this gene is also broad, where it has
been marked as a potential prognostic and immunological biomarker in different types of cancer, such as gastric cancer
Saigusa et al. (2014), uterine carcinosarcoma Mi et al. (2016), breast cancer Pliarchopoulou et al. (2012) or colorectal
cancer Imaoka et al. (2015) among many others. CCNB1 (202604_x_at) has also been indicated to be an oncogenic
factor in the proliferation of HCC cells Chai et al. (2018), showing a significant impact on the patient’s survival time
Ding et al. (2014), Zhuang et al. (2018) and thus has been targeted for cancer treatments Fang et al. (2014). PRC1
has revealed upper expression in other cancer tissues such as, among others, invasive cervical carcinomas Santin et al.
(2005), papillary renal cell carcinoma Yang et al. (2005), pediatric adrenocortical tumour West et al. (2007), while yet
not being studied in depth as compared to CCNB1, ADAM10 or RACGAP1.
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ASPM (219918_s_at) was known initially as a gene involved in the control of the human brain development and in
the cerebral cortical size Zhang (2003), Bond et al. (2002) whose mutations may lead to primary autosomal recessive
microcephaly Kouprina et al. (2005), more recently its overexpression has also been linked with tumour progression as
in Wang et al. (2013), Xu et al. (2018).
Lastly, for the group of upregulated genes in HCC, RRM2 (201890_at) has also been linked with low overall survival
Chen et al. (2019), Jin et al. (2020), leading to exhaustive cancer research suggesting targeting its inhibition for different
types of tumour treatments Rahman et al. (2012),Wang et al. (2014), Osako et al. (2019), Ohmura et al. (2021).
On the other hand, the selected genes that manifest down-regulation in cancerous HCC tissues are LINC01093, OIT3,
VIPR1, CLEC4G, CRHBP, STAB2, CLEC1B, FCN3, FCN2 and CLEC4M. The literature regarding these genes
indicates that they work as suppressors in different cancerous situations, once again endorsing the selection provided by
KPCA-IG for the upregulated genes.

The few genes in the first 25 selected by KPCA-IG that do not exhibit differential expression using Reverter et al.
(2014) method (ARPC5, IPO11, C3orf38, SCOC) are potential genes that explain much variability in the data or
that share a possibly nonlinear interaction with the differential expressed genes. Since the ultimate goal of KPCA is
not to discriminate groups, it is expected that some of the variables found by the novel method are not linked with a
classification benefit. However, further follow-up on the function of these genes may be done in cooperation with an
expert in the field.

5 Conclusion

We have seen how the unsupervised feature selection literature is narrower than its supervised counterpart. Moreover,
algorithms that use the kernel Principal Component Analysis for feature selection are reduced to a few works. In the
present work, we have introduced a novel method to enhance variables’ interpretability in kernel PCA. Using benchmark
datasets, we have proven the comparability in terms of accuracy with already existing and recognized methods, where
the efficiency of KPCA-IG has proven to be competitive. The application on the real-life Hepatocellular carcinoma
dataset and the validation obtained from the comparison of the selected variables by the method with the bio-medical
literature have confirmed the effectiveness and strengths of the proposed methodology.
In future works, further in-depth analysis will be realized to assess the impact of the choice of the kernel function on the
feature ranking obtained by KPCA-IG. Moreover, the method will be adapted to other linear algorithms that are solely
based on dot-products hence supporting a kernelized version, such as kernel Discriminant Analysis or kernel Partial
Least-Squares Discriminant Analysis.

Abbreviations KPCA: Kernel principal component analysis; KPCA-IG: Kernel principal component analysis Inter-
pretable Gradient; HCC: Hepatocellular carcinoma; SPEC: Spectral Feature Selection; MCFS: Multi-Cluster Feature
Selection; NDFS: Nonnegative Discriminative Feature Selection; UDFS: Unsupervised Discriminative Feature Selec-
tion; CPFS: Convex Principal Feature Selection; lapl: Laplacian score
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