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Stability of Perfectly Matched Layers for Maxwell’s

Equations in Rectangular Solids

Laurence Halpern ∗ Jeffrey Rauch †

Abstract

Perfectly matched layers are extensively used to compute approxi-
mate solutions for Maxwell’s equations in R1+3 using a bounded com-
putational domain, usually a rectangular solid. A smaller rectangular
domain of interest is surrounded by layers designed to absorb outgo-
ing waves in perfectly reflectionless manner. On the boundary of the
computational domain, an absorbing boundary condition is imposed
that is necessarily imperfect. The method replaces the Maxwell equa-
tions by a larger system, and introduces absorption coefficients positive
in the layers. Well posedness of the resulting initial boundary value
problem is proved here for the first time. The Laplace transform of
a resulting Helmholtz system is studied. For positive real values of
the transform variable τ , the Helmholtz system has a unique solution
from a variational form that yields limited regularity for rectangular
domains. When τ is not real the complex variational form loses pos-
itivity. We smooth the domain and, in spite of this loss, construct
H2 solutions with uniform L2 estimates. Using the H2 regularity, we
deduce Maxwell from Helmholtz, then remove the smoothing. The
boundary condition at the smoothed boundary must be carefully cho-
sen. A method of Jerison-Kenig-Mitrea is extended to compensate the
nonpositivity of the flux.
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1 Introduction

This paper proves well posedness of algorithms that compute approximate
solutions of Maxwell’s equations

∂tE − curlB = −j , ∂tB + curlE = 0, (1.1)

on the unbounded domain Rt × R3. The algorithms use a bounded compu-
tational domain Q ⊂ R3. The values of the fields are sought on a smaller
domain of interest denoted QI . Perfectly matched layers are employed in
Q \ QI .

The current density j and charge density ρ supported in {t ≥ 0} × QI are
given and satisfy the conservation identity

∂tρ = −div j. (1.2)

Taking the divergence of (1.1) implies that,

∂t(divE) + div j = ∂t(divB) = 0.

Since E,B, j are supported in t ≥ 0, it follows that E and B satisfy

divE = ρ, and, divB = 0 . (1.3)

A fundamental difficulty posed by the bounded computational domain is
that the boundary ∂Q is not physical. Waves in R3 simply pass through it
undisturbed. A numerical algorithm needs to mimic that invisibility. This
is done by introducing a boundary condition chosen to approximately repro-
duce this transparency. Such conditions let waves leave Q so that solutions
viewed in Q seem to lose energy. The conditions are called absorbing bound-
ary conditions [19]. In dimension d > 1 there is invariably some reflection
that pollutes the approximation. A remedy with extremely high computa-
tional cost is to enlarge Q so that the reflections do not have time to come
back. A second remedy is to modify the equations in a layer about QI to
absorb waves. The aim is that waves that reach ∂Q are weak so that their re-
flections are small. However even very cleverly constructed layers themselves
reflect and can create errors analogous to those from the boundary condi-
tions. In the early nineties perfectly reflectionless layers were constructed.

2



1.1 The PML strategy

Assumption 1.1 Q is a rectangular solid, and there is a rectangular solid
QI with QI ⊂ Q called the domain of interest. Assume that the charge
density ρ and current density j are supported in [0,∞[×QI and satisfy (1.2).

The PML strategy introduces a new larger system of equations in Q. A
linear combination of the new unknowns yields the approximate solution in
QI . There are three goals.

∗∗∗ In Q \ QI solutions of the augmented system are damped.

∗∗∗ There is no reflection at all from the layers in Q \ QI .

∗∗∗ The strategy is easy to implement.

Such perfectly matched layers for Maxwell’s equations were constructed by
Bérenger [8, 9]. The existence of such layers is truly remarkable. After
Bérenger, related PML were introduced [35, 13, 42, 28, 39, 43]. They all
have at their core the stretched equations introduced below. Our analysis
of the stretched equations suffices to analyse them all (see Section 9).

The combination of perfectly matched layers for Maxwell’s equations with
standard absorbing boundary conditions on ∂Q is amazingly efficient. It is
deservedly one of the most widely used algorithms in computational physics.
As a result of this massive experience, the behavior of the algorithm in
practice is well understood. Four desirable properties are observed.

• Stability. The computed solutions are bounded on bounded time inter-
vals.

• Corners are easy. Absorbing conditions at the smooth parts of the
boundary suffice.

• Absorbing layers. The computed waves decrease as they pass through
the regions with nonvanishing absorptions (introduced in Section 1.3).

• Uniform stability. The computed solutions are bounded in {t ≥ 0}.

There is an enormous gap between what is understood in practice and what
is proved. In this paper we prove that the algorithm is well posed. Solutions
with perfectly matched layers and absorbing boundary conditions at ∂Q
exist, are uniquely determined, and remain bounded on bounded intervals
of time. In addition, the boundary conditions that determine the solutions
are imposed only at the smooth points of ∂Q. This proves the first two
bullets. The last two bulleted properties are outstanding open problems.

The well posedness implies an error estimate. The error in the domain of
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interest is bounded by a constant times the size of the solution of the PML
boundary value problem near the boundary of the computational domain.
The proof given in Section 9.2 depends only on perfection and well posedness
of the PML boundary value problem.

The well posedness has remained unsolved for more than thirty years for
several reasons.

• The computational domain has trihedral corners. The boundary con-
ditions change when one passes from one face of the rectangular solid to
another. Such hyperbolic problems are little developed.

• The PML involve absorption coefficients σj(xj) that vanish identically
on QI . These variable coefficients defeat exact solution strategies for the
absorbing boundary conditions.

• All PML introduce auxiliary variables. The augmented systems are degen-
erate in one way or another. They are plagued by characteristic boundaries,
loss of ellipticity, weak hyperbolicity, etc.

To formulate precise results begin with some definitions.

Definition 1.1 Define a C6 valued function u and a 6× 6 sytem of differ-
ential operators A by,

u := (E,B), A(∂) :=

(
0 − curl

curl 0

)
, ∂ = (∂1, ∂2, ∂3) .

Equation (1.1) is equivalent to

∂tu + A(∂)u = f, f := (−j, 0) . (1.4)

Define real antisymmetric 3×3 matrices Ak and 6×6 real symmetric matrices
Ak,

A1 :=

0 0 0
0 0 1
0 −1 0

 , A2 :=

0 0 −1
0 0 0
1 0 0

 ,

A3 :=

 0 1 0
−1 0 0
0 0 0

 , Ak :=

(
0 Ak

−Ak 0

)
.

Then A(∂) =
∑

Ak∂k. Define

A(ξ) :=
∑
k

ξkAk =

(
0 −ξ∧
ξ∧ 0

)
. (1.5)
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Definition 1.2 Denote by Q = Q(L1, L2, L3) the rectangular solid

Q :=
{
x ∈ R3 : |xj | < Lj/2, j = 1, 2, 3

}
.

The boundary of Q has six open faces Γk with 1 ≤ k ≤ 6. For i = 1, 2, 3,

Γi :=
{
xi = −Li/2, and, |xj | < Lj/2 for j ̸= i

}
,

Γi+3 :=
{
xi = Li/2, and, |xj | < Lj/2 for j ̸= i

}
.

For a point x ∈ Γk, ν(x) denotes the outward unit normal to Q at x. The
singular subset S ⊂ ∂Q consists of the points of the boundary so that |xj | =
Lj/2 for more than one value of j.

1.2 Energy flux and absorbing boundary condition

The energy law for real solutions of Maxwell’s equations is recalled and used
to choose the absorbing boundary condition.

Definition 1.3 For vectors v and w in Cd the dot product is defined as
v ·w :=

∑
k vkwk the sum of the products of the components. The Cd scalar

product equal to v · w is denoted (v, w).

Remark 1.1 If vectors v(τ) and w(τ) depend holomorphically on τ then
v(τ) · w(τ) depends holomorphically on τ . The Cd scalar product need not
be holomorphic.

Suppose that Ω ⊂ R1+3 is a smoothly bounded open set. Suppose that
(E,B) is a real C1 solution of Maxwell’s equations with ρ = 0 and j = 0
on Ω. The energy density is defined as (∥E∥2 + ∥B∥2)/2. Compute three
equivalent expressions for the flux of energy through an element of surface
dΣ with unit outward normal ν. For real solutions,

∂t
(
∥E∥2 + ∥B∥2

)
/2 =

(
E · Et +B ·Bt

)
= (E,B) · (E,B)t .

Maxwell’s equations yield

E · Et +B ·Bt = E · curlB −B · curlE .

The vector identity div (u∧v) = v ·curlu−u·curl v yields Poynting’s identity,

∂t
(
∥E∥2 + ∥B∥2

)
/2 + div

(
E ∧B) = 0.
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Integrating and using the Divergence Theorem yields

∂t

∫
Ω
(∥E∥2 + ∥B∥2)/2 dx +

∫
∂Ω

(E ∧B) · ν dΣ = 0.

The outward energy flux through dΣ is equal to

(E ∧B) · ν dΣ . (1.6)

Compute the flux using the matricial form of the Maxwell operator. With
u = (E,B),

u ·
(
ut +

∑
Ak∂ku

)
= 0.

Since the Ak are real and symmetric this yields the conservation law

∂t∥u∥2 +
∑
k

∂k
(
u · Aku

)
= 0.

Integrating over Ω yields the second formula for the flux,

∂t

∫
Ω
∥u∥2 dx +

∫
∂Ω
u · (A(ν)u) dΣ = 0.

Definition 1.4 For a hermitian matrix A, E±(A) denote the spectral sub-
spaces corresponding to strictly positive and strictly negative eigenvalues.
Denote by π±(A) the orthogonal projections on those spaces. Denote the
nullspace as E0(A) with projector π0(A).

Lemma 2.1 shows that the eigenvalues of A(ν) are ±1 and 0. Therefore

u · (A(ν)u) =
∥∥π+(A(ν))u

∥∥2 −
∥∥π−(A(ν))u

∥∥2.
Thus the outward flux of energy is,

1

2
u · (A(ν)u) dΣ =

1

2

(∥∥π+(A(ν))u
∥∥2 −

∥∥π−(A(ν))u
∥∥2)dΣ. (1.7)

The boundary of the computational domain Q is an artificial boundary. A
natural choice of boundary condition is to require that π−(A(ν))(E,B) = 0.
This says that the incoming part of the energy flux from (1.7) vanishes at
∂Q. The outward flux is maximized.

Definition 1.5 If O ⊂ R3 is an embedded 2-manifold, ω ∈ O, ν is a unit
normal vector to O at ω, and V ∈ Tω(O), the tangential component of V ,
denoted Vtan, is defined as V − (V · ν)ν.
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Example 2.4 shows that the absorbing boundary condition π−(A(ν))(E,B) =
0 holds if and only if Etan = Btan ∧ ν. With this boundary condition on
∪Γk, the outward energy flux density is non negative. For sufficiently regular
solutions this implies that the energy in Q is non increasing. The theory of
symmetric positive boundary value problems of Friedrichs [20, 27, 36] shows
that the initial boundary value problem for Maxwell’s equations has weak
solutions and that strong solutions are unique. The fact that the boundary
is irregular defeats Friedrichs’ mollifier strategy to prove the uniqueness of
weak solutions in L2([0, T ]×Q).

Part 1 of [22] proves that this boundary value problem for the Maxwell
equations in rectangular geometry is well posed. The proof relies on the
fact that if u is a harmonic function on a Lipschitz domain Q with u|∂Q ∈
H1(∂Q) then u ∈ H3/2(Q) (see [25, 14, 32]). In Section 8.2, uniqueness for
this Maxwell boundary value problem onQ is used in our proof of uniqueness
for the stretched boundary value problem treated in Theorem 1.15.

1.3 The split and stretched equations

This section introduces the absorption coefficients and associated stretched
equations and coordinate stretchings.

Assumption 1.2 The split equations involve non negative absorption co-
efficients σk ∈ C∞(R). Assume that σk(xk) vanishes for all x = (x1, x2, x3) ∈
QI and that for all ℓ ∈ N, the derivative ∂ℓσk ∈ L∞(R).

Remark 1.2 The absorption σk(xk) is typically strictly positive on a neigh-
borhood of Γk ∪ Γk+3. As a function of xk, σk usually increases from value
zero in QI to a maximum at ∂Q (see [8, 9]). The strips in Q where σk > 0
are called absorbing layers.

Bérenger’s splitting introduces Ũ := (U1, U2, U3) with Uk taking values in
R6. The split equations imposed on Ũ are(

∂t + σk(xk)
)
Uk + Ak∂k(U

1 + U2 + U3) = fk , k = 1, 2, 3 . (1.8)

The kth equation has the ∂k derivatives from Maxwell’s system. The source
terms fk are chosen so that f1+f2+f3 = (−j, 0) := f . The most symmetrical
choice is fk = f/3. Another common choice is f1 = f and f2 = f3 = 0. To
cover both treat

fk := ckf, f = (−j, 0), ck ≥ 0, c1 + c2 + c3 = 1. (1.9)
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Our method yields the same conclusion for each of these choices with esti-
mates uniform for ck as in (1.9).

Definition 1.6 The equations (1.8) with (1.9) are called the split equa-
tions. For a solution of the split equations, the associated electric and
magnetic fields are defined by (E,B) := U1 +U2 +U3. The restriction of
E,B to QI is the output of Bérenger’s method.

The analysis of the pure initial value problem on R1+d for the split equations
corresponds to a computational domain Q = R3. It is much simpler than
the mixed initial boundary value problem with boundary conditions on ∂Q
with its edges and corners.

The first proofs of well posedness for Bérenger’s system on R3 with non-
constant σk differentiated the equations to construct a large system for a
highly heterogeneous mix of derivatives. The large system has constant co-
efficient principal part that is symmetrized by a Fourier multiplier S(D), see
[29, 28, 34, 30, 21].

The estimates in all of the above papers involve subtle constructions. Though
the layers are called absorbing, no energy decay law for Bérenger’s split
Maxwell system is known. If the splitting is applied to systems very close to
the isotropic Maxwell system the layers are amplifying. Examples are wave
equations with symbol τ2 − q(∂x, ∂x) with real positive definite anisotropic
quadratic form q with axes of inertia not aligned with the coordinate axes
[21, 4]. Another example is the anisotropic Maxwell system even with axes
aligned with the coordinate axes [5].

There are other PML’s for which the analysis of the pure initial value prob-
lem is straightforward. Some, for example those in Section 9 are symmetric
hyperbolic systems. For isotropic Maxwell in rectangular geometry with ab-
sorbing boundary conditions at ∂Q our analysis treats them all. As in [22],
the analysis works for Maxwell’s equations with variable ϵ(x) provided that
ϵ(x) is scalar and constant outside QI .

The solutions of (1.8) are supported in t ≥ 0. If the solutions grow no faster
than eMt, then their Laplace transforms are holomorphic in Re τ > M . The
Laplace transform, indicated with a hat, of (1.8) is(
τ + σk(xk)

)
Ûk + Ak∂k(Û

1 + Û2 + Û3) = f̂k , k = 1, 2, 3 . (1.10)

Definition 1.7 For Re τ > 0, define the stretched derivatives

∂̃k :=
τ

τ + σk(xk)
∂k, k = 1, 2, 3, ∂̃ :=

(
∂̃1 , ∂̃2 , ∂̃3

)
.
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Define stretched vector operators as,

g̃rad :=
(
∂̃1, ∂̃2, ∂̃3

)
, d̃iv := (∂̃1, ∂̃2, ∂̃3)· , c̃url := (∂̃1, ∂̃2, ∂̃3) ∧ .

Multiply the kth equation of (1.10) by τ/(τ +σk(xk)). The sum of the three
resulting equations shows that (Ê, B̂) satisfies

(
τ +

∑
k

Ak∂̃k
)(
Ê, B̂

)
=
∑
k

τ f̂k
τ + σk(xk)

= f̂ . (1.11)

where Assumption 1.1 and Assumption 1.2 are used in the last equality.
Equivalently,

τÊ − c̃url B̂ = − ĵ
∑
k

τck
τ + σk(xk)

= −ĵ , τ B̂ + c̃url Ê = 0. (1.12)

Definition 1.8 The equivalent systems (1.11) and (1.12) satisfied by Ê, B̂
are called the stretched Maxwell equations or simply the stretched
equations.

The stretched equations are at the heart of all PML that we know and have
at least two interpretations in terms of changes of variables.

Definition 1.9 For Re τ > 0, define the coordinate stretchings Xk(τ, xk)
as the solutions of ordinary differential equation initial value problems

∂Xk

∂xk
=

τ + σk(xk)

τ
, Xk(τ, 0) = 0 . (1.13)

For τ ∈]0,∞[, ∂Xk/∂xk ≥ 1 so x 7→ X(τ, x) := (X1, X2, X3) is a diffeomor-
phism from R3 onto itself. The inverse is denoted X 7→ x = x(τ,X). Thus
x and X are global coordinates on R3. A function f(x) corresponds the the
function f(X) when

f(x) = f(X(τ, x)), equivalently, f(X) = f(x(τ,X)) .

For τ > 0 fixed, if P (τ,X, ∂X) is a system of partial differential operators
in the X variables it induces an operator on functions f(x) as follows. To a
function f(x) compute the corresponding function f(X), apply P yielding
Pf , then compute the function of x that corresponds to Pf . Write P ↔ P
to indicated corresponding pairs.
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Lemma 1.10 For τ ∈]0,∞[ one has the pair of corresponding operators

τ

τ + σj(xj)

∂

∂xj
↔ ∂

∂Xj
,

∂

∂xj
↔ τ + σj(xj(τ,Xj))

τ

∂

∂Xj
. (1.14)

Proof. To prove the first identity, compute

∂

∂xj
=
∑
k

∂Xk

∂xj

∂

∂Xk
=
τ + σj(xj)

τ

∂

∂Xj
,

τ

τ + σj(xj)

∂

∂xj
=

∂

∂Xj
.

For the second, remark that if P1(τ, x, ∂x) ↔ P 1(τ,X, ∂X) and P2(τ, x, ∂x) ↔
P 2(τ,X, ∂X), then P 1 P 2 ↔ P1 P2. This product rule implies the second
identity upon writing

∂

∂xj
=

τ + σj(xj)

τ

( τ

τ + σj(xj)

∂

∂xj

)
. □

The following lemma yields a definition of stretched partial differential op-
erators.

Lemma 1.11 Suppose that for τ ∈]0,∞[, P ↔ P is a pair of correspond-
ing operators. Suppose that P (τ,X, ∂X) =

∑
aα(τ,X)∂αX with coefficients

aα(τ, x) ∈ C∞({Re τ > 0} × R3) holomorphic in τ . Then, P has a unique
extension to Re τ > 0 with smooth coefficients that are holomorphic in τ .

Proof. Uniqueness follows by uniqueness of analytic continuation. The
product rule shows that for τ real

P (τ, x, ∂x) =
∑
α

aα(τ,X(τ, x)) Π3
k=1

(τ + σk(Xk(τ, xk))

τ

∂

∂xk

)αk

.

The coefficients of the operator on the right are smooth in τ, x and holo-
morphic in τ by inspection. □

Definition 1.12 The extension P from Lemma 1.11 is called the stretched
operator corresponding to P .

Summarizing, the stretched family is defined for real τ by the change of
coordinates. Then for complex τ by holomorphic continuation. Lemma 1.11
sets the stage for proofs by analytic continuation as in the next Lemma.
The correspondence is used in this paper for P with constant coefficients in
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which case the stretched operator is the original operator with ∂X replaced
by ∂̃x.

A second version of the stretching correspondence is complex scaling. Com-
pute ∂(Re Xk)/∂xk = 1 + σk Re τ/|τ |2 ≥ 1. Therefore, for complex τ fixed
with Re τ > 0, the map xk 7→ Xk(τ, xk) is a diffeomorphism of R to a
submanifold Gk(τ) ⊂ C with dimRGk(τ) = 1. The map x 7→ X is a dif-
feomorphism of R3 to the submanifold G(τ) := G1 × G2 × G3 ⊂ C3 with
dimRG(τ) = 3. The functions x1, x2, x3 are global coordinates on G(τ). The
submanifolds G(τ) depend analytically on τ . In Lemma 1.11, P (τ, x, ∂x) is
viewed as an operator on R3 depending parametrically on τ . An alternative
version views x as coordinates on G(τ). Then if P (τ, x, ∂x) is a κ×κ system
of differential operators from the trivial bundle over G(τ) with fiber Rκ to
itself. Lemma 1.11 characterizes that family of operators by the following
properties.

• For τ ∈]0,∞[, the family is equal to the stretched operators on R3.

• The family of operators depends holomorphically on τ .

Lemma 1.13 Denote by ∆̃ the stretched operator from Definition 1.12 cor-
responding to ∆X . Then, the stretched vector operators satisfy,

d̃iv(Φ ∧Ψ) = (c̃url Φ) ·Ψ− (c̃urlΨ) · Φ, ∆̃ = d̃iv g̃rad,

∆̃ I3×3 = g̃rad d̃iv − c̃url c̃url, d̃iv c̃url = 0, c̃url g̃rad = 0.
(1.15)

Proof. For τ real, the stretched version follows from the unstretched version
by coordinate stretching. The terms in the stretched identities are holomor-
phic in {Re τ > 0}. Since the identities hold on the real axes, they follow
by analytic continuation for all Re τ > 0. □

Applying d̃iv to the stretched Maxwell equations (1.12) and using the conti-
nuity equation in Assumption 1.1 yields the stretched divergence identities

τ d̃iv Ê = − d̃iv ĵ = τ ρ̂, τ d̃iv B̂ = 0. (1.16)

When τ ∈]0,∞[, the stretched Maxwell equations are real and symmetric in
the sense of Friedrichs [20]. That is, the matrices multiplying ∂k are real and
symmetric. For τ ∈]0,∞[ and large, the stretched system is positive in his
sense. However, when τ is not real the coefficients are not even hermitian
symmetric. The split system (1.10) is never symmetric and never hermitian.
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1.4 Main Theorem for the stretched equations

Consider (1.11). At a boundary point in Γj the normal matrix is equal to∑
νk

τ

τ + σk(xk)
Ak =

τ

τ + σj(xj)
νj Aj , νj = ±1.

When τ > 0 this is a strictly positive scalar multiple of the normal matrix
for the Maxwell system. The energy flux argument in Section 1.2 shows
that the boundary condition π−(ν)(Ê, B̂) = 0 is a natural choice for the
stretched equations with τ > 0. The Ê, B̂ are holomorphic on Re τ > M .
Therefore, if this choice is made for τ > 0, then by analytic continuation
π−(ν)(Ê, B̂) = 0 is satisfied on Re τ > M . The conclusion is that for
the rectangular domain Q, a natural boundary condition for the stretched
equations is π−(ν)(Ê, B̂) = 0 on ∂Q \ S. Theorem 1.15 solves the resulting
mixed initial boundary value problem.

The well posedness result for the stretched equations involves boundary
traces. If W = (F,G) ∈ L2(Q) satisfies the stretched Maxwell equations
with source j, ρ vanishing on a neighborhood of ∂Q then on a neighbor-
hood of the boundary, W, d̃ivW, c̃urlW are square integrable. Proposition
5.4 shows that W has a well defined trace in H−1/2(∂Q). Therefore, the
boundary traces in ii and iv of Theorem 1.15 make sense.

Definition 1.14 If O ⊂ R3 is open and K ⊂ O is compact. define L2
K(O) :={

f ∈ L2(O) ; supp f ⊂ K
}
. The spaces C∞

K (O) and H1
K(O) are defined sim-

ilarly.

Theorem 1.15 Assume that Assumption 1.2 is satisfied. There is anM0 >
0 so that if M > M0, J and R satisfying −d̃iv J = τR are holomorphic
on Re τ > M with values in L2

QI
(Q), then there is a unique W (τ) =

(F (τ), G(τ)) that satisfies i, ii, iii, iv.

i. W is holomorphic on {Re τ > M} with values in L2(Q).

ii. Wtan is holomorphic on {Re τ > M} with values in L2(∪Γk).

iii. For all Re τ > M , the following equations are satisfied on Q,

τF − c̃urlG = −J, τG+ c̃urlF = 0, d̃ivG = 0, d̃ivF = R. (1.17)

iv. Ftan = Gtan ∧ ν (equivalently π−(ν)(F,G) = 0) on ∪Γk.

In addition, with constant independent of R, J, τ ,

(Re τ)2∥W (τ)∥2L2(Q) + (Re τ)∥Wtan(τ)∥2L2(∪Γk)
≲ ∥R(τ), J(τ)∥2L2(Q).

(1.18)
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Remark 1.3 In addition, W |∂Q is holomorphic with values in L2(∂Q) with
∥W |∂Q∥L2(∂Q) ≲ |τ |1/2(Re τ)−1∥R, J∥L2(Q) (see (8.6)). For any η < 1,

∇W ∈ L2(ηQ) with ∥∇W
∥∥
L2(ηQ)

≤ Cη|τ |(Re τ)−1∥R, J∥L2(Q) (see (8.7)).

Example 1.1 Perfect matching. Theorem 1.15 implies perfect matching
when Q = R3. Compare W with a second family of solutions, W0, cor-
responding to the unstretched case σ = 0. Perfect matching asserts that
W |QI

=W0|QI
.

Proof of perfect matching from [21]. For positive real τ , Equation
(1.14) asserts that ∂̃j in the x coordinates is equal to ∂/∂Xj in the X coor-
dinates. Therefore, the change of variable conjugates the stretched operator
in x to the unstretched operator (equivalently the operator with σ = 0) in
X.

In addition for τ real both operators have easy estimates. Both of these
operators are invertible for τ ∈]M,∞[. The change of variable is equal to
the identity on QI . Therefore, when one solves these different equations
with the same source supported in QI the two solutions agree on QI .

As both W and W0 are holomorphic on Re τ > M , it follows by analytic
continuation that W |QI

=W0|QI
for Re τ > M . □

Remark 1.4 For a bounded computational domain Q the perfect matching
is destroyed. Waves reaching the external boundary are partly reflected and
pollute the computation in QI . This effect is mitigated by the decay of wave
in the layers. The imperfections decrease with increasing thickness of the
layers. Proving that the PML for Maxwell’s equations have this observed
dissipative behavior is an outstanding open problem.

1.5 Main Theorem for the split equations

Theorem 1.16 Assume that assumptions 1.1 and 1.2 are satisfied. There
is an M0 > 0 so that if µ > M0 and ρ, j ∈ eµtL2(R × QI), then there is a
unique solution Ũ =

(
U1, U2, U3

)
∈ L2(R;H−1(Q)), satisfying Ũ = 0 for

t ≤ 0 and the split boundary value problem (1.8,1.9) on R×Q with,

V := U1 + U2 + U3 := (F,G) ∈ eµtL2(R×Q) ,

Vtan ∈ eµtL2(R× Γk), 1 ≤ k ≤ 6 ,

Ftan = Gtan ∧ ν (equivalently π−(ν)(F,G) = 0) on R× ∪Γk .
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In addition, V and the components Ũk satisfy

µ
∥∥e−µt V

∥∥
L2(R×Q)

+ µ1/2
∥∥e−µt Vtan

∥∥
L2(R×∪Γk)

+

µ
∥∥e−µt(Uk, ∂tU

k)
∥∥
L2(R:H−1(Q))

≲
∥∥e−µt(ρ, j)

∥∥
L2(R×Q)

.
(1.19)

Remark 1.5 i. The output of Bérenger’s algorithm is the restriction of V
to QI . With this in mind, estimate (1.19) resembles the estimate for the
Maxwell’s equations themselves.

ii. The restriction of Uk to ηQ with η < 1 satisfies

µ ∥e−µt Uk∥L2(R×ηQ)) ≤ Cη ∥e−µt(∂tρ, ∂tj)∥L2(R×Q). (1.20)

iii. Uniform stability. Estimate (1.19) allows the possibility of exponen-
tial growth in time. Proving uniform boundedness, suggested by computa-
tional experience, is an oustanding open problem.

For the special case of Q = R3 with constant σk, uniform stability can be
attacked by exact solution in Fourier, or by constructing decreasing nonneg-
ative functionals see for instance [6, 3].

A number of works began the assault on the theorems of this paper. Begin
with important steps for the analogous problems without PML. Variational
forms for the Maxwell equations with the absorbing boundary condition
use div-curl formulations. Excellent expositions in the time harmonic set-
ting are Nicaise-Tomecz [32] and Costabel-Dauge-Nicaise [16, Section 4.5].
Their formulation is strictly positive when applied with Re τ > 0. Our
variational formulation is a stretched cousin of theirs. We analysed the
unstretched Maxwell equations in rectangular domains with the absorbing
boundary condition in [22]. We analysed the unstretched Maxwell equations
in rectangular domains with the absorbing boundary condition in [22]. It
opened the door for the present problem. The uniqueness assertion from
that paper is used in the last paragraph of the uniqueness proof in Section
8.2. Costabel [14] showed the pertinence of the Jerison Kenig Theorems for
Maxwell regularity in presence of corners like ours.

For problems with PML we started in [21] with a variational treatment by
Laplace transformation of Bérenger’s layers with Q = R3. In particular we
proved perfection.

Diaz-Joly in [17, 18] treat the stretched wave operator ∂2t − ∆̃ with Dirichlet
or Neumann boundary conditions at ∂Q. They prove uniform stability and
an amazing explicit solution formula in spite of the variable absorptions.
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The Diaz-Joly boundary conditions are perfectly reflecting, the opposite of
absorbing. The elegant analysis uses reflection arguments that fail for the
ABC for their problem. We know of no wellposed boundary conditions for
time dependent Maxwell that have a reflection principle.

A problem with difficulty greater than that of the stretched wave equation
with absorbing boundary condition is the PML method applied to the Pauli
system in a rectangle with ABC. It is analysed in [23]. That paper intro-
duced the strategy of solving a Helmholtz system on a smoothed domain
then using smoothness to derive the original Pauli equations. To our sur-
prise, the analysis on the smoothed domain for the Maxwell PML is much
more difficult.

Bramble-Pasciak [10] consider the PML applied to the time harmonic Helmholtz
systems coming from Maxwell’s equations with perfect conductor bound-
ary conditions on the external boundary. The conservative boundary is a
great technical simplification because flux terms vanish (see Remark 7.3).
Bramble-Pasciak consider only the stretched time harmonic Helmholtz prob-
lems.

Bécache-Kachanovska-Wess [7] apply the PML method to the Maxwell equa-
tions in two dimensions with perfect conductor boundary conditions in pla-
nar wave guides. They analyse the resulting Helmholtz equation for the mag-
netic field. The two dimensionality and the conservative boundary condition
are significant aids. They prove exponential decay in the one dimensional
layer. This gives hope for decay in layers in R1+3.

1.6 Outline of the proof

The key result is Theorem 1.15 asserting existence uniqueness and holomor-
phy in τ of solutions of the stretched Maxwell system. Just as solutions of
Maxwell’s system are solutions of D’Alembert’s wave equation, the solution
of the stretched Maxwell system satisfies a Helmholtz system, introduced in
Section 3.

On ∂Q this Helmholtz system requires six boundary conditions. Two come
from the boundary condition π−(ν)(E,B) = 0. An additional pair are the
divergence relations divE = divB = 0. The final pair comes from the
stretched Maxwell equations themselves. The additional condition, intro-
duced in Section 3.2, is π+(Mν)(τ − c̃urlE , τ + c̃urlB) = 0 with M from
Definition 3.3. The resulting boundary value problem is solved on a domain
Qδ that is a smoothing of Q on a δ-neighborhood of the singular set S.
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Though solutions of the stretched Maxwell boundary value problem au-
tomatically satisfy the resulting Helmholtz boundary value problem, the
converse is proved only for real τ and only for smooth solutions. That
smoothness requires the smoothed domain. That the stretched boundary
value problem is satisfied for general τ follows by analytic continuation.

Section 4 shows that the Helmholtz boundary value problem satisfies Lopatin-
ski’s coercivity condition, and depends holomorphically on τ . The boundary
data for this problem are sections of vector bundles that depend holomor-
phically on τ .

The hardest part of the analysis is the derivation of estimates for the solu-
tions of the stretched Maxwell boundary value problem on Qδ. One set of
estimates comes from the Helmholtz boundary value problem. It is classical
[14, 15, 32, 16] that the absorbing conditions are associated to the div-rot
quadratic form of the Laplace operator. That quadratic form has a natural
but not obvious extension to the stretched problem. It relies on Green’s
identities from Section 5, and, the spectral projections of Section 2.

In Section 5.3 the quadratic form is used to prove the invertibility of stretched
Helmholtz boundary value problem for τ ∈]0,∞[.

For complex τ there are two difficulties in applying the bilinear form from
Section 5. The first is that neither the volume integrals nor the boundary
terms have a sign. They both are almost positive. The second is that the
boundary term yields at best an estimate for the π+(Mν) projection of the
boundary data. The π−(Mν) projections enter in error terms. This does
not happen for the perfect conductor boundary conditions.

Section 6 presents the technique for overcoming the second obstacle. We
derive estimates for the stretched Maxwell system that are analogues of
those of Jerison-Kenig [25] for harmonic functions and M. Mitrea [31] for
Maxwell’s equations. For stretched Maxwell, the estimates assert that the
π−(Mν) projection of the trace is estimated in terms of π+(Mν) projection
and the stretched divergence and curl.

The natural multiplier in Green’s identity is not the complex conjugate of
(E,B). The natural space is the set of fields with square integrable d̃iv and

c̃url. The complex conjugate of such a field need not satisfy this constraint.
In Section 7, appropriate multipliers are found. The δ-independent estimates
for the stretched Maxwell boundary value problem on Qδ are proved in
Section 7.

Theorem 8.1 of Section 8.1 solves the stretched Maxwell boundary value
problem on Qδ. The Laplace transform of the solution is constructed as a
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solution of the stretched Helmholtz boundary value problem. Section 8.2
solves the stretched Maxwell equations on Q with its trihedral corners by
passage to the limit δ → 0. The holomorphy in τ makes it easier to prove
convergence. The uniqueness of the solution is proved by showing that the
Laplace transform vanishes for τ real. That follows from the uniqueness
theorem in Part 1 of [22]. Section 8.3 solves the split equations on Q using
the solvability of stretched Maxwell. Section 9 shows that the methods used
to solve the Bérenger’s split equations also treat other PMLs. It also proves
a new error estimate. The proof works for any perfectly matched and well
posed PML.

2 Symbol spectral decomposition

The formulas of this section are used throughout. Formula (1.7) for the
energy flux leads to the absorbing boundary condition for τ real. In Section
3.2, the holomorphy of Lemma 2.7 is used to find the boundary conditions for
complex τ . The projectors appear in the bilinear form a((E,B), (E′, B′))
from Definition 5.8 that is used to analyse the stretched and unstretched
Helmholtz boundary value problems. Proposition 5.10 proves, using the
projectors, that the boundary term after integration by parts in a vanishes
if (E,B) satisfies the stretched Maxwell equations at ∂Qδ.

Lemma 2.1 With notation from Definition 1.4, for ξ ∈ R3 \ 0, the real
6 × 6 symmetric matrix A(ξ) from (1.5) has eigenvalues ±|ξ| and 0. Each
eigenvalue has multiplicity two. The eigenspaces, positive homogeneous of
degree zero in ξ, are given by

E0(A(ξ)) =
{
(e,b) : e ∥ ξ and b ∥ ξ

}
,

E+(A(ξ)) =
{
(e,b) : b ⊥ ξ and e = b ∧ ξ/|ξ|

}
,

E−(A(ξ)) =
{
(e,b) : b ⊥ ξ and e = −b ∧ ξ/|ξ|

}
.

(2.1)

Proof. By homogeneity, it suffices to consider |ξ| = 1. Each of the subspaces
on the right is two dimensional. For the eigenvalues ±1, compute

A(ξ)

(
e
b

)
=

(
0 −ξ∧
ξ∧ 0

)(
e
b

)
=

(
−ξ ∧ b
ξ ∧ e

)
.

It follows that (e,b) in the formulas are eigenvectors with eigenvalue ±1.
The eigenvalue 0 is easier. Since the spaces on the right of (2.1) span C6 it
follows that they contain all the eigenvectors. □
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Example 2.1 It follows that for τ ∈ C and ξ ∈ R3 \ 0

det
(
τI −A(ξ)

)
= τ2(τ2 − ξ · ξ)2 . (2.2)

Since the left hand side is a homogeneous degree six polynomial in (τ, ξ), it
follows (for example by Taylor series) that this identity holds for all (τ, ξ) ∈
C1+3.

Definition 2.2 When dealing with the Maxwell system we use the short-
hand E±(ξ) and E0(ξ) for E±(A(ξ)) and E0(A(ξ)). Similarly for the spectral
projectors.

Example 2.2 For a real unit vector ξ the map b 7→ (±b ∧ ξ , b)/
√
2 is an

isometry from the set of vectors orthogonal to ξ to E±(ξ).

Definition 2.3 Define

Z :=
{
ξ ∈ C3 \ 0 : ξ21 + ξ22 + ξ23 = 0

}
.

Z is a closed conic subset of C3 \ 0. (C3 \ 0) \ Z is open, conic, connected,
and contains R3 \ 0.

Example 2.3 For ξ ∈ C3 \ 0, define subspaces Wj(ξ) ⊂ C3 by

W1 := C ξ , and, W2 :=
{
v ∈ C3 : v · ξ = 0

}
.

Then dimW1 = 1 and dimW2 = 2. In addition, W1 ∩W2 = {0} if and only
if ξ /∈ Z. In that case, C3 =W1 ⊕W2.

Definition 2.4 For 0 ̸= ξ ∈ C3 \ Z, denote πξ and πξ⊥ the projections in
Hom(C3) given by

πξv :=
v · ξ
ξ · ξ

ξ, and, πξ⊥ := I − πξ .

The decomposition I = πξ + πξ⊥ corresponds to W1 ⊕W2 = C3.

Remark 2.1 i. For ξ in R3 \ 0, πξ⊥ is equal to the orthogonal projection
onto the orthogonal complement of ξ. When ξ is not real, πξ⊥ is not equal
to the orthogonal projection onto the orthogonal complement of ξ.
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ii. The map {(C3\0)\Z} ∋ ξ 7→ πξ⊥ is holomorphic with values in Hom(C3).
For ξ in R3 \0, πξ⊥ is equal to the orthogonal projection onto the orthogonal
complement of ξ. These properties characterize πξ⊥.

iii. For c ∈ C \ 0 and 0 ̸= ξ ∈ C3 \ Z, πcξ = πξ and π(cξ)⊥ = πξ⊥.

iv. For ξ ∈ R3 \ 0,

ξ ∧ (ξ ∧ w) = −(ξ · ξ)
(
w − (ξ · w)ξ

ξ · ξ

)
= −(ξ · ξ)πξ⊥w . (2.3)

The terms of the identity are holomorphic functions of ξ on the connected
set C3 \ Z. Identity (2.3) extends by analytic continuation to ξ ∈ C3 \ Z.

Lemma 2.5 Suppose that ξ ∈ R3 is a unit vector.

i. The span of the non zero eigenspaces of A(ξ) is the set of e,b with e·ξ = 0
and b · ξ = 0. In addition, for arbitrary (e,b),

π0(ξ)
(
e,b

)
=
(
(e · ξ)ξ , (b · ξ)ξ

)
.

ii. For (e,b) satisfying e · ξ = 0, and b · ξ = 0,

π+(ξ)
(
e,b) =

1

2

(
b ∧ ξ + e , b− e ∧ ξ

)
.

iii. For arbitrary (e,b),

π+(ξ)
(
e,b) = π+(ξ)

(
πξ⊥e , πξ⊥b

)
=

1

2

(
(πξ⊥b) ∧ ξ + πξ⊥e , πξ⊥b− (πξ⊥e) ∧ ξ

)
.

iv. The projection on the negative eigenspace is given by π−(ξ) = π+(−ξ).

Proof. i. The span of the eigenspaces with non zero eigenvalues is the
orthogonal complement of the kernel. Part i follows from the description of
the kernel in Lemma 2.1.

ii. Using Example 2.2, there are unique vectors b± perpendicular to ξ so
that

(e,b) = (b+ ∧ ξ , b+)/
√
2 + (−b− ∧ ξ , b−)/

√
2, (2.4)

with the b± term being the projection on E±(ξ). Equation (2.4) holds if
and only if

b+ + b− =
√
2b , b+ ∧ ξ − b− ∧ ξ =

√
2 e .
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The wedge product of the second with ξ shows that it is equivalent to

−b+ + b− =
√
2 e ∧ ξ .

Adding (resp. subtracting) from the first equation implies that b− = (b +
e ∧ ξ)/

√
2 (resp. b+ = (b− e ∧ ξ)/

√
2). Therefore

π+(ξ)(e,b) = (b+ ∧ ξ , b+)/
√
2 =

(
(b− e ∧ ξ) ∧ ξ , b− e ∧ ξ

)
/2

=
(
b ∧ ξ + e , b− e ∧ ξ

)
/2,

proving ii.

iii. For general (e,b), part i implies that the projection on the span of the
nonzero eigenspaces is equal to (πξ⊥e , πξ⊥b). Then ii implies iii.

iv. Follows from A(−ξ) = −A(ξ). □

Example 2.4 For real unit vectors ξ, the span of the nonpositive eigenspaces
E−(ξ) ⊕ E0(ξ) = Kerπ+(ξ) is equal to the set of vectors e,b satisfying
πξ⊥b − (πξ⊥e) ∧ ξ = 0. Taking the wedge product with ξ shows that this
is equivalent to (πξ⊥b) ∧ ξ + πξ⊥e = 0. In addition,

∥π+(ξ)(e,b)∥√
2

≤ ∥πξ⊥b−(πξ⊥e)∧ξ∥ = ∥(πξ⊥b)∧ξ+πξ⊥e∥ ≤
√
2 ∥π+(ξ)(e,b)∥.

Example 2.5 Equation (2.2) implies that for ξ ∈ C3 \ 0 the eigenvalues of
A(ξ) are equal to 0 and the two square roots of ξ · ξ. Analytic continuation
on paths that wind about Z can pass from one root to the other. There is
no holomorphic function on C3 \ Z whose square is equal to ξ · ξ.

Definition 2.6 Let

Ω := {ξ ∈ C3 : Re (ξ · ξ) > 0} = {ξ ∈ C3 : | Im ξ| < |Re ξ|} .

For ξ ∈ Ω, define (ξ · ξ)1/2 to be the unique square root of ξ · ξ that has
strictly positive real part. The function Ω ∋ ξ 7→ (ξ · ξ)1/2 is holomorphic.

The eigenvalues are holomorphic on larger sets, for example {ξ ∈ C3 : ξ · ξ ∈
C\]−∞, 0]}. The extension to Ω suffices for our needs.
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Lemma 2.7 For Ω from Definition 2.6 and ξ ∈ Ω, A(ξ) has eigenvalues 0
and ±(ξ · ξ)1/2. Each eigenvalue has an eigenspace of dimension two. The
spectral projections are holomorphic on Ω and are given by,

π+(ξ)
(
e,b) = 2−1

(
(ξ · ξ)−1/2b ∧ ξ + πξ⊥e , πξ⊥b− (ξ · ξ)−1/2e ∧ ξ

)
,

π0(ξ)(e,b) =
(
πξe, πξb

)
,

π−(ξ) = −π+(−ξ).

Proof. The eigenvalues and their algebraic multiplicities follow from (2.2).
The contour integral representations show that the spectral projections are
holomorphic in ξ. For ξ ∈ R3 \ 0 one has the formulas for the projectors
and,

A(ξ)π±(ξ) = ±(ξ · ξ)1/2π±(ξ), A(ξ)π0(ξ) = 0. (2.5)

By analytic continuation, the identities (2.5) and the formulas for the spec-
tral projections extend to Ω. □

Example 2.6 For ξ ∈ Ω, π±(ξ), πξ and πξ⊥ are related by(
πξ⊥ 0

0 πξ⊥

)
= π+(ξ) + π−(ξ), and,

(
πξ 0
0 πξ

)
= π0(ξ). (2.6)

3 Stretched Helmholtz boundary value problem

The stretched Maxwell equations are solved on smoothed domains Qδ. Sec-
tion 3.2 shows that on the smoothed parts there is a boundary condition
forced by holomorphy in τ . Proposition 3.4 shows that solutions of the
resulting stretched Maxwell boundary value problem satisfy a Helmholtz
boundary value problem on Qδ. It also proves a partial converse: when τ is
real, solutions of the Helmholtz boundary value problem satisfy the stretched
Maxwell system. The proof requires the smoothness of Qδ. Section 8.1 uses
the partial converse for real τ to show that for the holomorphic family the
stretched Maxwell system is satisfied for all τ .

3.1 Smoothed domains Qδ

The construction of a holomorphic family of solutions (E(τ), B(τ)) to the
stretched Maxwell equations on Q is carried out by solving the same equa-
tions on a sequence of domains Qδ for 0 < δ ≤ δ0 increasing to Q as δ
decreases. The Qδ are obtained by smoothing the corners and edges of Q.
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Q is convex with 0 ∈ Q. Express ∂Q in spherical coordinates (r, ω) ∈
]0,∞[×S2 as the graph r = ϕ(ω). Then ϕ is lipschitzian on S2. Denote by
S := ϕ−1(S) ⊂ S2 the preimage of the singular set S of ∂Q.

Definition 3.1 For 0 < δ < 1 choose a sequence of smooth convex domains
Qδ := {(r, ω) : r < ϕδ(ω)} with ϕδ ∈ C∞(S2) increasing to ϕ as δ ↘ 0. The
functions ϕδ are required to satisfy, ϕδ = ϕ on {ω ∈ S2 : dist(ω,S) > δ},
and, supδ ∥∇ωϕ

δ∥L∞(S2) <∞.

Figure 1: A smoothed corner of Qδ

Remark 3.1 Except for a δ neighhorhood of S, the normal vectors ν to
∂Qδ are parallel to the coordinate axes, see Definition 3.1.

Definition 3.2 With QI from Assumption 1.1, choose 0 < δ0 < 1 so that
Qδ0 contains QI in its interior.

3.2 Absorbing boundary conditions on ∂Qδ

This subsection chooses a boundary condition to impose on the curved
parts of ∂Qδ. On the flat parts of the boundary impose the condition
π−(ν)(E,B) = 0. This convention implies that taking the limit as δ → 0
recovers the boundary conditions on ∂Q in Theorem 1.16. The choice of
boundary conditions on the curved parts requires thought.

Definition 3.3 Define

Π(τ, x) :=
3∏

i=1

τ + σi(xi)

τ
, (3.1)
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and,

M(τ, x) :=

M11 0 0
0 M22 0
0 0 M33

 , with Mii(τ, x) :=
∏
j ̸=i

τ + σj(xj)

τ
.

Then

M11 M22 M33 = Π2,
τ

τ + σi(xi)
= Π−1Mii, ∂̃ = Π−1M ∂ . (3.2)

The operator A(∂̃) is given by∑
i

Ai ∂̃i =
∑
i

τ

τ + σi(xi)
Ai ∂i = A(Π−1M∂) = Π−1A(M∂). (3.3)

The normal matrix associated to A(∂̃) is equal to∑
i

τ

τ + σi(xi)
Ai νi = Π−1A(Mν) . (3.4)

For τ real, it is natural to impose at all x ∈ ∂Qδ the boundary condition

π−
(
M(τ, x)ν

)(
E,B

)
= 0. (3.5)

This choice is characterized by the following three desireable features. First,
it gives the desired answer when ν is parallel to one of the coordinate axes.
Therefore it gives the right limit when δ → 0 since in the limit the normals
are parallel to coordinate axes. Second, it depends holomorphically on τ .
Third it maximizes the outward energy flux when τ is real. Indeed, A(Mν)
has eigenvalues ±∥Mν∥ and 0 each with multiplicity two. Therefore the
outward flux is equal to one half of

(A(Mν)u) · u = ∥Mν∥ ∥π+(Mν)u∥2 − ∥Mν∥ ∥π−(Mν)u∥2 . (3.6)

The boundary condition (3.5) enforces the vanishing of the nonpositive or
incoming part. The resulting outward flux is as positive as possible.

Seek (E,B) holomorphic in τ . In that case the left hand side of (3.5) is
holomorphic in {Re τ > maxk,xk

σk(xk)}. Indeed, suppressing dependence
on k, xk one has for Re τ > 0,

τ + σ

τ
= 1 +

στ

|τ |2
so, Re

τ + σ

τ
≥ 1, and,

∣∣∣Im τ + σ

τ

∣∣∣ ≤ σ

|τ |
.
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Therefore for Re τ > maxk,xk
σk(xk), |Re Mν| > |ImMν|. The holomor-

phy of the left hand side of (3.6) follows from Lemma 2.7.

It is natural to impose that π−(Mν)(E,B)|∂Qδ = 0 when τ is real. By
analytic continuation π−(Mν)(E,B)|∂Qδ = 0 on {Re τ > maxk,xk

σk(xk)}.
This is our choice of absorbing boundary condition for the stretched problem.

3.3 Near equivalence of Maxwell and Helmholtz

Proposition 3.4 Suppose that K is a compact subset of Qδ, Re τ > 0 and
ρ(x), j(x) ∈ L2

K(Qδ) satisfy the continuity equation τρ = −d̃iv j. Consider
two boundary value problems for (E,B) ∈ H2(Qδ) with first boundary con-
dition π−(Mν)(E,B) = 0 on ∂Qδ.

i. E,B satisfies the stretched Maxwell’s equations,

τE − c̃urlB = −j, τB + c̃urlE = 0, d̃ivE = ρ, d̃ivB = 0. (3.7)

ii. E,B satisfies the boundary value problem for the stretched Helmholtz
equation with additional boundary conditions,

τ2E − ∆̃E = − τj − g̃rad ρ on Qδ,

τ2B − ∆̃B = c̃url j on Qδ,

π+(Mν)
(
τE − c̃urlB , τB + c̃urlE

)
= 0 on ∂Qδ,

d̃ivE = d̃ivB = 0 on ∂Qδ.

(3.8)

They are related as follows.

I. i =⇒ ii.

II. There is an M > 0 so that for real τ ∈]M,∞[, ii =⇒ i.

Proof of Proposition 3.4. I. Use (1.15). The identity

A(∂̃)2 = −

(
c̃url c̃url 0

0 c̃url c̃url

)
= −

(
−∆̃ I3 + g̃rad d̃iv 0

0 −∆̃ I3 + g̃rad d̃iv

)

implies that

(
τ I6 −A(∂̃)

)(
τ I6+A(∂̃)

)
=

(
(τ2 − ∆̃)I3 + g̃rad d̃iv 0

0 (τ2 − ∆̃)I3 + g̃rad d̃iv

)
.
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Apply to (E,B) using (3.7) to find(
τ2I6 + c̃url c̃url

)
(E,B) =

(
τ I6 −A(∂̃)

)
(−j, 0)−

(
g̃rad d̃ivE, 0

)
.

This is equivalent to the first two lines in (3.8).

In Qδ
, the functions τE − c̃urlB, τB+ c̃urlE, d̃ivE, d̃ivB vanish on a neigh-

borhood of ∂Qδ. This implies the third and fourth lines of (3.8). This
completes the proof of I.

II. Suppose τ ∈]0,∞[. Define

(F,G) :=
(
τI + A(∂̃)

)
(E,B) + (j, 0).

The first two equations from (3.7) are satisfied if and only if (F,G) = 0.

The second line of (3.8) implies that c̃url j ∈ L2(Qδ). The continuity

equation implies that d̃iv j ∈ L2(Qδ). Since j is supported in K the fact

that (c̃url, d̃iv) is an (overdetermined) elliptic system on R3 implies that
j ∈ H1

K(Qδ). Since E ∈ H2(Qδ) it follows that (F,G) ∈ H1(Qδ).

The third line of equation (3.8) together with the fact that ρ and j vanish
at the boundary imply that on ∂Qδ,

π+(Mν)
(
F,G) = π+(Mν)

(
τE − c̃urlB , τB + c̃urlE

)
= 0 . (3.9)

Computing (τ2− ∆̃)d̃ivE = d̃iv(τ2− ∆̃)E using the Helmholtz equation for

E together with τρ = −d̃iv j yields (τ2 − ∆̃)(d̃ivE − ρ) = 0. By hypothesis

d̃ivE − ρ ∈ H1(Qδ) and vanishes at ∂Qδ. For τ ∈]0,∞[, this implies that

d̃ivE = ρ on Qδ
. Similarly d̃ivB = 0 on Qδ

.

Define W := (F,G). The stretched Helmholtz equations, d̃ivE = ρ, and

d̃ivB = 0, imply that (τI −A(∂̃))W = 0. Note the minus sign. Compute
using the symmetry of Ak in the second step to show that∫

Qδ

W · A(∂̃)W dx =
∑∫

Qδ

W · τ

τ + σk
Ak∂kW dx

=
∑∫

Qδ

τ

τ + σk
AkW · ∂kW dx

An integration by parts, with ν denoting the unit outward normal to Qδ,
yields ∫

Qδ

W · A(∂̃)W dx =

−
∫
Qδ

∑
Ak∂k(

τ

τ + σk
W ) ·Wdx+

∫
∂Qδ

∑ τνk
τ + σk

AkW ·WdΣ.

(3.10)
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Definition 3.3 shows that the first term on the right of (3.10) is equal to

−
∫
Qδ

A(∂̃)W ·Wdx−
∫
Qδ

(∑
Ak∂k

τ

τ + σk

)
W ·Wdx. (3.11)

The second term on the right of (3.10) is equal to∫
∂Qδ

∑ τνk
τ + σk

AkW ·W dΣ =

∫
∂Qδ

Π−1A(Mν)W ·W dΣ. (3.12)

In the last four identities use A(∂̃)W = τW to find∫
Qδ

[
2τ−

∑
Ak∂k

( τ

τ + σk

)]
W ·Wdx =

∫
∂Qδ

Π−1A(Mν)W ·WdΣ. (3.13)

Equation (3.9) yields π+(Mν)W = 0 on ∂Qδ. Therefore, the integrand in
the boundary integral on the right of (3.13) is nonpositive thanks to (3.6).
Thus, the integral is nonpositive.

Choose M > 0 so that for τ > M the real symmetric matrix in square
brackets on the left is everywhere greater than the identity matrix. For such
τ , the left hand side is ≥ 0. The only way that (3.13) can hold is if both sides
vanish. The vanishing of the left hand side yields W = 0. This completes
the proof. □

4 Lopatinski, Fredholm, and analyticity

This section shows that the second boundary value problem in Proposition
3.4 satisfies Lopatinski’s ellipticity condition. The boundary value problem
has unknowns (E,B) of dimension six. The equation π−(Mν)(E,B) = 0 is
two boundary conditions of Dirichlet type since π− has rank equal to two.
The last three equations in (4.1) are four boundary conditions expressing
the normal derivative in terms of tangential derivatives,

τ2E − ∆̃E = f1 on Qδ,

τ2B − ∆̃B = f2 on Qδ,

π−(Mν)
(
E,B

)
= g1 on ∂Qδ,

π+(Mν)
(
τE − c̃urlB , τB + c̃urlE

)
= g2 on ∂Qδ,

d̃ivE = g3 on ∂Qδ,

d̃ivB = g4 on ∂Qδ.

(4.1)

26



Five properties are proved with constant M independent of δ.

• For Re τ > M , problem (4.1) satisfies Lopatinski’s criterion describing
coercive elliptic boundary value problems (Proposition 4.1 and Corollary
4.2).

• The operator Lmapping (E,B) to (f1, f2, g1, g2, g3, g4) is Fredholm (Corol-
lary 4.6) with index independent of τ and the absorptions σj .

• L depends holomorphically on τ ∈ C for Re τ > M (Proposition 4.7).

• L is invertible for τ ∈]0,∞[ (Proposition 5.12).

• Analytic Fredholm Theory implies that for each δ the operator is invertible
except at a discrete subset D(δ) ⊂ {Re τ > M} (Proposition 5.13).

The hard uniform estimates for solutions of (4.1) are in Sections 6 and 7.

4.1 Lopatinski condition and Fredholm property

The verification of Lopatinski’s condition (see [2, 40, 24]), begins with the
unstretched boundary value problem.

Proposition 4.1 For each τ ∈ C and δ ∈]0, δ0], the unstretched boundary
value problem

τ2B −∆B = f1 on Qδ,

τ2E −∆B = f2 on Qδ,

π−(ν)
(
E,B

)
= g1 on ∂Qδ,

π+(ν)
(
τE − curl B , τB + curl E

)
= g2 on ∂Qδ,

div E = g3 on ∂Qδ,

div B = g4 on ∂Qδ,

(4.2)

satisfies Lopatinski’s condition characterizing coercive elliptic problems.

Proof. The verification at a point of ∂Qδ demands that one replaces Qδ

by the half-space with the same tangent plane and outward unit normal
ν. Next one drops lower order terms in the equations and the boundary
conditions. The resulting problem is rotation invariant. Thus it suffices to
verify for the half space {x1 > 0} with ν = (−1, 0, 0).

The Lopatinski condition concerns solutions of the resulting problem with
all source terms equal to zero. It considers solutions of the form

(E,B) = ei(ξ2x2+ξ3x3)w(x1), (ξ2, ξ3) ∈ R2\0, w(x1) → 0 when x1 → +∞ .
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The condition is satisfied when zero is the only such solution.

The boundary value problem with source terms equal to zero is

∆E = ∆B = 0 on {x1 > 0},
π−(ν)

(
E,B

)
= 0 on {x1 = 0},

π+(ν)(− curlB , curlE) = 0 on {x1 = 0},
divE = divB = 0 on {x1 = 0}.

The Laplace equations and decay at infinity hold if and only if there are
constant vectors e ∈ C3 and b ∈ C3 so that

w = eiξ1x1(e,b), ξ21 + ξ22 + ξ23 = 0, Im ξ1 > 0 . (4.3)

Lopatinski’s condition requires that the only such solution that satisfies the
boundary conditions is the trivial solution. For each ξ2, ξ3 there is a six
dimensional space of solutions w to (4.3). This shows that six boundary
conditions are needed.

By rotational invariance it suffices to verify Lopatinski’s condition for (ξ2, ξ3) =
(0, 1) in which case, ξ = (ξ1, ξ2, ξ3) = (i, 0, 1). The boundary conditions hold
if and only if

π−(ν)
(
e,b

)
= 0, π+(ν)

(
− ξ ∧ b , ξ ∧ e

)
= 0, and ξ · e = ξ · b = 0 .

First analyse the boundary condition 0 = π−(ν)(e , b) = π−(ν)(etan,btan).
Lemma 2.1 shows that this is equivalent to

(etan,btan) ∈ E+(ν) ⇔ etan = btan ∧ ν ⇔ (0, e2, e3) = (0, b3,−b2) .

The divergence conditions ie1 + e3 = 0 and ib1 + b3 = 0 yield,

e = (−ib2, b3,−b2), and b = (ib3, b2, b3).

The curl boundary condition is

0 = π+(ν)
(
− ξ ∧ b , ξ ∧ e

)
= π+(ν)

(
− (ξ ∧ b)tan , (ξ ∧ e)tan

)
.

Equivalently,
(
− (ξ ∧ b)tan , (ξ ∧ e)tan

)
∈ E−(ν). Lemma 2.1 implies that

this holds if and only if

−(ξ ∧ b)tan = −
(
ξ ∧ e)tan ∧ ν . (4.4)

For any vector v, (ξ ∧ v)tan = (0, v1 − iv3, iv2). Therefore

(ξ ∧ b)tan = (0, 0, ib2), (ξ ∧ e)tan = (0, 0, ib3), (ξ ∧ e)tan ∧ ν = (0, ib3, 0).

Comparing the first and last shows that if (4.4) holds then b2 = b3 = 0.
Therefore e = b = 0 verifying Lopatinski’s condition. □
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Corollary 4.2 There is an M > 0 so that for |τ | > M and 0 < δ < δ0,
the stretched boundary value problem (4.1), satisfies Lopatinski’s condition
characterizing coercive elliptic problems.

Proof. Since M(τ, x) → I and ν(τ, x) → ν as τ → ∞, the problems
obtained by dropping lower order terms converge to those of Proposition
4.1. Since the Lopatinski condition is inherited by nearby operators, the
result follows. □

The source term g1 takes values in the negative spectral subspace of A(Mν).
Consider the action of the operators τ2 − ∆̃ on H2(Qδ). Since g1 is a trace
at the boundary, the natural space for g1 is{

g ∈ H3/2(∂Qδ) : π−(Mν)g = g
}
. (4.5)

Denote by E−(τ, x) the negative spectral subspace of A(M(τ, x)ν(τ, x)).
Then an equivalent definition is that g1 is an H3/2 section of the vector
bundle over ∂Qδ whose fiber at x is E−(τ, x). Similarly, the natural space
for g2 is {

g ∈ H1/2(∂Qδ) : π+(Mν)g = g
}
. (4.6)

Definition 4.3 For Re τ > 0 the closed subspace of H3/2(∂Qδ) defined in

(4.5) is denoted H
3/2
E−(τ,x)

(∂Qδ). The space (4.6) is denoted H
1/2
E+(τ,x)

(∂Qδ).

Analysis of this space of sections of a τ dependent vector bundle is reduced to

the case of a τ independent Sobolev space as follows. Treat H
3/2
E−(τ,x)

(∂Qδ).

The space H
1/2
E+(τ,x)

(∂Qδ) is analogous. For g ∈ H3/2(∂Qδ),

g = π−(Mν)g ⇐⇒ π+(Mν)g = 0 and π0(Mν)g = 0 .

Lemma 2.7 shows that with g = (e,b) this is equivalent to

e · (Mν) = b · (Mν) = 0 and (π(Mν)⊥b) ∧ (Mν) + π(Mν)⊥e = 0.

For |τ | large, Mν = ν +O(1/|τ |). It follows that the two dimensional space
E−(τ, x) is very close to E−(ν). The latter is given by the pair of equations
independent of τ ,

e · ν = b · ν = 0 and (πν⊥b) ∧ ν + πν⊥e = 0.
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A vector e,b satisfies these equations if and only if (e,b) = (etan,btan) and
btan ∧ ν + etan = 0. Therefore, for each x the linear map

E−(ν(x)) ∋ (e(x),b(x)) 7→ e(x)tan ∈ Tx(∂Qδ) (4.7)

is an invertible map from a two dimensional space to another. It depends
smoothly on x.

It follows that there is an M > 0 so that the nearby map

E−(M(τ, x)ν(x)) ∋ (e(x),b(x)) 7→ e(x)tan ∈ Tx(∂Qδ) (4.8)

is also invertible. It depends smoothly on τ, x and analytically on τ .

Definition 4.4 Denote by R−(τ, x) the inverse from the last sentence. De-
fine R+(τ, x) similarly.

The equation π−(Mν)g = g holds if and only if (e,b) = R−(τ, x)etan. The

space H
3/2
E−(τ,x)

(∂Qδ) is exactly the set of functions of the form R−(τ, x)etan

where etan is a tangential vector field in H3/2(∂Qδ). The set of such fields is
independent of τ . Analogously, E+(Mν) has equation (e,b) = R+(τ, x)etan.

Definition 4.5 A continuous linear operator from one Banach space to an-
other is Fredholm when its kernel is finite dimensional and its range is closed
with finite dimensional cokernel. The index of a Fredholm operator S is de-
fined as dimkerS − dim cokerS.

Recall that a continuous curve of Fredholm operators has constant index.

Corollary 4.6 For Re τ > M , the operator L that sends E,B ∈ H2(Qδ)
to(

τ2E − ∆̃E , τ2B − ∆̃B , π−(Mν)
(
E,B)|∂Qδ ,

π+(Mν)
(
τE − c̃urlB , τB + c̃urlE

)
|∂Qδ , (d̃ivE)

∣∣
∂Qδ , (d̃ivB)

∣∣
∂Qδ

)
is a continuous and Fredholm operator with values in

L2(Qδ)×L2(Qδ)×H3/2
E−(τ,x)

(∂Qδ)×H1/2
E+(τ,x)

(∂Qδ)×H1/2(∂Qδ)×H1/2(∂Qδ) .

(4.9)
Both the kernel and the annihilator of the range contain only smooth func-
tions. The index of the operator is independent of τ with Re τ > M and the
nonnegative absorptions.
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Proof. The Fredholm and smoothness assertions are the basic results of the
theory of elliptic boundary value problems satisfying Lopatinski’s condition
(see Agmon Douglis Nirenberg [2], Taylor [40, Vol II], Hörmander [24, Vol
III, Theorem 20.1.8]).

To prove that the index is constant, consider the continuous family of Fred-
holm maps that for µ ∈ [0, 1] takes τ(µ) = (1−µ)τ+µ and σj(µ) = (1−µ)σj .
This connects the operator at τ, σ to that at 1, 0. Multiplication by R−(τ, x)

is a linear isomorphism from H
3/2
E−(τ,x)

(∂Qδ) to the fixed Hilbert space of

H3/2(∂Qδ) tangential fields. Similarly for H
1/2
E+(τ,x)

(∂Qδ). In this way the

Fredholm maps are conjugated to maps with values in a fixed space. The
index of the resulting family is does not depend on τ . Therefore the index
of the original family does not depend on τ . □

4.2 Analyticity

The source terms in the π± boundary conditions in (4.1) take values in spaces
that depend on τ . They are first converted to source terms in τ -independent
spaces. With R± from Definition 4.4, the boundary value problem (4.1)
takes the form, (

τ2 − ∆̃
)
(E,B) = (f1, f2) on Qδ,

π−(Mν)
(
E,B

)
= R−(τ, x)g

1
on ∂Qδ,

π+(Mν)
(
τE − c̃urlB , τB + c̃urlE

)
= R+(τ, x)g

2
on ∂Qδ,

(d̃ivE, d̃ivB) = (g3, g4) on ∂Qδ.

(4.10)

The source term g
1
takes values in the space of H3/2(∂Qδ) tangential fields.

and g
2
in the H1/2(∂Qδ) tangential fields. The coefficients of the operators

depend differentiably on τ, x and analytically on τ .

Proposition 4.7 Suppose that at τ ∈ C, the Fredholm operator L from
Corollary 4.6 is invertible. Then L is invertible on a neighborhood of τ .
If the source terms f, g

j
depend analytically on τ , then the corresponding

solution of (4.10) is an analytic function on a neighborhood of τ with values
in H2(Qδ).

Proof. The invertibility of L for τ = a + ib near τ follows by Neumann’s
series. Standard elliptic theory shows that the map a, b 7→ (E,B) is infinitely
differentiable with values in H2(Qδ). The derivatives satisfy the system
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obtained by differentiating the system and boundary conditions with respect
to a, b.

To prove analyticity it suffices to show that ∂(E,B)/∂τ = 0. All the coeffi-
cients and the f, g are analytic in τ . Therefore, differentiating the boundary
value problem shows that ∂(E,B)/∂τ satisfies system (4.10) with all sources
equal to zero. That ∂(E,B)/∂τ = 0 follows from the invertibility. □

5 Green’s identities

A priori estimates require integrations by parts using Green’s identities for
d̃iv and c̃url. They and associated trace theorems for the spaces H

c̃url
and

H
d̃iv

are derived in Section 5.1. The unstretched versions are standard
[11, 12]. Definition 5.8 introduces a bilinear form a((E,B), (E′, B′)) associ-
ated to τ2 − ∆̃. Proposition 5.10 and Remark 5.2 relate a to the spectral
projections from Section 2 and to the stretched Maxwell and Helmholtz
boundary value problems in Proposition 3.4. For τ ∈]0,∞[ the quadratic
form of a is strictly positive. Using this, Section 5.3 proves that L from
Corollary 4.6 is invertible when τ ∈]0,∞[.

5.1 Stretched Green’s identities

5.1.1 Stretched div, curl and grad identities

The identities involve Π,M,Mii from Definition 3.3.

Lemma 5.1 The following differential identities hold for v ∈ C1,

Π(τ, x) d̃iv v = div(Mv) , (5.1)

d̃iv(Φ ∧Ψ) = (c̃url Φ) ·Ψ − (c̃urlΨ) · Φ, (5.2)

Π(τ, x) g̃radϕ =
(
∂1(M11ϕ) , ∂2(M22ϕ) , ∂3(M33ϕ)

)
= M grad ϕ. (5.3)
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Proof. For (5.1) compute using (3.2),

Π(τ, x) d̃iv v =
( 3∏

j=1

τ + σj(xj)

τ

)( 3∑
i=1

τ

τ + σi(xi)
∂ivi

)
=

3∑
i=1

(∏
j ̸=i

τ + σj(xj)

τ

)
∂ivi =

3∑
i=1

Mii∂ivi

=

3∑
i=1

∂i
(
Miivi

)
since ∂iMii = 0

= div(Mv) .

(5.4)

For (5.3) use ∂iMii = 0 again to compute,

Π(τ, x) g̃radϕ = Π(τ, x)
( τ

τ + σ1
∂1ϕ ,

τ

τ + σ2
∂2ϕ ,

τ

τ + σ3
∂3ϕ
)

=
(
M11∂1ϕ , M22∂2ϕ , M33∂3ϕ

)
= M gradϕ

=
(
∂1(M11ϕ) , ∂2(M22ϕ) , ∂3(M33ϕ)

)
.

Identity (5.2) is similar and is left to the reader. □

Lemma 5.2 For ϕ,Φ,Ψ in H1(Qδ) the folllowing integral identities hold,∫
Qδ

Π(τ, x) c̃url Φ ·Ψ dx−
∫
Qδ

Π(τ, x) c̃urlΨ · Φ dx

=

∫
∂Qδ

(Ψ ∧ (M ν)) · Φ dΣ,
(5.5)

∫
Qδ

Π(τ, x) Φ · g̃radϕdx+

∫
Qδ

Π(τ,x)ϕ d̃iv Φ dx

=

∫
∂Qδ

ϕΦ · (Mν) dΣ.

(5.6)

Proof. For (5.5), using (5.1) and the divergence theorem shows that for
Φ,Ψ in H1(Qδ),∫
Qδ

Π(τ, x) d̃iv(Φ∧Ψ) dx =

∫
Qδ

div(M(Φ∧Ψ)) dx =

∫
∂Qδ

(M(Φ∧Ψ)) ·ν dx.

Since M is diagonal,

(M(Φ ∧Ψ)) · ν = (Φ ∧Ψ) · M ν = −(Ψ ∧ Φ) · M ν = (Ψ ∧M ν) · Φ .
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This proves (5.5) using (5.2).

Formula (5.6) comes from (5.3). Indeed,∫
Qδ

Π(τ, x) g̃radϕ · Φ dx =

∫
Qδ

∑
Φj∂j(Mjjϕ) dx

= −
∫
Qδ

∑
Mjjϕ∂jΦj dx+

∫
∂Qδ

∑
ϕMjjΦjνj dΣ

= −
∫
Qδ

ϕ
∑

Mjj∂jΦj dx+

∫
∂Qδ

ϕ
∑

ΦjMjjνj dΣ

= −
∫
Qδ

Πϕ
∑Mjj

Π
∂jΦj dx+

∫
∂Qδ

ϕΦ · (Mν) dΣ

= −
∫
Qδ

Πϕ d̃iv Φ dx+

∫
∂Qδ

ϕΦ · (Mν) dΣ. □

Definition 5.3 Define Hilbert spaces and their analogues for Q,

H
c̃url

(Qδ) :=
{
Φ ∈ L2(Qδ) : c̃url Φ ∈ L2(Qδ)

}
,

H
d̃iv

(Qδ) :=
{
Φ ∈ L2(Qδ) : d̃iv Φ ∈ L2(Qδ)

}
.

The set of restrictions of C∞
0 (R3) to Qδ, denoted C∞

(0)

(
Qδ
)
, is dense in each

of the three spaces H
c̃url

(Qδ), H
d̃iv

(Qδ), and H
d̃iv

(Qδ) ∩ H
c̃url

(Qδ). The
density is proved by convolution with a kernel supported in cones towards
the interior. Similarly for Q.

Proposition 5.4 The map

C∞
(0)

(
Qδ
)
× C∞(∂Qδ) ∋ (Φ,Ψ) 7→

∫
∂Qδ

(Φ ∧Ψ) · Mν dΣ ∈ C

extends uniquely to a continuous bilinear form on H
c̃url

(Qδ) × H1/2(∂Qδ).

Therefore, for Φ ∈ H
c̃url

(Qδ), Φ|∂Qδ ∧ Mν is a well defined element of

H−1/2(∂Qδ). Similarly, the map(
ϕ,Ψ

)
7→
∫
Qδ

ϕΨ · Mν dΣ

is a continuous bilinear form on H1/2(∂Qδ)×H
d̃iv

(Qδ). For Ψ ∈ H
d̃iv(Qδ)

,

Ψ|∂Qδ · Mν is a well defined element of H−1/2(∂Qδ). The same assertions
are true for Q.
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Proof. For the trace, prove the c̃url assertions. Given Ψ ∈ H1/2(∂Qδ)
choose Ψ ∈ H1(R3) whose trace at ∂Qδ is equal to Ψ and ∥Ψ∥H1(R3) ≲
∥Ψ∥H1/2(∂Qδ). Equation (5.5) shows that with constants independent of δ,∣∣∣ ∫

∂Qδ

(Φ ∧Mν) ·Ψ dΣ
∣∣∣ ≲ ∥Φ, c̃urlΦ∥L2(Qδ)∥Ψ, c̃urlΨ∥L2(Qδ)

≲ ∥Φ, c̃urlΦ∥L2(Qδ)∥Ψ∥H1/2(∂Qδ).

The second assertion follows from (5.6) in the same way. □

Corollary 5.5 The map C∞
(0)(Q) ∋ Φ 7→ Φ|∂Q extends uniquely to a conti-

nous map from H
c̃url

(Q) ∩H
d̃iv

(Q) to H−1/2(∂Q).

Proof. That C∞
(0)(Q) is dense inH

c̃url
(Q)∩H

d̃iv
(Q) is proved by convolution.

To prove continuity, test Φ by dense elements of H1/2(∂Q). The set of
restrictions of element of C∞

0 (R3) so that Ψ vanishes in a neighborhood of S
is dense in H1/2(∂Q) (see [22, Lemma 2.7.i] where the assertion has a typo.
It should be H−1/2(R3)). For such test functions∫

∂Q
Φ ·Ψ dΣ =

∑
k

∫
Γk

Φ ·Ψ dΣ .

Definition 2.4 together with formula (2.3) imply that for all w ∈ C3 and
ξ ∈ C3 \ Z,

w =
(ξ ·w)ξ

ξ · ξ
− ξ ∧ (ξ ∧w)

ξ · ξ
.

Use this on Γk with ξ = Mν, Re τ > 0 and w = Φ. On each face Γk, Mν
is a constant vector that is not in Z. Find that∫
Γk

Φ ·Ψ dΣ =

∫
Γk

(((Mν) · Φ)(M · ν)
(Mν) · (Mν)

− (Mν) ∧ ((Mν) ∧Φ)

(Mν) · (Mν)

)
·Ψ dΣ .

Since Ψ is compactly supported in Γk one has the upper bound

≲
(
∥(Mν) · Φ∥H−1/2(∂Q) + ∥(Mν) ∧ Φ∥H−1/2(∂Q)

)
∥Ψ∥H1/2(∂Q) .

Corollary 5.5 follows from Proposition 5.4. □
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5.1.2 Stretched curl curl and grad div identities

Lemma 5.6 For w,Φ ∈ H2(Qδ)×H1(Qδ) one has the two identities,∫
Qδ

Π(τ, x) c̃url c̃urlw · Φ dx −
∫
Qδ

Π(τ , x) c̃urlw · c̃url Φ dx

= −
∫
∂Qδ

(c̃urlw ∧M ν) · Φ dΣ ,

(5.7)

∫
Qδ

Π(τ, x) g̃rad d̃ivw · Φ dx +

∫
Qδ

Π(τ, x) d̃ivw d̃iv Φ dx

=

∫
∂Qδ

d̃ivw Φ · (Mν) dΣ.

(5.8)

Remark 5.1 When τ is not real, Mν is a complex vector. It is not a
normal.

Proof of Lemma 5.6. Applying (5.5) to Ψ := c̃urlw proves identity (5.7).

Choosing ϕ = d̃ivw in (5.6) yields (5.8). □

Lemma 5.7 For Φ ∈ H2(Qδ) and Ψ ∈ H1(Qδ),∫
Qδ

Π(τ, x)Ψ · (τ2Φ− ∆̃Φ) dx =∫
Qδ

Π(τ, x)
(
τ2Φ ·Ψ+ c̃url Φ · c̃url Ψ + d̃iv Φ d̃ivΨ

)
dx

−
∫
∂Qδ

(
c̃url Φ ∧ (Mν) + d̃iv Φ (Mν)

)
·Ψ dΣ.

(5.9)

Proof. Equation (1.15) shows that for any Φ ∈ H1(Qδ),

−
∫
Qδ

Π(τ, x) Φ · ∆̃Ψ dx = −
∫
Qδ

Π(τ, x) Φ · (g̃rad d̃ivΨ− c̃url c̃urlΨ) dx .

Using the two second order formulas from Lemma 5.6 yields

−
∫
Qδ

Π(τ, x)Ψ·∆̃Φ dx =

∫
Qδ

Π(τ, x) c̃urlΦ · c̃urlΨ dx+

∫
Qδ

Π(τ, x) d̃ivΦ d̃ivΨ dx

−
∫
∂Qδ

(c̃urlΦ ∧ (Mν)) ·Ψ dΣ−
∫
∂Qδ

Ψ · (Mν) d̃iv Φ dΣ.

Adding the τ2 term to each side yields (5.9). □
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5.2 The bilinear form a((E,B), (E ′, B′))

When the absorptions are all equal to zero, the form a from the next defi-
nition is related to formula (1.8) in [14]. For the definition, Proposition 5.4
proves that π(Mν)⊥Φ is a well defined element of H−1/2(∂Qδ).

Definition 5.8 With the notations from Definition 2.4, define

V =
{
Φ ∈ H

c̃url
(Qδ) ∩H

d̃iv
(Qδ) : π(Mν)⊥Φ ∈ L2(∂Qδ)

}
.

Define a symmetric continuous bilinear form b : V× V → C by

b(Φ,Ψ) := τ

∫
∂Qδ

π(Mν)⊥Φ · π(Mν)⊥Ψ dΣ +∫
Qδ

Π(τ, x)
(
τ2Φ ·Ψ+ d̃iv Φ · d̃iv Ψ + c̃urlΦ · c̃urlΨ

)
dx.

(5.10)

Define a symmetric continuous bilinear form a : (V×V)× (V×V) → C by

a
(
(E,B) , (E′, B′)

)
:= b(E,E′) + b(B,B′) . (5.11)

For (E,B) ∈ H
c̃url

(Qδ) ∩H
d̃iv

(Qδ) define D(E,B) as

D(E,B) :=
(
τ π(Mν)⊥E + c̃urlE ∧ (Mν) + d̃ivE (Mν),

τ π(Mν)⊥B + c̃urlB ∧ (Mν) + d̃ivB (Mν)
)
.

(5.12)

Lemma 5.9 For (E,B) ∈ H2(Qδ), and (E′, B′) ∈ H1(Qδ),

a
(
(E,B) , (E′ , B′)

)
=

∫
Qδ

Π(τ, x)
((
τ2 − ∆̃

)
(E,B)

)
· (E′, B′) dx

+

∫
∂Qδ

D(E,B) · (E′, B′) dΣ.

(5.13)

Proof of Lemma 5.9. Rewriting identity (5.9) yields∫
Qδ

Π(τ, x)
(
τ2Φ ·Ψ+ c̃url Φ · c̃url Ψ + d̃iv Φ d̃ivΨ

)
dx =∫

Qδ

Π(τ, x)Ψ · (τ2Φ− ∆̃Φ) dx+

∫
∂Qδ

(
c̃url Φ∧ (Mν) + d̃ivΦ Mν

)
·Ψ dΣ.
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This yields

b(Φ,Ψ) =

∫
Qδ

Π(τ, x)(τ2Φ− ∆̃Φ) ·Ψ dx +∫
∂Qδ

τ(π(Mν)⊥Φ) · (π(Mν)⊥Ψ) +
(
c̃urlΦ ∧ (Mν) + d̃ivΦ Mν

)
·Ψ dΣ.

Equivalently,

b(Φ,Ψ) =

∫
Qδ

Π(τ, x)Ψ · (τ2Φ− ∆̃Φ) dx

+

∫
∂Qδ

(
τπ(Mν)⊥Φ+ c̃url Φ ∧ (Mν) + d̃iv Φ Mν

)
·Ψ dΣ.

(5.14)

Combining (5.14) for (E,E′) and (B,B′) completes the proof of Lemma 5.9.
□

The next proposition together with (5.13) show how intimately linked the
form a, the boundary term D, and, the stretched Maxwell boundary value
problem are.

Proposition 5.10 For τ ∈ C with |τ | > M and (E,B) ∈ H2(Qδ),

π0(Mν)D(E,B) =
(
(d̃ivE)Mν , (d̃ivB)Mν

)
,

π±(Mν)D(E,B) = π±(Mν)
(
τE − c̃urlB , τB + c̃urlE

)(
Mν · Mν

)1/2
.

Remark 5.2 If (E,B) is a solution of the stretched Maxwell boundary value
problem or the Helmholtz boundary value problem from Proposition 3.4, then
D(E,B) = 0 since πµ(Mν)D(E,B) = 0 for µ ∈ {0,+,−}.

Proof. Use Lemma 2.7. The π0 identity follows from the definition (5.12)
of D. Indeed, when π0(Mν) from (2.6) is applied to the right hand side of

(5.12), it annihilates all the terms except (d̃ivE)Mν and (d̃ivB)Mν yielding
the desired conclusion.

For the π+(Mν) identity, use π+(Mν)πMν = 0 to compute

π+(Mν)
(
E,B

)
= π+(Mν)

(
(πMν + π(Mν)⊥)E , (πMν + π(Mν)⊥)B

)
= π+

(
Mν)(π(Mν)⊥E , π(Mν)⊥B

)
.

(5.15)
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Use the formula of part ii of Lemma 2.5. Compute for arbitrary v and w
and ξ ∈ R3 \ 0. Since v ∧ ξ and w ∧ ξ are orthogonal to ξ,

π+(ξ)(v ∧ ξ,w ∧ ξ) =
1

2

(
v ∧ ξ + (w ∧ ξ) ∧ ξ/|ξ| , w ∧ ξ + (−v ∧ ξ) ∧ ξ/|ξ|

)
=

1

2

(
− |ξ|w + v ∧ ξ , |ξ|v +w ∧ ξ

)
= |ξ|π+(ξ)(−w,v) .

This implies that for τ ∈]0,∞[

π+(Mν)(v ∧Mν,w ∧Mν) = π+(Mν)(−w,v)(Mν · Mν)1/2. (5.16)

The terms of the identity are holomorphic in |τ | > M . By analytic contin-
uation it follows that the identity holds for all such τ . Therefore,

π+(Mν)
(
c̃urlE∧Mν , c̃urlB∧Mν

)
= π+(Mν)

(
−c̃urlB , c̃urlE

)
(Mν·Mν)1/2.

(5.17)
Equations (5.15) and (5.17) yield the π+(Mν) identity of the proposition
for |τ | > M . For the π−(Mν) identity compute, using (5.16),

π−(Mν)D(E,B) = π+(−Mν)D(E,B)

= π+(−Mν)
(
τE − c̃urlB , τB + c̃urlE

)
(Mν · Mν)1/2

= π−(Mν)
(
τE − c̃urlB , τB + c̃urlE

)
(Mν · Mν)1/2.

This completes the proof of the Proposition 5.10. □

5.3 Invertibility for τ ∈]0,∞[

For τ ∈]0,∞[ and real test functions, a((E,B), (E,B)) and b(E,E) from
Definition 5.8 are sums of nonnegative terms. This together with Proposition
5.10 yield a proof of the invertibility of the operator L. This positivity fails
for non real τ . That is the heart of the difficulty of this paper. The proof
of surjectivity relies on the following lemma.

Lemma 5.11 Extend ν to a smooth unit vector field on a neighborhood of
∂Qδ by defining ν to be constant on the normals to ∂Qδ. Suppose that σ = 0
and τ ∈ C. Then for µ ∈ {+,−, 0} and x ∈ ∂Qδ,

πµ(ν(x))D(E,B) = (ν(x) · ∂x)
(
πµ(ν(x))(E,B)

)
+ Pµ(E,B), (5.18)

where Pµ : C∞
Eµ(∂Qδ) → C∞(∂Qδ;R6) is a tangential differential operator

of order one with smooth coefficients.

39



Remark 5.3 i. With this choice of ν, ν · ∂ commutes with πµ(ν(x)).
ii. If a family of fields (E,B) has (E,B)|∂Qδ fixed while the traces of
(ν · ∂)(πµ(ν)(E,B)) exhaust C∞

Eµ(∂Qδ), then the values of πµ(ν)D(E,B)
exhaust C∞

Eµ(∂Qδ).

Proof of Lemma 5.11. Since σ = 0 the problem is invariant by rotation.
Therefore it suffices to treat x ∈ ∂Qδ with ν(x) = (1, 0, 0). At x separating
the ∂1 terms in Proposition 5.10 from the others yields

π±(ν)D(E,B) = π±(ν)(τE − curlB, τB + curlE)

= π±(ν)
(
(0, ∂1B3,−∂1B2), (0,−∂1E3, ∂1E2)

)
+ P±(E,B)

with tangential operators P±. The proof of the ± case is completed by

π±(ν)
(
(0,∂1B3,−∂1B2), (0,−∂1E3, ∂1E2)

)
= π±(ν)∂1

(
(0, B3,−B2), (0,−E3, E2)

)
= ∂1

(
π±(ν)(0, B3,−B2), (0,−E3, E2)

)
= ∂1

(
π±(ν)(E,B)

)
.

For µ = 0 compute

π0(ν)D(E,B) = π0(ν)((divE)ν, (divB)ν)

= π0(ν)(∂1E1ν, ∂1B1ν) + π0(ν)((∂2E2 + ∂3E3)ν, (∂2B2 + ∂3B2)ν)

= ∂1π
0(E1ν,B1ν) + ((∂2E2 + ∂3E3)ν, (∂2B2 + ∂3B3)ν).

E1ν and E differ by a tangential vector andB similarly. Thus, π0(ν)(E1ν,B1ν) =
π0(ν)(E,B) completing the proof. □

Proposition 5.12 For δ ∈]0, δ0] and τ ∈]0,∞[, the Fredholm map L from
Corollary 4.6 is invertible.

Proof. Injectivity. Suppose that E,B ∈ C∞(Qδ) belongs to the kernel.
Since the operator is real it is sufficient to prove that there are no real
elements of the kernel. For such elements take E′, B′ = E,B. The equation
L = 0, equation (5.13), and Proposition 5.10 imply that a((E,B), (E,B)) =
b(E,E) + b(B,B) = 0. Equation (5.10) shows that each of b(E,E) and
b(B,B) is a sum of three nonnegative terms. Therefore all six terms vanish,
so
∫
Qδ Π(τ, x) (E · E +B ·B) dx = 0. Thus E = B = 0 proving injectivity.

Surjectivity. It suffices to prove that the index is equal to zero. Since the
index is independent of τ, σ it suffices to treat τ > 0 and σ = 0. In that case,
∆̃ = ∆, Π(τ, σ) = 1, and M(τ, ν) = I. Suppose that

(
E,B, h−, h+, h3, h4

)
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belongs to the annihilator of the range of L. Elliptic regularity implies that
they are smooth,

E,B ∈ C∞(Qδ
;R3), h± ∈ C∞

E±(τ,x)(∂Q
δ), h3, h4 ∈ C∞(∂Qδ;R).

They annihilate the range when for all E,B ∈ C∞(Qδ),

0 =

∫
Qδ

(τ2 −∆)E · E + (τ2 −∆)B · B dx+∫
∂Qδ

(
π−(ν)(E,B) · h− + π+(ν)(τE − curlB, τB + curlE) · h+

+ (divE)h3 + (divB)h4

)
dΣ.

(5.19)

Taking (E,B) ∈ C∞
0 (Qδ), the boundary terms vanish. This yields

(τ2 −∆)E = (τ2 −∆)B = 0. (5.20)

In (5.19), the last two terms in the boundary integral satisfy∫
∂Qδ

π+(ν)(τE − curlB, τB + curlE) · h+ dΣ =

∫
∂Qδ

π+(ν)D(E,B) · h+ dΣ,∫
∂Qδ

(divE)h3 + (divB)h4 dΣ =

∫
∂Qδ

π0(ν)D(E,B) · (h3ν, h4ν) dΣ.

Write u = (E,B), (τ2 −∆)u = ((τ2 −∆)E, (τ2 −∆)B), etc. Then (3.1) is
equivalent to

0 =

∫
Qδ

(τ2 −∆)u · u dx +∫
∂Qδ

(
π−(ν)u · h− + π+(ν)D(u) · h+ + π0(ν)D(u) · (h3ν, h4ν)

)
dΣ.

(5.21)

For f ∈ C∞
E−(ν)(∂Q

δ), choose E,B ∈ C∞(Qδ) to be the unique solution of
the strictly dissipative symmetric hyperbolic boundary value problem with
boundary of constant multiplicity [27, 36]

τE−curlB = τB−curlE = 0 on Qδ, π−(ν)(E,B) = f on ∂Qδ. (5.22)

For this choice of E,B, all terms of (5.21) vanish except the h− term. Thus∫
∂Qδ f · h− dΣ = 0 for arbitrary f ∈ C∞

E− , so h
− = 0.
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Lemma 5.9 gives formulas for a(u, u) and a(u, u). Subtracting using (5.20)
and the symmetry of a yields∫

Qδ

(τ2 −∆)u · u dx+

∫
Qδ

D(u) · u dΣ =

∫
∂Qδ

D(u) · u dΣ.

Using this in (5.21) yields the identity involving only traces at the boundary,∫
∂Qδ

(
D(u) · u−D(u) · u

− π+(ν)D(u) · h+ − π0(ν)D(u) · (h3ν, h4ν)
)
dΣ = 0.

(5.23)

Next show that (5.23) implies that E,B ∈ KerL. The Helmholtz equation
(5.20) has already been proved.

Derive the boundary condition π−(ν)u = 0. Choose u with π+(ν)D(u) = 0,
π0(ν)D(u) = 0, and, u|∂Qδ = 0. Then only the D(u) · u term remains. Thus

0 =

∫
∂Qδ

D(u) ·u dσ =

∫
∂Qδ

π−(ν)D(u) ·u dσ =

∫
∂Qδ

π−(ν)D(u) ·π−(ν)u dσ.

Remark 5.3 shows that choosing arbitrary values for (ν · ∂)(π−(ν)u), the
values of π−(ν)D(u) are arbitrary. It follows that π−(ν)u|∂Qδ = 0.

Since π−(ν)u = 0,
∫
∂Qδ D(u) · u dσ = 0 for u so that π+(ν)D(u) = 0 and

π0(ν)D(u) = 0. For such u, (5.23) implies that
∫
∂Qδ D(u) ·u dσ = 0. Lemma

5.11 implies that the values π−(ν)u|∂Qδ for such u are arbitrary. Conclude
that 0 = π−(ν)D(u) = π−(ν)(τE − curlB, τB + curlE) verifying a second
boundary condition.

Finally, choose test functions u with u|∂Qδ = 0 and π±(ν)D(u) = 0. Varying
the normal derivative of π0(ν)D(u) shows that π0(ν)D(u) takes arbitrary
values. Using this in (5.23) implies that 0 = π0(ν)D(u)|∂Qδ . Equivalently
divE = divB = 0 verifying the final boundary condition. Therefore E,B ∈
KerL, so E = B = 0.

What remains of (5.23) is∫
∂Qδ

(
π+(ν)D(E,B) · h+ + π0(ν)D(E,B) · (h3ν, h4ν)

)
dΣ = 0,

with E,B arbitrary smooth fields. On ∂Qδ, (π+(ν)D(u), π0(ν)D(u)) is an
arbitrary section of E+(τ, x)×E0(τ, x). Therefore, h+ = 0 and h3 = h4 = 0.
This completes the proof that the annihilator of the range is trivial. □
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Proposition 5.13 For δ ∈]0, δ0] there is a discrete set D(δ) ⊂ {Re τ > M}
so that for τ in the complement of D(δ), the Fredholm map from Corol-
lary 4.6 is invertible. The inverse is meromorphic with values in the set of
bounded operators from the space (4.9) to H2(Qδ).

Proof. Once invertibility is established for τ ∈]0,∞[, Proposition 5.13
follows from the Analytic Fredholm Theorem [37, Theorem VI.14]. To apply
this theorem, rewrite the boundary value problem in the form (4.10) with
source terms g

1
, g

2
in τ -independent Sobolev spaces. The map E,B 7→

(f, g
1
, g

2
, g3, g4) is then Fredholm. It is defined for |τ | > M and is analytic

on that set. It is invertible for τ large and real. The Analytic Fredholm
Theorem implies that it is invertible on the complement of a discrete subset
of |τ | > M and the inverse is meromorphic. □

For τ ∈ {Re τ > M} \D(δ), denote by (τ2 − ∆̃)−1 ∈ Hom(L2(Qδ);H2(Qδ))
the inverse operator of the problem with homogeneous boundary data. In
Section 7.3 we prove that for M sufficiently large, (τ2 − ∆̃)−1(c̃url j,−τj −
g̃rad ρ) has no poles in Re τ > M . This follows from uniform estimates on
{Re τ > M} \ D(δ). Their proofs occupy Sections 6 and 7.

6 Boundary estimate à la Jerison-Kenig-Mitrea

This section and the next yield the fundamental estimate of Theorem 7.6.
The estimate of Section 6 is invoked in the proof of that Theorem after
equation (7.8). We advise skipping this section till it is needed at that point.
The estimate of Section 6 has a long history for harmonic functions dating
to Rellich [38] and Payne-Weinberger [33]. It was promoted to a result
of central importance in studying boundary value problems in Lipschitz
domains by Jerison and Kenig [26, 25]. Mitrea [31] introduced a version
appropriate to Maxwell’s equations. The present section extends Mitrea’s
work to the stretched Maxwell equations. The extended estimate is slightly
weaker than in the unstretched case.

Recall the case of harmonic functions on Qδ. The Dirichlet condition u =
f on ∂Qδ immediately controls ∥∇tanu∥L2(Qδ). The Neumann condition
ν · ∇u = g controls ∥∇nu∥L2(∂Qδ). The Jerison-Kenig estimate shows that
for harmonic functions ∥∇tanu∥L2(∂Qδ) and ∥∇nu∥L2(∂Qδ) are of the same
magnitude so the full tangential trace is bounded in terms of either Dirichlet
or Neumann data. In (6.1), ∥E|∂Qδ∥L2(∂Qδ , (resp. ∥π(Mν)⊥E|∂Qδ∥L2(∂Qδ)
appears on the left (resp. right). The second is a part of the trace estimated
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using the lower bound (7.2) for the variational form a.

In (6.1), the full trace appears on the left and the boundary data π(Mν)⊥E
appears on the right.

Proposition 6.1 There are constants C,M so that for all δ ∈]0, δ0[, τ ∈
{Re τ > M}, and, E ∈ H1(Qδ),

∥E∥2L2(∂Qδ) ≤ C
(
∥π(Mν)⊥E∥2L2(∂Qδ)+

+
1

|τ |
∥E∥2L2(Qδ) + ∥E∥L2(Qδ) ∥d̃ivE , c̃urlE∥L2(Qδ)

)
.

(6.1)

6.1 Unstretched estimate of Mitrea

Definition 6.2 Denote by Θ the radial vector field (x1, x2, x3).

Mitrea [31] proves the following identity for complex E,

div
{1
2
|E|2Θ − Re

(
(E ·Θ)E

)}
=

Re
{1
2
|E|2 − E ·Θ divE + (E ∧Θ) · curlE

}
.

(6.2)

Integrating this identity, the flux through the boundary has density

1

2
|E|2 Θ · ν − Re

(
(E ·Θ) (E · ν)

)
. (6.3)

Decompose Θ = Θtan + Θn with Θn = (Θ · ν)ν. Similarly En = (E · ν)ν.
There is a c > 0 so that for all δ, Θ · ν ≥ c on ∂Qδ.

The contribution of Θn to the second summand in (6.3) is equal to

Re
(
(E · ν) (Θ · ν) (E · ν)

)
= (Θ · ν)|En|2.

Since |E|2 = |Etan|2 + |En|2, the flux density is equal to

1

2

(
|Etan|2 − |En|2

)
Θ · ν − Re

(
(Etan ·Θtan) (E · ν)

)
. (6.4)

The second term is ≲ |Etan||En|. Integrating (6.2) over Qδ and using the
strict positivity of Θ · ν yields Mitrea’s estimate,∣∣∣∥Etan∥2L2(∂Qδ)−∥En∥2L2(∂Qδ)

∣∣∣ ≲ ∥Etan∥L2(∂Qδ)∥En∥L2(∂Qδ) +

+ ∥E∥L2(Qδ)

(
∥E∥L2(Qδ) + ∥divE, curlE∥L2(Qδ)

)
.
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6.2 Stretched Mitrea estimate

This section proves the stretched analogue (6.5) that is weaker than the
unstretched version because of the 1/|τ | term on the right.

Proposition 6.3 With constant independent of δ ∈ [0, δ0], E ∈ H1(Qδ),
and, τ with Re τ > 1,∣∣∥Etan∥2L2(∂Qδ) − ∥En∥2L2(∂Qδ)

∣∣ ≲ ∥Etan∥L2(∂Qδ)∥En∥L2(∂Qδ)

+
1

|τ |
∥E∥2L2(∂Qδ) + ∥E∥L2(Qδ)

(
∥E∥L2(Qδ) + ∥d̃ivE, c̃urlE∥L2(Qδ)

)
.

(6.5)

Begin with a stretched version of (6.2).

Lemma 6.4 If E ∈ C1(Qδ) and the coordinate stretchings X(τ, x) are from
Definition 1.9, then for all τ ∈ {Re τ > 0},

d̃iv
{1
2
|E|2X(τ, x) − Re

(
(E ·X(τ, x))E

)}
=

Re
{1
2
|E|2 − (E ·X(τ, x)) d̃ivE+(E ∧X(τ, x)) · c̃urlE

}
.

(6.6)

Proof of Lemma 6.4. For τ ∈]0,∞[, X(τ, x) maps Qδ to its image Qδ(τ).
For a vector field FQδ defined on Qδ, associate the field FQδ on Qδ defined

by FQδ

(
X(τ, x)

)
= FQδ(x). The value of FQδ at X(τ, x) is equal to the value

of FQδ at x. Formula (1.14) yields

divXFQδ

∣∣
X=X(τ,x)

= d̃ivFQδ(x), and curlX FQδ

∣∣
X=X(τ,x)

= c̃urlFQδ(x).

For the radial field Ψ(X) = (X1, X2, X3), the corresponding field in x is
X(τ, x). The identity (6.2) on Qδ(τ) is

divX

{1
2
|E|2Ψ − Re

(
(E ·Ψ)E

)}
=

Re
{1
2
|E|2 − (E ·Ψ)divXE + (E ∧Ψ) · curlXE

}
.

(6.7)

This proves (6.6) for τ ∈]0,∞[.

For all x ∈ Qδ, each of the terms of (6.6) is holomorphic in {Re τ > 0}.
Analytic continuation from ]0,∞[ implies that (6.6) holds on Re τ > 0. □
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Proof of Proposition 6.3. Define

N := ∥Etan∥L2(∂Qδ)∥En∥L2(∂Qδ) +

∥E∥L2(Qδ)

(
∥E∥L2(Qδ) + ∥d̃ivE , c̃urlE∥L2(Qδ)

)
.

(6.8)

Multiply (6.6) by Π(τ, x) from (3.1). Using (5.1) and integrating over Qδ

yields the bound,∣∣∣∣ ∫
∂Qδ

Mν ·
(1
2
|E|2X(τ, x) − Re

(
(E ·X(τ, x))E

))
dΣ

∣∣∣∣ ≲ N . (6.9)

From Definition 3.3, M = I + O(1/|τ |). In addition X(τ, x) − Θ(x) =
O(1/|τ |) uniformly on compact sets in x. Therefore∣∣∣∣ ∫

∂Qδ

Mν ·
(1
2
|E|2X(τ, x) − Re

(
(E ·X(τ, x))E

))
dΣ −∫

∂Qδ

ν ·
(1
2
|E|2Θ − Re

(
(E ·Θ)E

))
dΣ

∣∣∣∣ ≲
1

|τ |
∥∥E∥∥2

L2(∂Qδ)
.

(6.10)

Equation (6.4) implies that∣∣∣ν · (1
2
|E|2Θ − Re

(
(E ·Θ)E

))
−1

2

(
|Etan|2 − |En|2

)
(Θ, ν)

∣∣∣
≲
∥∥Etan

∥∥
L2(∂Qδ)

∥∥En

∥∥
L2(∂Qδ)

.
(6.11)

Therefore,∣∣∣∥Etan∥2L2(∂Qδ) − ∥En∥2L2(∂Qδ)

∣∣∣ ≲ ∥∥Etan

∥∥
L2(∂Qδ)

∥∥En

∥∥
L2(∂Qδ)

+
∣∣∣ ∫

∂Qδ

ν ·
(1
2
|E|2Θ − Re

(
(E ·Θ)E

))
dΣ
∣∣∣. (6.12)

Combining (6.8), (6.9), (6.10), and, (6.12) completes the proof of (6.5). □

Proof of Proposition 6.1. Define

R :=
1

|τ |
∥E∥2L2(∂Qδ) + ∥E∥L2(Qδ)

(
∥E∥L2(Qδ) + ∥d̃ivE, c̃urlE∥L2(Qδ)

)
.

Proposition 6.3 shows that∣∣∣∥Etan∥2L2(∂Qδ) − ∥En∥2L2(∂Qδ)

∣∣∣ ≲ ∥Etan∥L2(∂Qδ)∥En∥L2(∂Qδ) + R,
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so

∥En∥2L2(∂Qδ) ≲ ∥Etan∥2L2(∂Qδ) + ∥Etan∥L2(∂Qδ)∥En∥L2(∂Qδ) + R.

Bound ∥Etan∥L2(∂Qδ)∥En∥L2(∂Qδ) by a small constant times ∥En∥2L2(∂Qδ)
plus

a large constant times ∥Etan∥2L2(∂Qδ)
and absorb the En term on the left to

find
∥En∥2L2(∂Qδ) ≲ ∥Etan∥2L2(∂Qδ) + R.

Adding ∥Etan∥2L2(∂Qδ)
to both sides yields

∥E∥2L2(∂Qδ) ≲ ∥Etan∥2L2(∂Qδ) + R. (6.13)

Use M = I +O(1/|τ |) to show that

Mν − ν = O(1/|τ |), so, π(Mν)⊥ − πν⊥ = O(1/|τ |). (6.14)

Since πν⊥E = Etan, it follows that

∥Etan∥L2(∂Qδ) ≲ ∥π(Mν)⊥E∥L2(∂Qδ) +
1

|τ |
∥E∥L2(∂Qδ),

so,

∥Etan∥2L2(∂Qδ) ≲ ∥π(Mν)⊥E∥2L2(∂Qδ) +
1

|τ |2
∥E∥2L2(∂Qδ) .

Insert this estimate in (6.13) to find

∥E∥2L2(∂Qδ) ≲ ∥π(Mν)⊥E∥2L2(∂Qδ) +R+
1

|τ |2
∥E∥2L2(∂Qδ) .

Choose M so that for |τ | > M the last term can be absorbed on the left.
This completes the proof of Proposition 6.1. □

7 Stretched Maxwell estimate on Qδ

This section proves the a priori estimate of Theorem 7.6. Lemma 5.9, Propo-
sition 5.10, and Remark 5.2, imply that for a solution (E,B) of the stretched
Maxwell boundary value problem,

a((E,B), (E′, B′)) =

∫
Qδ

Π(τ, x) (τ2 − ∆̃)(E,B) · (E′, B′) dx.
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The τ2 − ∆̃ term is estimated in terms of the sources ρ, j. The strategy is
to pick test function E′, B′ so that |a((E,B), (E′, B′))| is large. The subtle
choice, in Section 7.2, relies on the approximation identity in Section 7.1,
and yields the lower bound of Proposition 7.3. That in turn yields Theorem
7.6. In Section 8 the main theorems are proved by combining Theorem 7.6
with the Fredholm theory of Sections 4 and 5.3.

7.1 c̃url Φ− curl (M−1Φ) = O(1/|τ |)

Definition 7.1 With notation from Definition 3.3, i. Q := MM−1
is the

diagonal matrix with entries Mii (Mii)
−1 of modulus equal to one.

ii.

N :=

 0 −M33 ∂3M22 M22 ∂2M33

M33 ∂3M11 0 −M11 ∂1M33

−M22 ∂2M11 M11 ∂1M22 0

 .

Remark 7.1 i. The coordinate directions are eigenvectors of M and Q. ii.
Q is unitary. iii. As |τ | → ∞, Π−I, M−I, Q−I, and N are all O(1/|τ |).

Part iii of Remark 7.1 shows that equation (7.1) implies the estimate of the
section title.

Lemma 7.2 For all Φ ∈ H1,

c̃url Φ = ΠM−1 curl
(
M−1Φ

)
+

1

Π
NM−1Φ . (7.1)

48



Proof of Lemma 7.2. Compute

Π(τ, x) c̃url Φ = Π(τ, x)

∂̃1∂̃2
∂̃3

 ∧

Φ1

Φ2

Φ3

 =

M11∂1
M22∂2
M33∂3

 ∧

Φ1

Φ2

Φ3



=

M11∂1
M22∂2
M33∂3

 ∧

M11
Φ1
M11

M22
Φ2
M22

M33
Φ3
M33



=


M22∂2

(
M33

Φ3
M33

)
−M33∂3

(
M22

Φ2
M22

)
M33∂3

(
M11

Φ1
M11

)
−M11∂1

(
M33

Φ3
M33

)
M11∂1

(
M22

Φ2
M22

)
−M22∂2

(
M11

Φ1
M11

)


=


M22M33

(
∂2

Φ3
M33

− ∂3
Φ2
M22

)
+ (M22∂2M33)

Φ3
M33

− (M33∂3M22)
Φ2
M22

M33M11

(
∂3

Φ1
M11

− ∂1
Φ3
M33

)
+ (M33∂3M11)

Φ1
M11

− (M11∂1M33)
Φ3
M33

M11M22

(
∂1

Φ2
M22

− ∂2
Φ1
M11

)
+ (M11∂1M22)

Φ2
M22

− (M22∂2M11)
Φ1
M11

 .

Using the definition of N , this identity is equivalent to

Π(τ, x) c̃url Φ =

M22M33 0 0
0 M11M33 0
0 0 M11M22

 curl(M−1Φ)+NM−1Φ.

Dividing by Π and using Definition 3.3 yields (7.1). □

7.2 Lower bound for a((E,B) , (E ′, B′)) for well chosen E ′, B′

Given (E,B), seek E′ so that c̃urlE′ ≈ c̃urlE so c̃urlE · c̃urlE′ ≈ |c̃urlE|2.
Since c̃url is not real, it is not sufficient to take E′ = E. The result of the
preceding section yields

c̃urlE′ ≈ curl
(
M−1E′

)
= curl

(
M−1E′

)
, c̃urlE ≈ curl(M−1E).

Comparing suggests the important idea of choosing E′, B′ so that

M−1E′ = M−1E , equivalently, E′ = MM−1E = Q E ,

M−1B′ = M−1B , equivalently, B′ = Q B .

When τ is real the positivity of a suffices to prove well posedness. When τ is
complex this is not the case. The critical juncture is at (7.8) where the full
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trace appears as an error term that cannot be absorbed by positive terms
from a. Proposition 6.1 is used to estimate this term.

Proposition 7.3 There are positive constants C,M so that for all τ with
Re τ > M , δ ∈]0, δ0[, and allW = (E,B) ⊂ H1(Qδ) with supp(d̃ivE , d̃ivB) ⊂
QI , and W

′ = (E′, B′) = (QE,QB),

(Re τ) |τ |
∥∥W∥∥2

L2(Qδ)
+ |τ |

∥∥π(Mν)⊥W
∥∥2
L2(∂Qδ)

+
Re τ

|τ |
∥∥c̃urlW , d̃ivW

∥∥2
L2(Qδ)

≤ C
∣∣a(W,W ′)

∣∣ . (7.2)

The proof begins with a sequence of lemmas analysing the individual terms
in a((E,B), (E′, B′)).

Lemma 7.4 With E′ := QE, one has

c̃urlE′ =
(
I +O(1/|τ |)

)
c̃urlE + O(1/|τ |)E. (7.3)

where O(1/|τ |) denotes a matrix valued function with L∞(R3)-norm ≲ 1/|τ |
as |τ | → ∞. For the divergence one has

d̃ivE′ = d̃ivE + O(1/|τ |)E + O(1/|τ |)∇E . (7.4)

Remark 7.2 The term O(1/|τ |)∇E involves all derivatives of E and not

just d̃ivE and c̃urlE.

Proof of Lemma 7.4. Apply (7.1) to E′. Since Q = MM−1
,

c̃urlE′ = ΠM−1 curl
(
M−1E′) +

1

Π
NM−1E′

= ΠM−1 curl
(
M−1E

)
+

1

Π
NM−1E.

(7.5)

Apply (7.1) to E and conjugate to find

c̃urlE = ΠM−1 curl
(
M−1E

)
+
(
Π
)−1NM−1E .

Solve this equation for curl
(
M−1E

)
and insert in (7.5) to find,

c̃urlE′ =
(
Π /Π

)
M−1M

(
c̃urlE −

(
Π
)−1N M−1E

)
+

1

Π
N M−1E.
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Using Remark 7.1, this gives (7.3).

For the divergence identity, compute using (5.1)

Π d̃ivE = divME = divME . (7.6)

Since Q and M are diagonal so commute,

Π d̃ivE′ = Π d̃ivQE = divMQE = divQME .

The definition of Q yields

QME = QMM−1ME = Q2ME .

Therefore

Π d̃ivE′ = divQ2ME = divME + div
(
(I −Q2)ME

)
= Π d̃ivE + div

(
(I −Q2)ME

)
.

Therefore

d̃ivE′ = d̃ivE +
(
I −Π−1 Π

)
d̃ivE + Π−1 div

(
(I −Q2)ME

)
.

When the derivatives in the divergence hit (I −Q2)M they generate terms
O(1/|τ |)E. When the derivatives in the last divergence hit the field E, they
generate O(1/|τ |)∇E. This completes the proof of the Lemma. □

The next lemma shows that the terms in a((E,B), (E′, B′)) differ from pos-
itive quantities by terms O(1/|τ |).

Lemma 7.5 Define E′ := QE. There is a constant so that in Q for all unit
vectors ω ∈ R3∣∣∣Π c̃urlE · c̃urlE′ −

∣∣c̃urlE∣∣2∣∣∣ ≲
1

|τ |
∣∣c̃urlE∣∣ (∣∣c̃urlE∣∣ + |E|

)
,∣∣∣Π d̃ivE · d̃ivE′ − |d̃ivE|2

∣∣∣ ≲
1

|τ |
|d̃ivE|

(
|∇E| + |E|

)
,∣∣∣π(Mω)⊥E · π(Mω)⊥E

′ −
∣∣π(Mω)⊥E

∣∣2∣∣∣ ≲
1

|τ |
∣∣E∣∣2.

Proof of Lemma 7.5. The first two estimates follow from (7.3) and (7.4)
together with Remark 7.1. For the third, compute

π(Mω)⊥E
′ = π(Mω)⊥QE = πω⊥E + (π(Mω)⊥Q− πω⊥)E.
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To estimate the second summand on the right use,

∥π(Mω)⊥ − πω⊥∥L∞(∂Qδ) = O(1/τ), and, ∥Q− I∥L∞(∂Qδ) = O(1/τ).

Thanks to the reality of πω⊥ ,

π(Mω)⊥E
′ = πω⊥E + O(1/|τ |) E = πω⊥E + O(1/|τ |) E.

Continuing,

πω⊥E = π(Mω)⊥E + (πω⊥ − π(Mω)⊥)E = π(Mω)⊥E + O(1/|τ |) E .

Therefore ∣∣∣π(Mω)⊥E
′ − π(Mω)⊥E

∣∣∣ ≲
1

|τ |
|E| .

The desired estimate follows. □

Proof of Proposition 7.3. Define

G := τ2∥W∥2L2(Qδ) + τ∥π(Mν)⊥W∥2L2(∂Qδ) + ∥d̃ivW , c̃urlW∥2L2(Qδ).

The summands agree with those of a(W,W ′) to leading order in τ .

• Lemmas 7.4 and 7.5 imply that∣∣∣G − a(W,W ′)
∣∣∣ ≲ |τ |∥W∥2L2(∂Qδ) +

1

|τ |

∫
Qδ

|d̃ivW | |∇W | dx

+
1

|τ |
∥∥d̃ivW , c̃urlW

∥∥
L2(Qδ)

(∥∥d̃ivW , c̃urlW
∥∥
L2(Qδ)

+ ∥W∥L2(Qδ)

)
.

To estimate the integral on the right it is important that d̃ivE has support
in QI so the integral is ≤ ∥d̃ivW∥L2(QI)∥∇W∥L2(QI). The overdetermined

system d̃iv, c̃url is elliptic uniformly in Re τ ≥ 1. It follows that with a
constant independent of such τ and δ,

∥∇W∥L2(QI) ≲ ∥d̃ivW , c̃urlW∥L2(Qδ) + ∥W∥L2(Qδ) . (7.7)

Define

N1 := ∥W∥2L2(Qδ), N2 := ∥π(Mν)⊥W∥2L2(∂Qδ), N3 := ∥d̃ivW , c̃urlW∥2L2(Qδ).

Therefore,∣∣∣G − a(W,W ′)
∣∣∣ ≲ ∥W∥2L2(∂Qδ) + |τ |N1 +

1

|τ |

(
N3+(N3N1)

1/2
)
. (7.8)
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Proposition 6.1 implies that

∥W∥2L2(∂Qδ) ≲ |τ |−1N1 +N2 + (N1N3)
1/2 . (7.9)

Combining (7.8) and (7.9) yields∣∣∣G − a(W,W ′)
∣∣∣ ≲ |τ |N1 +N2 + |τ |−1N3 + (N1N3)

1/2 . (7.10)

• Derive a lower bound for G by considering its real and imaginary parts,

Re G =
(
(Re τ)2 − (Im τ)2

)
N1 +Re τ N2 + N3,

ImG =
(
2 Imτ Re τ

)
N1 + Im τ N2 .

(7.11)

Where | Im τ | ≤ Re τ/2, the equation for the real part of G implies that for
Re τ > M1,

|τ |2N1 + |τ |N2 +N3 ≲ |Re G|. (7.12)

For the more difficult region {| Im τ | > Re τ/2}, the lower bound for |G| is
weaker. When Im τ ̸= 0, the second equation in (7.11) is equivalent to

ImG
Im τ

=
(
2Re τ

)
N1 + N2 . (7.13)

Where {| Im τ | > Re τ/2}, this implies

(Re τ)N1 +N2 ≲
|ImG|
|τ |

. (7.14)

Multiplying by |τ |2/(Re τ) yields for Re τ > M2,

|τ |2N1 +
|τ |2

Re τ
N2 ≲

|τ |
Re τ

| Im G|. (7.15)

Estimate N3 using the first equation in (7.11) together with (7.15) to find,

N3 ≲ |τ |2N1 + |ReG| ≲
|τ |
Re τ

| Im G| + |ReG|.

This together with (7.15) yields

|τ |2N1 +
|τ |2

Re τ
N2 + N3 ≲

|τ |
Re τ

|G| .

Multiplying by (Re τ)/|τ | yields

(Re τ)|τ |N1 + |τ |N2 +
Re τ

|τ |
N3 ≲ |G| . (7.16)
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One has the larger lower bound (7.12) on the complementary region. There-
fore (7.16) holds for all Re τ > M2. The left hand side of (7.16) and the left
hand side of (7.2) are the same. Denote these left hand sides as

H := (Re τ)|τ |N1 + |τ |N2 +
Re τ

|τ |
N3 ≲ |G| . (7.17)

• Next show that

|τ |N1 +N2 + |τ |−1N3 + (N1N3)
1/2 ≲

1

Re τ
H . (7.18)

The equality in (7.17) estimates the first three terms. For the last, estimate(
N1N3

)1/2
=
(
|τ |N1

)1/2(|τ |−1N3

)1/2 ≤ 1

2

(
|τ |N1 + |τ |−1N3

)
≤ 1

Re τ
H.

With the shorthand a = a(W,W ′) and Re τ > M3 estimate (7.10) yields

H ≲ |G| ≲
∣∣a∣∣ +

∣∣G − a
∣∣ ≲

∣∣a∣∣ +
1

Re τ
H .

For Re τ > M3, H ≲
∣∣a∣∣. This completes the proof of Proposition 7.3. □

Remark 7.3 The analysis of conservative boundary conditions is easier
than absorbing conditions. Conservative conditions have flux equal to zero
for τ ∈]0,∞[. By analytic continuation the flux vanishes for all τ . For the
absorbing conditions, the flux is positive for τ ∈]0,∞[. That does not con-
tinue. The flux for complex τ in that case is the sum of positive term plus
a term that is smaller in powers of τ but is not absorbable. This occurs at
equation (7.8). The remedy is Proposition 6.1 .

7.3 Stretched Maxwell equation estimate on Qδ

The estimate of the next Theorem is a key step toward Theorem 1.15. It
concernes sources ρ(x), j(x) independent of τ and does not assert existence.

Theorem 7.6 There are positive constants C,M depending on QI and σk,
and independent of δ ∈]0, δ0[, τ ∈ {Re τ > M}, so that for (j, ρ) ∈ L2

QI
(Qδ),

and W = (E,B) ∈ H2(Qδ) that satisfies the stretched Maxwell boundary
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value problem,

τE − c̃urlB = −j on Qδ,

τB + c̃urlE = 0 on Qδ,

d̃ivB = 0 on Qδ,

d̃ivE = ρ on Qδ,

π−(Mν)W = 0 on ∂Qδ,

(7.19)

one has

(Re τ)2∥W∥2L2(Qδ) + (Re τ)∥π(Mν)⊥W∥2L2(∂Qδ) ≤ C ∥ρ, j∥2L2(R3). (7.20)

Proof. The stretched Maxwell equations imply the stretched Helmholtz
equation (τ2 − ∆̃)W = (−τj − g̃rad ρ , c̃url j) on Qδ. Use the notation H
from (7.17). The source terms in the Helmholtz equations are

(f1, f2) := (−τj − g̃rad ρ , c̃url j). (7.21)

Inequality (7.2) shows that with (E′, B′) from Proposition 7.3,H ≲
∣∣a((E,B), (E′, B′))

∣∣.
Lemma 5.9 implies that

a
(
(E,B), (E′, B′)

)
=

∫
Qδ

Π(f1 ·E′+ f2 ·B′) dx+

∫
∂Qδ

D(E,B) · (E′, B′) dΣ.

The formulas for the spectral projections of D(E,B) in Proposition 5.10
show that D(E,B) = 0 for the solutions of (7.19), so

a((E,B), (E′, B′)) =

∫
Qδ

Π(τ, x)
(
(−τj − g̃rad ρ) · E′ + c̃url j ·B′

)
dx .

Since j and ρ vanish at the boundary, integration by parts using Lemma 5.2
yields

a((E,B), (E′, B′)) =

∫
Qδ

Π(τ, x)
(
(−τj · E′ + ρ · d̃ivE′ + j · c̃urlB′

)
dx .

The Cauchy-Schwarz inequality together with the inequalities of Lemma 7.4
yield,∣∣a((E,B), (E′, B′))

∣∣ ≲ ∥∥ρ, j∥∥
L2(Qδ)

(
∥τW∥L2(Qδ) + ∥d̃ivW, c̃urlW∥L2(Qδ)

)
.

The Maxwell equations imply that

∥τW∥L2(Qδ) ≲ ∥ρ, j∥L2(Qδ) + ∥d̃ivW, c̃urlW∥L2(Qδ).
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Therefore,∣∣a((E,B), (E′, B′))
∣∣ ≲ ∥ρ, j

∥∥2
L2(Qδ)

+ ∥ρ, j
∥∥
L2(Qδ)

∥d̃ivW, c̃urlW∥L2(Qδ).

Estimate the second summand on the right as( |τ |
Re τ

∥ρ, j
∥∥2
L2(Qδ)

)1/2(Re τ
|τ |

∥d̃ivW, c̃urlW∥2L2(Qδ)

)1/2
≤ 1

2

(1
ϵ

|τ |
Re τ

∥ρ, j
∥∥2
L2(Qδ)

+ ϵ
Re τ

|τ |
∥d̃ivW, c̃urlW∥2L2(Qδ)

)
.

Therefore

H ≤ C
∣∣a∣∣ ≤ C

2ϵ

|τ |
Re τ

∥ρ, j
∥∥2
L2(Qδ)

+
Cϵ

2

Re τ

|τ |
∥d̃ivW, c̃urlW∥2L2(Qδ)

≤ C

2ϵ

|τ |
Re τ

∥ρ, j
∥∥2
L2(Qδ)

+
Cϵ

2
H .

Choose ϵ = 1/C. Absorb the second summand on the right in the left hand

side to find H ≲ (|τ |/Re τ)∥ρ, j
∥∥2
L2(Qδ)

. Multiplying by (Re τ)/|τ | yields

(Re τ)2∥W∥2L2(Qδ) + Re τ ∥π(Mν)⊥W∥2L2(∂Qδ) +

+ |τ |−1
∥∥c̃urlW , d̃ivW

∥∥2
L2(Qδ)

≲ ∥ρ, j∥L2(R3) .
(7.22)

This completes the proof of Theorem 7.6. □

Remark 7.4 In our earlier work on the internal corners for Bérenger’s
algorithm in Part II of [22], and also for the external corners for the Pauli
system [23], the estimates analogous to (7.22) were stronger. The variational
forms used Dirichlet’s integral rather than a div-curl form.

8 Proofs of the main Theorems 8.1, 1.16, 1.15

The order is crucial. First solve Helmholtz on Qδ. Derive the stretched
Maxwell equations on Qδ in Theorem 8.1. This requires the smooth bound-
ary. Solve the stretched equations on Q by passing to the limit δ = 0. Use
[22] for uniqueness of the stretched equations on Q when τ is real. Unique-
ness for all τ follows by analytic continuation, proving Theorem 1.15. The
solution of the stretched equations yields a solution of the split equations
via the Laplace transform. Uniqueness for the split equations follows from
uniqueness for the stretched equations, proving Theorem 1.16.
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8.1 Solving the stretched Maxwell equations on Qδ

Proposition 3.4, Proposition 5.13, and Theorem 7.6 are used to solve the
stretched Maxwell system on Qδ.

Theorem 8.1 Assume that Assumption 1.2 is satisfied. There is anM0 > 0
so that if M > M0, J and R satisfying −d̃iv J = τR are holomorphic
on Re τ > M with values in L2

QI
(Q), then there is a unique W (τ) =

(F (τ), G(τ)) holomorphic from {Re τ > M} to H2(Qδ) that satisfies the
stretched Maxwell boundary value problem with absorbing boundary condi-
tion

τF − c̃urlG = −J on Qδ,

τG + c̃urlF = 0 on Qδ,(
d̃ivF, d̃ivG) = (R, 0) on Qδ,

π−(Mν)(F,G) = 0 on ∂Qδ.

(8.1)

The solution satisfies with constant independent of δ and τ ,

(Re τ)2∥W (τ)∥2L2(Qδ) + (Re τ) ∥π(Mν)⊥W (τ)∥2L2(∂Qδ)

≲ ∥R(τ), J(τ)∥2L2(Qδ).
(8.2)

Proof. Existence. For τ ∈ {Re τ > M} \ D(δ) denote by (τ2 − ∆̃)−1

the inverse of the Helmholtz boundary value problem with homogeneous
boundary conditions from Proposition 5.13. Define

(F,G) := W = (τ2 − ∆̃)−1
(
− τJ − g̃radR , c̃url J

)
.

Then W is holomorphic on {Re τ > M} \ D(δ) and satisfies the Helmholtz
boundary value problem with homogeneous boundary conditions.

For τ real and large, Part II of Proposition 3.4 implies that W satisfies the
stretched Maxwell boundary value problem (8.1).

The equations in each line of the stretched Maxwell boundary value problem
are analytic on {Re τ > M}\D(δ) and are satisfied for τ large and real. Since
{Re τ > M} \D(δ) is connected, they vanish for all τ ∈ {Re τ > M} \D(δ)
by analytic continuation. Therefore, (8.1) is satisfied for τ ∈ {Re τ >
M} \ D(δ).
Estimate (7.20) applies for all τ ∈ {Re τ > M}\D(δ). Therefore (8.2) holds
on this punctured neighborhood.
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Since D(δ) is discrete, the singularities of the function W (τ) at the points
of D(δ) are isolated. The estimate shows that W is bounded on a punc-
tured neighborhood of each singularity so the singlularities are all remov-
able. Therefore W is holomorphic on Re τ > M . Equation (8.1) and esti-
mate (8.2) extend by continuity from the complement of D(δ) to Re τ > M .
This completes the proof.

Uniqueness. It suffices to show that the only solution with sources R = 0
and J = 0 is identically zero. Since it is holomorphic on Re τ > M it
suffices to show that it vanishes on ]c,∞[ for c sufficiently large. For those c
the operator τI+

∑
k Ak∂̃k is symmetric and strictly positive in the sense of

Friedrichs. In addition the boundary condition is dissipative and the solution
belongs to H2(Qδ). Uniqueness follows immediately from the identity

Re
((
τI +

∑
k

Ak∂̃k
)
W ,W

)
L2(Qδ)

= 0 ,

after an integration by parts as in the proof of Proposition 3.4. □

8.2 Solving the stretched Maxwell equations on Q

Passing to the limit δ ↘ 0 solves the stretched Maxwell boundary value
problem on Q.

Proof of Theorem 1.15. Existence. Define W δ = (F δ, Gδ) on Qδ to be
the solution from Theorem 8.1.

With constant independent of δ, τ ,

(Re τ)2
∥∥W δ

∥∥2
L2(Qδ)

+ (Re τ)
∥∥π(Mν)⊥W

δ
∥∥2
L2(∂Qδ)

≲
∥∥R, J∥∥2

L2(Qδ)
=
∥∥R, J∥∥2

L2(Q)
.

(8.3)

Proposition 6.1 yields the following estimate for (Re τ)∥W δ
∥∥2
L2(∂Qδ)

,

( Re τ)∥W δ∥2L2(∂Qδ) ≲ (Re τ)∥π(Mν)⊥W
δ∥2L2(∂Qδ) +

Re τ

|τ |
∥W δ∥2L2(Qδ) + (Re τ)∥W δ∥L2(Qδ) ∥d̃ivW δ, c̃urlW δ∥L2(Qδ).

(8.4)

The first two terms on the right are estimated by (8.3). The first two lines
of (8.1) together with (8.3) imply

∥d̃ivW δ , c̃urlW δ∥L2(Qδ) ≲ ∥τW δ∥L2(Qδ)+∥J∥L2(Qδ) ≲
|τ |
Re τ

∥∥R, J∥∥
L2(Q)

.
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Therefore,

(Re τ)∥W δ∥L2(Qδ)∥d̃ivW δ , c̃urlW δ∥L2(Qδ) ≲
|τ |

(Re τ)
∥R, J∥2L2(Q). (8.5)

Using (8.5) in (8.4) yields

∥∥W δ
∥∥
L2(∂Qδ)

≲
|τ |1/2

Re τ

∥∥R, J∥∥
L2(Q)

. (8.6)

As in the derivation of (7.7), d̃iv, c̃url is an overdetermined elliptic system.
It follows that W δ satisfies for any 0 < η < 1,

∥∇W δ∥L2(ηQ) ≤ Cη∥W δ, d̃ivW δ, c̃urlW δ∥L2(Qδ) ≤ Cη |τ |
Re τ

∥R, J∥L2(Q) .

(8.7)

Choose a sequence δ(n) decreasing to zero. Since the Qδ increase as δ
decreases it follows that for m ≤ n, Qδ(n) ⊃ Qδ(m) and (∂Qδ(n)) ∩ Γk ⊃
(∂Qδ(m)) ∩ Γk. The Cantor diagonal method yields a subsequence, still
denoted δ(n), so that for each m,

• W δ(n) converges weakly in L2(Qδ(m)) to a limit Wm,

• W δ(n)|Γk∩∂Qδ(m) converges weakly in L2(Γk ∩ ∂Qδ(m)) to a limit Λm,k.

Passing to the limit in estimate (8.3) for W δ(n) yields with constants inde-
pendent of m,

(Re τ)2
∥∥Wm

∥∥2
L2(Qδ(m))

+ (Re τ)
∑
k

∥∥π(Mν)⊥Λm,k

∥∥2
L2(Γk∩Qδ(m))

≲
∥∥R, J∥∥2

L2(Q)
.

(8.8)

Since the Qδ(n) are increasing, for eachm > 1, one has for n ≥ m,Wn =Wm

on Qδ(m). Define (F,G) =W ∈ L2(Q) by W =Wm on Qδ(m).

Similarly for n ≥ m, Λn,k = Λm,k on Γk ∩ ∂Qδ(m). Define Λk ∈ L2(Γk ∩ ∂Q)
by Λk = Λm,k on Γk ∩ ∂Qδ(m). Estimate (8.8) implies,

(Re τ)2∥W∥2L2(Q) + (Re τ)
∑
k

∥π(Mν)⊥Λk∥2L2(Γk)
≲ ∥R, J∥2L2(Q).

The stretched Maxwell equations on Q follow from the equations on Qδ(n)

on passing to the limit n→ ∞. In particular, W ∈ H
d̃iv

(Q) ∩H
c̃url

(Q).

Define Λ ∈ L2(∂Q) to be the unique element so that Λ|Γk
= Λk for all k.

Corollary 5.5 shows that W has a well defined trace in H−1/2(∂Q). By
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continuity of the trace, the restriction of the trace of W to Γk is equal to
Λk. Therefore

W |∂Q − Λ ∈ H−1/2(∂Q), and supp
(
W |∂Q − Λ

)
⊂ S.

The only element ofH−1/2(∂Q) with such small support is 0 (see [22, Lemma
2.7.i]). It follows that W |∂Q = Λ ∈ L2(∂Q). In addition,

(Re τ)2
∥∥W∥∥2

L2(Q)
+ (Re τ)

∥∥π(Mν)⊥W
∥∥2
L2(∂Q)

≲
∥∥R, J∥2L2(Q) . (8.9)

Since ν is a unit vector parallel to the kth axis one has

∥π(Mν)⊥W∥2L2(Γk)
= ∥(Mkk)

2Wtan∥2L2(Γk)
≳ ∥Wtan∥2L2(Γk)

,

yielding

(Re τ)2
∥∥W∥∥2

L2(Q)
+ (Re τ)

∑
k

∥∥Wtan

∥∥2
L2(Γk)

≲
∥∥R, J∥2L2(Q) . (8.10)

For any δ > 0 the holomorphy of W : {Re τ > M} → L2(Qδ) follows
from the fact that it is the weak limit of a bounded family of holomorphic
functions W δ(n)(τ). It follows that for any δ, W : {Re τ > M} → L2(Qδ) is
holomorphic.

Indeed, to show that W is holomorphic with values in L2(Q) it is sufficient
to show that τ 7→ ℓ(W (τ)) is holomorphic for each ℓ in the dual of L2(Q).
Since W ∈ L∞({Re τ > M} ; L2(Q)

)
, it suffices to show that ℓ(v(τ)) is

holomorphic for ℓ in a dense subset. Indeed if ℓ is the limit of ℓj for which
the result is true, estimate∣∣ℓ(W (τ)) − ℓj(W (τ))

∣∣ ≤ ∥ℓ− ℓj∥ sup
Re τ>M

∥W (τ)∥L2(Q), on Re τ > M.

This proves that ℓ(W (τ)) is the uniform limit of the holomorphic functions
ℓj(W (τ)) so is holomorphic.

Take the dense set to be the functionals W 7→
∫
W ·Φ dx with Φ ∈ C∞

0 (Q).
For each such Φ, Φ ∈ C∞

0 (Qδ(n)) for n ≥ m. Then for n ≥ m, ℓ(W (τ)) =
lim ℓ(W δ(n)(τ)) with ℓ(W δ(n)(τ)) holomorphic from Theorem 8.1.

An entirely analogous argument proves the analyticity of W (τ)|∂Q with val-
ues in L2(∂Q). In this case the functionals

∫
∂QW · Ψ dΣ with Ψ smooth

on the boundary and vanishing on a neighborhood of S are dense. This
completes the proof of existence.
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Uniqueness. It suffices to show that if the source terms R, J are identically
equal to zero, then the solution must vanish. By analytic continuation, it
suffices to show that the solution vanishes for τ large and real.

For τ > 0 real, the change of variable X(τ, x) from Definition 1.9 maps
Q to the rectangle Q. The stretched Maxwell equations are conjugated to
the unstretched Maxwell equations in the variable X. For τ real and ν
parallel to one of the coordinate axes A(Mν) is a positive multiple of A(ν)
so π−(Mν) = π−(ν).

Therefore V (X) on Q defined by V
(
X(τ, x)

)
= W (x) belongs to L2(Q)

and satisfies(
τI +

∑
k

Ak
∂

∂Xk

)
V = 0 on Q, π−(ν)V = 0, on ∂Q \ S .

The trace V |∂Q\S ∈ L2(∂Q\S). Denote by Λ the unique element of L2(∂Q)
whose restriction to ∂Q\S is equal to V |∂Q\S . Then V |∂Q−Λ is an element

of H−1/2(∂Q) supported in S. The difference therefore vanishes so V |∂Q =
Λ ∈ L2(∂Q).

This shows that V satisfies the hypotheses of the uniqueness Theorem 2.13
of [22] that implies V = 0. Pulling back to the x variables shows that
W = (F,G) = 0 for τ ∈]M,∞[. By analytic continuation they vanish on
{Re τ > M}. This completes the proof of uniqueness and therefore Theorem
1.15. □

8.3 Solving Bérenger’s split equations on Q

The solution is constructed from its Laplace transform. The Paley-Wiener
Theorem 8.2 yields properties of the solution from those of its Laplace trans-
form. The Laplace transform of a distribution F supported in t ≥ 0 and so
that e−MtF ∈ L2(R), is defined for all Re τ > M by

F̂ (τ) :=

∫
e−τt F (t) dt .

Our functions F take values in a Hilbert space H. The Laplace transform
takes values in H. It is defined and holomorphic in a half space Re τ > M .

Theorem 8.2 The Laplace transforms of functions F supported in t ≥ 0
and so that e−MtF ∈ L2(R ; H) are exactly the functions G(τ) holomorphic
in Re τ > M with values in H and so that

sup
λ>M

∫
Re τ=λ

∥∥F̂ (τ)∥∥2
H

|dτ | < ∞ .
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In this case F̂ (τ) has trace at Re τ =M that is square integrable and∫
e−2Mt ∥F (t)∥2H dt = sup

λ>M

∫
Re τ=λ

∥∥F̂ (τ)∥∥2
H
|dτ | =

∫
Re τ=M

∥∥F̂ (τ)∥∥2
H
|dτ |.

Proof of Theorem 1.16. Define M from Theorem 1.15.

Uniqueness. Suppose that Ũ = (U1, U2, U3) is a solution.

The Laplace transform of the condition V :=
∑
U j ∈ eµtL2(R×Q) is that

W := Û1 + Û2 + Û3 satisfies i of Theorem 1.15.

The Laplace transform of the condition Vtan ∈ eµtL2(Γk) implies thatWtan :
{Re τ > µ} → L2(Γk) is holomorphic.

The Laplace transform of the split equations (1.8) imply the split equations(
τ + σk(xk)

)
Ûk + Ak∂kW = f̂k , k = 1, 2, 3. (8.11)

Summing implies that W satisfies iii of Theorem 1.15.

The Laplace transform of the boundary condition π−(A(ν))V = 0 shows
that W satisfies iv of Theorem 1.15.

Therefore W must be equal to the unique solution of the stretched Maxwell
system from Theorem 1.15. This uniquely determines W .

The split equations (8.11) then determine Ûk.

This completes the proof that Ûk is uniquely determined. Since the Laplace
transform is injective, this proves the uniqueness of Ũ .

Existence. • Construction of a candidate solution. Define W (τ) to
be the solution from Theorem 1.15, associated to R = ρ̂ and J = ĵ. Consider
five holomorphic functions on Re τ > M ,

W (τ) with values in L2(Q),

(τ + σk(xk))
−1Ak∂kW (τ) with values in H−1(Q), k = 1, 2, 3,

Wtan(τ) with values in L2(∪Γk).

The estimate of Theorem 1.15 implies that

(Re τ)2
∥∥W (τ)

∥∥2
L2(Q)

+ (Re τ)
∑
k

∥∥Wtan(τ)
∥∥2
L2(Γk)

≲
∥∥ρ̂(τ), ĵ(τ)∥∥

L2(Q)
.

It follows that for all k,

(Re τ)2 |τ |
∥∥(τ + σk(xk))

−1Ak∂kW (τ)
∥∥2
H−1(Q)

≲
∥∥ρ̂(τ), ĵ(τ)∥∥

L2(Q)
.
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Theorem 8.2 implies that there are uniquely determined functions

V (t) ∈ eµtL2(R ; L2(Q)),

Uk(t) ∈ eµtL2(R ; H−1(Q)), k = 1, 2, 3,

Ψ(t) ∈ eµtL2(R ; L2(∂Q)),

supported in t ≥ 0 so that,

V̂ =W, Ûk = −(τ + σk(xk))
−1Ak∂kW, Ψ̂|∪Γk

=Wtan(τ) . (8.12)

Not only is Ûk estimated in terms of W but so is |τ |Ûk. This yields,

µ2
∥∥e−µtV

∥∥2
L2(R;L2(Q))

+ µ
∑
k

∥∥e−µtΨ
∥∥2
L2(R;L2(Γk))

+

µ2
∥∥e−µt{U i, ∂tU

i}
∥∥2
L2(R;H−1(Q))

≲
∥∥e−µt{ρ, j}

∥∥2
L2(R;L2(Q))

.

(8.13)

• Verification of Bérenger’s split equations for V .

The stretched system satisfied by W from (1.11) is

τW +
∑
k

τ

τ + σk(xk)
Ak ∂kW = (0,−ĵ(τ)) .

Since W = V̂ ,

τ V̂ +
∑
k

τ

τ + σk(xk)
Ak ∂kV̂ = (0,−ĵ(τ)) . (8.14)

The middle identity of (8.12) implies that

τ Ûk +
τ

τ + σk(xk)
Ak ∂kV̂ = (0,−ĵk(τ)) . (8.15)

Summing on k yields

τ
∑
k

Ûk +
∑
k

τ

τ + σk(xk)
Ak ∂kV̂ = (0,−ĵ(τ)) . (8.16)

Subtracting (8.14) from (8.16) show that V̂ =
∑

k Û
k. Therefore V =

∑
i U

i.
Inserting this identity in (8.15) yields

τ Ûk +
τ

τ + σk(xk)
Ak ∂k

∑
i

Û i = (0,−ĵk(τ)) . (8.17)
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Multiplying (8.17) by (τ + σk(xk))/τ and using the fact that σk = 0 on
the support of jk yields (1.8) with fk = (−jk, 0). Since that is the Laplace
transform of the kth split Bérenger equation, this completes the verification
of the Bérenger split system on R×Q.

• Verification of the boundary condition π−(ν)V = 0 on Γk.

Write V = (E,B). Part iii of Lemma 2.5 shows that on ∪kΓk,

π−(ν)V =
(
Etan −Btan ∧ ν , Btan + Etan ∧ ν

)
.

By construction the right hand side belongs to eµtL2(R× ∪Γk) and is sup-
ported in t ≥ 0. To prove that the right hand side vanishes it suffices to
show that its Laplace transform vanishes. The transform is holomorphic on
Re τ > M with values in L2(∪Γk). To show that it vanishes it suffices to
show that it vanishes for τ ∈]M,∞[.

By construction, π−(Mν)V̂ (τ) = 0 on ∪Γk for Re τ > M . When τ is real
M(τ, x) is a positive diagonal matrix. When x ∈ Γk, the normal is parallel
to one of the coordinate axes. ThereforeMν is a positive multiple of ν. Thus
for those τ, x, π−(Mν) = π−(ν). Therefore, for τ ∈]M,∞[, π−(ν)V̂ (τ) = 0
on Γk. By analytic continuation in τ it follows that π−(ν)V̂ (τ) = 0 on
Γk holds on Re τ > M . This is the Laplace transform of π−(ν)V (t)|Γk

.
Therefore π−(ν)V (t)|Γk

= 0. This completes the proof of Theorem 1.16. □

Proof of part ii of Remark 1.5. Equation (8.11) implies that

(Re τ)∥Ûk∥L2(ηQ) ≤ Re τ

|τ |
(
∥∇W∥L2(ηQ) + ∥ĵ∥L2(Q)

)
≤ Cη ∥ρ̂, ĵ∥L2(Q).

The Paley-Wiener Theorem 8.2 then implies (1.20). □

9 Other PML and an error estimate

In our experience, all perfectly matched layers for Maxwell’s equations are
built around the stretched Maxwell system, so can be analysed using Theo-
rem 1.15. This section analyses a handful of other methods to illustrate this
point.

Bérenger’s splitting has several drawbacks. First, the Cauchy problem for
the split equations even with constant coefficients is only weakly well-posed.
Second, the split equations do not resemble problem from physics. The
anisotropic medium of Sacks et al [39] addresses both. It leads to the
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stretched Maxwell system of Chew and Weedon see [13]. It was used by
Ziolkowski [44] to produce potentially realizable absorbers. It was modified
by Abarbanel and Gottlieb [1] and extended by Turkel-Yefet to R3, [41].

We analyse the Turkel-Yefet system, equation (5.4) in [41]. It includes as
special cases the others listed above. We add a non zero current j. The
unknowns are modified electric and magnetic fields (Ẽ, B̃) ∈ R3 × R3, aug-
mented by 6 auxiliary functions (P,Q) ∈ R3 × R3 to yield a twelve dimen-
sional system. Define diagonal constant coefficient matrices,

S := diag(σ1, σ2, σ3),

M := diag(σ2 + σ3 − σ1 , σ3 + σ1 − σ2 , σ1 + σ2 − σ3),

N := diag
(
(σ1 − σ2)(σ1 − σ3) , (σ2 − σ3)(σ2 − σ1) , (σ3 − σ1)(σ3 − σ2)

)
.

Assumptions 1.1 and 1.2 imply that S,M,N vanish on QI .

The unknowns Ẽ, B̃, P,Q are required to satisfy the symmetric hyperbolic
system

∂tẼ − curl B̃ +MẼ +NP = −j,

∂tB̃ + curl Ẽ +MB̃ +NQ = 0,

∂tP + SP − Ẽ = 0,

∂tQ+ SQ− B̃ = 0.

(9.1)

The auxiliary variable P resembles the polarization in electromagnetism and
the variable Q is a magnetic analogue. In contrast to Bérenger’s splitting,
the pure initial value problem is well posed thanks to the symmetric hyper-
bolicity.

The electric and magnetic fields of interest are defined by

E := Ẽ − SP, and, B := B̃ − SQ. (9.2)

Therefore E = Ẽ and B = B̃ on QI . The absorbing boundary condi-
tion π−(ν)(Ẽ, B̃) = 0 is imposed on ∪Γk. The boundary value problem
for (9.1) is symmetric hyperbolic with maximal dissipative boundary condi-
tion. This yields eµtL∞(R;L2(Q)) estimates for sufficiently smooth solutions
Ẽ, B̃, P,Q. One concludes existence of weak solutions and uniqueness of suf-
ficiently smooth solutions. Uniqueness of weak solutions is not at all easy.
Section 9.1 shows that the results of this paper suffice to fill that gap. In-
terestingly, the uniqueness proof for the unstretched Maxwell equations on
Q does not apply. That problem is analysed in [22] by a hidden ellipticity
argument using the divergence identities. In contrast, (9.1) does not have
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good divergence identities. Indeed, taking the divergence of the equations
yields terms div(MẼ,MB̃,NP,NQ,QP, SQ) that involve all derivatives of
Ẽ, B̃, P,Q, not just their divergence and curl.

9.1 Equivalence of Turkel-Yefet and stretched Maxwell

For solutions of the Turkel-Yefet system, the fields (E,B) satisfy the stretched
Maxwell system.

Proof. The Laplace transformed system, with hats omitted for easy of
reading, implies

(τI + S)P = Ẽ, and, (τI + S)Q = B̃.

Inserting this into the first equations yields(
τI +M +N(τI + S)−1

)
Ẽ − curl B̃ = −j,(

τI +M +N(τI + S)−1
)
B̃ + curl Ẽ = 0.

Factor (τI + S)−1 to find,(
(τI +M)(τI + S) +N

)
(τI + S)−1Ẽ − curl B̃ = −j,(

(τI +M)(τI + S) +N
)
(τI + S)−1B̃ + curlE = 0.

Multiply by τ and use (τI + S)E = τẼ and (τI + S)B = τB̃, to find(
(τI +M)(τI + S) +N

)
E − curl(τI + S)B = −τj,(

(τI +M)(τI + S) +N
)
B + curl(τI + S)E = 0.

(9.3)

All the matrices involved are diagonal, so commute. The first coefficient of
(τI +M)(τI + S) +N is equal to

(τ + σ2 + σ3 − σ1)(τ + σ1) + (σ1 − σ2)(σ1 − σ3)

= τ2 + τ(σ2 + σ3) + σ2σ3 = (τ + σ2)(τ + σ3).

The first component of curl(τI +S)B is equal to ∂2((τ + σ3)B3) − ∂3((τ +
σ2)B2). Since σj depends only on xj , this is equal to

(τ + σ3) ∂2B3 − (τ + σ2) ∂3B2.

The first line of (9.3) is equal to

(τ + σ2)(τ + σ3)E1 − ((τ + σ3)∂2B3 − (τ + σ2)∂3B2) = −τj1.
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Multiply by τ and divide by (τ + σ2)(τ + σ3) to obtain

τE1 −
( τ

τ + σ2
∂2B3 −

τ

τ + σ3
∂3B2

)
= − τ2

(τ + σ2)(τ + σ3)
j1 = −j1.

A similar computation for τ Ej , τBj , shows that E,B satisfy the stretched
Maxwell system

τE − c̃urlB = −j, τB + c̃urlE = 0 . □

Conversely, if E,B is a solution of the stretched equations,

∂tP + SP = Ẽ = E + SP, so, ∂tP = E.

Similarly ∂tQ = B, determing P,Q. With (Ẽ, B̃) = (E + SP,B + SQ) they
generate a solution of the Turkel-Yefet system.

Perfect matching when the computational domain is R3 follows.

The Turkel-Yefet system (9.1) onQ with boundary condition π−(ν)(E,B) =
0 on ∪Γk, implies that their E,B satisfy the stretched Maxwell boundary
value. Theorem 1.15 implies that the Turkel-Yefet system in rectangular
geometry with absorbing boundary condition is well posed.

9.2 An error estimate

Perfect matching plus well posedness of the boundary value problem on Q
implies an error estimate in terms of the size of the computed quantities
near the boundary. We present the case of Turkel-Yefet.

Proposition 9.1 Denote by K the system of partial differential operators
on the left of (9.1). Suppose that 0 < η/dist(QI , ∂Q) < 1/2. Denote by ũ
the solution of the boundary value problem defined by (9.1) with the absorbing
boundary condition. E and B from (9.2) are the fields associated to ũ. Then,

∥Error inE,B∥L∞([0,T ];L2(QI)) ≤ CT,η ∥Ẽ, B̃∥L1([0,T ];L2({dist(x,∂Q)≤η})). (9.4)

Proof. Denote by ũR3 the solution of (9.1) on R1+3 that vanishes for t ≤ 0.
Denote by ẼR3 , B̃R3 the corresponding fields. Perfect matching shows that
(ẼR3 , B̃R3)|QI

is equal to the Maxwell field ũR3 on QI .

Choose ψ ∈ C∞
0 (Q) with ψ = 1 on {x ∈ Q : dist(x, ∂Q) ≥ η}. Compute

K(ψũ) = ψKũ+ [K, ψ]ũ = (0,−j) + [K, ψ]ũ. (9.5)
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The lower order terms in K and the last lines in (9.1) commute with ψ.
Therefore the commutator term in (9.5) is order zero and is supported in
{dist(x, ∂Q) ≤ η}. Therefore

∥[K, ψ]ũ(t)∥L2(Q) ≤ Cη ∥Ẽ(t), B̃(t)∥L2(dist(x,∂Q)≤η). (9.6)

Combining estimates (9.5) and (9.6) yields

∥K
(
ψũ − ũR3

)
(t)∥L2(Q) ≤ Cη ∥Ẽ(t), B̃(t)∥L2(dist(x,∂Q)≤η).

Well posedness of the symmetric hyperbolic system on R3 yields

∥ψũ − ũR3∥L∞([0,T ];L2(Q)) ≤ CT,η ∥Ẽ, B̃∥L1([0,T ];L2(dist(x,∂Q)≤η)). (9.7)

Since ψũ|QI
= ũ|QI

, (Ẽ, B̃)|QI
= (E,B)QI

, and, (ẼR3 , B̃R3)|QI
is exact,

∥Error in E,B∥L∞([0,T ];L2(QI)) ≤ ∥ψũ − ũR3∥L∞([0,T ];L2(QI)). (9.8)

Combining (9.7) and (9.8) yields (9.4). □

Remark 9.1 Estimate (9.4) is not sharp. Errors come from waves that
cross the layer, are reflected at ∂Q, then cross the layer. If waves decrease
by a factor f on crossing the layer and by r upon reflection at the absorbing
boundary, the error is expected to be ∼ f2r. The right hand side of (9.4) is
the size of waves reaching the boundary that is expected to be ∼ f .
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XXXIII(2):361–403, 2024.
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