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A B S T R A C T 

The Square Kilometre Array Observatory (SKAO) will explore the radio sky to new depths in order to conduct transformational 
science. SKAO data products made available to astronomers will be correspondingly large and complex, requiring the application 

of advanced analysis techniques to extract key science findings. To this end, SKAO is conducting a series of Science Data 
Challenges, each designed to familiarize the scientific community with SKAO data and to drive the development of new analysis 
techniques. We present the results from Science Data Challenge 2 (SDC2), which invited participants to find and characterize 
233 245 neutral hydrogen (H I ) sources in a simulated data product representing a 2000 h SKA-Mid spectral line observation 

from redshifts 0.25–0.5. Through the generous support of eight international supercomputing facilities, participants were able to 

undertake the Challenge using dedicated computational resources. Alongside the main challenge, ‘reproducibility awards’ were 
made in recognition of those pipelines which demonstrated Open Science best practice. The Challenge saw over 100 participants 
develop a range of new and existing techniques, with results that highlight the strengths of multidisciplinary and collaborative ef- 
fort. The winning strategy – which combined predictions from two independent machine learning techniques to yield a 20 per cent 
impro v ement in o v erall performance – underscores one of the main Challenge outcomes: that of method complementarity. It is 
likely that the combination of methods in a so-called ensemble approach will be key to exploiting very large astronomical data sets. 

Key words: methods: data analysis – techniques: imaging spectroscopy – surv e ys – software: simulations – galaxies: statistics –
radio lines: galaxies. 
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 I N T RO D U C T I O N  

he Square Kilometre Array (SKA) project was born from an 
mbition to create a telescope sensitive enough to trace the formation 
f the earliest galaxies. Observing this era via the very weak emission
 E-mail: philippahartley@hotmail.com 
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rom neutral hydrogen atoms will be possible only by using a
ollecting area of unprecedented size: large enough not only to 
rovide a window onto Cosmic Dawn but – thanks to its increase
n sensitivity o v er current instruments – also to explore new frontiers
n galaxy evolution and cosmology, cosmic magnetism, the laws of 
ravity, extraterrestrial life and – in the strong tradition of radio 
stronomy (Wilkinson et al. 2004 ) – the unknown (see the SKA
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cience Book, Braun et al. 2015 for a comprehensive description of
he full SKA science case). 

First light at the SKA Observatory (SKAO) will mark a paradigm
hift not only in the way we see the Universe but also in how we
ndertake scientific investigation. In order to perform such sensitive
bservations and extract scientific findings, huge amounts of data
ill need to be captured, transported, processed, stored, shared,

nd analysed. Innovations developed in order to enable the SKAO
ata journey will drive forward data technologies across software,
ardware, and logistics. In a truly global collaborative effort, prepara-
ions, are underway under the guidance of the SKA Regional Centre
teering Committee to build the required data infrastructure and
repare the community for access to it (Chrysostomou et al. 2020 ).
longside operational planning, scientific planning – undertaken
y the SKAO Science Working Groups – is underway in order
o maximize the exploitation of future SKAO data sets. The SKA
odel of data delivery will provide science users with data in

he form of science-ready image and non-image SKAO products,
ith calibration and pre-processing having been performed by the
bservatory within the Science Data Processor (SDP) and at the
KA Regional Centres (SRCs). While this model reduces by many
rders of magnitude the burden of data volume on science teams, the
ize and complexity of the final data products remains unprecedented
Scaife 2020 ). 

The primary goal of the SKAO Science Data Challenge (SDC)
eries is defined thus: 

(i) To support future observers to prepare for SKAO data. 

This goal is achieved via the following objectives: 

To familiarize the astronomy community with the nature of SKAO
ata products. 

To drive forward the development of data analysis techniques. 

he first objective allows participants not only to gain familiarity with
he size and complexity of SKAO data, but also with the provision
f data products in science-ready form. It is achieved through the
istribution of publicly available 1 real or simulated data sets designed
o represent as closely as possible future SKAO data. A successful
hallenge will see engagement and participation representing a broad

ange of geography and expertise, and a step forward by participants
n the understanding and skills involved in analysing SKA-like data.
he second objective is achieved through the application of new
r existing methods in order to extract findings from the data.
tandardized cross-comparisons of methods, which would require
 strict set of running conditions and constraints on participants, are
ot performed. Instead, the focus is on inclusion, training, and the
eneration of ideas. A successful Challenge will see the application
f diverse ideas and methods to the problem, and an understanding
f the ability of respective methods to produce useful findings. 
The SKAO is committed to Open Science values and the FAIR data

rinciples (Wilkinson et al. 2016 ; Katz et al. 2021 ) of Findability,
ccessibility , Interoperability , and Reproducibility . Accordingly , we

im to ensure equal accessibility to the Challenges for all participants.
n the latest Challenge, teams were able to access the ∼1 TB
hallenge data set and computational resources at one of eight partner

upercomputing facilities, at which each could deploy their own
nalysis pipelines (Section 2.2 ). This model also served as a test bed
or a number of future SRC technologies. Throughout the Challenge,
 strong emphasis was placed on the reproducibility and reusability
NRAS 523, 1967–1993 (2023) 
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f software solutions. All teams taking part in the Challenge were
ligible to receive a reproducibility prize, awarded against a set of
re-defined criteria. We thus identified two secondary goals for this
hallenge: 

(i) To test SKA Regional Centre prototyping. 
(ii) To encourage Open Science best practice. 

Science Data Challenge 1 (SDC1; Bonaldi et al. 2020 ) saw partic-
pating teams find and characterize sources in simulated SKA-Mid
ontinuum images, with results that demonstrate the complementar-
ty of methods, the challenge of finding sources in crowded fields,
nd the importance of careful image partitioning. Domain knowledge
ro v ed important not only in the design of pipelines but in the
pplication of correct unit conversions specific to radio astronomy.
DCs benefit from additional domain reference material to support
articipants who do not have a radio astronomy background. 
Science Data Challenge 2 2 (SDC2) involved a simulated spectral

ine observation designed to represent the SKAO view of neutral
ydrogen (H I ) emission up to z = 0.5, again inviting participants
o attempt source finding and characterization within a very large
ata product. Resulting from the ‘spin-flip’ of an electron in a
eutral hydrogen atom, 21-cm spectral line emission and absorption
races the distribution of H I across the history of the Universe. This
old gas exists in and around galaxies, fueling star-formation via
ngoing infall from the cosmic web. Observations of individual
 I sources can reveal the interactions between galaxies and the

urrounding intergalactic medium (IGM; Popping et al. 2015 ), can
robe stellar feedback processes within the interstellar medium
ISM; de Blok et al. 2015 ), and can allow us to study the impact
f active galactic nuclei (AGN) on the large-scale gas distribution
n g alaxies (Morg anti, Sadler & Curran 2015 ). H I dynamics also
rovide a measurement of the dark matter (DM) content of galaxies
Power et al. 2015 ). Deep H I surv e ys are therefore crucial for our
nderstanding of galaxy formation and evolution o v er cosmic time
Power, Baugh & Lacey 2010 ; Blyth et al. 2015 ; Meyer et al. 2017 ;
odson et al. 2022 ). 
The faintness of H I emission has until recently limited surv e y

epths to up to z ∼ 0.25 [see Sancisi et al. ( 2008 ), van der Hulst & de
lok ( 2013 ), and Koribalski et al. ( 2020 ) for re vie ws of the results so

ar]. H I emission has now been imaged in a starburst galaxy at z ∼
.376 (Fern ́andez et al. 2016 ) using the Very Large Array within the
OSMOS H I Large Extragalactic Surv e y (CHILES), and signals
bserved using the Giant Metrewave Radio Telescope ( GMRT ) have
een stacked in order to make a successful measurement of the
osmic H I mass density at 0.2 < z < 0.4 (Bera et al. 2019 ) and to
etect the H I 21-cm signal from 2841 galaxies at average redshift z ∼
.3 (Chowdhury et al. 2021 ). The MeerKAT telescope – a precursor to
he SKAO – has now launched the Looking At the Distant Universe
ith the MeerKAT Array (LADUMA) surv e y (Blyth et al. 2016 ),
hich will image H I emission in the Chandra Deep Field-South out

o z ∼ 1. The SKA-Mid telescope will surv e y to depths of z ∼ 1 in
mission and z ∼ 3 in absorption across a wider field. Comparing both
urv e ys o v er 2000 h of observation, an SKA-Mid surv e y is likely to
ncrease by 0.8 dex the number of detected galaxies, probing a cosmic
olume V c ≈ 185 Mpc 3 versus V c ≈ 74 Mpc 3 and significantly
educing the sensitivity of the results to cosmic variance. The size of
esulting data sets necessitates the use of automated source finding
ethods; several software tools are currently available for H I source

etection and characterization (Fl ̈oer & Winkel 2012 ; Jurek 2012 ;
 ht tps://sdc2.ast ronomers.skatelescope.org/

https://astronomers.skatelescope.org/ska-data-challenges/
https://sdc2.astronomers.skatelescope.org/
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hiting 2012 ; Westerlund & Harris 2014 ; Teeninga et al. 2015 ; Serra
t al. 2015a ; Westmeier et al. 2021 ) and a comparative study based
n WSRT data has recently been performed (Barkai et al. 2023 ). 
In this paper we report on the outcome of SDC2. The structure

f the paper is as follows: in Section 2 we define the Challenge;
n Section 3 we describe the simulation of the SDC2 data sets;
n Section 4 we present the methods used by participating teams 
o complete the Challenge; in Section 5 we describe the scoring 
rocedure; in Sections 6 and 7 we present the Challenge results and
nalysis, before setting out our conclusions in Section 8 . 

 T H E  C H A L L E N G E  

n this section we present an o v erview of the Challenge delivery
nd the data product supplied to Challenge teams, followed by the 
efinition of the Challenge undertaken. 

.1 Challenge o v er view 

articipating teams were invited to access a 913 GB data set
osted on dedicated facilities provided by the SDC2 computational 
esource partners (Section 2.2 ). The data set, 5851 × 5851 × 6668 
ixels in size, simulates an H I imaging datacube representative of
uture deep SKA-Mid spectral line observations, with the following 
pecifications: 

(i) 20 square degrees field of view. 
(ii) 7 arcsec beam size, sampled with 2.8 × 2.8 arcsec pixels. 
(iii) 950–1150 MHz bandwidth, sampled with a 30 kHz resolution. 

his corresponds to rest frame velocity widths 7.8 and 9.5 km s −1 at
he upper and lower limits, respectively, of the redshift interval z =
.235–0.495. 
(iv) Noise consistent with a 2000-h total observation, in the range 

6–31 μJy per channel. 
(v) Systematics including imperfect continuum subtraction, sim- 

lated RFI flagging and excess noise due to RFI. 

The H I datacube was accompanied by a radio continuum datacube 
o v ering the same field of view at the same spatial resolution, with a
50–1400 MHz frequency range at a 50 MHz frequency resolution. 
Challenge teams were invited to use analysis methods that were 

ny combination of purpose-built and bespoke to existing and 
ublicly available. Together with the full-size Challenge data set, 
wo smaller data sets were made available for development purposes. 
enerated using the same procedure as the full-size data set but 
ith a different statistical realization, the ‘development’ and ‘large 
evelopment’ data sets were provided along with truth catalogues 
isting H I source property v alues. A further, ‘e v aluation’, data set
as provided without a truth catalogue, in order to allow teams to
alidate their methods in a blind way prior to application to the full
ata set. The e v aluation data set was also used by teams to gain access
o the full-size datacube hosted at an SDC2 partner facility. Access 
as granted upon submission of a source catalogue based on the 
 v aluation data set and matching a required format. The development
nd e v aluation data sets were made av ailable for do wnload prior to
nd during the Challenge. 

The Challenge description, its rules, its scoring method, and a 
escription of the data simulations were provided on the Challenge 
ebsite before and during the Challenge. A dedicated online discus- 

ion forum was used throughout the Challenge to provide information 
o participants, to answer questions about the Challenge and to 
acilitate participant interaction. Definitions of conventions and units 
pplicable to the challenge were circulated to participants before and 
uring the Challenge. 

.2 Supercomputing partner facilities 

he following eight supercomputing centres formed an international 
latform on which the full Challenge data set was hosted and
rocessed: 
AusSRC and Pawsey – Perth, Australia, aussr c.or g 
China SRC-proto – Shanghai, China, An et al. ( 2022 ) 
CSCS – Lugano, Switzerland, www.cscs.ch 
ENGAGE SKA-UCLCA – Aveiro and Coimbra, Portugal, www.en 

ageska-port ugal.pt ; www.uc.pt 
GENCI-IDRIS – Orsay, France, www.genci.fr
IAA-CSIC – Granada, Spain, Garrido et al. ( 2021 ) 
INAF – Rome, Italy, www.inaf .it
IRIS (STFC) – UK, www.iris.ac.uk

ollectively, the Challenge facilities provided 15 million CPU hours 
f processing and 15 TB of RAM to participating teams. 

.3 The challenge definition 

he Challenge results were scored on the full-size data set, on which
eams undertook: 

Source finding, defined as the determination of the location in RA
de grees), Dec (de grees), and central frequenc y (Hz) of the dynamical
entre of each source. 

Source characterization, defined as the reco v ery of the following
roperties: 

(i) Integrated line flux (Jy Hz): the total flux density S 
inte grated o v er the signal 

∫ 
S d ν . 

(ii) H I size (arcsec): the H I major axis diameter at 1 M � pc −2 .
(iii) Line width (km s −1 ): the observed line width at 

20 per cent of its peak. 
(iv) Position angle (degrees): the angle of the major axis of 

the receding side of the galaxy, measured anticlockwise from 

North. 
(v) Inclination angle (degrees): the angle between line-of- 

sight and a line normal to the plane of the galaxy. 

atalogues listing measured properties were submitted via a ded- 
cated scoring service (see Section 5.1 ), which compared each 
ubmission with the catalogue of truth values and returned a score.
or the duration of the Challenge, scores could be updated at any

ime; the outcome of the Challenge was based on the highest scores
ubmitted by each team. The Challenge opened on 1 February 2021
nd closed on 31 July 2021. 

.4 Reproducibility awards 

longside the main challenge, teams were eligible for ‘reproducibil- 
ty awards’, which were granted to all teams whose processing 
ipelines demonstrated best practice in the provision of reproducible 
ethods and Open Science. An essential part of the scientific method, 

eproducibility leads to better, more efficient science. Open Science 
eneralizes the principle of reproducibility, allowing previous work 
o be built upon for the future. Reproducibility awards ran in parallel
nd independently from the SDC2 score, and there was no cap on
he number of teams to whom the awards were given. 
MNRAS 523, 1967–1993 (2023) 
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 T H E  SIM U LATIONS  

imulation of the H I datacubes involved three steps: source catalogue
eneration, sky model creation, and telescope simulation. All codes
sed to generate the data set are publicly available. 3 

.1 Source catalogues 

o produce a catalogue of sources with both continuum and H I

roperties we used the Tiered Radio Continuum Simulation (TRECS;
onaldi et al. 2019 ) as updated by Bonaldi et al . 2023 Initial
atalogues of H I emission sources were generated by sampling from
n H I mass function derived from the ALF ALF A survey results
Jones et al. 2018 ), 

( M HI , z) = ln (10) φ∗

(
M HI 

M ∗( z) 

)α+ 1 

e 
− M HI 

M ∗ ( z) , (1) 

here the knee mass, M ∗ = 8.71 × 10 9 M �, marks the exponential
ecline from a shallow power law parameterized by α = −1.25, and
∗ = 4 . 5 × 10 −3 Mpc −3 dex −1 is a normalization constant. A mild
edshift dependence was applied by using log ( M ∗( z)) = log ( M ∗) +
.075 z. 
Conversion from H I mass in units solar mass to integrated line

ux F followed the relation from Duffy et al. ( 2012 ): 

 HI = 49 . 8 F D L 
2 , (2) 

here luminosity distance, D L , is measured in Mpc and is obtained
ia the source redshift. A lower integrated flux limit of 1 Jy Hz
as made, such that a fully face-on and unresolved source at this

imit would produce a peak flux density approximately equal to
he noise r.m.s. The catalogue also included a position angle θ
rawn from a uniform distribution between 0–360 degrees, and an
nclination angle i from the probability distribution function f ( i ) =
in ( i ). 

Catalogues of radio-continuum sources – star-forming galaxies
SFGs) and AGN – were then generated using the Tiered Continuum
adio Extragalactic Continuum Simulation (T-RECS; Bonaldi et al.
019 ) for the frequency interval 950–1400 MHz. A flux density
imit of 2 × 10 −7 Jy at 1150 MHz was applied, corresponding to k-
orrected radio luminosities L 1150 MHz = 1 . 58 × 10 19 W Hz −1 and
 1150 MHz = 8 . 59 × 10 19 W Hz −1 at the lower and upper redshift

imits, respectively, for a source with spectral index α = −0.7.
ontinuum T-RECS catalogue properties included DM mass, star-

ormation rate and redshift. 
The H I catalogue and the portion of the radio continuum catalogue

o v ering the same redshift interval were then further processed to
dentify those that would constitute a counterpart, i.e. be hosted by
he same galaxy (see Bonaldi et al. 2023 for more details). 

In order to generate source positions in RA ( x ), Dec ( y ),
nd redshift ( z) and to provide a realistic clustering signal, the
alaxies were associated with DM haloes from the P-Millennium
imulation (Baugh et al. 2019 ). Both the mass and environment
f host DM haloes were considered; galaxies were associated
ith available DM haloes having the closest mass in the same

edshift interval, and preferential selection of DM haloes with
ocal density lower than 50 objects per cubic Mpc was made
or H I -containing sources. The redshift of each source was con-
erted to obtain the observed frequency ( ν) at its dynamical
entre. 
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.2 Sky model 

he sky model was generated using the PYTHON scripting language,
aking use of the ASTROPY , SCIPY , and SCIKIT-IMAGE libraries for

mage and cube generation, and using a modified version of FITSIO

or writing to file. 

.2.1 H I emission datacube 

 I sources were injected into the field using an atlas of high quality
 I source observations. The atlas, containing 55 sources in total,
as collated using samples available from the WSRT Hydrogen
ccretion in LOcal GAlaxieS (HALOGAS) surv e y (Fraternali et al.
002 ; Oosterloo, Fraternali & Sancisi 2007 ; Heald et al. 2011 ) –
vailable online – and the THINGS surv e y (Walter et al. 2008 ),
ade available after the application of multiscale beam deconvo-

ution. The preparation of atlas sources involved the following 
teps: 

(i) Measurement of H I major axis diameter at a surface density of
 M � pc −2 , made after converting source flux to mass per pixel. 
(ii) Masking of all pixels with surface density less than 1 M � pc −2 ,

n order to produce a positive definite noiseless model. 
(iii) Rotation, using published source position angles, to a com-
on position angle of 0 degrees. 
(iv) Preliminary spatial resampling, such that the physical pixel

ize of the resampled data would be no lower than required for the
owest redshift simulated sources. A smoothing filter was applied
rior to resampling, in order to prevent aliasing. 
(v) Preliminary velocity resampling after application of a smooth-

ng filter. 

Though modestly sized, the atlas sample of real H I galaxies
epresented considerable morphological diversity, containing ex-
mples of Hubble stages 2–10. The parameter space representing
atalogue sources was not completely co v ered. Physical properties
f the atlas sample co v ered the SFR range 0.004–6.05 M � y −1 ,
he H I mass range 1.20 × 10 7 to 1.41 × 10 10 M �, and the H I

ajor axis diameter 2.29–102.23 kpc. Catalogue sources co v ered
he SFR range 0.0039–251 M � y −1 (median 0.97), H I masses M H I =
.99 × 10 7 M � and 4.08 × 10 8 M � at the lower and upper limits of
he simulated redshift range, respectively (with median 1.14 × 10 9 

nd maximum 1.08 × 10 11 ), and H I diameters S = 4.78–270 kpc
median 24.7). 

For each source from the simulation catalogue, a source from the
repared atlas of sources was chosen from those nearby in normalized
 I mass-inclination angle parameter space. Once matched with a

atalogue source, atlas sources underwent transformations in size
n the spatial cube dimensions x and y and in velocity dimension
 in order to obtain the H I size S , minor axis size b , and line
idth w 20 . An appropriate smoothing filter was applied prior to all

calings, in order to a v oid aliasing effects. Transformation scalings
ere determined using the catalogue source properties of H I mass,

nclination angle, and redshift, and making use of the following
elations: 

 = 0 . 51 log M HI − 3 . 32 , (3) 

rom Broeils & Rhee ( 1997 ), in order to determine spatial scalings
or mass; 

 

2 
rot = 

G M dyn 

r 
, (4) 

here V rot is the rest frame rotational velocity at radius r and M dyn 

s the dynamical mass and is set using M dyn / M H I = 10, in order to

https://github.com/PhilippaHartley/SKAO-SDC2
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Figure 1. 3D view of the ‘development’ H I emission datacube, containing 
2683 H I sources. The cube uses 1286 × 1286 × 6668 pixels to represent a 1 
square degree field of view across the full Challenge frequency range 0.95–
1.15 GHz (redshift 0.235–0.495). A log scaling has been applied to image 
pixel values. The two shorter axes represent the spatial dimensions and the 
longer axis the frequency dimension. 
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etermine frequency scalings for H I mass; 

cos 2 ( i ) = 

( b/S ) 2 − α2 

(1 − α2 ) 
, (5) 

here α = 0.2, in order to determine spatial scalings for inclination; 

 rad = V rot sin ( i) , (6) 

here V rad is the rest frame radial velocity, and 

 20 = 

√ 

( V 

2 
T + 2 V 

2 
rad ) , (7) 

here V T is the contribution to line width from turbulence, in order
o determine velocity scalings for inclination. While a best fit to 
LF ALF A data finds a value V T = 90 km s −1 , a lower value, V T =
0 km s −1 , is chosen in order to a v oid e xcessiv e scaling between
eaks in velocity. Spatial scalings for redshift were determined by 
alculating the angular diameter distance D A , assuming a standard 
at cosmology with �m 

= 0.31 and H 0 = 67.8 km s −1 Mpc −1 (Planck
ollaboration 2016 ). 
Finally, each transformed object was rotated to its catalogued 

osition angle, convolved with a circular Gaussian of 7 arcsec 
WHM and scaled according to total integrated H I flux, before being
laced in the full H I emission field at its designated position in RA,
ec, and central frequency (Fig. 1 ). 

.2.2 Continuum emission datacube 

he treatment of continuum counterparts of H I objects was depen- 
ent on the full width at half-maximum (FWHM) continuum size. An 
mpty datacube with spatial resolution matching the H I datacube and 
n initial frequency sampling of 50 MHz was first generated. Each 
ounterpart was then injected into the simulated field as either: 

(i) an extended source, for those objects with a continuum size 
reater than 3 pixels; 
(ii) a compact source, for those objects with a continuum size 

maller than 3 pixels. 

All compact sources were modelled as unresolved, and added as 
aussians of the same size as the synthesized beam. Images of all

xtended sources were generated according to their morphological 
arameters and then added as ‘postage stamps’ to an image of the
ull field, after applying a Gaussian convolving kernel corresponding 
o the beam. 
The morphological model for the extended SFGs is an exponential 
ersic profile, projected into an ellipsoid with a given axis ratio
nd position angle. The AGN population comprises steep-spectrum 

GN, exhibiting the typical double-lobes of FRI and FRII sources, 
nd flat-spectrum AGN, exhibiting a compact core component 
ogether with a single lobe viewed end-on. Within both classes of
GN all sources are treated as the same object type viewed from
 different angle. For the steep-spectrum AGN we used the Double
adio-sources Associated with Galactic Nucleus (DRAGNs) library 
f real, high-resolution AGN images (Leahy, Bridle & Strom 2013 ),
caled in total intensity and size, and randomly rotated and reflected,
o generate the postage stamps. All flat-spectrum AGN were added 
s a pair of Gaussian components: one unresolved and with a given
core fraction’ of the total flux density, and one with a specified larger
ize. 

The continuum catalogues accompanying the Challenge data sets 
eport the continuum size of objects as the Largest Angular Size
nd the exponential scale length of the disk for AGN and SFG
opulations, respectively. 

.2.3 Net emission and absorption cube 

he H I emission cube described in Section 3.2.2 was further
rocessed to introduce absorption features and the effect of imperfect 
ontinuum subtraction. H I absorption occurs if a radio continuum 

ource is at a higher redshift along the same line of sight as an H I

ource. The intensity of the effect depends on both the brightness
emperature of the continuum source and the H I opacity τ	 V of
he H I source. Absorption features were introduced on the pixels
f the H I model cube only if a background continuum source was
resent having at least a brightness temperature T min = 100 K. This
orresponds to a flux density of S min = 7.35 × 10 −4 T min 	φ2 / λ2 , with
φ the beam size in arcsec and λ the observing wavelength in cm,

ielding S min in Jy per beam. 
The absorption signature, S HIA ( ν), was calculated as: 

 HIA ( ν) = S C [1 − e ( −τ	V / d V ) ] , (8) 

here S C is the continuum model flux density at this frequency and
 V is the actual channel sampling in units of km s −1 . When observed
ith 100 pc or better physical resolution, the apparent H I column
ensity N H I , can be related to an associated H I opacity (Braun 2012 ),
s 

 HI = N 0 e 
−τ	V + N ∞ 

(1 − e −τ	V ) , (9) 

here N 0 = 1.25 × 10 20 cm 

−2 , N ∞ 

= 7.5 x 10 21 cm 

−2 and a nominal
 V = 15 km 

−1 provide a good description of the best observational
ata in hand. In turn, the hydrogen column density, N H I , associated
ith every pixel in the H I model cube can be obtained with 

 HI = 49 . 8 S L ( ν) 	ν M �(1 + z) 4 / ( N p m H 	θ2 C 

2 
M 

) , (10) 

here S L is the H I brightness in the pixel in Jy per beam, 	ν the
hannel spacing in Hz, M � a solar mass, z the redshift of the H I

1-cm line that applies to this pixel, N p the number of pixels per
patial beam, m H the hydrogen atom mass, 	θ the spatial pixel size
n radians, and C M 

a Mpc expressed in cm. The preceding constant
n the equation follows the flux density to H I mass conversion of
uffy et al. ( 2012 ). 
In the current case, the physical resolution is too coarse – some

0 kpc per pixel – to resolve the individual cold atomic clouds that
ive rise to significant H I absorption opacity. The apparent column
ensities per pix el hav e therefore been subjected to an arbitrary power
MNRAS 523, 1967–1993 (2023) 
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aw rescaling designed to render a plausible amount of observable
bsorption signatures. We used 

 

′ 
HI = 10 19 + [ log 10( N HI ) −19] β, (11) 

f N H I > 10 19 , with power la w inde x β = 1.9. This is followed by a
yperbolic tangent asymptotic filtering, 

 

′′ 
HI = N ∞ 

[e 2 N 
′ 
HI /N ∞ − 1] / [e 2 N 

′ 
HI /N ∞ + 1] , (12) 

n order to a v oid numerical problems when solving for the opacity. 
In order to simulate imperfect continuum emission subtraction

ithin the final H I datacube, a noise cube representing gain cal-
bration errors was produced. We first interpolated the simulated
ontinuum sky model, S C ( ν), to a frequency sampling of 10 MHz,
efore producing for each channel a two dimensional image of
ncorrelated noise to represent an r.m.s. gain calibration error of
= 1 × 10 −3 and with spatial sampling 515 × 515 arcsec. The

patial and frequency samplings were chosen in order to represent the
esidual bandpass calibration errors that might result from the typical
pectral standing wave pattern of an SKA dish at these frequencies,
ogether with the angular scale o v er which direction dependent gain
ifferences might be apparent. 
The coarsely sampled noise field was then interpolated up to

he 2.8 × 2.8 arcsec sampling of the sky model and a deliber-
tely imperfect version of the continuum sky model, S NC ( ν), was
onstructed by multiplying each pixel in the perfect model by (1
 N ), where N is the value of the corresponding pixel in the noise

ube. Finally, both the perfect and imperfect continuum models were
ownsampled to the final simulation frequency interval of 30 kHz.
he net continuum-subtracted H I emission and absorption cube,
 ( ν)) is finally calculated from the sum 

 ( ν) = S L ( ν) + S C ( ν) − S NC ( ν) − S HIA ( ν) . (13) 

.3 Telescope simulation 

he simulation of telescope sampling effects has been implemented
y using PYTHON to script tasks from the MIRIAD package (Sault,
euben & Wright 1995 ). Multiprocessing parallelization is exploited
y applying the procedure o v er multiple frequency channels simul-
aneously. 

.3.1 Calculation of effective PSF and noise level 

he synthesized telescope beam was based on a nominal 8-h duration
racking observation of the complete SKA-Mid configuration. A
-min time sampling interval was used in order to make beam
alculations sufficiently realistic while limiting computational costs.
he thermal noise level was based on nominal system performance

Braun et al. 2019 ) for an ef fecti v e on-sk y inte gration time of 2000-h
istributed uniformly o v er the 20 de g 2 surv e y field. The ef fecti ve
ntegration time per unit area of the survey field increases towards
ower frequencies in proportion to wavelength squared. This is due to
he variation in the primary beam size in conjunction with an assumed
urv e y sampling pattern that is fine enough to provide a uniform noise
e vel e ven at the highest frequency channel. The nominal r.m.s. noise
evel, σ N therefore declines linearly with frequency between 950 and
150 MHz. 
Observations of the South Celestial Pole (Experiment ID

0190424–0024) using MeerKAT, which is located on the future
KA-Mid site and will constitute part of the SKA-Mid array, have
een used to obtain a real world total power spectrum. With this
ower spectrum we can estimate the system noise temperature floor
NRAS 523, 1967–1993 (2023) 
f the MeerKAT receiver system as a function of frequency, in
ddition to an estimate of any excess average power due to radio
requency interference (RFI). The ratio of excess RFI to system
oise temperature, γ RFI , was used to scale the nominal noise in each
requency channel and to determine the degree of simulated RFI
agging to apply to the nominal visibility sampling. Flagging was
pplied to all baselines from a minimum B min = 0 up to a maximum
 max according, in units of wavelength, to 

 max = 71 × 10 ( γRFI −1) 1 / 3 , (14) 

hich produced maximum baseline lengths ranging from under 15 m
o around 10 km across the rele v ant range of observing frequencies.
he duration of RFI flagging, 	 HA, was determined, in hours, from

 HA = 

⎧ ⎨ 

⎩ 

0 , if γRFI < γmin 

8 ( γRFI − γmin ) / ( γmax − γmin ) , if γmin > γRFI > γmax 

8 , if γRFI > γmax 

here γ min = 1.1 and γ max = 2, are used to define the ranges of RFI
atios o v er which flagging is absent, intermittent, or continuous.
ntermittent flagging intervals were placed randomly within the
ominal HA = −4h to + 4h tracking window. 
After application of flagging to the nominal visibility sampling,

he synthesized beam and corresponding ‘dirty’ noise image were
enerated for each frequency channel. During imaging, a super-
niform visibility weighting algorithm was employed that makes
se of a 64 × 64 pixel FWHM Gaussian convolution of the
ridded natural visibilities in order to estimate the local density of
isibility sampling. The super-uniform re-weighting was followed
y a Gaussian tapering of the visibilities to achieve the final target
irty PSF properties, namely the most Gaussian possible dirty beam
entral lobe with 7 × 7 arcsec FWHM. The ef fecti ve PSF is then
odified to account for the fact that the surv e y area will be built

p via the linear combination of multiple, finely spaced, telescope
ointings on the sky. The ef fecti ve PSF in this case was formed from
he product of the calculated dirty PSF with a model of the telescope
rimary beam at this frequency, as documented in Braun et al. ( 2019 ).
he dirty noise image for each channel was then rescaled to have an

.m.s. fluctuation level, σ i , corresponding to the nominal sensitivity
evel of the channel degraded by its RFI noise ratio, 

i = σN γRFI . (15) 

.3.2 Simulated sampling and deconvolution 

he H I net absorption and emission datacube (Section 3.2.3 ) was
ubjected to simulated deconvolution and residual degradation by
he rele v ant synthesized dirty beam. Any signal, both positi ve and
e gativ e, in e xcess of three times the local noise level, 3 σ i , was
xtracted as a ‘clean’ image with the threshold signal retained to
orm a residual sky image. The residual sky image was subjected to a
inear deconvolution (via FFT division) with a 7 × 7 arcsec Gaussian,
runcated at 10 per cent of the peak and then convolved with the dirty
eam. The final data product cube was formed by summing for each
hannel the dirty residuals, the previously extracted clean feature
mage and the dirty noise image. 

.4 Limitations of the simulated data products 

hile significant effort has been expended to make a realistic data
roduct for the Challenge analysis, there are many limitations to the
egree of realism that could be achieved. Some of the most apparent
re outlined below. 
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Figure 2. Data processing pipeline used by the Coin team. 
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(i) Telescope sampling limitations, arising from the adoption 
f image plane sky model convolution to approximate the actual 
maging process. This forms the most significant limitation to the 
imulations, but is necessitated by the fact that working instead in 
he visibility plane would require processing of data sets 7.4 PB in
ize, far exceeding current capabilities. 

(ii) Realism of the noise properties: systematic effects such as 
esidual RFI, bandpass ripples, residual continuum sidelobes, and 
econvolution artifacts were not included in the simulation. Addi- 
ionally, the properties of the errors that have been included feature 

ostly Gaussian, uncorrelated noise, which may not represent the 
omplexity of those those found in real interferometric data. 

(iii) H I emission model limitations, arising from the limited 
umber of real H I observations used to generate simulated H I sub-
ubes. 

(iv) Catalogue limitations, arising from the independent genera- 
ion of H I and continuum catalogues. 

(v) H I absorption model limitations, due to very coarse sampling 
sed to assess physical properties along the line of sight in order
o introduce H I absorption signatures. Further, the relatively low 

esolution of the simulated observation results in a low apparent 
rightness temperature of continuum sources ( < 100 K), such that 
he occurrence of absorption signatures has been restricted only to 
hose continuum sources that exceed this brightness limit. 

(vi) Continuum emission model limitations, arising from the use 
f simple models to describe SFGs and flat-spectrum AGN sources, 
nd from the limited number of real images used to generate steep
pectrum sources. 

(vii) An assumption of negligible H I self-opacity which, although 
idely adopted in the current literature, is unlikely to be the case in

eality (see e.g. Braun 2012 ). 
(viii) The o v erall translation of truth catalogue inputs to simulated 

ource morphologies: the Challenge scoring definition measures the 
eco v ery of truth catalogue inputs, while teams themselves measure 
roperties from a simulated realization of those inputs. This could 
ntroduce a de generac y in the e v aluation of method performance. 

The limitations listed abo v e would in turn place limits on how well
eams’ performances on this data set would transfer to real data. 

 M E T H O D S  

articipating teams made use of a range of methods to tackle the
roblem, first making use of the smaller development data set and 
ruth catalogue in order to investigate techniques. 12 teams made a 
uccessful submission entry using the full Challenge data set. The 
ethods employed by each of those finalist teams are presented 

elow and are summarised in Table1 . 

.1 Coin 

 Heneka, M Delli Veneri, A Soroka, F Gubanov, A Meshcheryak o v,
 Fraga, CR Bom, M Br ̈uggen 
uring the Challenge the Coin team tested several modern ML 

lgorithms from scratch alongside the development our own wavelet- 
ased ‘classical’ baseline detection algorithm. For all approaches 
e first flagged the first 324 channels in order to remo v e residual
FI, as measured by the per-channel signal mean and variance. 
e considered the following ML architectures for object detection: 

D/3D U-Nets, R-CNN and an inception-style network that mimics 
ltering with wavelets. The to-date best-performing architecture 
as a comparably shallow segmentation U-Net that translated the 
D U-Net in Ronneberger, Fischer & Brox ( 2015a ) to 3D. It was
rained on 3D cubic patches taken from the development cube, 
ach containing a source and with no preprocessing applied. We 
itigated High ( > 90 per cent ) rates of false positives to moderate

evels ( ∼ 50 per cent ; see Fig. 2 ) by imposing interconnectivity and
ize cuts on the potential sources and discarding continuum-bright 
reas. We obtained a roughly constant ∼50:50 ratio between true 
nd false positives for 0.25 deg 2 cutouts across the development 
ube and the full Challenge cube. Our ‘classical’ baseline performed 
n alternative detection procedure, first using Gaussian filtering in the 
requency dimension followed by wavelet filtering and thresholding. 
nterscale connectivity (Scherzer 2010 ) and reconstruction were 
erformed on the denoised and segmented output. This pipeline 
etected < 10 per cent true positives for the Challenge data release: 
n order of magnitude higher false positive rate than the ML-based
ipeline. 
Source positions (RA, Dec, central frequency, line width) were 

irectly inferred from the obtained segmentation maps via the 
egionprops function of the SCIKIT-IMAGE PYTHON package (van 
er Walt et al. 2014 ). Source properties (flux, size) were derived
hrough a series of ResNet convolutional neural networks (CNNs; 
e et al. 2016 ) applied to the source candidate 3D cutouts. The
osition angle was measured using the SCIKIT-IMAGE package to fit 
llipses to sources masks; inclination could not be fitted for most
bjects. 
We conclude that further cleaning and denoising and the appli- 

ation of techniques from the ‘classical’ baseline, such as wavelet 
ltering, is needed to impro v e on our machine learning (ML) pipeline
ethod. Alternatively, further steps that include classification and a 
ore curated training set could be desirable. Lessons learned in 

hese ‘from-scratch’ developments can give valuable insights into 
he performance and application of said algorithms, such as the 
uitability of 3D U-Nets for segmentation of tomographic H I data
nd the need for additional cleaning algorithms jointly with networks 
r multistep procedures, such as a classification step, when faced with 
ow S/N data. 
MNRAS 523, 1967–1993 (2023) 
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Figure 3. Data processing pipeline used by the EPFL team. 
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.2 EPFL 

 Tolley, D Korber, A Peel, A Galan, M Sargent, G Fourestey, C
heller, J-P Kneib, F Courbin, J-L Starck 
he EPFL team used a variety of techniques developed specifically

or the Challenge and which have been collected into the LiSA
ibrary (Tolley et al. 2022 ) publicly available on GITHUB . 4 The
ipeline (Fig. 3 ) first decomposed the Challenge data cube into
 v erlapping domains by dividing along RA and Dec. Each domain
as then analysed by a separate node on the computing system. A
re-processing step used 3D wavelet filtering to denoise each domain:
ecomposition in the 2D spatial dimensions used the Isotropic
ndecimated Wavelet Transform (Starck, Fadili & Murtagh 2007 ),
hile the decimated 9/7 wavelet transform (Vonesch, Blu & Unser
007 ) was applied to the 1D frequency axis. A joint likelihood model
as then calculated from the residual noise and used to identify
 I source candidates through null hypothesis testing in a sliding
indow along the frequenc y axis. Pix els with a likelihood score
elow a certain threshold (i.e. unlikely to be noise) were grouped
nto islands. The size and arrangement of these islands were used
o reject data artefacts. Ultimately the location of the pixel with the
ighest significance was kept as an H I source candidate location. 
NRAS 523, 1967–1993 (2023) 

 https://github.com/epfl- radio- astro/LiSA 

5

9

A classifier CNN was used to further distinguish true H I sources
rom the set of candidates. The final H I source locations were then
sed to extract data from the original, non-denoised domain to be
assed to an Inception CNN which calculated the source parameters.
he Inception CNN used multiple modules to examine data features
t different scales. Finally, the H I source locations and features for
ach domain were concatenated to create the full catalogue. Both
NNs were trained on the development data set using extensive data
ugmentation. 

.3 FORSKA-Sweden 

 H ̊akansson, A Sj ̈oberg, MC Toribio, M Önnheim, M Olberg, E
ustavsson, M Lindqvist, M Jirstrand, J Conway 
he FORSKA-Sweden team performed source detection using a
-Net (Ronneberger, Fischer & Brox 2015b ) CNN with a ResNet

He et al. 2016 ) encoder. Our methods are presented more in detail
n H ̈akansson et al. ( 2023 ), and all related code is published on
ITHUB . 5 A training set was generated from the lower 80 per cent of

he development cube, split along the x-axis, by applying a binary
ask to all pixels within range of a source defined by a cylinder

sing source properties (major axis, minor axis, line width) from the
ruth catalogue. Batches of 128 cubes of size 32 × 32 × 32 pixels
ere sampled from the training area. Half of these cubes contained
ixels assigned to a source in the target mask, which caused galaxy
ixels to be over-represented in a training batch compared to the
ull development cube. This over-representation made training more
fficient. The remaining 20 per cent of the development cube was
sed for frequent validation and tuning of model hyperparameters. 
We used the soft Dice loss as the objective function (Mil-

etari, Navab & Ahmadi 2016 ; Khv edchen ya 2019 ). The initial
eights of the model, pretrained from ImageNet, were provided by

he PYTORCH -based SEGMENTATION MODELS package (Yakubovskiy
020 ). Each 2D k × k -filter of the pretrained model was converted to
 3D filter with a procedure similar to Yang et al. ( 2021 ). We aligned
wo dimensions to the spatial plane, and repeated the same 2D filter
or k frequencies, which resulted in a k × k × k filter. The Adam
ptimizer (Kingma & Ba 2014 ) with an initial learning rate of 10 −3 

as used for training the model. The trained CNN was applied to
he raw Challenge data cube to produce a binary segmentation mask
ssigning each pixel either to a galaxy or not (Fig. 4 ). 

The merging and mask dilation modules from SOFIA 1.3.2 (Serra
t al. 2015a ) were employed to post-process the mask and extract
oherent segments into a list of separated sources. The last step
f the pipeline was to compute the characterization properties for
ach extracted source. Some source properties were estimated in the
forementioned SOFIA modules, while others had to be computed
utside in our code. The most recent weights obtained from CNN
raining and a fixed set of hyperparameters from the post-processing
tep were used to compute a score intended to mimic the scoring of
he Challenge. The best model from training was then used as a basis
or hyperparameter tuning, again using the mimicked scoring. 

.4 HI FRIENDS 

 Mold ́on, L Darriba, L Verdes-Montenegro, D Kleiner, S S ́anchez, M
arra, J Garrido, A Alberdi, JM Cannon, Michael G Jones, G J ́ozsa,
 Kamphuis, I M ́arquez, M P andey-P ommier, J Sabater, A Sorgho 
 https://github.com/FraunhoferChalmer sCentr e/ska- sdc- 2/tree/cb3d34ebd 
44f 3332de661cfb8f d7d3403cf9a45 

art/stad1375_f3.eps
https://github.com/epfl-radio-astro/LiSA
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Figure 4. Cross-section images of input data, target and prediction with 
velocity and one positional dimension for one of the sources in the cube by 
team FORSKA-Sweden. The position axis is aligned with the major axis of 
the source. 
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he HI-FRIENDS team implemented a workflow (Moldon et al. 
021a ) based on a combination of SOFIA-2 (Westmeier et al. 2021 )
nd PYTHON scripts to process the data cube. The workflow, which 
s publicly available in GITHUB , 6 is managed by the workflow engine
NAKEMAKE (M ̈older et al. 2021 ), which orchestrates the e x ecution
f a series of steps (called rules) and parallelizes the data analysis
obs. SNAKEMAKE also manages the installation of the software 
ependencies of each rule in isolated environments using conda 
Anaconda 2020 ). Each rule e x ecutes a single program, script, shell
ommand or JUPYTER notebook. With this methodology, each step 
an be developed, tested, and e x ecuted independently from the others, 
acilitating modularization and reproducibility of the workflow. 

First, the cube is divided into smaller subcubes using the 
PECTRAL-CUBE library. Adjacent subcubes include an o v erlap of 40 
ixels (112 arcsec) in order to a v oid splitting large galaxies. In the
econd rule, source detection and characterization is performed on 
ach subcube using SOFIA-2 (Westmeier et al. 2021 ). We optimized 
he SOFIA-2 input parameters based on visual inspection of plots 
f the statistical quality of the fit and of some individual sources.
n particular, we found that the parameters scfind.threshold , 
eliability.fmin , and reliability.threshold were 
ey to optimizing our solution. We found that using the spectral noise
caling in SOFIA-2 dealt well with the effects of RFI-contaminated 
hannels and we did not include any flagging step. 

The third rule converts the SOFIA-2 output catalogues to new 

atalogues containing the rele v ant SDC2 source parameters in the 
orrect physical units. We computed the inclination of the sources 
ased on the ratio of minor to major axis of the ellipse fitted to each
alaxy, including a correction factor dependent on the intrinsic axial 
atio distribution from a sample of galaxies, as described in Stav ele y-
mith, Davies & Kinman ( 1992 ). The next two rules produce a
oncatenated catalogue for the whole cube: we concatenate the 
ndividual catalogues into a main, unfiltered catalogue containing 
ll the measured sources, and then we remo v e the duplicates coming
rom the o v erlapping re gions between subcubes using the r.m.s. as
 quality parameter to discern the best fit. Because the cube was
imulated based on real sources from catalogues in the literature 
e further filtered the detected sources to eliminate outliers using 
 known correlation between derived physical properties of each 
alaxy. In particular, we used the correlation in fig. 1 in Wang et al.
 2016 ) that relates the H I size and H I mass of nearby galaxies.
 https://github.com/HI- FRIENDS- SDC2/hi- friends 

7

8

everal plots are produced during the workflow e x ecution, and a final
isualization rule generates a JUPYTER notebook with a summary of 
he most rele v ant plots. 

Our workflow aims to follow FAIR principles (Wilkinson et al. 
016 ; Katz et al. 2021 ) to be as open and reproducible as possible.
o make it findable, we uploaded the code for the general workflow

o Zenodo (Moldon et al. 2021b ) and WorkflowHub (Moldon et al.
021c ), which includes metadata and globally unique and persistent 
dentifiers. To make the code accessible, we made derived products 
nd containers available on GITHUB and Zenodo as open source. 
o make it interoperable, our workflow can be easily deployed on
ifferent platforms with dependencies either automatically installed 
e.g. in a virtual machine instance in myBinder (Project Jupyter et al.
018 ) or e x ecuted through singularity, podman, or docker containers.
inally, to make it reusable we used an open license, we included
orkflow documentation 7 that contains information for developers; 

he workflow is modularized as SNAKEMAKE rules. We included 
etailed pro v enance of all dependencies and we followed The
inux Foundation Core Infrastructure Initiative (CII) Best Practices. 8 

herefore, the workflow can be used to process other data cubes and
hould be easy to adapt to include new methodologies or adjust the
arameters as needed. 

.5 HIRAXers 

 Vafaei Sadr, N Oozeer 
he HIRAXers team used a multilevel deep learning approach to 
ddress the Challenge. The approach extends to 3D a method applied
o a similar, 2D, challenge (Vafaei Sadr et al. 2019 ) and uses multiple
evels of supervision. Prior to source finding, a pre-processing 
tep is used to detect regions of interest. Moti v ated by the recent
rogress in image-to-image translation techniques, one can utilize 
rior knowledge about source shapes to magnify signals, ef fecti vely
uppressing background noise in a manner similar to image cleaning. 
e investigated two pre-processing approaches to reconstruct a 

clean’ image. For both approaches we used a training set generated
y using 2D spatial slices of the development data set to produce a
ource map containing masks and probability values. The output of 
he trained model can then be interpreted as a probability map. 

Our first preprocessing approach used 2D slices in frequency 
s greyscale images. The model learns to retrieve information 
mploying only transverse information. For the second approach, we 
xtended the inputs into 3D to benefit from longitudinal patterns by
dding different frequencies as convolutional channels, thus forming 
 multichannel image. We used a 128 × 128 sliding window to
anage memory consumption, a mean squared error loss function, 

nd a decaying learning rate. We used the standard image processor
n TENSORFLOW (Abadi et al. 2015 ) for minimal data augmentation, 
ith ranges of one degree for rotation and one per cent for zoom

ange, in addition to horizontal and vertical flips. 
We developed our pipeline to examine the following architectures: 

-Net (Milletari, Navab & Ahmadi 2016 ); Attention U-Net (Oktay 
t al. 2018 ); R2U-Net (Alom et al. 2018 ); U 

2 net (Qin et al. 2020 );
Net3 + (Huang et al. 2020 ); TransUNet (Chen et al. 2021 );

nd ResUNet-a (Diakogiannis et al. 2020 ). One can find most of
he implementations in the KERAS-UNET-COLLECTION (Sha 2021 ) 
ackage. The learning rate was initiated at 1 × 10 −3 with a 0.95
ecay per 10 epochs using the Adam optimizer. Our results using the
MNRAS 523, 1967–1993 (2023) 
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evelopment data set found that the U 

2 net architecture achieved the
est performance. U 

2 net employs residual U-blocks in a ‘U-shaped’
rchitecture. It applies the deep-supervision technique to supervise
raining at all scales by downgrading the output. 

In the second step of our method we trained a model to find and
haracterize the objects. To find the objects, we applied a peak finder
lgorithm to the 3D output of U 

2 net. A peak is simply the pixel that
s larger than all its 27 neighbours. The ‘found’ catalogue was then
assed into a modified eight-layer HighRes3DNet (Li et al. 2017 ) as
 regressor for characterization before generating the final catalogue.

.6 JLRAT 

 Yu, B Liu, H Xi, R Chen, B Peng 
he JLRAT team first divided the whole data set into small cubes
f size 320 × 320 × 160 (RA, Dec, frequency) before applying
o each cube a CNN containing a fully convolutional layer and a
oftmax layer. The CNN used 1D spectra from the cube as inputs
nd produced a masked output of candidate spectral signals. Using
he inner product, we computed the correlation in the space domain
etween each candidate spectrum and known spectra from the SDC2
evelopment cube. The result provided us with a set of 3D cubes,
ach containing a predicted galaxy with approximate position and
ize, and accurate line width. A 2D Gaussian function was used to fit
he moment zero map with an intensity cutoff at 1 M � pc −2 . The fit
roduced an ellipse with central position (RA, Dec), major axis and
osition angle, and the inclination of the galaxy. The flux integral
as obtained by integrating the spectra within the ellipse in both

pace and frequency. 

.7 MINERVA 

 Cornu, B Semelin, X Lu, S Aicardi, P Salom ́e, A Marchal, J
reundlich, F Combes, C Tasse 
he MINERVA team developed two pipelines in parallel. The final
atalogue merges the results from the two pipelines. 

.7.1 YOLO-CIANNA 

he YOLO-CIANNA pipeline implemented a highly customized
ersion of a YOLO (You Only Look Once; Redmon et al. 2015 ;
edmon & Farhadi 2016 , 2018 ) network, which is a regression-based
bject detector and classifier with a CNN architecture. Our YOLO
mplementation is part of our general-purpose CNN framework,
IANNA 

9 (Convolutional Interactive Artificial Neural Networks
y/for Astrophysicists). 
The definition of the training sample was of major importance

o get good results. Most of the sources in the large development
ata set are impossible for the network to detect, and tagging them
s positive detections would lead to a poorly trained model. For
OLO we used a combination of criteria to define a training set:

i) the CHADHOC classical detection algorithm (see Section 4.7.2 );
ii) a volume brightness threshold; (iii) a local signal-to-noise ratio
SNR) estimation. Our refined training set contains around ∼1500
true’ objects, with 10 per cent set aside for validation. All inputs
ere augmented using position and frequency offsets and flips. Our

etained network architecture for this challenge operates on sub-
olumes of 48 × 48 × 192 (RA, Dec, Frequency) pixels. The network
as trained by selecting either a sub-volume that contains at least
NRAS 523, 1967–1993 (2023) 
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d  

T  

a  
ne true source or a random empty field, in order to learn to exclude
ll types of noise aggregation and artefacts. 

The network maps each sub-volume to a 6 × 6 × 12 grid, where
ach element corresponds to a region of 8 × 8 × 16 pixels inside
he input sub-volume. We chose to have the network predict a single
ossible detection box per grid element, producing the following
arameters: x , y , z the bounding-box central position in the grid
lement; w, h , d the bounding-box dimension. We modified the
OLO loss function to allow us to predict the required H I flux,

ize, line width, position angle, and inclination in a single network
orward for each possible box. The retained network architecture is
ade of 21 3D-convolutional layers, which alternate several ‘large’
lters (usually 3 × 3 × 5) that extract morphological properties and
ewer ‘smaller’ filters (usually 1 × 1 × 3) that force a higher degree
eature space while preserving a manageable number of weights
o optimize. Some of the layers include a higher stride value in
rder to progressively reduce the dimensions down to the 6 × 6 ×
2 grid. The last few layers include dropout for regularization and
rror estimation. In total the network has of the order of 2.3 × 10 6 

arameters. When applying on the full datacube, predicted boxes are
ltered using an ‘objectness’ score threshold to maximize the SDC2
etric. 
Despite the fact that YOLO networks are known for their com-

utational performance, our retained architecture still requires up
o 36 h of training on a single RTX 3090 GPU using FP16/FP32
ensor Core mixed precision training. The trained network has an

nference speed of 76 sub-volumes per second using a V100 GPU
n Jean-Zay/IDRIS, but due to necessary partial o v erlap and RAM
imitations, it still requires up to 20 GPU hours to process the full

1 TB data cube. 

.7.2 CHADHOC 

he Convolutional Hybrid Ad-Hoc pipeline (CHADHOC) has been
eveloped specifically for SDC2. It is composed of three steps: a
raditional detection algorithm, a CNN for identifying true sources
mong the detections, and a set of CNNs for source parameter
stimation. 

For detection, we first smooth the signal cube by a 600 kHz width
long the frequency dimension and convert to an SNR on a per
hannel basis. Pixels below a fixed SNR of ∼2.2 are filtered out,
nd the remaining pixels are aggregated into detected sources using
 simple friend-of-friend linking process with a linking length of
 pixels. The position of each detection is computed by averaging
he positions of the aggregated pixels. A catalogue of detections is
hen produced, ordered according to the summed source SNR values.

hen applied to the full Challenge data set, we divide the cube into
5 chunks and produce one catalogue for each chunk. 
The selection step is performed with a CNN. A training sample

s built by cross-matching with the truth catalogue the 10 5 brightest
etections in the development cube, thus assigning a True/False label
o each detection. Unsmoothed signal-to-noise cutouts of 38 × 38 ×
00 pixels around the position of each detection are the inputs for
he network. The learning set is augmented by flipping in all three
imensions, and one third of the detections are set aside as a test set.
he comparatively light network is made of five 3D convolutional

ayers, containing 8, 16, 32, 32, and 8 filters, and three dense layers,
ontaining 96, 32, and 2 neurons. Batch normalization, dropouts, and
ooling layers are inserted between almost every convolutional and
ense layer. In total the network has of the order of 10 5 parameters.
he training is performed on a single Tesla V100 GPU in at most
 few hours, reaching best performances after a few tens of epochs.

https://github.com/Deyht/CIANNA
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Figure 5. Team Minerv a: Dif ference in the number of sources found between 
CHADHOC and YOLO-C catalogues in a flux against line width parameter 
space. The color encodes the difference in the local number of sources as a 
proportion of the total merged catalogue size (32652 predicted sources). The 
contours are the local number of sources averaged between the two catalogues 
with values: 6, 14, 30, 50, 64, 92, 128, 192. The density heatmap is computed 
on a 30 × 30 grid and plotted with interpolation. 
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he model produces a number between 0 (False) and 1 (True) for
ach detection. The threshold where the source is labelled as True is
 parameter that must be tuned to maximize the metric defined by the
DC2. This optimization is performed independently of the training. 
A distinct CNN has been developed to predict each of the source

roperties and includes a correction to the source position computed 
uring the detection step. The architecture is similar to the one of
he selection CNN, with small variations: for example, no dropout 
s used between convolutional layers for predicting the line flux. 
utouts around the ∼1300 brightest sources in the truth catalogue of

he development cube are augmented by flipping and used to build 
he learning and tests sets. The networks are trained for at most a
ew hundred epochs in a few to 20 min each on a Tesla V100 GPU.
raining for longer results in o v erfitting and a drop in accuracy. 
Many details impact the final performance of the pipeline. Among 

hem, the centering of the sources in the cutouts. Translational 
nvariance is not trained into the networks. This is dictated by the
ature of the detection process and is possibly the main limitation of
he pipeline: the selection CNN will never be asked about sources
hat have not been detected by the traditional algorithm. 

.7.3 Merging the catalogues 

f we visualize the catalogues produced by YOLO and CHADHOC in 
he sources parameter space (Fig. 5 ), we find that they occupy slightly
ifferent re gions. F or e xample, CHADHOC tends to find a (slightly)
arger number of typical sources compared to YOLO, but misses 

ore low-brightness sources because of the hard SNR threshold 
pplied during the detection step. Thus, merging the catalogues yields 
 better catalogue. 

Since both pipelines provide a confidence level for each source 
o be true, we can adjust the thresholds after cross-matching the 
wo catalogues. In case of a cross-match we lower the required 
onfidence level while when no cross-match is found we increase 
he required threshold. The different thresholds must be tuned 
o maximize purity and completeness. Finally, the errors on the 
ource properties are at least partially uncorrelated between the two 
ipelines. Thus averaging the predicted values also improves the 
esulting catalogue properties. 

.8 NAOC-Tianlai 

 Yu, Q Guo, W Pei, Y Liu, Y Wang, X Chen, X Zhang, S Ni, J Zhang,
 Gao, M Zhao, L Zhang, H Zhang, X Wang, J Ding, S Zuo, Y Mao 
fter testing several methods, the N AOC-T ianlai team used the

OFIA-2 software to process of the SDC2 data sets. We optimized
he SOFIA-2 input parameters by first performing a grid search in pa-
ameter space before refining the result using an MCMC simulation. 

e are currently developing a dedicated cosmological simulation on 
hich to test our methods. Ho we ver, during the Challenge time frame
e mainly used the development and large development data sets to
erform the optimization. The optimized parameters were then used 
or the processing of the full Challenge data set. 

Due to the memory constraints and the consideration of a v oiding
 xcessiv e division along the spectral axis, the data sets were split
nto subcubes of size ∼330 × 330 × 3340 pixels for processing. 
djacent subcubes had an o v erlap of 10 or 20 pixels along each axis

o ensure that H I galaxies on the border region were not missed.
he full Challenge data set was therefore divided into 18 × 18 × 2
ubcubes when processing. 

Our main parameter selection procedure is as follows: 

(i) We set a list of values to be searched for each parameter
f interest, such as: replacement , threshold in the scfind 
odule; minSizeZ , radiusZ in the linker module; and minSNR ,
hreshold , scaleKernel in the reliability module. We then 
rocessed in parallel the development data set with the different 
ombinations of parameters values. 

(ii) Next, we selected the optimal parameter combination by 
omparing the output catalogues from the previous step with the 
evelopment data set truth catalogue. To choose the optimal param- 
ters, thresholds were applied to the total detection number , to the
atc h r ate (true detection/total detection), and to the final score . 
(iii) To make the found optimal parameter combination more 

obust, different subcubes were processed following the procedure 
iv en abo v e, and the combination that performed well on all subcubes
as selected. 

For reference, our trial produced the following optimized parame- 
er settings: scaleNoise.windowXY/Z = 55 for normalizing 
he noise across the whole datacube; kernelsXY = [0, 3, 
] , kernelsZ = [0, 3, 7, 15, 21, 45] , threshold
 4.0 , replacement = 1.0 in the scfind module for the
 + C finder in SOFIA-2 ; radiusXY/Z = 2 , minSizeXY = 5 ,
inSizeZ = 20 in the linker module for merging the masked
ixels detected by the finder; and threshold = 0.5 , scaleK-
rnel = 0.3 , minSNR = 2.0 in the reliability module for

eliability calculation and filtering. In our processing, each parameter 
ombination instance took ∼5 min with one CPU thread to process
ne subcube. 
Finally, we applied the optimal parameter combination to the 

rocessing of all subcubes from the Challenge data set, and merged
he results. 

.9 SHAO 

 Jaiswal, B Lao, JNHS Aditya, Y Zhang, A Wang, X Yang 
he SHAO team developed a fully-automated pipeline in PYTHON to 
ork on the Challenge data set. Our method involved the following
MNRAS 523, 1967–1993 (2023) 
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teps: (1) We first sliced the datacube into individual frequency
hannel images and used SEXTRACTOR (Bertin & Arnouts 1996 ) to
erform source finding on each image. We used a 2.5 σ detection
hreshold (for ∼99 per cent detection confidence) and minimum
etection area of 2 pixels. (2) We cross-matched the sources found
n consecutive channel images using the software TOPCAT (Taylor
005 ) with a search radius of 1 pixel = 2.8 arcsec. (3) For each source
etected in at least two consecutive channel images we estimated the
ange of channels for each source, adding 1 extra channel on both
ides. (4) We extracted a subcube across the channel range obtained
n the previous step, using a spatial size of 12 pixels around each
dentified source. (5) We made a moment-0 map for each extracted
ource using its subcube, after first masking ne gativ e flux densities.
6) We used SEXTRACTOR on the moment-0 map of each extracted H I

ource to estimate the source RA and Dec coordinates, major axis,
inor axis, position angle, and integrated flux. Inclination angle was

stimated using the relations given by Hubble ( 1926 ) and Holmberg
 1946 ). (7) We constructed a global H I profile for each source by
stimating the flux densities within a box of size 6 pixels around
he source position in every channel of its subcube. (8) We finally
t a single Gaussian model to estimate the central frequency of H I

mission and line width at 20 per cent of the peak. 
The score obtained by this method is not very satisfactory.

o we ver , our in vestig ations g ave us confidence in dealing with a
arge H I cube and making the pipeline for the analysis. We will
ry to impro v e our pipeline by optimizing the input parameters and
mplementing different algorithms in the future. The use of ML
echniques could be a good choice for such data sets. 

.10 Spardha 

K Shaw, NN Patra, A Chakraborty, R Mondal, S Choudhuri, A
azumder, M Jagannath 
he SPARDHA team developed a PYTHON -based pipeline which
tarts by dividing the 1 TB Challenge data set into several small
ubelets. We performed source finding using an MPI-based im-
lementation to run parallel instances of SOFIA -2 on each cubelet.
e tuned the parameters of SOFIA -2 to maximize the number of

etected sources. A total of 118 cubelets were analysed, which were
ategorized into two groups, namely: (1) Normal cubelets and (2)
verlapping cubelets. The whole datacube was first divided into

onsecutive blocks of equal dimensions to create Normal cubelets
Fig. 6 ). Overlapping cubelets were then centred at the common
oundaries of Normal cubelets in order to detect sources that fall at
heir common boundaries. 

In order to a v oid source duplication, buffer regions were defined
round the faces of each cubelet (see Fig. 6 , top row). We al w ays
ccepted any source whose centre was detected within the cubelet but
ot in the buffer zone (see Fig. 6 , bottom ro w). We conserv ati vely set
he width of buffer zones based on the physically motivated values
f the spatial and frequency extent of typical galaxies scaled at the
esired redshifts. We chose the maximum extent of the galaxy on
he sky plane to be ∼80 kpc (Wang et al. 2016 ), corresponding
o ∼10 pixels in the nearest frequency channel. The buffer region
as set to be twice this e xtent, i.e. 20 pix els. Ov erlapping re gions
ere therefore 4 × 20 = 80 pixels wide. Along the frequency
irection, galaxies can have a line-width extent of ∼500 km s −1 ,
hich corresponds to ∼72 channels. The widths of the buffer regions

nd Overlapping regions along the frequency axis were therefore
44 and 288 channels, respectively. The acceptance regions of the
ubelets (normal and o v erlapping) were such that they spanned the
hole data cube contiguously when arranged accordingly. Although
NRAS 523, 1967–1993 (2023) 
his approach increased the computation slightly due to analysing
ome regions of the data more than once, it ensured that there was no
ommon source present in the list. Analysing cubelets was the most
ime-consuming part in our pipeline. We analysed 118 cubelets on
72 cores in parallel in around 15 min. 
We used physical equations to convert the SOFIA -2 catalogue

nto the SDC-prescribed units and to discard bad detections such
s those sources having NaN values in the columns or those with
e gativ e flux values. In the final stage we put limits on the line
idth, discarding detections with unusual v alues. Moti v ated by
hysical models and observations of galaxies, we conserv ati vely
ccepted the sources having w 20 ∈ [60 , 500] km s −1 (McGaugh et al.
000 ). We finally arranged the catalogue in descending order of
he flux values. Based on tests using the development datacube,
or which the exact source properties are known, we chose the
op 35 per cent of total sources to generate the final catalogue for 
ubmission. 

.11 Starmech 

J Hardcastle, J Forbrich, L Smith, V Stolyarov, M Ashdown, J Coles
he Starmech tackled the Challenge from the point of view of dealing
ith the Challenge data set within the constraints of the resources
rovided to us (a single node with 30 cores and 124 GB RAM, 800 GB
oot volume, and 1 TB additional data volume). Some computational
onstraints will be a feature of future working in the field when
omputing resources are provided as part of shared SKA Regional
entres. 
We considered existing source finding tools: PYBDSF (Mohan &

afferty 2015 ), a continuum source finder, and SOFIA and SOFIA-
 , two generations of a 3D source finder already optimized for
 I (Westmeier et al. 2021 ). While PYBDSF readily generated a

atalogue of the continuum sources and could be run on many slices
n frequency, slicing and averaging with fixed frequency steps does
ot give good results since emission lines have a variety of possible
idths in frequency space. Instead we focused on the two publicly

vailable 3D source finders. Our tests showed that SOFIA-2 ’s memory
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Figure 7. Team SOFIA : Histogram of total detections (light-grey), real 
galaxies (dark-grey), detections after filtering (red), and real galaxies after 
filtering (blue) as a function of integrated SNR from a SOFIA run on the 
development cube (top panel). The reliability of the original and filtered 
catalogue is shown as the grey and orange curve, respectively (bottom panel). 
Parameter space filtering significantly boosts SOFIA ’s reliability at low SNR. 
Note that we measure SNR within the actual SOFIA source mask, and the 
resulting values can not be directly compared with the optimized SNR defined 
in Section 6.2 . 
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ootprint is much lower than that of SOFIA for a given data cube and
ts speed significantly higher, so it became our algorithm of choice. 

In order to work with the available RAM, we needed to slice the
ull Challenge datacube either in frequency or spatially. We chose to 
lice spatially because this allows SOFIA-2 to operate as expected in 
requency space; essentially the approach is to break the sky down 
nto smaller angular regions, run SOFIA-2 on each one in series, and
hen join and de-duplicate the resulting catalogue. Whether done in 
arallel (as in the MPI implementation SOFIA-X ; Westmeier et al. 
021 ), or in series as we describe here, some approach like this will
l w ays be necessary for large enough H I series in the SKA era since
he full data set sizes will exceed any feasible RAM in a single node
or the foreseeable future. 

Our implementation was a simple PYTHON wrapper around SOFIA- 
 . The code calculates the number of regions into which the input
ata cube needs to be divided such that each individual sub-cube 
an fit into the available RAM. Assuming a tiling of n × n , it
hen tiles the cube with n 2 o v erlapping rectangular spatial regions.

e define a guard region width g in pixels: each region passed to
OFIA o v erlaps the adjacent one, unless on an edge, by 2 g pixels.
ooping o v er the sub-cubes, SOFIA-2 is run on each one to produce
 

2 o v erlapping catalogues in total. For our final submission we
sed SOFIA-2 default parameters with an scfind.threshold of 
.5 σ , g = 20 pixels, a spatial offset threshold for de-duplication
f 1 pixel, and a frequency threshold of 1 MHz. g was chosen
o be larger than the typical size in pixels of any real source.

e verified that there were no significant differences, using these 
arameters, between the reassembled catalogue for a smaller test 
ube and the catalogue directly generated by running SOFIA-2 on 
he same cube, using TOPCAT for simple catalogue visualization 
nd cross-matching. Due to time constraints, we did not mo v e on
o the next obvious step of optimizing the parameters used for
OFIA-2 based on further runs on the test and development data 
ets. 

We remo v ed source duplication arising from o v erlapping re gions
y considering catalogues from adjacent sub-cubes pairwise. We 
rstly discarded all catalogue entries with pixel position more than g 
ixels from the edge of a sub-cube; these should already be present in
nother catalogue. The remaining o v erlap re gion, 2 g pix els in width,
eight, or both, was cross-matched in position and sources whose 
osition and frequency differ by less than user-defined threshold 
alues were considered duplicates and discarded from one of the two 
atalogues. Finally the resulting n 2 de-duplicated catalogues were 
erged and catalogue values converted according to units specified 

y the submission format. 
We w ould lik e to hav e e xplored the utility of dimensional com-

ression of the data as part of the source finding, for example by
sing moment maps in an attempt to eliminate noise and better 
inpoint source detection algorithms. A priori , this would have been 
f rather technical interest since any resulting bias on source detection
ould need to be considered. Ho we ver, in this way, it may have been
ossible to identify candidate sources to then characterize based on 
bservable parameters such as size and linewidth, in a first step as
oint sources vs resolved sources, and including flags for potential 
 v erlap in projection or velocity. 

.12 Team SOFIA 

M Hess, RJ Jurek, S Kitaeff, P Serra, AX Shen, JM van der Hulst,
 Westmeier 
eam SOFIA made use of the Source Finding Application ( SOFIA ;
erra et al. 2015a ; Westmeier et al. 2021 ) to tackle the Challenge.
ev elopment v ersion 2.3.1 of the software, dated 2021 July 22, 10 was
sed in the final run submitted to the scoring service. To minimize
rocessing time, 80 instances of SOFIA were run in parallel, each
perating on a smaller region ( ≈11.8 GB) of the full cube. The
rocessing time for an individual instance was just under 25 min,
ncreasing to slightly more than 2 h when all 80 instances were
aunched at once due to o v erhead from simultaneous file access. The
esulting output catalogues were merged and any duplicate detections 
n areas of o v erlap between adjacent regions discarded. 

We ran SOFIA with with the following options: after flagging of
right continuum sources > 7 mJy followed by noise normalization 
n each spectral channel, the S + C finder was run with a detection
hreshold of 3.8 times the noise level, spatial filter sizes of 0, 3,
nd 6 pixels and spectral filter sizes of 0, 3, 7, 15, and 31 channels.
e adopted a linking radius of 2 and a minimum size requirement

f 3 pixels/channels. Lastly, reliability filtering was enabled with a 
eliability threshold of 0.1, an SNR threshold of 1.5 and a kernel
cale factor of 0.3. 

Based on tests using the development cube, we improved the 
eliability of the resulting source catalogue from SOFIA by removing 
ll detections with n pix < 700, s < −0.00135 × ( n pix − 942) or f
 0.18 × SNR + 0.17, where n pix is the number of pixels within

he 3D source mask, s is the skewness of the flux density values
ithin the mask, f is the filling factor of the source mask within its

ectangular 3D bounding box, and SNR is the integrated SNR of the
etection. Detection counts for the original and filtered catalogue 
rom the development cube are shown in Fig. 7 as a function of SNR.
ur final detection rate peaks at SNR ≈ 3, with a reliability of close

o 1 down to SNR ≈ 2. The filtered catalogue from the full cube
ontains almost 25 000 detections, about 23 500 of which are real,
mplying a global reliability of 94.2 per cent. 
MNRAS 523, 1967–1993 (2023) 
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It should be emphasized that our strategy of first creating a low-
eliability catalogue with SOFIA and then removing false positives
hrough additional cuts in parameter space is based on development
ube tests and was adopted to maximize our score. This strategy
ay not work well for real astronomical surv e ys which are likely to

ave different requirements for the balance between completeness
nd reliability than the one mandated by the scoring algorithm. 

Lastly, the source parameters measured by SOFIA were converted
o the requested physical parameters. As the calculation of disc size
nd inclination required spatial deconvolution of the source, we
dopted a constant disc size of 8.5 arcsec and an inclination of 57.3
egrees for all spatially unresolved detections. In addition, statistical
oise bias corrections were derived from the development cube and
pplied to SOFIA ’s raw measurement of integrated flux, line width
nd H I disc size. 

 S C O R I N G  

 live scoring service was provided for the duration of the Challenge.
he service allowed teams to self-score catalogue submissions while
eeping the truth catalogue hidden, and automatically updated a
ive leaderboard each time a team achieved an impro v ed score. All
articipating teams were provided with credentials with which the
coring service could be accessed o v er the internet using a simple,
ip-installable command line client. Participants used this client to
pload submissions to the service, after which it was e v aluated by
 scoring algorithm against the truth catalogue. Once the score had
een calculated, it could be retrieved from the scoring service using
he client. Teams were limited to a maximum submission rate of 30
ubmissions per 24-h period. 

.1 Scoring pr ocedur e 

he scoring algorithm 

11 is written in PYTHON and makes use of the
ANDAS and ASTROPY libraries. Scoring is performed by comparing
ubmitted catalogues with a truth catalogue, each containing the same
ource properties. The first step of the scoring is to perform a po-
itional cross-match between the true and the submitted catalogues.
atched sources from the submitted catalogue are then assigned

cores according to the combined accuracy of all their measured
roperties. Finally, the scores of all matched sources are summed
nd the number of false detections subtracted, to give the overall
hallenge score. 

.1.1 Source cross-match 

ross-matching is performed using the SCIKIT nearest neighbours
lassifier with the kd tree algorithm, which uses a tree-based data
tructure for computational efficiency (Bentley 1975 ). The cross-
atch procedure considers the position of a source in the 3D cube,

dentified by RA, Dec, and central frequency. Each coordinate set
s first converted to a physical position space via the source angular
iameter distance. All submitted sources with positions within which
 truth catalogue source is in range are then recorded as matches.
or each submitted source, this range in the spatial and frequency
imensions is determined by the beam-convolved submitted H I size
nd the line width, respectively. Detections that do not have a truth
ource within this range are recorded as false positives. Matched
etections are further filtered by considering the range of the matched
ruth sources. Detections which lie outside the beam-convolved H I
NRAS 523, 1967–1993 (2023) 
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T  

p  
ize and the line width of the matched truth source are at this stage
lso rejected and recorded as false positives. 

It is possible that the cross-match returns multiple submitted
ources per true source. In that case, all matches are retained
nd scored individually. The reasoning behind this choice is that
omponents of H I sources, especially in the velocity field, could be
orrectly identified but interpreted as separate sources. If that were
he case, classifying them as false positives would be too much of
 penalty. All submitted sources matched to the same true source
re inversely weighted by the number of multiple matches during
he scoring step. It is also possible for more than one truth source
o be matched with a single submitted source. In these cases, only
he match between the submitted source and truth source which
ields the lowest multiparameter error (equation 16 ) is retained. This
rocedure ensures that matches in crowded regions take into account
he resemblance of a truth source to a submitted source, in addition
o its position. 

A final step is performed to compare the multidimensional error
ith a threshold value, abo v e which an y nominally matched sub-
itted sources are discarded and counted as false positives. The
ultiparameter error D is calculated using the Euclidean distance

etween truth and submitted sources in normalized parameter space, 

 = ( D 

2 
pos + D 

2 
freq + D 

2 
HI size + D 

2 
line width + D 

2 
flux ) 

1 
2 , (16) 

here the errors on parameters of spatial position, central frequency,
ine width and integrated line flux have been normalized following the
efinitions in Table 2 . The error on H I size is at this stage normalized
y the beam-convolved true H I size in order not to lead to the
referential rejection of unresolved sources. The multidimensional
rror threshold is set at 5, i.e. the sum in quadrature of unit normalized
rror values. 

.1.2 Accuracy of sources properties 

or all detections that have been identified as a match, properties
re compared with the truth catalogue and a score is assigned per
roperty and per source. The following properties are considered
or accurac y: sk y position (RA, Dec), H I size, inte grated line flux,
entral frequency, position angle, inclination angle, and line width.
ach attribute j of a submitted source i contributes a maximum
eighted score w 

j 

i of 1/7, so that the maximum weighted score w i 

or a single matched source is 1, 

 i = 

7 ∑ 

j= 1 

w 

j 

i . (17) 

he weighted score of each property of a source is determined by 

 

j 

i = 

1 

7 
min 

{ 

1 , 
thr j 

err j i 

} 

, (18) 

here err j i is the error on the attribute and thr j is a threshold applied to
hat attribute for all sources. Errors calculated in this step are detailed
n Table 2 , along with corresponding threshold values, which have
een chosen using the distribution of errors obtained during tests on
he Challenge data products using the SOFIA source finder. Finally, the
eighted scores of submitted sources are averaged over any duplicate
atches with unique truth sources. 

.1.3 Final score per submission 

he final score is determined by subtracting the number of false
ositives N f from the summed weighted scores w i of all N m 

unique

https://pypi.org/project/ska-sdc/
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Table 1. The main features of the methods applied by each team to SDC2 are summarized for ease of reference. 

Team name Pre-processing Detection F alse-positiv e rejection Characterization Additional notes 

Coin RFI flagging 3D U-Net CNN Size cuts ResNet CNNs Several CNNs tested 
Interscale connectivity Continuum rejection Ellipse-fitting 

EPFL Wavelet filtering Joint likelihood Size cut Inception CNN Data augmentation 
Classifier CNN 

FORSKA-Sweden – 3D U-Net CNN SOFIA SOFIA –
Modelling: check 

HI-FRIENDS SOFIA : SOFIA SOFIA SOFIA –
Continuum flagging Additional parameter cuts Ellipse fitting 
Noise normalization 

HIRAXers U 

2 net Peak-finding – HighRes3DNet Data augmentation 
JLRAT – CNN – Gaussian-fitting Spectral inputs to CNN 

Cross-correlation 
MINERVA 

∗ –| Smoothing YOLO CNN | 
Friend-of-friend 

–| CNN YOLO CNN | CNNs Training data refinement 

| SNR mask Data augmentation 
N AOC-T ianlai SOFIA : SOFIA Parameter tuning SOFIA Gridsearch, MCMC 

Continuum flagging 
Noise normalization 

SHAO – SEXTRACTOR – SEXTRACTOR –
TOPCAT Gaussian fitting 

Spardha SOFIA : SOFIA SOFIA SOFIA Partitioning buffer zones 
Continuum flagging Additional parameter cuts 
Noise normalization 

Starmech SOFIA : SOFIA SOFIA SOFIA TOPCAT for verification 
Continuum flagging 
Noise normalization 

Team SOFIA SOFIA : SOFIA SOFIA SOFIA Noise bias corrections 
Continuum flagging Additional parameter cuts 
Noise normalization 

The methodology is divided into pre-processing, source finding, false-positive rejection, and source characterization steps. The asterisk denotes the step taken by team 

MINERVA to combine the results of two independent methods, demarcated here by the pipe symbol, to form a final catalogue. 

Table 2. Definitions of errors and threshold values for the properties of 
sources. 

Property Error term Threshold 

RA and Dec, x , y D pos = 

( x − x ′ ) 2 + ( y − y ′ ) 2 

ˆ S ′ 

0.3 

H I size, S D HI size = 

| S − S ′ | 
ˆ S ′ 

0.3 

Integrated line flux, F D flux = 

| F − F 

′ | 
F 

′ 0.1 

Central frequency, ν D freq = 

| ν − ν′ | 
w 

′ 
20 , Hz 

0.3 

Position angle, θ D PA = | θ − θ ′ | 10 

Inclination angle, i D incl = | i − i ′ | 10 

Line width, w 20 D line width = 

| w 20 − w 

′ 
20 | 

w 

′ 
20 

0.3 

Prime denotes the attributes of the truth catalogue, x , y are the pixel 
coordinates corresponding to RA, Dec, ν is the central frequency, S is the H I 

major axis diameter and ̂  S is the beam-convolved major axis diameter, f is the 
source integrated line flux, θ is the position angle, i is the inclination angle, 
and w 20 is the H I line width. Calculations of position angles take into account 
potential angle degeneracies by defining the angle difference as a point on 
the unit circle and taking the two-argument arctangent of the coordinates of 
that point: | θ − θ ′ | = atan2[sin ( θ − θ ′ ), cos ( θ − θ ′ )]. 

m

fi

F  

w
r

5

P
C  

p
p
a
b
m  

p
e  

a
f

e

12 ht tps://www.soft ware.ac.uk/
13 ht tps://sdc2.ast ronomers.skatelescope.or g/sdc2-challenge/r eproducibility 
-awards 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/523/2/1967/7157129 by guest on 21 April 2024
atched sources: 

nal score = 

N m ∑ 

i 

w i − N f . (19) 

 alse positiv es are linearly penalized in order to preserv e equal
eighting between characterization performance and the ability to 

emo v e false detections. 

.2 Reproducibility awards 

articipating teams were encouraged to consider early on in the 
hallenge the o v erall architecture and design of their software
ipelines. At the Challenge close, teams were invited to share 
ipeline solutions. Reproducibility awards were then granted in 
cknowledgement of those teams whose pipelines demonstrated 
est practice in the provision of reproducible results and reusable 
ethods. Pipelines were e v aluated using a checklist de veloped in

artnership with the Software Sustainability Institute (SSI) 12 (Crouch 
t al. 2013 ), which was provided to teams for the purposes of self-
ssessment during the Challenge. The checklist 13 considered the 
ollowing criteria: 

Reproducibility of the solution. Can the software pipeline be re-run 
asily to produce the same results? Is it: 
MNRAS 523, 1967–1993 (2023) 
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M

Table 3. SDC2 finalist teams’ scores are reported, rounded to the nearest 
integer. 

Team name Score N d N m 

R C A 

MINERVA 23 254 32 652 30 841 0.945 0.132 0.81 
FORSKA-Sweden 22 489 33 294 31 507 0.946 0.135 0.77 
Team SOFIA 16 822 24 923 23 486 0.942 0.101 0.78 
N AOC-T ianlai 14 416 29 151 26 020 0.893 0.112 0.67 
HI-FRIENDS 13 903 21 903 20 828 0.951 0.089 0.72 
EPFL 8515 19 116 16 742 0.876 0.072 0.65 
Spardha 5615 18 000 13 513 0.751 0.058 0.75 
Starmech 2096 27 799 17 560 0.632 0.075 0.70 
JLRAT 1080 2100 1918 0.913 0.008 0.66 
Coin −2 29 17 0.586 0.000 0.60 
HIRAXers −2 2 0 0.000 0.000 –
SHAO −471 471 0 0.000 0.000 –

Also reported are the number of detections N d and matches N m 

(Section 5.1.1 ), 
and the o v erall reliability ( R ; equation 20 ) and completeness ( C ; equation 21 ) 
of each method. Finally, the source characterization accuracy ( A ; equation 
22 ) reports the percentage accuracy of source property measurement averaged 
o v er all properties for all sources matched per team. 
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(i) Well-documented 
(ii) Easy to install 
(iii) Easy to use 

Reusability of the pipeline. Can the code be reused easily by other
eople to develop new projects? Does it: 

(i) Have an open licence 
(ii) Have easily accessible source code 
(iii) Adhere to coding standards 
(iv) Utilize tests 

ll parts of the software pipeline developed by each team were
 v aluated, including packages that the teams have written and code
hat interacts with third party packages, but not including any third
arty packages themselves. 

 RESU LTS  A N D  ANALYSIS  

n this Section we first present the o v erall Challenge results before
eporting on the determination of source signal-to-noise values. We
hen analyse the results from source finding and characterization
erspectives and present the results of the reproducibility awards. 

.1 Challenge results 

he final scores of all teams who submitted a catalogue based on the
ull Challenge data set are reported in Table 3 . Each team’s number
f detections, N d – composed of matches, N m 

, and false positives,
 f – are also listed, along with the number of matches, the o v erall

eliability, R , and completeness, C , calculated as follows: 

 = 

N m 

N d 
= 

N m 

N m 

+ N f 
; (20) 

 = 

N m 

N t 
, (21) 

here N t is the number of sources in the truth catalogue. The o v erall
haracterization accuracy of each team’s method, A , is defined as the
ccuracy of source property measurement according to Section 5.1.2 ,
v eraged o v er all properties for all matches per team: 

 = 

∑ N m 
i w i 

N m 

. (22) 
NRAS 523, 1967–1993 (2023) 
e note that the scoring algorithm (Section 5 ), designed to penalize
alse detections, can result in a teams’ highest scoring submission
ontaining a significantly less complete catalogue than other sub-
issions made by the same team if the number of false positives

s high. This is the case for teams Coin, HIRAXers, and SHAO.
ith each teams’ agreement therefore we have used the team’s

ubmission with the highest completeness for the following analysis,
hile leaving the leaderboard scores unchanged. This allows us more

obustly to investigate the characterization performance of these
eams’ methods. 

.1.1 Conventions and units 

ev eral conv entions and conv ersions are used during the characteri-
ation of H I spectral line data which, without clear and unambiguous
pecification, can lead to inconsistencies between catalogues and
etween physical and measured properties. Room for error arose
ue to potential alternative position angle definitions and to the
eed to shift the rest frequency into the frame of the source.
here teams’ catalogues have follo wed alternati v e conv entions

r incorrect conversions, catalogue corrections have been applied
fter the close of the Challenge leaderboard. While teams’ scores
re affected slightly, leaderboard positions do not change. The
hallenge organizing team used the dedicated discussion forum

Section 2.1 ) to resolve misunderstandings in the rules and con-
entions as they arose. Future SKAO Science Data Challenges will
enefit from additional instructions and examples where ambiguity
r unfamiliarity can be anticipated. The reporting of observed
ather than derived parameters would also reduce measurement 
nconsistencies. 

.2 Signal-to-noise 

he appropriate definition and calculation of source signal-to-noise
alues is important in order to gain an understanding of the absolute
erformance of teams’ methods and to transfer insights gained from
DC2 to other data sets. While the value of peak signal-to-noise is
asy to define, it fails to capture any information about source extent.
lternativ ely, the inte grated signal-to-noise can be e v aluated for a

hosen mask across the source. The total error contribution from the
ask pixels can be calculated using the usual rules of correlated error

ropagation. Ho we ver, due to the smoothing effect of beam sampling,
he amount of true signal contained within a finite mask cannot be
etermined. Further, the application of smoothing kernels – routinely
sed in signal processing problems to boost signal with respect to
oise – results in modification to the signal-to-noise properties of
 giv en source. F or the purpose of this analysis therefore we use a
ignal-to-noise definition based on the peak signal of a smoothed
ource. The definition adopted for this paper is intended to provide
he most helpful insight into SDC2 results, but is not necessarily the
est choice for other data sets. 
A given signal in the presence of additive white Gaussian noise

an be maximized with respect to the noise by applying a smoothing
lter matched to the signal. In this case, the matched filter optimizes

he trade-off between noise-suppression and signal-suppression.
n the case of an SKA-observed spatial noise field, logarithmic
pacing of the array configurations results in a relatively uniform
ensitivity, in units of Jy per beam, across a wide range of angular
cales (Braun et al. 2019 ). This property is evident upon Gaussian
moothing of the SDC2 simulated spatial noise field, which sees a
light reduction in beam-normalized r.m.s. noise to an approximately
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Figure 8. The r.m.s noise of the 2000h SKA-Mid 20 square degree noise 
field is plotted as a function of frequency and of smoothing. The smoothing 
FWHM presented is the result of adding in quadrature the 7 arcsec beam 

FWHM and the FWHM of a Gaussian smoothing filter applied to the field. 
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Figure 9. A simulated circular Gaussian source of FWHM 14 arcsec is 
convolved with a circular Gaussian ‘beam’ of 7 arcsec FWHM and used to 
illustrate signal-to-noise characteristics of the SKA-Mid field as a function 
of smoothing. A series of Gaussian smoothing filters is applied both to the 
beam-convolved source and to a simulated noise field representing 2000 h 
of Band 2 SKA-Mid observations of a 20 square degree field. The beam 

FWHM and smoothing FWHM are added in quadrature to obtain the total 
smoothing FWHM, which is represented by the abscissa. From top, in blue: 
peak smoothed source flux density; total source flux density; r.m.s. noise 
of the noise field; peak SNR obtained using the peak smoothed source flux 
density and the r.m.s noise. The orange horizontal line represents the values 
obtained by applying instead a filter matched to the source. 
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onstant level between angular ranges ∼10 and 80 arcsec FWHM 

see Fig. 8 , which presents r.m.s. noise as a function of total
patial smoothing and frequency for a simulated 2000-h SKA- 

id observation of a 20 square degree field). The signal-to-noise 
f a source observed using the SKA can therefore be maximized 
n the spatial dimensions simply by applying a sufficiently large 
aussian smoothing kernel, provided that the source itself is no 

arger in spatial extent than the angular range of uniform sensitivity. 
ig. 9 presents the effect on signal-to-noise of smoothing an SKA- 
bserved Gaussian source using a range of Gaussian smoothing 
ernels. 

For each SDC2 source, an SNR lue was obtained by first selecting
he minimum r.m.s noise v alue, σ rms, ν , achie ved by smoothing the
KA noise field at the source central frequency, ν, with a Gaussian
moothing kernel. The total smoothing scale is obtained by adding 
n quadrature the FWHM of the corresponding smoothing kernel 
o the SKA beam FWHM. Making the assumption that the spatial 
xtent of the source is smaller than the total smoothing scale, such
hat the integrated source flux density per channel i would equal 
he peak value of the smoothed source per channel, the source pixel
alues were integrated over spatial dimensions to produce a spectral 
rofile, S ( i ). A tophat filter was then applied to the source spectral
rofile, 

 

′ ( i ) = 

1 

k 

k−1 ∑ 

u = 0 

S ( i − u ) , (23) 

nd to a 1D white Gaussian noise field N ( i ) with standard deviation
qual to σ rms, ν , 

 

′ ( i) = 

1 

k 

k−1 ∑ 

u = 0 

N ( i − u ) . (24) 

he size of the tophat filter, k , was chosen to equal the number of
hannels in the spectral profile with values greater than 10 per cent
f the maximum value. The final SNR value, 

NR = 

S ′ max 

σ ′ 
rms 

, (25) 
as calculated using the maximum value of the filtered spectral 
rofile, 

 

′ 
max = max { S ′ ( i) } , (26) 

nd the r.m.s. value of the filtered Gaussian noise, 

′ 
rms = 

√ 

〈 N 

′ ( i) 〉 . (27) 

ig. 10 presents binned SNR values of all sources in the full SDC2
ruth catalogue. 

.3 Source finding 

ig. 11 presents for each team the number of final matches and
alse positives, binned according to integrated line flux along with 
ll sources from the truth catalogue. When considering matches, 
ruth catalogue line flux values are used; when considering false 
ositives, the lack of corresponding truth values necessitates the 
se of submitted line flux values. Fig. 12 presents reliability and
ompleteness values as a function of integrated line flux, where 
MNRAS 523, 1967–1993 (2023) 
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Figure 10. Truth catalogue sources are binned according to SNR values (see 
Section 6.2 for a description of the signal-to-noise calculation). 
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ubmitted values are again used in the calculation of reliability due to
he absence of corresponding truth values for false positives. Fig. 12
lso presents completeness as a function of SNR values. 

.4 Source characterization 

n order to investigate the performance of teams’ methods in the
eco v ery of source properties, several relationships were investigated.
ig. 13 presents error terms (Table 2 ) calculated without using
bsolute values and plotted as a function of true property value
nd of SNR for flux, of true property value for size and line
idth measurements, and as a function of true size, for position

nd inclination angle measurements. Fig. 14 presents o v erall source
haracterization accuracy as a function of SNR. Characterization
ccuracy is determined according to Section 5.1.2 , av eraged o v er all
roperties except position in RA, Dec, and central frequency, for all
atches per team in the given SNR interval. 
Fig. 15 compares H I mass distributions constructed using teams’
atched sources with the function constructed by taking the input

edshift-dependent H I mass function φ( M HI ) (equation 1 ) and mul-
iplying by the sky volume co v ered by a given redshift interval. True
 I masses generated during our simulation (Section 3 ) were used to
btain for each team an H I mass distribution, N m 

( M 

′ 
HI ), by counting

atched sources that fall within a logarithmic bin centred on true
ass value M 

′ 
HI . 

A second H I mass distribution, N m 

( M H I ), was constructed using
ubmitted property values, F and ν, of teams’ detections, which were
onverted to mass according to equation ( 2 ) (Duffy et al. 2012 ). The
ame conversion was applied to the full truth catalogue to produce
he complete H I mass distribution, N 

C 
m 

( M 

′ 
HI ), which was used to

 erify consistenc y between the input mass function and simulated
bservables. 
Submitted and true values of teams’ matches and detections,

espectively, were used to plot the residual, 

N m 

( M HI ) = N m 

( M HI ) − N m 

( M 

′ 
HI ) , (28) 

fter applying a second order spline interpolation to both distribu-
ions. 

For each team, the H I mass distribution derived from true mass
alues, N m 

( M 

′ 
HI ), was interpolated and compared with the input H I

ass distribution, N m 

( M H I ), in order to identify the H I mass abo v e
hich at least 50 per cent of truth catalogue sources are reco v ered

Table 4 ). Fig. 16 presents this mass for the top eight scoring teams
s a function of redshift and compared with the H I mass function
knee’ mass (equation 1 ). 
NRAS 523, 1967–1993 (2023) 
.5 Reproducibility awards 

ix teams submitted entries for the SDC2 reproducibility awards.
ach pipeline was e v aluated by an expert panel against the pre-
efined award criteria (Section 5.2 ). Table 5 reports the awards
ranted to each team. 

 DI SCUSSI ON  

hallenge teams employed a variety of methods to tackle the
imulated SKA-Mid H I data set. In this section we discuss the
ndings in terms of individual and collective method capabilities. 

.1 Source finding and characterization 

he o v erall results (Table 3 ) show a wide range of performance both
ithin and between methods. Reference to Table 1 indicates that

trategies for false positive rejection are important. Further, the use
f a refined training data set, as employed by team MINERVA, may
e crucial. 
While reliability and completeness (Fig. 12 ) generally show an

ncrease with increasing flux and SNR, several teams show a drop-off
t the brighter flux end. This is partly explained by a low number of
ources, resulting in statistical noise. Reliability, in addition, will be
articularly affected by the presence of brighter artefacts arising from
mperfect continuum subtraction. Unreliability could in turn lead to a
o wer le vel of completeness in the corresponding flux bin, if source-
nding methods themselves become correspondingly uncertain. For

he top two scoring teams, a completeness of at least 50 per cent is
chie ved do wn to a limit of SNR ∼5 and an integrated flux limit of
20 Jy Hz. 
The analysis of individual source property reco v ery (Fig. 13 ) finds

hat of all properties, position angle is the most difficult to reco v er,
ith a standard deviation on the errors often co v ering most of the
osition angle range. This is understandable considering the large
raction of partially unresolved sources, and some teams are able
o reco v er position angle well for resolved source sizes. Inclination
ngle, which gives rise to the radial velocity for a given rotational
elocity (equation 6 ), and can therefore be approximated by making
se of line width, flux, and size measurements, does not suffer
he same problem. Source characterization could be impro v ed by
hoosing a suitably high detection threshold. For example, analysis
f characterization accuracy as as function of SNR (Fig. 14 ) finds a
lear trend. The winning team, MINERVA, dominates across most of
he SNR range, maintaining an av erage accurac y abo v e 0.8 from SNR

10 to 60, and remaining around 10 per cent higher than the next
eam from SNR ∼3 to 60. At the very highest SNR, ho we ver, Team
OFIA achieved the greatest averaged accuracy, while the MINERVA
erformance falls slightly. 

.1.1 Noise biases 

he analysis of integrated line flux measurements finds in general a
ositiv e e xcess at lo wer v alues. This demonstrates the problem of so-
alled ‘flux boosting’ as a result of increasing number counts in the
resence of local noise fluctuations (Hogg & Turner 1998 ). In terms
f SNR, flux boosting becomes apparent at SNR ∼7 but remains
inimal for the top three scoring teams, which see a flux boosting

ffect of ∼40 per cent at SNR = 3. Similar noise biases may be
pparent in the measurement of H I size and line width, where there
s a general tendency to o v erestimate smaller sizes and underestimate
arger sizes. Some teams used the SDC2 development data set to

art/stad1375_f10.eps
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Figure 11. Sources in the full Challenge data set binned according to integrated line flux value. For each team, all sources in the full truth catalogue (dark grey) 
are o v erplotted by the true values of matches (light gre y) and by the submitted v alues of false detections (yello w). 
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Figure 12. Top: Reliability, defined as the number of matches divided by 
the number of detections, is plotted for each team as a function of submitted 
integrated line flux. Middle: Completeness, defined as the number of matches 
divided by the number of truth catalogue sources, is plotted for each team as 
a function of true integrated line flux. Bottom: Completeness is plotted for 
each team as a function of true SNR (see Section 6.2 for a description of the 
chosen signal-to-noise definition). 
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alibrate pipeline output against the available truth catalogue. For
xample, team SOFIA used polynomial fits to affected parameters as
 function of flux, in order to derive corrections for flux, H I size, and
ine width. While corrections can remo v e the bias, intrinsic scatter,
hich is likely to be considerable at low SNR, will remain (see e.g.
ogg & Turner 1998 ). The o v erestimation of H I size is compounded
y the finite resolution of the simulated observation: the fractional
rror on H I size understandably rises steeply as the true size decreases
elow the 7 arcsec beam size. Despite this limitation, some teams
re significantly more accurate in constraining the source size limit. 
NRAS 523, 1967–1993 (2023) 
.1.2 H I mass recovery 

he H I mass distributions presented in Fig. 15 are constructed
ithout making corrections for surv e y sensitivity, which is a
on-trivial task that falls outside the scope of the Challenge. Our
nalysis is therefore intended to demonstrate the depth of H I mass
hat can be probed by respective methods, and the discrepancy that
ay arise between number counts of observed and intrinsic masses

f detected sources. 
A 50 per cent completeness threshold was chosen to characterize
 I mass reco v ery depths following Rosenberg & Schneider ( 2002 ),
ho, using an H I -selected galaxy sample from the Arecibo Dual-
eam Surv e y (Rosenberg & Schneider 2000 ), found a negligible
ifference between the mass function derived using only sources
bo v e the 50 per cent ‘sensitivity limit’ and the function derived
sing all sources. Fig. 16 demonstrates that the two top scoring
eams’ methods are able to probe the H I knee mass with a 50 per cent
ompleteness out to a redshift of approximately 0.45, or 1740 Mpc
f como ving distance. F or comparison, the ALF ALF A surv e y – ith a
ootprint of ∼6900 deg 2 – has probed the knee mass out to distances
f approximately 200 Mpc. 
With the caveat that line width completeness corrections have not

een performed on the mass distributions constructed using teams’
ubmitted values, we use Fig. 15 also to demonstrate the relative
rror between distributions constructed using the true and submitted
alues of teams’ detections. The top three scoring teams attain a
elativ ely high de gree of accurac y for detected sources, each seeing
n o v erestimation in the mass distribution of less than 0.1 dex at the
oint where completeness falls below 50 per cent. 

.2 ML vs non-ML 

upervised ML methods, particularly CNN, pro v ed a popular
echnique during the Challenge, and featured in the pipelines of the
wo top scoring teams. Of particular note is the significant success
y winning team MINERVA in both the finding and characterization
arts of the Challenge. The winning technique, which used ML both
o find and characterize sources, achieved a 10 per cent impro v ement
 v er the next team in characterization accuracy across a SNR range
4–30. Methods involving traditional signal processing techniques

lso achieved high scores, including the SOFIA package, which was
sed not only by the third-placed team of its developers, but also in
he source characterization of the second placed team and by several
thers. 

.2.1 Generalization 

he results demonstrate the promise of ML in the analysis of very
arge and complex data sets. As seen in similar community challenges
e.g. Metcalf et al. 2019 ), ML methods are often able to outperform
raditional methods. This success is not without its caveats. In order
or supervised ML models to transfer successfully to real data, they
ust be able to generalize beyond the parameter distribution that

as been sampled by the training data (Burges 1998 ). Overfitting by
odels with large numbers of parameters can be a v oided using a

ufficiently large set of training data. A more difficult problem is that
f covariate shift: when the distributions of training and real data sets
re intrinsically different. This is a common issue for astronomy (see
.g. Freeman, Izbicki & Lee 2017 ; Luo et al. 2020 ; Autenrieth et al.
021 ), where techniques are often being developed in preparation
or data that is yet to be recorded. Models are instead trained using
imulated data, which cannot capture unknown characteristics of the
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Figure 13. Error terms (see Table 2 ), calculated without using absolute values, are plotted as a function of true property value, SNR, or spatial source size. 
Joined circles represent the median error per logarithmic bin, the filled regions represent the standard deviation of the error, and all plots use teams’ matched 
submissions. A dashed line represents the beam size of the simulated observations. 
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uture observations. Limitations to the realism of the SDC2 data 
roducts (Section 3.4 ) are likely in turn to introduce limitations in
he ability of SDC2 ML models to transfer to real data. An increased
umber of real H I observations used to generate the H I emission cube
ill reduce the risk of model o v erfitting. Further characterization of
FI and other instrumental effects during the commissioning phase 
f the SKAO telescopes will enable the simulation of ever more 
ealistic data sets for training purposes, and transfer learning (Pan & 

ang 2009 ; Tang, Scaife & Leahy 2019 ) could close the gap further
till. In future SDCs, the inclusion of a data product produced using
 different distribution could provide a test for model robustness to 
ovariate shift. 

Non-ML methods, generally making use of far fewer parameters 
han ML models and less reliant on the availability of training data,

ay transfer more successfully from simulated to real data. This 
dvantage appears to be evidenced by the comparative successes 
f team- SOFIA and HI FRIENDS – both of which used the SOFIA

oftware package – at the brighter end of the integrated flux and
NR ranges across reliability, completeness, and characterization 
ccuracy (see Figs 11 , 12 , and 14 ). By contrast, the ML-based
ipelines used by teams MINERVA and FORSKA-Sweden have 
roduced a number of false positives and false ne gativ es, respectiv ely,
n the detection of the very brightest sources. The ML-based pipelines
lso appear to show a fall in characterization accuracy at the very
ighest SNR values. It is possible that the paucity of very bright
amples in the training data sets has prevented ML methods from
odelling very well the features of the brightest sources. On the

ther hand, it is likely that the small number of bright samples in
he Challenge data set has led to the prioritization during pipeline
ptimization of greater accuracy for fainter populations, since the 
MNRAS 523, 1967–1993 (2023) 
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Table 4. The H I mass (in units of 10 9 M �) abo v e which at least 50 per cent 
of truth catalogue sources are reco v ered is reported per redshift interval for 
the SDC2 finalist teams. 

Team name Redshift interval 
0.25 0.30 0.35 0.40 0.45 

−0.30 −0.35 −0.40 −0.45 −0.50 

MINERVA 2.60 3.82 5.27 7.12 10.04 
FORSKA-Sweden 2.52 3.80 5.15 6.91 9.57 
Team SOFIA 3.32 4.77 6.68 8.52 11.59 
N AOC-T ianlai 3.12 4.67 6.33 8.40 11.69 
HI-FRIENDS 3.67 5.37 7.51 9.94 13.55 
EPFL 4.14 6.10 8.45 11.21 17.60 
Spardha 4.78 6.98 9.47 12.55 20.91 
Starmech 3.97 6.52 9.41 12.44 20.22 
JLRAT – 46.03 – 46.77 72.57 
Coin – 69.44 – 70.11 72.52 
HIRAXers – – – – –
SHAO – – – – –

l  

s

7

T  

o  

m  

p  

a  

u  

t  

s  

g  

m  

i  

l  

t  

2
 

b  

C  

i  

t  

N  

t  

i  

H  

F  

l  

p  

t  

p  

(  

o  

i

7

I  

e  

W  

h  

d  

o  

w  

c  

i  

c  

f  

a  

a  

c

7

T  

S  

s  

a  

a  

i  

s  

i  

s  

m  

o  

m  

a  

p  

e  

C  

p
 

o  

l  

d  

s  

d  

m

7

T  

m  

r  

t  

t  

u  

m  

p  

n  

n  

d

7

W  

d  

g

 

a
 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/523/2/1967/7157129 by guest on 21 April 2024
arge number of fainter sources produce a much greater impact on the
core. 

.3 Method complementarity 

he strategy employed by winning team MINERVA underscores
ne of the most important outcomes of the Challenge: that of
ethod complementarity. By combining the outputs of two inde-

endent pipelines the teams were able to reco v er sources from
 larger amount of the flux–line width parameter space than by
sing a single pipeline alone (Fig. 5 ), and could further exploit
he independence of the pipelines to reduce bias and variance in
ource measurements. The success of this strategy demonstrates that,
iven a selection of sufficiently independent and well-performing
ethods, stacking – where the predictions made by a group of

ndependent ML methods are used as inputs into a subsequent
earning model – could impro v e generalization from training data
o new data (see also Wolpert 1992 ; Zitlau et al. 2016 ; Alves
017 ). 
The promise of a multimethod approach is further demonstrated

y the performance of different methods in different aspects of the
hallenge. Teams Starmech and Coin, for example, though occupy-

ng the lower half of the leaderboard, performed particularly well in
he reco v ery of line flux and H I size, respectively (Fig. 13 ). Teams
 AOC-T ianlai, HI-FRIENDS, EPFL, though missing out on the top

hree positions of the leaderboard, all demonstrated a high accuracy
n the reco v ery , variously , of flux, source size, and inclination angle.
I-FRIENDS also achieved highest overall reliability, while Team
orSKA, a very close second on the leaderboard, achieved the highest

ev el o v erall completeness (Table. 3 ). If the measurement of source
roperties is considered a separate problem from source finding, and
he measurement of different source properties considered a many-
roblem task in itself, then a so-called bucket-of-models approach
Kim, Brunner & Carrasco Kind 2015 ) could harness the capabilities
f different methods to further impro v e performance beyond any
ndividual method. 

.4 Scoring metrics 

n the case of SDC2, the scoring algorithm has been designed to
 v aluate source finding and characterization performance together.
e note that the choice of any scoring metric will necessarily
NRAS 523, 1967–1993 (2023) 

d

ave an impact on the analysis that teams will perform. Strategies
esigned to maximize such a score might not be the best ones for
ther scientific goals: a search for fewer, highly resolved sources
ill take a very different approach from one aiming to produce a

omplete catalogue. The Challenge leaderboard score, if looked at
n isolation, can obscure strong performance by teams on source
haracterization. This is a consequence of the strong penalty for
alse positi ves. Gi ven the strong degree of method complementarity,
 challenge scoring system that can reflect specialized solutions to
 problem may further exploit complementarity as a quality of a
ollection of independent methods. 

.5 Open Science 

he SDC2 reproducibility awards were designed to recognize Open
cience best practice in the preparation and dissemination of analysis
oftware pipelines. By providing public access to codes written to
ddress SDC2, six teams were able to enhance the reproducibility
nd reusability of their methods. Noteable examples of best practice
ncluded the use of clear and comprehensive documentation, quick-
tart examples, command line interface excerpts, open-source licens-
ng, and descriptive variable names. Practices employed by the Gold-
tandard HI-FRIENDS pipeline included the use of the workflow
anagement system SNAKEMAKE (see Section 4.4 ) to design the
 v erall workflow and suggest well-structured code directories, to
anage the installation of software dependencies, and to generate
 workflow graph image, all of which support the reusability and
ortability of the code. The advantages of well-documented and
asily accessible codes are underscored by the popularity during the
hallenge of the publicly available and regularly maintained SOFIA

ackage, which was used by six of the participating teams. 
Reproducible and reusable analysis pipelines help to address some

f the challenges of conducting research under a deluge of data while
everaging the many new technologies available to deal with the
ata. Ho we ver, preparing software for public access can require a
ignificant time investment. As we look ahead to the exascale era of
ata (Scaife 2020 ), adequate funding to allow for software package
aintenance and development will be essential. 

.6 Data handling 

eams were able to handle the large Challenge data set with
inimal difficulty thanks to the generous provision of computational

esources by the SDC2 partner facilities (Section 2.2 ). By dividing
he data set into smaller portions and running parallelized codes,
eams could comfortably process the full Challenge data set in
nder 24 h of wall clock time. Efficiency savings will become ever
ore important as volumes of observational data grow and analysis

ipelines proliferate; the use of fewer resources to analyse data will
ot only allow future SKA Regional Centres to support a greater
umber of researchers, but will also reduce energy consumption
uring processing. 

.7 Lessons learned 

e summarize here the opportunities for impro v ement in Challenge
elivery that would further support the achievement of the overall
oals of the SDC series: 

(i) Additional guidance for the use of radio astronomy convention
nd conversions (see Section 6.1.1 ). 

(ii) Consideration of the use of multiple scoring metrics to reflect
ifferent aspects of a challenge (see Section 7.4 ). 
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Table 5. Reproducibility awards were made to six teams who submitted pipelines demonstrating best practice in the provision 
of reproducible results and reusable methods. 

Team name Reproducibility award Pipeline 

EPFL Bronze https://github.com/epfl- radio- astro/LiSA 

FORSKA-Sweden Silver https://github.com/FraunhoferChalmer sCentr e/ska- sdc- 2 
HI-FRIENDS Gold https://github.com/HI- FRIENDS- SDC2/hi- friends 
N AOC-T ianlai Bronze https:// github.com/kfyu/ SDC2-tianlai 
SHAO Bronze ht tps://github.com/ast rosumit/SDC2-SHAO 

Team SOFIA Silver https:// github.com/ 〈 0:sc 〉 Sofia 〈 /0:sc 〉 -Admin/ SKA- SDC2- 〈 0: 
sc 〉 Sofia 〈 /0:sc 〉 

Entries were e v aluated by an expert panel using a pre-defined set of criteria (Section 5.2 ). 

Figure 14. Source characterization as a function of SNR. Source accuracy 
is determined according to Section 5.1.2 , av eraged o v er all properties except 
position in RA, Dec and central frequency, for all matches per team in the 
given SNR interval. 
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igure 15. Top panels: H I mass distributions N m 

( M 

′ 
HI ) are constructed using th

atches (joined circles). The redshift-dependent H I mass function (equation 15 ), fr
olume of the given redshift interval and plotted (gre y curv e). Black diamonds rep
otted lines indicate for each team the H I mass abo v e which completeness exceeds
ifference between the distribution constructed from the values of teams’ submiss
istributions are interpolated prior to finding the residual. Completeness values are
urves are used to delineate H I masses where completeness falls below and above 
(iii) A smaller set of criteria for a reproducibility component of 
 challenge could pro v e more accessible for teams to achieve (see
ection 5 ). 

 C O N C L U S I O N S  

he second SKAO Science Data Challenge has brought together 
cientists and software experts from around the world to tackle the
roblem of finding and characterizing H I sources in very large SKAO
ata sets. The high level of engagement coupled with multidisci- 
linary collaboration has enabled the goals of the Challenge to be
et, with o v er 100 finalists gaining familiarity with future SKAO

pectral line data in order to drive forward new data processing
ethods and impro v e on existing techniques. 
Interpretation of the results from SDC2 is limited by three main

actors: 
MNRAS 523, 1967–1993 (2023) 

e true values of integrated line flux and central frequency of each teams’ 
om which truth catalogue sources were drawn, is multiplied by the comoving 
resent the H I mass distribution reconstructed using the full truth catalogue. 
 50 per cent. Bottom panels: The H I mass distribution residual represents the 
ions and distribution constructed from truth values of teams’ matches. Both 
 in this case calculated using teams’ submitted values, and dotted and solid 
50 per cent, respectively. 
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M

Figure 16. The H I mass abo v e which at least 50 per cent of truth catalogue 
sources are reco v ered is plotted against redshift for the eight top scoring 
teams. The dotted line represents the input H I ‘knee’ mass, M ∗ (equation 1 ), 
which marks in the H I mass function the exponential decline from a shallow 

power law. 
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(i) The Challenge data set is a simulation and cannot fully
epresent real future SKA observations. Data set realism is limited
ost significantly by o v ersimplication of the noise (see Section 3.4 ).
(ii) The Challenge did not aim to provide a standardized cross

omparison of methods; only a single data set was used and no
ttempt was made to control for team effort or domain expertise. 

(iii) Team methods were developed as a means to maximize a score
alculated according to the Challenge definition. Depending on the
cientific goal, alternative metrics may be measured, for which other
trategies may be explored. 

With these caveats in mind, the main outcomes from the Challenge
re summarized below: 

(i) 12 international teams, using a variety of methods (Section 4 )
ere able to complete the full Challenge. 
(ii) Simulated data products representing a 2000 h spectral line

bservation by SKA-Mid telescopes were produced for the Challenge
Section 3 ), and are now publicly available together with accompany-
ng truth catalogues. 14 We encourage the use of these data products
y the science community in order to support the preparation and
lanning for future SKAO observations. 
(iii) The generous contribution from supercomputing partner fa-

ilities (Section 2.2 ) has been integral to the success of the Challenge.
hanks to the provision of resources for hosting, processing, and
ccess to Challenge data, it has been possible to provide a realistically
arge H I data product in an accessible way. The support has also
rovided the opportunity to test several aspects of the future SRC
odel of collaboratively netw ork ed computing centres, from web

echnologies involved in the SDC2 scoring service (Section 5 ), to
he access processes in place for resource users. 

(iv) The provision of a realistically large H I data product has
llowed participants to explore approaches for dealing with very
arge data sets. By interacting with the full Challenge data set, finalist
eams were able to investigate optimization and efficiency savings in
eadiness for future SKAO observational data products. 

(v) Analysis of teams’ submissions (Section 6.1 ) has shown that
ources are reco v ered with o v er 50 per cent completeness down to a
NRAS 523, 1967–1993 (2023) 

4 ht tps://sdc2.ast ronomers.skatelescope.org/sdc2-challenge/dat a 

S  

u  

b  
NR limit of ∼5 and an integrated flux limit of ∼20 Jy Hz by the
op scoring teams. Keeping in mind the caveats above, this translates
o the ability to probe the H I mass function down to ∼3 × 10 9 M �
t 0.25 < z < 0.30 and to ∼1 × 10 10 M � at 0.45 < z < 0.50. The
knee’ mass of the H I mass function can be probed out to z ∼ 0.45
y the same methods for the chosen redshift evolution. 
(vi) The analysis of submitted catalogues also provides a qual-

tative and quantitative understanding of the biases inherent to
ensitivity-limited surv e y results. Biases arising from the presence of
ocal noise fluctuations resulted in o v erestimation of flux at SNR � 7.
ource size and line width also showed a positive bias with fainter
bjects and smaller sizes. 
(vii) Six teams took part in the SDC2 reproducibility awards,

hich ran alongside the main Challenge and were designed to rec-
gnize best practice in the preparation of reproducible and reusable
ipelines. All six teams received an award, with team HI-FRIENDS
eceiving a Gold award for an exemplary software pipeline. 

(viii) New applications of ML-based techniques – used by the
wo top scoring teams – have shown particular promise in the
eco v ery and characterization of H I sources. The results suggest
 dependency on sufficient training data, evidenced by a drop in
erformance at the bright flux end, where a paucity of very bright
raining sources exists. A more uniformly distributed training sample
ay address this problem. Further work using real observations from
KAO commissioning activities and from precursor instruments will
xamine how well ML models can transfer from simulated training
ata to real observational data. 
(ix) The existing SOFIA software package also performed very

ell, achieving third place in the Challenge and also being used
y several other teams, including by the second placed team for
ource characterization. That the package pro v ed so popular further
emonstrates the value of clearly documented and easily accessible
odes, in addition to its accuracy and efficiency. This challenge
ighlights the need for such software packages, built and designed
y astronomers to tackle specific problems, to receive the funding to
e well maintained. 
(x) Perhaps the most important finding of the Challenge is that of
ethod complementarity. Also seen in the first SKAO SDC (Bonaldi

t al. 2020 ), the relative performance of individual teams varied
cross aspects of the Challenge. It is likely that a combination of
ethods will produce the most accurate results. This finding is un-

erscored by the strategy employed by the winning team, MINERVA.
y optimizing the combined predictions from two independent ML
ethods, the team was able to record an impro v ement in score

0 per cent abo v e either method alone (see Fig. 5 ). The result
emonstrates the promise of ensemble learning in exploiting very
arge astronomical data sets. 
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