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Biological cells can actively tune their intracellular architecture according to their overall shape.
Here we explore the rheological implication of such coupling in a minimal model of a dense cellular
material where each cell exerts an active mechanical stress along its axis of elongation. Increasing
the active stress amplitude leads to several transitions. An initially hexagonal crystal motif is first
destabilized into a solid with anisotropic cells whose shear modulus eventually vanishes at a first
critical activity. Increasing activity beyond this first critical value, we find a re-entrant transition
to a regime with finite hexatic order and finite shear modulus, in which cells arrange according to a
rhombile pattern with periodically arranged rosette structures. The shear modulus vanishes again
at a third threshold beyond which spontaneous tissue flows and topological defects of the nematic
cell shape field arise. Flow and stress fields around the defects agree with active nematic theory,
with either contractile or extensile signs, as also observed in several epithelial tissue experiments.

Connecting the single-cell behavior to large-scale me-
chanical properties of biological tissues is key to under-
stand development, regeneration, and disease [1]. Grow-
ing experimental evidence supports the idea that bio-
logical cells actively tune their intracellular architecture
according to their overall shape. For instance, acto-
myosin [2–5] and microtubules (whether in Drosophila
[6, 7] or in plants [5, 8]) tend to align along the direc-
tion of cell shape elongation. Such oriented fibers are
known to generate anisotropic stress [9]. For instance,
during Drosophila germ band extension, cells involved
in rosette formation exhibit actin polymerization at op-
posite corners [10], which effectively creates an extensile
active stress, Fig. 1a.

Here, we explore the consequences of such cell-shape
feedback for the tissue-scale behavior. We study a min-
imal model where a bulk cellular active stress σ(act) is
created by filaments which in turn align with cell shape,
represented by a tensor Q (Fig. 1b-d). To lowest order,

σ(act) = −βQ, (1)

which we incorporate in a computational model for dense
epithelial tissue. For β > 0 (resp. β < 0), cells actively
push (resp. pull) on their neighbours along their direction
of elongation [11, 12].

Relations like Eq. (1) have been considered in tissue
models before. For instance, in active hydrodynamic the-
ories, where both σ(act) and Q are defined by averages
over several cells, Eq. (1) gives rise to a classical flow
instability [13–15]. In the absence of confining bound-
aries, this instability occurs at arbitrarily small activities
β > 0. An active stress as in Eq. (1) has also been in-
cluded in cell-based phase field simulations [16]. In these
simulations, the transition to spontaneous flows occurs
for a critical value of β which (i) is finite and appears to
be independent of the system size, contrasting with ac-
tive hydrodynamic theory results, and (ii) scales linearly
with a cell surface tension. So far, while Ref. [16] pro-

vided an intuitive conjecture, a precise understanding of
both is missing. Is a finite activity threshold a general
property of deformable cellular materials?
We address these questions by combining analytical

arguments and vertex model simulations. Vertex mod-
els describe epithelial tissues as polygonal tilings [17–19].
Forces on the polygon vertices are defined by a mechani-
cal energy: E = 1/2

∑
J [KA(AJ −A0)

2+KP (PJ −P0)
2]

where the sum is over all cells J of the tissue, and AJ

and PJ are cell area and perimeter, respectively. The pa-
rameters A0 and P0 are preferred cell area and perimeter
with the associated rigidities KA and KP , respectively.
A transition occurs at P0 = P ∗

0 , with the tissue behav-
ing as a yield stress solid for P0 < P ∗

0 and as a fluid for
P0 ≥ P ∗

0 [20, 21]. The numerical value of P ∗
0 is in the

range 3.72 . . . 3.94, with a value that depends on the dis-
order in the cellular packing [20–24] (SM [25], Sec. I).
This solid-to-fluid transition can additionally be driven
by cell-based active polar forces [26–28], or by active ten-
sion fluctuations at cell–cell junctions [29], or by a chemo-
mechanical feedback loop between tension and myosin ac-
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FIG. 1. (a) Experimental images of the basal side of
Drosophila epithelial cells during germ band extension with
marked GFP-Rac1 marking filament growth activity; six-fold
vertex indicated by a square. Scale bar: 5 µm. Experimen-
tal images provided by Y. Toyama. (b) A model of increas-
ingly strong filament growth (magenta rods) for increasingly
acute cell corners (black wedge). (c) Our model where active
stresses are defined by cell shape. (d) Active forces in a cell
(index J) of our vertex model, mimicking the effect of grow-
ing filaments at wedge-like cell corners.
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FIG. 2. (a, b) Morphology of
(a) a four-cell system and (b) a
cell sheet at different activities β,
with an initially hexagon (top) or
Voronoi pattern (bottom). In (b),
we mark vertices with coordina-
tion number Zi > 3. (c) Cell
elongation parameter q, and T1
transition rate kT1 versus cell ac-
tivity β, for an initially hexag-
onal (H) or Voronoi (V) pat-
tern. The solid black line refers
to an analytical approximation of
q. (d) Hexatic order parameter
ψ6 and average vertex coordina-
tion number Z versus cell activity
β. (e) Long-time shear modulus
Gxy and yield stress σyield versus
cell activity β. Inset: red shaded
area indicates the mean ± stan-
dard deviation of the shear modu-
lus for the initially hexagonal pat-
tern, estimated from n = 5 simu-
lations. Default parameter values
with P0 = 1.

tivity along cell–cell junctions [30, 31]. The vertex model
solid-to-fluid transition is also echoed in experiments on
biological tissues [32].

Here we introduce Eq. (1) in the vertex model frame-
work, and depending on the value of P0, we find different
kinds of transitions. For P0 < P ∗

0 , we find four different
regimes upon increasing β (Fig. 3). For β < β1 the tissue
is solid with isotropic cells. For β1 < β < β2, cell shapes
are anisotropic. For β2 < β < β3, we find a regime
with rhombile cells, many-fold vertices, long-range crys-
talline order and finite shear modulus. Finally, at β3 < β,
the tissue turns into an active fluid and displays con-
stant flows that lack large-scale coherence. Conversely,
for P0 ≥ P ∗

0 , we find that a solid regime with anisotropic
cells for β ≤ 0 directly transitions to the active fluid
regime for β > 0. We demonstrate why a finite activity
threshold β3 appears in the solid regime, P0 < P ∗

0 , in
our cell-based model; to overcome the yield stress in the
solid phase, a finite β = β3 is required for active flows to
appear, as in Ref. [16]. Meanwhile, active hydrodynamic
theories as in [13, 14] describe tissues as fluids, which cor-
responds in our model to P0 ≥ P ∗

0 . In this case, active
flows can appear without threshold, i.e. β3 = 0.

Method We implement Eq. (1) through the following
friction-based dynamics for the vertex positions ri

γ
dri
dt

= F
(svm)
i + F

(act)
i . (2)

Here, γ is a friction coefficient, F
(svm)
i = −∂E/∂ri are

the standard vertex model (svm) forces, and F
(act)
i are

the active forces induced by the active anisotropic bulk
stresses σ(act) defined for each cell according to Eq. (1).

There are different ways to translate the cellular bulk

stresses σ(act) into the vertex forces F
(act)
i [33–36]. Here

we use the approach proposed by Tlili et al. [33, 34, 36],
which relies on Cauchy’s stress definition. For the cell
shape anisotropy tensor QJ in Eq. (1), we use the sym-
metric, traceless tensor

QJ =
1

PJ

∑
k

lktk ⊗ tk − I

2
, (3)

where PJ is the cell perimeter; the sum is over all sides
k of the cell J , and lk and tk denote length and unit
tangent vector of side k, respectively. The eigenvalues
and principal directions of QJ provide metrics for the
cell shape and cell orientation. We measure the cell shape
anisotropy by qJ =

√
2tr(Q2

J) ∈ [0, 1), with qJ = 0 for
round cells and qJ → 1 for increasingly elongated ones.
We initialize the system with cells arranged according

to either (i) a regular hexagonal pattern with small ran-
dom deviations in the vertex positions, or (ii) random
Voronoi tessellations (SM [25], Sec. I). In addition, we
perform cell-neighbor exchanges (T1 transitions) for cell–
cell interfaces shorter than a length threshold ∆T1 (SM
[25], Sec. I). We use periodic boundary conditions with
fixed system size. We set KA = 1, A0 = 1, KP = 0.02,
γ = 1, P0 = 1, ∆T1 = 0.01, and N = 103 cells if not
otherwise stated (SM [25], Sec. I; Table S1).
Results Increasing β, we observe several rheological

and structural transitions (Fig. 2a,b; Movies S1-S3). In
Fig. 3 we show the dependence of these transitions on
both β and P0; however, in the following, we focus on
the case P0 = 1 (Fig. 2). For small β < β1 ≈ 0.20
the vertex model tissue is solid (Fig. 2e) with isotropic
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cell shapes (Fig. 2c), where the average cell elongation is
q = 0 (resp. q ≈ 0.16) when using a hexagonal (resp.
Voronoi) initial state. When β increases beyond β1,
cell shapes become anisotropic, as indicated by an in-
crease in q (Fig. 2c). This is accompanied by a decrease
in the hexatic order parameter ψ6 (Fig. 2d), defined as
ψ6 = |

∑
Ψj/N |, where Ψj =

∑
k∈neighbors exp (i6θjk)/Nj

and θjk = arg (rk − rj) [37–39]. While in this regime the
shear modulus vanishes for the hexagonal initial state,
the tissue remains solid, as verified through the exami-
nation of the yield stress (Fig. 2e, SM [25], Sec. I). The
transition point β1 decreases with increasing P0 up until
the critical point P ∗

0 (Fig. 3).
The cell shape transition at β = β1 occurs because the

β term in Eq. (1) effectively corresponds to a negative
shear modulus. As a consequence, when β > β1, the total
cellular shear modulus decreases to zero, destabilizing
the isotropic cell shape. To see this, we start from the
Batchelor stress of a vertex model cell with perimeter P
and area A [36, 40–42], whose anisotropic part σ̃ is (SM
[25], Sec. I):

σ̃ =

[
KPP (P − P0)

A
− β

]
Q. (4)

To obtain the global tissue shear modulus Gaff in an an-
alytical mean-field picture, we apply an affine pure shear
strain ϵ to an isotropic cell, which creates the cell shape
anisotropy q = 3ϵ/2 to lowest order in ϵ (SM [25], Sec.
II). Comparing Eq. (4) to σ̃ = 2Gaffϵ, we obtain:

Gaff =
3

8

[
KPP (P − P0)− β

]
. (5)

Here, we have used A ≈ A0 = 1, which corresponds to the
limit of incompressible cells. Testing Eq. (5) numerically,
where we also include all non-affinities, we find the same
result, except for a prefactor: Gnon−aff ≈ 2Gaff/3. To de-
termine the value of the perimeter P appearing in Eq. (5),
we use that in the isotropic solid regime P = P ∗

0 ≈ 3.722
for a hexagonal tissue [21, 43]. Isotropic cell shape thus
becomes unstable for β > β1(P0) with (SM [25], Sec. II):

β1(P0) = KPP
∗
0 (P

∗
0 − P0). (6)

This equation exactly predicts the stability of the regu-
lar hexagonal crystal (white lines in Fig. 3). This mean-
field picture also explains how in the regime P0 < P ⋆

0

cells elongate for β > β1(P0). For an affinely sheared
isotropic cell, the perimeter increases quadratically with
its shape anisotropy as P = P ∗

0 (1 + q2/3) (SM [25], Sec.
II) [24]. Inserting this in Eq. (4) and combining it with
σ̃ = (∂E/∂ϵ)/2A, we obtain an effective potential of
the cell depending on its shape anisotropy Eeff(q), which
reads to fourth order in q (SM [25], Sec. II):

Eeff(q) =
1

3

[
β1(P0)−β

]
q2+

1

18
KPP

∗
0

(
2P ∗

0 −P0

)
q4. (7)
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FIG. 3. Diagrams depending on the target shape index
P0 (inter-cellular tension) and cell bulk activity β, showing
(a) average cell elongation parameter q, (b) average vertex
coordination number Z, (c) shear modulus Gxy, and (d) T1
topological transition rate kT1. Here, the solid white curves
refer to the theoretical prediction β1(P0), Eq. (6), for the
transition between the solid regime with isotropic cells and the
solid regime with anisotropic cells. (e) Overall phase diagram.
(f) Average isotropic stress (color map) and velocity (black
streamlines) fields near +1/2 defects, with P0 = 1 and β =
0.5. Average over n = 44368 defects. Scale bar = 1 cell.

The energy minimum for β < β1 is at qmin = 0,
while for β > β1 the minimum is at qmin(β) =√
3(β − β1)/KPP ∗

0 (2P
∗
0 − P0), which corresponds to a

typical pitchfork bifurcation. Indeed, this predicts well
the observed cell elongation in the regime close to β1 for
P < P ⋆

0 (Fig. 3c, SM [25], Sec. II).

The behavior of cell-shape elongation q is different in
the regime P0 > P ⋆

0 , where we observe a discontinuous
increase in q and coordination number Z as soon as β is
increased above zero (Fig. 3a,b, SM [25], Sec. VI). The
discontinuity in q can be understood by first looking at
a system with β = 0 and given cell elongation q. In this
case, for P0 > P ⋆

0 , the system is floppy with vanishing
energy E(q) = 0 as long as q < qcrit, where the critical
q value is qcrit ∼

√
P0 − P ∗

0 . Beyond this value, cells
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and the vertex model tissue start to attain a finite shear
modulus [24]. As a consequence, as soon as β is set to a
positive value, for q < qcrit the energy becomes E(q) ∼
−βq2, and so any state q < qcrit becomes unstable. Thus,
for small positive β, cell elongation will make a jump from
zero to a value close to qcrit.

For P0 < P ∗
0 , beyond β > β2 (with β2 ≈ 0.24 for

P0 = 1), starts a regime marked by an increasing hex-
atic order ψ6 (Fig. 2b-d). For tissues initiated in the
near hexagonal pattern, this order appears to be even
long-ranged (SM [25], Sec. I). We call this the rhom-
bile regime, because domains appear where cells attain
a rhombic shape, which arrange into a periodic arrange-
ment of six-fold vertices (Fig. 2b). Correspondingly, the
rhombile regime is marked by the increase in the average
vertex coordination number Z (Fig. 2d).

The emergence of the rhombile pattern and manyfold
vertices can be understood from single- and four-cell sys-

tems. Indeed, at a critical value of β
(1)
2 ≈ 0.27 for

the single-cell system (β
(4)
2 ≈ 0.25 for the four-cell sys-

tem), the two shortest edges of a hexagonal cell shrink to
length zero, resulting in the observed rhombic cell shapes
(Fig. 2a; Movie S4-S5; SM [25] Sec. II).

We find that the shear modulus in the rhombile regime
is finite and peaks when the rhombile domain extension is
maximal at around β∗ ≈ 0.3, which coincides with local
maxima in the hexatic order ψ6 and coordination number
Z (Fig. 2d). We understand this by considering a single
cell: at β∗ = 0.3, the cell reaches a regular diamond shape
with two π/3 and two 2π/3 angles. This shape (also
called calisson [44]) is the building block of the crystal
rhombile pattern (SM [25], Fig. S11b). When β < β∗ =
0.3 (resp. β > β∗ = 0.3), acute angles above (resp. below)
π/3 form in the single cell, leading to frustration in the
rhombile domains, which can destabilize them.

However, despite a finite shear modulus, the rhombile
regime exhibits a finite steady-state T1 transition rate
(Fig. 2d; SM [25] Sec. III; Movie S2). This may appear
paradoxical at first sight, since T1 transitions are ex-
pected to relax the applied stress [45], leading to a long-
time fluid material response. Yet such argument may not
hold for an active system at steady state, as considered
here. Further, we notice that these T1 transitions are
generated at the interfaces, rather than in the bulk, of
the rhombile crystal domains (Movie S2).

The shear modulus eventually vanishes at β3 ≈ 0.37
for P0 = 1. We find that this value matches the one at
which the shear modulus of the perfect rhombile crystal
vanishes (SM [25], Sec. III). This suggests that the fi-
nite shear modulus of the rhombile regime is caused by
rhombile crystal domains.

For β > β3, the system flows continuously, where the
steady-state T1 transition rate increases with activity
(Fig. 2e, 3d and Movie S2). Such flow already appears
in a four-cell system for an intermediate activity range

β < 0
(b)(a)

β = 0.26β = 0

β = -0.16 β = 0.15β = 0

K
Q
 =

 0
K

Q
 =

 1
0

KQ = 10 , β = -1

-0.26

0.26

0
β

FIG. 4. Tissue flows and topological defects in the contrac-
tile regime (β < 0) in the presence of a passive cell elongation
energy. (a) Sketch of cell activity leading to cell edge vanish-
ing. Here, we mark the edges to vanish as red ones. Back-
ground color: gray for solid regime and light green for fluid
regime. (b) Average isotropic stress (colorbar) and the ve-
locity (streamlines) near +1/2 topological defects (n = 25323
defects. Scale bar = 1 cell), where KQ = 10 and β = −1.
Other parameters: P0 = 1 and q0 = 0.8.

(Movie S6). This flowing regime exhibits features of an
active nematic material. For instance, coarse-graining
of the cell orientation field reveals the presence of ±1/2
topological defects in the fluid regime (SM [25], Sec. V)
[46, 47]. The stress and velocity patterns around ±1/2
topological defects are qualitatively consistent with those
predicted in an incompressible material with extensile ne-
matic activity [15, 16, 48] (Fig. 3f; SM [25], Sec. V). We
note, however, the presence of a backward flow at the
tip of +1/2 defects (Fig. 3f) that is reminiscent of neg-
ative wake reported in driven yield-strain materials [49].
A similar negative wake flow pattern is visible in exper-
iments on Madin-Darby Canine Kidney cell monolayers
[33, 50] (see SM [25], Sec. VIII).

Taken together, our results show that the existence of
a yield stress explains the onset of active flows beyond
a finite critical activity β3 > 0, while active continuum
models [13, 14], predict active flows at any finite activity,
i.e. β3 = 0. In our vertex model, such a difference arises
as a function of P0. For P0 < P ⋆

0 , where the vertex model
behaves as yield stress solid, we showed that β acts as a
negative shear modulus, destabilizing the tissue beyond
a critical value that increases with the distance to P ⋆

0 .
In contrast, we observe that for the fluid vertex model
regime, P0 > P ⋆

0 , any positive β destabilizes the tissue,
inducing a sharp increase in flow (Fig. 3d, SM [25], Sec.
VI). Comparing both cases, we conclude that while any
positive activity leads to flows in a fluid material, a yield
stress creates a finite activity threshold to flow. This is
likely the case in Ref. [16], because the employed phase
field model essentially describes a foam that, expectedly,
displays a yield stress.

In contrast to active hydrodynamic theory predictions
[13, 15, 48], the cell-based model by Ref. [16] and the
model we discussed so far do not exhibit spontaneous
flows in the contractile regime (β < 0). One could take
this as an indication that the observed transition to spon-
taneous flows is qualitatively different from the known
instability of active hydrodynamic theory [13, 15, 48].
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However, spontaneous flows can also exist in the con-
tractile regime, β < 0. To show this, we included in
our model the tendency of cells to attain a finite elon-
gation qJ through an additional energy term, Eel =∑

J KQ[q
2
J − q20 ]

2/8, where KQ ≥ 0 and q0 refers to a
preferred cell elongation parameter.

Using this model, we observe spontaneous tissue flows
in both the extensile (β > 0) and the contractile regime
(β < 0), with cells displaying rhombic shapes (Fig. 4a,
Movie S7) and both the stress field and the flow field
qualitatively agree with predictions of active hydrody-
namic theories (Figs. 4(b); SM [25], Sec. VII) as well as
experiments [11, 51–54].

Lastly, we tested how much our results depend on the
definition of the Q tensor used in Eq. (1) (SM [25], Sec.
IV). We find that the transitions in cell shape and rigid-
ity are generic, but not the appearance of the rhombile
crystal domains. In addition, we also tested the case of
no perimeter elasticity (KP = 0) but with a constant
cell-cell interfacial tension instead [29]; we find the same
results regarding the transition to flows and the onset of
a rhombile phase (Fig. S23).

Conclusion We studied how a feedback of cell shape
on the cellular active stress generation affects collective
tissue dynamics. We show that increasing such a feed-
back eventually fluidifies the vertex model tissue, yet
through a series of intermediate steps displaying hexatic
order, enhanced finite shear modulus and spontaneous
T1 transitions. We find that spontaneous flows can be
thresholdless also for cellular materials and are not lim-
ited to the extensile regime.

Our prediction of rhombile domains could potentially
also explain why, during the Drosophila germ band ex-
tension process [10], cells display rhombic shapes before
the onset of six-fold vertices, Fig. 1a. These cell shape
changes are shown to be triggered by actin protrusions
[10]. At early stages, these protrusions are located at op-
posite ends of the cell, suggesting that the resulting set
of forces could be compatible with the one considered in
our extensile active stress model, Fig. 1.

Perspectives While in most instances active cellu-
lar materials have been studied in the vertex model
through the introduction of traction forces against a rest-
ing substrate [28, 55], here we introduce activity through

momentum-conserving forces F
(act)
i [36]. Implementing

this kind of activity within a Galilean invariant dissi-
pation framework [42] could be useful to describe tissue
flows in conditions of low environmental friction e.g. free-
standing tissues, pre-implantation embryos or intestinal
organoids [56].
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[20] R. Farhadifar, J. C. Röper, B. Aigouy, S. Eaton, and
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