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(Dated: March 28, 2023) Biological cells can actively tune their intracellular architecture according to their overall shape. Here we explore the rheological implication of such coupling in a minimal model of a dense cellular material where each cell exerts an active mechanical stress along its axis of elongation. Increasing the active stress amplitude leads to several transitions. An initially hexagonal crystal motif is first destabilized into a solid with anisotropic cells whose shear modulus eventually vanishes at a first critical activity. Increasing activity beyond this first critical value, we find a re-entrant transition to a regime with finite hexatic order and finite shear modulus, in which cells arrange according to a rhombile pattern with periodically arranged rosette structures. The shear modulus vanishes again at a third threshold beyond which spontaneous tissue flows and topological defects of the nematic cell shape field arise. Flow and stress fields around the defects agree with active nematic theory, with either contractile or extensile signs, as also observed in several epithelial tissue experiments.

Connecting the single-cell behavior to large-scale mechanical properties of biological tissues is key to understand development, regeneration, and disease [1]. Growing experimental evidence supports the idea that biological cells actively tune their intracellular architecture according to their overall shape. For instance, actomyosin [2][3][4][5] and microtubules (whether in Drosophila [6,7] or in plants [5,8]) tend to align along the direction of cell shape elongation. Such oriented fibers are known to generate anisotropic stress [9]. For instance, during Drosophila germ band extension, cells involved in rosette formation exhibit actin polymerization at opposite corners [10], which effectively creates an extensile active stress, Fig. 1a.

Here, we explore the consequences of such cell-shape feedback for the tissue-scale behavior. We study a minimal model where a bulk cellular active stress σ (act) is created by filaments which in turn align with cell shape, represented by a tensor Q (Fig. 1b-d). To lowest order,

σ (act) = -βQ, (1) 
which we incorporate in a computational model for dense epithelial tissue. For β > 0 (resp. β < 0), cells actively push (resp. pull) on their neighbours along their direction of elongation [11,12]. Relations like Eq. ( 1) have been considered in tissue models before. For instance, in active hydrodynamic theories, where both σ (act) and Q are defined by averages over several cells, Eq. ( 1) gives rise to a classical flow instability [13][14][15]. In the absence of confining boundaries, this instability occurs at arbitrarily small activities β > 0. An active stress as in Eq. ( 1) has also been included in cell-based phase field simulations [16]. In these simulations, the transition to spontaneous flows occurs for a critical value of β which (i) is finite and appears to be independent of the system size, contrasting with active hydrodynamic theory results, and (ii) scales linearly with a cell surface tension. So far, while Ref. [16] pro-vided an intuitive conjecture, a precise understanding of both is missing. Is a finite activity threshold a general property of deformable cellular materials?

We address these questions by combining analytical arguments and vertex model simulations. Vertex models describe epithelial tissues as polygonal tilings [17][18][19]. Forces on the polygon vertices are defined by a mechanical energy:

E = 1/2 J [K A (A J -A 0 ) 2 + K P (P J -P 0 ) 2 ]
where the sum is over all cells J of the tissue, and A J and P J are cell area and perimeter, respectively. The parameters A 0 and P 0 are preferred cell area and perimeter with the associated rigidities K A and K P , respectively. A transition occurs at P 0 = P * 0 , with the tissue behaving as a yield stress solid for P 0 < P * 0 and as a fluid for P 0 ≥ P * 0 [20,21]. The numerical value of P * 0 is in the range 3.72 . . . 3.94, with a value that depends on the disorder in the cellular packing [20][21][22][START_REF] Merkel | Manning[END_REF][24] (SM [START_REF]The Supplemental Material at [URL] provides further details of analytical calculations and numerical simulations[END_REF], Sec. I). This solid-to-fluid transition can additionally be driven by cell-based active polar forces [START_REF] Barton | [END_REF][27][28], or by active tension fluctuations at cell-cell junctions [29], or by a chemomechanical feedback loop between tension and myosin ac- tivity along cell-cell junctions [30,31]. The vertex model solid-to-fluid transition is also echoed in experiments on biological tissues [32].

Here we introduce Eq. ( 1) in the vertex model framework, and depending on the value of P 0 , we find different kinds of transitions. For P 0 < P * 0 , we find four different regimes upon increasing β (Fig. 3). For β < β 1 the tissue is solid with isotropic cells. For β 1 < β < β 2 , cell shapes are anisotropic. For β 2 < β < β 3 , we find a regime with rhombile cells, many-fold vertices, long-range crystalline order and finite shear modulus. Finally, at β 3 < β, the tissue turns into an active fluid and displays constant flows that lack large-scale coherence. Conversely, for P 0 ≥ P * 0 , we find that a solid regime with anisotropic cells for β ≤ 0 directly transitions to the active fluid regime for β > 0. We demonstrate why a finite activity threshold β 3 appears in the solid regime, P 0 < P * 0 , in our cell-based model; to overcome the yield stress in the solid phase, a finite β = β 3 is required for active flows to appear, as in Ref. [16]. Meanwhile, active hydrodynamic theories as in [13,14] describe tissues as fluids, which corresponds in our model to P 0 ≥ P * 0 . In this case, active flows can appear without threshold, i.e. β 3 = 0.

Method We implement Eq. ( 1) through the following friction-based dynamics for the vertex positions r i

γ dr i dt = F (svm) i + F (act) i . (2) 
Here, γ is a friction coefficient, F

(svm) i = -∂E/∂r i
are the standard vertex model (svm) forces, and F (act) i are the active forces induced by the active anisotropic bulk stresses σ (act) defined for each cell according to Eq. ( 1).

There are different ways to translate the cellular bulk stresses σ (act) into the vertex forces F (act) i [33][34][35][36]. Here we use the approach proposed by Tlili et al. [33,34,36], which relies on Cauchy's stress definition. For the cell shape anisotropy tensor Q J in Eq. ( 1), we use the symmetric, traceless tensor

Q J = 1 P J k l k t k ⊗ t k - I 2 , (3) 
where P J is the cell perimeter; the sum is over all sides k of the cell J, and l k and t k denote length and unit tangent vector of side k, respectively. The eigenvalues and principal directions of Q J provide metrics for the cell shape and cell orientation. We measure the cell shape anisotropy by q J = 2tr(Q 2 J ) ∈ [0, 1), with q J = 0 for round cells and q J → 1 for increasingly elongated ones. We initialize the system with cells arranged according to either (i) a regular hexagonal pattern with small random deviations in the vertex positions, or (ii) random Voronoi tessellations (SM [START_REF]The Supplemental Material at [URL] provides further details of analytical calculations and numerical simulations[END_REF], Sec. I). In addition, we perform cell-neighbor exchanges (T1 transitions) for cellcell interfaces shorter than a length threshold ∆ T1 (SM [START_REF]The Supplemental Material at [URL] provides further details of analytical calculations and numerical simulations[END_REF], Sec. I). We use periodic boundary conditions with fixed system size. We set K A = 1, A 0 = 1, K P = 0.02, γ = 1, P 0 = 1, ∆ T1 = 0.01, and N = 10 3 cells if not otherwise stated (SM [START_REF]The Supplemental Material at [URL] provides further details of analytical calculations and numerical simulations[END_REF], Sec. I; Table S1).

Results Increasing β, we observe several rheological and structural transitions (Fig. 2a,b; Movies S1-S3). In Fig. 3 we show the dependence of these transitions on both β and P 0 ; however, in the following, we focus on the case P 0 = 1 (Fig. 2). For small β < β 1 ≈ 0.20 the vertex model tissue is solid (Fig. 2e) with isotropic cell shapes (Fig. 2c), where the average cell elongation is q = 0 (resp. q ≈ 0.16) when using a hexagonal (resp. Voronoi) initial state. When β increases beyond β 1 , cell shapes become anisotropic, as indicated by an increase in q (Fig. 2c). This is accompanied by a decrease in the hexatic order parameter ψ 6 (Fig. 2d), defined as ψ 6 = | Ψ j /N |, where Ψ j = k∈neighbors exp (i6θ jk )/N j and θ jk = arg (r k -r j ) [37][38][39]. While in this regime the shear modulus vanishes for the hexagonal initial state, the tissue remains solid, as verified through the examination of the yield stress (Fig. 2e, SM [START_REF]The Supplemental Material at [URL] provides further details of analytical calculations and numerical simulations[END_REF], Sec. I). The transition point β 1 decreases with increasing P 0 up until the critical point P * 0 (Fig. 3). The cell shape transition at β = β 1 occurs because the β term in Eq. ( 1) effectively corresponds to a negative shear modulus. As a consequence, when β > β 1 , the total cellular shear modulus decreases to zero, destabilizing the isotropic cell shape. To see this, we start from the Batchelor stress of a vertex model cell with perimeter P and area A [36,[40][41][42], whose anisotropic part σ is (SM [START_REF]The Supplemental Material at [URL] provides further details of analytical calculations and numerical simulations[END_REF], Sec. I):

σ = K P P (P -P 0 ) A -β Q. ( 4 
)
To obtain the global tissue shear modulus G aff in an analytical mean-field picture, we apply an affine pure shear strain ϵ to an isotropic cell, which creates the cell shape anisotropy q = 3ϵ/2 to lowest order in ϵ (SM [START_REF]The Supplemental Material at [URL] provides further details of analytical calculations and numerical simulations[END_REF], Sec. II). Comparing Eq. ( 4) to σ = 2G aff ϵ, we obtain:

G aff = 3 8 K P P (P -P 0 ) -β . (5) 
Here, we have used A ≈ A 0 = 1, which corresponds to the limit of incompressible cells. Testing Eq. ( 5) numerically, where we also include all non-affinities, we find the same result, except for a prefactor: G non-aff ≈ 2G aff /3. To determine the value of the perimeter P appearing in Eq. ( 5), we use that in the isotropic solid regime P = P * 0 ≈ 3.722 for a hexagonal tissue [21,43]. Isotropic cell shape thus becomes unstable for β > β 1 (P 0 ) with (SM [START_REF]The Supplemental Material at [URL] provides further details of analytical calculations and numerical simulations[END_REF], Sec. II):

β 1 (P 0 ) = K P P * 0 (P * 0 -P 0 ). ( 6 
)
This equation exactly predicts the stability of the regular hexagonal crystal (white lines in Fig. 3). This meanfield picture also explains how in the regime P 0 < P ⋆ 0 cells elongate for β > β 1 (P 0 ). For an affinely sheared isotropic cell, the perimeter increases quadratically with its shape anisotropy as P = P * 0 (1 + q 2 /3) (SM [START_REF]The Supplemental Material at [URL] provides further details of analytical calculations and numerical simulations[END_REF], Sec. II) [24]. Inserting this in Eq. ( 4) and combining it with σ = (∂E/∂ϵ)/2A, we obtain an effective potential of the cell depending on its shape anisotropy E eff (q), which reads to fourth order in q (SM [START_REF]The Supplemental Material at [URL] provides further details of analytical calculations and numerical simulations[END_REF], Sec. II): The energy minimum for β < β 1 is at q min = 0, while for β > β 1 the minimum is at q min (β) = 3(β -β 1 )/K P P * 0 (2P * 0 -P 0 ), which corresponds to a typical pitchfork bifurcation. Indeed, this predicts well the observed cell elongation in the regime close to β 1 for P < P ⋆ 0 (Fig. 3c, SM [START_REF]The Supplemental Material at [URL] provides further details of analytical calculations and numerical simulations[END_REF], Sec. II). The behavior of cell-shape elongation q is different in the regime P 0 > P ⋆ 0 , where we observe a discontinuous increase in q and coordination number Z as soon as β is increased above zero (Fig. 3a,b, SM [START_REF]The Supplemental Material at [URL] provides further details of analytical calculations and numerical simulations[END_REF], Sec. VI). The discontinuity in q can be understood by first looking at a system with β = 0 and given cell elongation q. In this case, for P 0 > P ⋆ 0 , the system is floppy with vanishing energy E(q) = 0 as long as q < q crit , where the critical q value is q crit ∼ P 0 -P * 0 . Beyond this value, cells and the vertex model tissue start to attain a finite shear modulus [24]. As a consequence, as soon as β is set to a positive value, for q < q crit the energy becomes E(q) ∼ -βq 2 , and so any state q < q crit becomes unstable. Thus, for small positive β, cell elongation will make a jump from zero to a value close to q crit . For P 0 < P * 0 , beyond β > β 2 (with β 2 ≈ 0.24 for P 0 = 1), starts a regime marked by an increasing hexatic order ψ 6 (Fig. 2b-d). For tissues initiated in the near hexagonal pattern, this order appears to be even long-ranged (SM [START_REF]The Supplemental Material at [URL] provides further details of analytical calculations and numerical simulations[END_REF], Sec. I). We call this the rhombile regime, because domains appear where cells attain a rhombic shape, which arrange into a periodic arrangement of six-fold vertices (Fig. 2b). Correspondingly, the rhombile regime is marked by the increase in the average vertex coordination number Z (Fig. 2d).

E eff (q) = 1 3 β 1 (P 0 ) -β q 2 + 1 18 
K P P * 0 2P * 0 -P 0 q 4 . (7) 
The emergence of the rhombile pattern and manyfold vertices can be understood from single-and four-cell systems. Indeed, at a critical value of β (1) 2 ≈ 0.27 for the single-cell system (β (4) 2 ≈ 0.25 for the four-cell system), the two shortest edges of a hexagonal cell shrink to length zero, resulting in the observed rhombic cell shapes (Fig. 2a; Movie S4-S5; SM [START_REF]The Supplemental Material at [URL] provides further details of analytical calculations and numerical simulations[END_REF] Sec. II).

We find that the shear modulus in the rhombile regime is finite and peaks when the rhombile domain extension is maximal at around β * ≈ 0.3, which coincides with local maxima in the hexatic order ψ 6 and coordination number Z (Fig. 2d). We understand this by considering a single cell: at β * = 0.3, the cell reaches a regular diamond shape with two π/3 and two 2π/3 angles. This shape (also called calisson [START_REF] Alsina | A Mathematical Space Odyssey[END_REF]) is the building block of the crystal rhombile pattern (SM [START_REF]The Supplemental Material at [URL] provides further details of analytical calculations and numerical simulations[END_REF], Fig. S11b). When β < β * = 0.3 (resp. β > β * = 0.3), acute angles above (resp. below) π/3 form in the single cell, leading to frustration in the rhombile domains, which can destabilize them.

However, despite a finite shear modulus, the rhombile regime exhibits a finite steady-state T1 transition rate (Fig. 2d; SM [START_REF]The Supplemental Material at [URL] provides further details of analytical calculations and numerical simulations[END_REF] Sec. III; Movie S2). This may appear paradoxical at first sight, since T1 transitions are expected to relax the applied stress [START_REF] Marmottant | Proceedings of the National Academy of Sciences of the United States of America[END_REF], leading to a longtime fluid material response. Yet such argument may not hold for an active system at steady state, as considered here. Further, we notice that these T1 transitions are generated at the interfaces, rather than in the bulk, of the rhombile crystal domains (Movie S2).

The shear modulus eventually vanishes at β 3 ≈ 0.37 for P 0 = 1. We find that this value matches the one at which the shear modulus of the perfect rhombile crystal vanishes (SM [START_REF]The Supplemental Material at [URL] provides further details of analytical calculations and numerical simulations[END_REF], Sec. III). This suggests that the finite shear modulus of the rhombile regime is caused by rhombile crystal domains.

For β > β 3 , the system flows continuously, where the steady-state T1 transition rate increases with activity (Fig. 2e, 3d and Movie S2). Such flow already appears in a four-cell system for an intermediate activity range (Movie S6). This flowing regime exhibits features of an active nematic material. For instance, coarse-graining of the cell orientation field reveals the presence of ±1/2 topological defects in the fluid regime (SM [START_REF]The Supplemental Material at [URL] provides further details of analytical calculations and numerical simulations[END_REF], Sec. V) [START_REF] Vromans | [END_REF]47]. The stress and velocity patterns around ±1/2 topological defects are qualitatively consistent with those predicted in an incompressible material with extensile nematic activity [15,16,48] (Fig. 3f; SM [START_REF]The Supplemental Material at [URL] provides further details of analytical calculations and numerical simulations[END_REF], Sec. V). We note, however, the presence of a backward flow at the tip of +1/2 defects (Fig. 3f) that is reminiscent of negative wake reported in driven yield-strain materials [49]. A similar negative wake flow pattern is visible in experiments on Madin-Darby Canine Kidney cell monolayers [33,50] (see SM [START_REF]The Supplemental Material at [URL] provides further details of analytical calculations and numerical simulations[END_REF], Sec. VIII).

Taken together, our results show that the existence of a yield stress explains the onset of active flows beyond a finite critical activity β 3 > 0, while active continuum models [13,14], predict active flows at any finite activity, i.e. β 3 = 0. In our vertex model, such a difference arises as a function of P 0 . For P 0 < P ⋆ 0 , where the vertex model behaves as yield stress solid, we showed that β acts as a negative shear modulus, destabilizing the tissue beyond a critical value that increases with the distance to P ⋆ 0 . In contrast, we observe that for the fluid vertex model regime, P 0 > P ⋆ 0 , any positive β destabilizes the tissue, inducing a sharp increase in flow (Fig. 3d, SM [START_REF]The Supplemental Material at [URL] provides further details of analytical calculations and numerical simulations[END_REF], Sec. VI). Comparing both cases, we conclude that while any positive activity leads to flows in a fluid material, a yield stress creates a finite activity threshold to flow. This is likely the case in Ref. [16], because the employed phase field model essentially describes a foam that, expectedly, displays a yield stress.

In contrast to active hydrodynamic theory predictions [13,15,48], the cell-based model by Ref. [16] and the model we discussed so far do not exhibit spontaneous flows in the contractile regime (β < 0). One could take this as an indication that the observed transition to spontaneous flows is qualitatively different from the known instability of active hydrodynamic theory [13,15,48].

However, spontaneous flows can also exist in the contractile regime, β < 0. To show this, we included in our model the tendency of cells to attain a finite elongation q J through an additional energy term, E el = J K Q [q 2 J -q 2 0 ] 2 /8, where K Q ≥ 0 and q 0 refers to a preferred cell elongation parameter.

Using this model, we observe spontaneous tissue flows in both the extensile (β > 0) and the contractile regime (β < 0), with cells displaying rhombic shapes (Fig. 4a, Movie S7) and both the stress field and the flow field qualitatively agree with predictions of active hydrodynamic theories (Figs. 4(b); SM [START_REF]The Supplemental Material at [URL] provides further details of analytical calculations and numerical simulations[END_REF], Sec. VII) as well as experiments [11,[51][52][53][54].

Lastly, we tested how much our results depend on the definition of the Q tensor used in Eq. (1) (SM [START_REF]The Supplemental Material at [URL] provides further details of analytical calculations and numerical simulations[END_REF], Sec. IV). We find that the transitions in cell shape and rigidity are generic, but not the appearance of the rhombile crystal domains. In addition, we also tested the case of no perimeter elasticity (K P = 0) but with a constant cell-cell interfacial tension instead [29]; we find the same results regarding the transition to flows and the onset of a rhombile phase (Fig. S23).

Conclusion We studied how a feedback of cell shape on the cellular active stress generation affects collective tissue dynamics. We show that increasing such a feedback eventually fluidifies the vertex model tissue, yet through a series of intermediate steps displaying hexatic order, enhanced finite shear modulus and spontaneous T1 transitions. We find that spontaneous flows can be thresholdless also for cellular materials and are not limited to the extensile regime.

Our prediction of rhombile domains could potentially also explain why, during the Drosophila germ band extension process [10], cells display rhombic shapes before the onset of six-fold vertices, Fig. 1a. These cell shape changes are shown to be triggered by actin protrusions [10]. At early stages, these protrusions are located at opposite ends of the cell, suggesting that the resulting set of forces could be compatible with the one considered in our extensile active stress model, Fig. 1.

Perspectives While in most instances active cellular materials have been studied in the vertex model through the introduction of traction forces against a resting substrate [28,55], here we introduce activity through momentum-conserving forces F (act) i [36]. Implementing this kind of activity within a Galilean invariant dissipation framework [42] could be useful to describe tissue flows in conditions of low environmental friction e.g. freestanding tissues, pre-implantation embryos or intestinal organoids [56].

  FIG. 1. (a) Experimental images of the basal side of Drosophila epithelial cells during germ band extension with marked GFP-Rac1 marking filament growth activity; six-fold vertex indicated by a square. Scale bar: 5 µm. Experimental images provided by Y. Toyama. (b) A model of increasingly strong filament growth (magenta rods) for increasingly acute cell corners (black wedge). (c) Our model where active stresses are defined by cell shape. (d) Active forces in a cell (index J) of our vertex model, mimicking the effect of growing filaments at wedge-like cell corners.
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 2 FIG. 2. (a, b) Morphology of (a) a four-cell system and (b) a cell sheet at different activities β, with an initially hexagon (top) or Voronoi pattern (bottom). In (b), we mark vertices with coordination number Zi > 3. (c) Cell elongation parameter q, and T1 transition rate kT1 versus cell activity β, for an initially hexagonal (H) or Voronoi (V) pattern. The solid black line refers to an analytical approximation of q. (d) Hexatic order parameter ψ6 and average vertex coordination number Z versus cell activity β. (e) Long-time shear modulus Gxy and yield stress σ yield versus cell activity β. Inset: red shaded area indicates the mean ± standard deviation of the shear modulus for the initially hexagonal pattern, estimated from n = 5 simulations. Default parameter values with P0 = 1.
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 53 FIG. 3.Diagrams depending on the target shape index P0 (inter-cellular tension) and cell bulk activity β, showing (a) average cell elongation parameter q, (b) average vertex coordination number Z, (c) shear modulus Gxy, and (d) T1 topological transition rate kT1. Here, the solid white curves refer to the theoretical prediction β1(P0), Eq. (6), for the transition between the solid regime with isotropic cells and the solid regime with anisotropic cells. (e) Overall phase diagram. (f) Average isotropic stress (color map) and velocity (black streamlines) fields near +1/2 defects, with P0 = 1 and β = 0.5. Average over n = 44368 defects. Scale bar = 1 cell.

FIG. 4 .

 4 FIG. 4. Tissue flows and topological defects in the contractile regime (β < 0) in the presence of a passive cell elongation energy. (a) Sketch of cell activity leading to cell edge vanishing. Here, we mark the edges to vanish as red ones. Background color: gray for solid regime and light green for fluid regime. (b) Average isotropic stress (colorbar) and the velocity (streamlines) near +1/2 topological defects (n = 25323 defects. Scale bar = 1 cell), where KQ = 10 and β = -1. Other parameters: P0 = 1 and q0 = 0.8.
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