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Fuzzy constraints in job-shop scheduling1

Didier Dubois – Hélène Fargier – Henri Prade

Institut de Recherche en Informatique de Toulouse (I.R.I.T.) – C.N.R.S.
Université Paul Sabatier, 118 route de Narbonne

31062 Toulouse Cedex, France

Abstract: This paper proposes an extension of the constraint-based approach to job-shop
scheduling, that accounts for the flexibility of temporal constraints and the uncertainty of operation
durations. The set of solutions to a problem is viewed as a fuzzy set whose membership function
reflects preference. This membership function is obtained by an egalitarist aggregation of local
constraint-satisfaction levels. Uncertainty is qualitatively described is terms of possibility
distributions. The  paper formulates a simple mathematical model of jobshop scheduling under
preference and uncertainty, relating it to the formal framework of constraint-satisfaction problems
in Artificial Intelligence. A combinatorial search method that solves the problem is outlined,
including fuzzy extensions of well-known look-ahead schemes.

1. Introduction

There are traditionally three kinds of approaches to jobshop scheduling problems: priority rules,
combinatorial optimization and constraint analysis. The first kind of method has the merit of being
computationally very efficient  and can be easily applied to real world cases. Surveys on
performance analysis of priority rules can be found in Blackstone et al. (1982), Montazeri (1990),
and Grabot and Geneste (1994).  Using priority rules, there is no guarantee as to the quality of the
obtained solution, especially if some temporal constraints should be respected. It is only known
that some of them perform better than others on the average. The optimization methods (see
Bellman et al, 1982, for instance) are much more rigorous but are not tractable in large size
problems, if the optimal solution is what is searched for. Some progress in efficiency is expected
from stochastic optimization methods (e.g., Laguna et al., 1991; Van Laarhoven et al., 1992).
Anyway, optimizing a single criterion ( e.g., minimizing the completion time of the last job) leads
to a very limited view of the real problem. An optimal solution in the mathematical sense is not
always useful at the practical level due to unmodelled criteria. The third approach, initiated by
Erschler et al.(1976), looks for a set of feasible solutions that obey several temporal or
technological constraints, leaving the choice of the final solution to the user. More recently the
knowledge-based scheduling school (Fox and Zweben, 1993) has proposed to tackle the jobshop
scheduling problem in terms of constraint-directed search methods stemming from Artificial

1 This paper is partially based on the Ph.D. dissertation of the second author. Preliminary versions have been
presented at the IJCAI'93 Workshop on Knowledge-Based Scheduling, Chambéry, France,  September 1993, and at
the EURO XIII / OR 36 conference, Glasgow, UK, July, 1994.
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Intelligence (Montanari, 1974; Van Hentenryck, 1990). This approach is in some sense more
general than the three others  since i) it is based on the systematic use of constraints, ii) it can
implement heuristic knowledge such as priority rules that can guide the search inside the feasibility
domain (e.g., Bensana et al., 1988); moreover, due to its generality,  the constraint satisfaction
approach can be viewed as a general framework for stating and solving combinatorial optimization
problems.

Developing a good predictive schedule that satisfies temporal, technological and other types of
constraints is basically a search problem, the solution of which requires both powerful search
heuristics and adequate means of representation (e.g., Fox and Smith, 1984; Lepape, 1985; Peng
and Smith, 1986; Bensana et al., 1988; Sadeh, 1991). However, when scheduling over long
horizons, considering temporal constraints, such as job release date and due date, as compulsory,
may lead to rejecting an efficient schedule even when the violation of these constraints is
insignificant with regard to the precision of the realistic limits of predictability. A large
computation effort may be actually saved by avoiding failures with problems whose lack of
feasibility is due to insignificant constraint violations.

In practical problems, constraints often prove to be more or less relaxable or are subject to
preferences; this is typically true for due-date constraints in scheduling (e.g., in Fox(1987) or
Sadeh (1991)). Fuzzy sets appear as a suitable framework for the representation of such flexible
temporal constraints. Besides, some scheduling parameters like the durations of the tasks may be
ill-known, because of the uncertainty pervading the process, and can be represented by possibility
distributions. This paper presents a constraint-guided approach to job-shop scheduling based on
possibility theory (Zadeh, 1978; Dubois and Prade, 1988) which can be understood as a fuzzy
extension of the one formerly proposed by Erschler et al. (1976) and more recently developed, in
the setting of Artificial Intelligence, by Erschler and Esquirol (1986), and Erschler et al. (1989,
1991). The approach advocated in this series of papers emphasizes the use of constraint
propagation rules that may enforce sequencing decisions among tasks sharing common resources.
In the present paper, flexible temporal constraints over release dates, due dates and durations, as
well as uncertain durations are expressed and handled in the framework of possibility theory. This
approach is a direct application of a general approach to flexible Constraints Satisfaction Problems
(FCSPs) as described in Dubois et al. (1993,1994). The merits of exploiting flexibility in
constraint-directed scheduling are twofold (e.g., Dubois, 1989): avoiding the arbitrary selection of
a solution when the constraints are loose (as a classical constrained-directed approach would do)
and avoiding infeasibility due to tight constraints when a slight relaxation of these constraints
would produce a worthwhile solution. These advantages are expected to go along with some
computational savings due to enhanced capabilities of guiding the search process towards
interesting solutions. The aim of this paper is to rigorously formulate softly constrained jobshop
scheduling problems with possibly uncertain duration of tasks.

The next section presents how to formulate constrained scheduling problems, in the classical
CSP framework. Section 3 formulates a softly constrained non-preemptive, non-cumulative
jobshop scheduling problem with known durations of operations. It takes into account flexible
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temporal constraints (release and due dates). In section 4, this formulation is extended to flexible
durations (which are under control), as well as uncertain durations (when some parameters are
beyond control), whose value can only be fuzzily estimated. It is based on the idea that possibility
theory can model preference as well as uncertainty. The remainder of the section then explains
how fuzzy non conjunctive graphs of linear inequalities can deal with the representation of such
flexible constraints as well as uncertainty using a unique formulation. In Section 5, a solving
scheme is presented, which relies on three basic procedures: consistency enforcing, tree search
and look-ahead analysis. These procedures are fuzzy extensions of the ones used in constraint-
directed search methods.

2. Scheduling as a Constraint Satisfaction Problem

A typical scheduling problem can be described as follows: a set J of jobs must be performed by
means of a set of resources. Each job j requires the scheduling of a set !j of operations according
to a process plan that specifies a partial ordering among these operations (precedence constraints).
Let ! denote the set of operations. Once started, operations cannot be interrupted. In the simplest
situation, each operation "i must be performed by a given resource and has a precise duration ti.
Each resource can only process one operation at a time: capacity constraints between two
operations requiring the same resource express that these two operations cannot overlap in time.
Let si denote the starting time of "i, that the scheduling procedure must compute. Propagating the
release dates and the due dates of job j over operations in !j yields time windows [ri,di] where
each operation "i must take place; ri is its release date (earliest starting time) and di its due date
(latest ending time). The different constraints that bear on the starting times of each operation
translate into linear inequalities of the type:

precedence constraints Pi#k: sk – si $ ti ("i before "k)
capacity constraints Ci%k: sk – si $ ti or si – sk $ tk ("i and "k cannot overlap).
release date constraints Ri: si $ ri
due date constraints Di: si + ti & di.

Note that the capacity constraints are not linear stricto sensu due to the presence of a disjunction in
capacity constraints. Non-disjunctive constraints form the conjunctive part of the problem. Of
course this is not the most general form of scheduling problem, but this one is quite often found in
the literature, and is known to be very combinatorial.

As pointed out in (Sadeh, 1991), scheduling problems can be understood as particular
Constraint Satisfaction Problems (CSP's) (Mackworth, 1977; Montanari, 1974).  A constraint
satisfaction problem is defined by means of a set  V of decision variables v1, v2,…, vn , each
with a domain Ai , for i = 1, n; and a set of constraints C1,C2,…,Cm. Each constraint Cj involves
a subset Vj of variables and is modelled as a relation Rj, that is a subset of admissible tuples
(aj1,aj2,…,ajk) in the Cartesian product Aj1xAj2x…xAjk of domains of the k variables in Vj.
The problem is then to find a feasible tuple  (a1,a2,…,an) which satisfies all the constraints. This
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formulation is very general since nothing is assumed about the form of the constraints. Artificial
Intelligence has devised general languages and procedures for stating and solving CSP's especially
in the case of finite domains, including generic constraint propagation algorithms that make the
search more efficient (e.g.Van Hentenryck, 1989). Many results exist on so-called constraint
networks (where constraints are binary, i.e.involve only two variables at a time), and, in the
infinite domain case when the variable domains are intervals (Davis, 1987)  In this section, the
constraint analysis approach to scheduling problems is related to the current CSP technology.

Dechter, Meiri and Pearl (1991) define Temporal Constraint Satisfaction Problems (TCSPs) as
binary Constraint Satisfaction Problems (CSPs) whose variables take real values. In TCSPs,
every constraint Tij relating a pair of variables (xi,xj) is defined by a set of intervals
{Iij1, …, Iijn} meaning that xj – xi must belong to Iij1 '… ' Iijn. Similarly, the domain of each
variable xi is a unary constraint Tii defined by a set of intervals. The conjunctive part of a TCSP
(defined by the constraints involving at most one interval) is a Simple Temporal Problem (STP).
Usual CSP's constraint propagation algorithms (like AC-3, PC2) can be applied over a TCSP.

A scheduling problem can be easily represented by a TCSP whose variables are the starting
times of the tasks (adding a dummy variable, s0 which stands for the beginning of the schedule).
The constraints pertaining to the problem can be described as follows:

– release and due date constraints relate each si to s0: si – s0 ( [ri, di – ti]
– precedence constraints Pi#k: sk – si ( [ti,+))
– capacity constraints Ci%k: sk – si ( [ti,+)) ' (–),–tk]

Considering only the conjunctive part of the graph, each precedence constraint Pi#k implies
that the temporal window associated to Ok (resp. "i) must be such that rk $ ri + ti (resp. di & dk –
tk). Hence, the temporal windows can be calculated as follows:

rk := max{ri + ti , for all i such that Pi#k }        (1)
di:= min {dk – tk , for all k such that Pi#k }         (2)

This algorithm is the classical shortest or longest path algorithms of deterministic PERT-like
networks. It takes advantage of the acyclicity of the graph to produce an efficient ordering for
calculating the temporal windows. It is well known to be polynomial in complexity. The rk's are
updated along precedence constraints, and the di's are updated backwards. This method guarantees
that the best among the earliest (resp. latest) starting times according to the precedence constraints
can then be obtained when assigning to each si the lowest (resp. greatest) date among its best
possible values. In the context of constraint propagation, the above calculation is called a
consistency-enforcing procedure and more precisely an arc-consistency procedure. Indeed,
enforcing arc-consistency in a TCSP consists of iteratively considering each pair of variables (xi,
xj) related by a constraint Tij and applying the updating pattern Tii := Tii * ((Tjj  Iij1) '… '
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(Tjj  Iijn)) and Tjj := Tjj * ((Tii  Iij1) '… ' (Tii  Ijin)), where and  denote the interval

addition and subtraction, respectively. If Tij represents a precedence constraint, these updating
patterns respectively correspond to backward and forward propagation of the starting times as in
(1-2): they ensure that the set of possible starting times of each operation is consistent with the
possible starting times of each of its neighbours. (1-2) is also an improved arc-consistency
procedure, limited to the conjunctive part of the TCSP since the update is achieved in one step.

The difficulty of the jobshop scheduling problem lies in the necessity of "breaking" the
disjunctive constraints so as to get a purely conjunctive problem that is easily solved via (1-2).It
means turning all capacity constraints Ci%k into precedence constraints Pk#i or Pi#k . It comes
down to finding a sequence of operations to be performed on each machine. This sequence must
be feasible in the sense that the associated conjunctive problem must have a solution in terms of
starting times. Finding the sequences of operations on machines is a problem dual to the one of
finding starting times for operations. It is a difficult combinatorial problem on a finite domain,
while finding the starting times is an easy STP (albeit on an infinite domain) once the sequences of
operations are found. In order to find such a feasible solution, an obvious method is a depth-first
exploration method with backtrack. It will be computationally inefficient. To make it more efficient
one must use look-ahead procedures that quickly check some consequences of selecting a new
precedence constraint. Such dedicated procedures have been proposed in the framework of the
constraint analysis approach to jobshop scheduling (Erschler et al., 1976; Erschler and Esquirol,
1986). For each disjunction Ci%k also called a conflict ("i precedes Ok OR Ok precedes "i), a test
is performed as follows:

Test-1(i,k) If dk – ri  <  (ti + tk)  then "i cannot precede Ok

Clearly such a test can lay bare a precedence constraint which, if violated leads to a solution
which is not feasible ( enforcing that "i must precede Ok when dk – ri  <  (ti + tk) prevents
operations from being performed in the time window [ri, dk] ). If both conditions of Test-1(i,k)
and Test-1(k,i) are verified, this is a contradiction and the scheduling problem itself is not feasible.
If none of these tests is positive, then the conflict remains unsolved (since nothing can be inferred
on the precedence between "i and "k in this case). This kind of test provides only a necessary
condition of feasibility. For instance, consider a case involving three tasks conflicting for the same
resource: ti  = tk  = tx  = 2, rk = 0, ri = rx = 1 and di = dk = dx = 6. It is  obtained that Test-1(i,k)
and Test-1(k,i) are both negative,  although no scheduling placing Oi before Ok is feasible. More
elaborate tests of the conflicts can be performed, taking more than two operations into account.
Constraint analysis rules like those proposed in (Erschler and Esquirol, 1986; Erschler et al.,
1989) are of that kind. The difficulty of using these more refined tests is that they may generate
new capacity constraints involving more than two tasks (e.g., ""i must precede Ok or "x"), i.e.,
general disjonctive constraints. These new obtained constraints are not easy to use in a look-ahead
strategy.
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 A new kind of test is proposed here, involving more than two operations and which do not
present this drawback. For instance, consider three operations "i, Ok and "x, and the following:

     Test-2(i,k): if either dk – ri  <  (ti + tk)

                               or  max(dk – ri , dk – rx , dx – ri) <  ti + tk + tx 

      then "i cannot precede Ok

where the three terms in the maximum operation pertain to the respective sequences: "i/"x/Ok,
"x/"i/Ok and "i/Ok/"x. Coming back to the above numerical example, Test-2(i,k) is positive,
which enforces the other precedence constraint, i.e., that  "k must precede "i. Clearly this test is
more time-consuming than Test-1(i,k) but is likely to cause more early backtracks. This test can be
extended to more than one varying operation "x.

The above tests correspond to so-called path-consistency in CSP's. Enforcing path-consistency
in a TCSP consists of iteratively considering each 3-tuple of variables (xi, xj, xk) related by the
constraints Tik and Tkj and applying the updating pattern :

Tij := Tij * ( a,b Iika  Ikjb).

When Tij = Ci%j and xk stands for the starting time of an operation "k, the updating pattern
ensures that the constraint between "i and Oj is coherent with "k: it corresponds to the second
look ahead test Test-2(i,k). When xk = s0, and Tik = Ci%k this updating pattern corresponds to the
first constraint analysis test Test-1(i,k). Indeed, Ii0 = [–di + ti, –ri], I0k = [rk, dk – tk] and:

[–di + ti, –ri]  [rk, dk – tk] = [rk – di + ti, dk – tk – ri].
Moreover:

([ti,+)) ' (–),–tk]) * [rk – di + ti, dk – tk – ri]
= [max(ti, rk – di + ti), dk – tk – ri] (decision "i before Ok)

when tk + ti & dk – ri and tk + ti > di – rk
= [rk – di + ti, min(–tk, dk – tk – ri)] (decision Ok before "i)

when tk + ti > dk – ri and tk + ti & di – rk

The main difference between TCSP's updating pattern and the look-ahead tests is that the TCSP
path-consistency algorithm modifies the set of intervals attached to a constraint even when no
decision can be taken (hence, a capacity constraint originally defined by two disjoint intervals can
be transformed into a constraint involving more intervals). This modification is then propagated to
other 3-tuples of tasks. Constraint analysis can only reduce the number of intervals attached to a
constraint, making nothing when it should be increased. In other terms, constraint analysis in
scheduling problems is a weak version of path-consistency in TCSPs, also called 3-Boundary
consistency by Lhomme(1993).
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Finally, the standard solving method (backtrack search) is the same in TCSPs and in scheduling
problems: it consists in considering the dual problem in order to choose a decision for each
capacity constraint (i.e., to choose an interval for each temporal constraint Tik). Once a decision
has been taken, it is propagated (i.e., arc-consistency enforcing and constraint analysis procedures
are applied) as it is the case in classical CSP when a look-ahead procedure is used.

Hence, the above type of scheduling problems are particular TCSPs, which are themselves
particular CSPs. Moreover, solving procedures for scheduling problems can be understood as
specialized (and thus improved) versions of some classical CSP algorithms. This remark suggests
adapting the results obtained in the CSP domain in order to improve the resolution of scheduling
problems — being aware of the specificity of such problems, especially when designing search
heuristics: Sadeh (1991) has shown that translating without modification CSP heuristics to the
scheduling domain is inefficient. A more promising research area for both domains is the study of
flexible problems.  

3. The fuzzily constrained scheduling problem

The idea of fuzzy constraint is not new. It goes back to the seminal paper of Bellman and Zadeh
(1970). In this paper the suggestion that a fuzzy set may be a natural model of a soft constraint is
put forward. It is also suggested that an optimal solution to a fuzzily constrained problem is a
solution such that its membership grade to the intersection of the fuzzy sets modelling the
constraints is maximal. It comes down to maximizing the degree of satisfaction of the least
satisfied constraint. This strategy is quite in accordance with the notion of a constraint whose
violation cannot be counterbalanced by the satisfaction of other constraints. However, since 1970,
the fuzzy constraint idea has been mainly used in stating soft versions of linear programming
(Zimmermann 1976; Slowinski and Teghem, 1990; Sakawa, 1993). Very few authors have
considered fuzzy formulations of jobshop scheduling problems, even though fuzzy PERT has
been studied quite early, and the third author made some early related contributions (Prade, 1979).
The use of possibility theory in jobshop scheduling has been further discussed by Kerr and
Walker(1989) and (Dubois, 1989); the latter contains preliminary results that are elaborated upon
in the present paper. More recently, simple forms of fuzzy flow-shop scheduling problems have
been solved by  Ishii et al.(1992) and  Ishibushi et al.(1994). Besides, the link between the ideas
of Bellman and Zadeh(1970) and the mainstream literature on constraint satisfaction problems has
been made by Freuder and Snow (1990), but fuzzy sets are not yet widely used in CSP's to-date
(see Dubois et al 1993, 1994, for a bibliography). Fuzzy scheduling problems as described in this
paper can be viewed as dedicated Fuzzy Constraint Satisfaction Problems.

3.1. Flexible temporal constraints

Release and due dates of jobs are often subject to preference. For instance job j must absolutely
be completed at the latest completion date dsupj (e.g., the date after which the customer cancels his
order). Moreover it should preferably be completed before the due date dinfj, or as soon as
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possible after this due date. Similarly, it is better to start job j after its preferred release date rsupj,
because the corresponding raw material will be available then, while it is impossible to start it
before the earliest acceptable release date rinfj because the raw material will not be ready (rinfj &
rsupj < dinfj & dsupj). The requirement about the release date (resp. due date) associated to job j is
no longer crisp but can be modeled by means of a fuzzy number R(j) (resp. D(j)) as in Figure 1.
Namely the membership function µR(j) (resp. µD(j)) is such that µR(j)(rsupj) = 1, and µR(j)(rinfj) =
0, and increasing when rj goes from rinfj to rsupj (resp. µD(j)(dinfj) = 1, and µD(j)(dsupj) = 0, and
decreasing when dj goes from dinfj to dsupj). Hence, the temporal window in which the job must
take place is the fuzzy interval [R(j),D(j)] as in Figure 1.

1

0

R(j) D(j)

[R(j),D(j)]

rinfj rsupj dsupjdinfj

Figure 1: Fuzzy time horizon for job j

In order to model such fuzzily bounded intervals, let us first recall some results from possibility
theory (Dubois and Prade, 1988). Consider a parameter x whose values are restricted by a fuzzy
set A, so that its possibility distribution +x is taken as equal to the membership function µA.The
possibility of the event "x ( P" denoted ,(x ( P) is the degree of intersection between A and P,
where fuzzy set intersection is defined by the minimum:

,(x ( P) = supu min (µA(u), µP(u)).    (3)

It estimates to what extent "x ( P" is possibly true, or, equivalently, to what extent "x ( P" is
consistent with the information "x ( A" modelled by +x = µA. Note that in (3) P can be a fuzzy set
as well.

The dual measure of necessity of "x ( P" denoted -(x ( P) evaluates to what extent A is
included in the core of P, that is the set c(P) = {u , µP(u) = 1} or, in other terms, to what extent
"x ( P" is certainly true, i.e., is entailed by "x ( A":

-(x ( P) = infu max (1 – µA(u), µP(u)) = 1 – ,(x ( P).  (4)

where P denotes the fuzzy complement of P (µP = 1 – µ P). Indeed, -(x ( P) = 1 if and only if
the support of A, namely the subset {u , µA(u) > 0}, is included in c(P), i.e., if all the more or
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less possible values of x are among the values that totally satisfy P. In particular, if x is a real
variable, A a fuzzy interval and p a crisp number, it holds that (Dubois and Prade, 1988):

,(x $ p) = ,(x ( [p,+))) = supu$p µA(u) = µ(-),A](p)
-(x $ p) = -(x ( [p,+))) = infu<p 1 – µA(u) = µ(-),A[(p)
,(x & p) = ,(x ( (–),p])  = supu& p µA(u) = µ[A,+))(p)
-(x & p) = N(x ( (–),p]) = infu>p 1 – µA(u) = µ]A,+))(p)

where (-),A], (-),A[, [A,+)), ]A,+)) respectively denote the set of points possibly before A,
necessarily before A, possibly after and necessarily after A (see Figure 2).

µA

xx

µAµ(–),A]
µ(–),A[

µ[A,+))
µ]A,+))

1

0 0

1

Figure 2: (a) points possibly/necessarily before A; (b) points possibly/necessarily after A

The fuzzy temporal window [R(j),D(j)] is defined as (-), D(j)] * [R(j), +)). When the
requirement about the release date rj of job j is fuzzy, the constraint sj $ rj becomes flexible and its
satisfaction by a choice of the starting time sj can be a matter of degree. Indeed, the coefficient:

,(sj $ rj) = µ[R(j),+))(sj) (5)

can be understood as the satisfaction degree of the release date constraint for job j starting at time
sj. Similarly, when the requirement about the due-date of job j is fuzzy, the constraint
ej & dj on the ending time ej of the job is satisfied to degree:

,(ej & dj ) = µ(-),D(j)](ej ) (6)

,(ej & dj) indicates to what extent there exists an acceptable value for dj greater than ej, given that
dj is restricted by D(j): it is equal to 1 if dinfj $ ej, that is to say if the job is completed before the
preferred due date. If the job finishes after the latest acceptable completion date (dsupj &
ej), then µ(-),D(j)](ej) = 0. Otherwise, the closer ej to the preferred due date, the higher
µ(-),D(j)](ej). In other terms, the due date constraint is a flexible constraint and the fuzzy set
models how the due date can be relaxed from the customer's preferred due date to the latest
acceptable completion date. Note that in this example, fuzzy sets D(j) and R(j)  model preference,
not uncertainty, in the sense that D(j) and R(j) describe the wishes of the decision-maker regarding
the schedule, not his guess pertaining to the actual starting time and ending time of job j. This
interpretation of fuzzy numbers in terms of preference profiles, which also applies to durations of
tunable operations as in the next section, has been put forward by Dubois (1987), but also Wood
et al. (1992) in the domain of mechanical engineering.
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At this point it is useful to recall the calculus of fuzzy intervals. Let A and B be two fuzzy
intervals. The sum A . B and the difference A  B of two fuzzy intervals is defined by (e.g.,
Dubois and Prade, 1980; 1988)

µA.B(z) = supx,y:z=x+y min(µA(x), µB(y)) (7)
= supx min(µA(x), µB(z – x))

µA B(z) = supx,y:z=x–y min(µA(x), µB(y)) (8)

= supy min(µA(z + y), µB(y)).

When B = n (precise value), µA n(z) = µA(z + n), noticing that (–),A]  n = (–), A  n]. 

Sup-min convolutions (7) and (8) have different meanings according to whether the fuzzy
variables underlying A and B are controllable or not. If controllable, the membership functions
represent preference profiles and µA.B(z) represents the optimal preference level that can be
attained for the assignment of values to x and y respecting the preference profiles A and B and the
constraint z = x + y; this optimum is of the egalitarist type since it is such µA(x)  =  µB(y) =
µA.B(z). On the contrary if A and B represent more or less plausible values of ill-known
parameters that cannot be tuned, µA.B(z) is the level of plausibility that the sum x + y will take
value z given the plausibility profiles A and B for x and y. This calculation presupposes that the
possible links between parameters x and y are unknown, so that assuming a value for x should not
a priori induce any supplementary restriction on the possible value of y, and conversely. The two
parameters are then called non-interactive (Zadeh, 1975). The calculation proceeds by fixing a
plausibility level / and performing interval  (best- and worst case) analysis on the level cuts A/ =
{x, µA(x) $ /} and  B/ = {y, µB(y) $ /}. µA.B  is then obtained by moving the threshold in the
unit interval.

3.2. Feasible schedules

A solution to a crisp scheduling problem with precise durations is typically an assignment (s1,
…, sn) of starting times of all the operations. It must satisfy precedence constraints, capacity
constraints, release and due date constraints. While release and due dates are flexible, capacity and
precedence constraints remain crisp. An assignment satisfying precedence and capacity constraints
satisfies the fuzzy scheduling problem insofar as it satisfies the least satisfied temporal constraint.
The global satisfaction level depends on the chosen starting times for operations. It is defined as:

Sat = 0 if  a capacity or a precedence constraint is violated in the processing (9)
       = minj(J (min µ[R(j),+))(sj), µ(-),D(j)](ej)) otherwise

where sj and ej are respectively the starting and the ending dates of job j. These ending dates
depend in a non-trivial way on the starting times of the jobs, on the durations of elementary
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operations, on the chosen sequences of operations on the various machines and on the chosen
starting times of operations. Sat represents the minimal fraction of the flexibility ranges dsupj –
dinfj (resp. rsupj – rinfj) which are left between the completion times ej (resp. starting times sj) of
the jobs and their latest acceptable completion times (resp. earliest release dates). If all the
flexibility ranges are taken equal, the best schedules are those that minimize the tardiness and
earliness of all the jobs. In other terms, the present approach is looking for a temporally safe
schedule. The degrees of membership are not interpreted in terms of cost (contrary to Sadeh,
1991). In scheduling problem approaches like those defined in (Fox and Smith, 1984; Fox 1987,
Sadeh, 1991), a high degree of satisfaction of a constraint (e.g., total satisfaction of due date for a
job) can counterbalance a low degree of satisfaction of another constraint (e.g., almost violation of
latest acceptable completion date for another job). Here, satisfaction degrees cannot be interpreted
in terms of costs, but in terms of safety ranges.

In order to lay bare the role of the sequences of operations on machines, fuzzy temporal
windows for the operations Oi can be calculated from the knowledge of R(j) and D(j) for j ( J and
the current precedence constraints between operations. The R(i)'s and D(i)'s have to be computed
via an extension of  (1-2) to fuzzy numbers. Considering only the conjunctive part of the graph,
each precedence constraint Pi#k implies that the fuzzy temporal window associated to Ok (resp.
" i) must be such that rk $ ri + ti (resp. di & dk – tk). Hence, the temporal windows can be
computed as follows (Dubois and Prade, 1988):

R(i) := max{ R(k) . tk ,  for all k such that Pk#i }              (10)
D(i) := min {D(k)  tk , for all i such that Pi#k  }               (11)

where max and min are versions of the maximum and minimum operations extended to fuzzy
arguments, i.e., replacing addition by max and min respectively in (7). A linear algorithm has been
implemented which computes the fuzzy temporal windows according to the precedence
constraints. This algorithm is an adaptation of classical shortest or longest path algorithms to fuzzy
PERT-like networks. These algorithms can accommodate the case when the durations tk are
replaced by fuzzy numbers T(k) in (10-11). Similar methodologies for propagating fuzzy upper
and lower bounds of starting times in activity networks have been proposed by Chanas and
Kamburovski (1981), Gazdik (1983) and more recently Nasution (1993). Lootsma (1989) has
made a critical comparison between fuzzy and stochastic PERT networks, where he points out the
fact that the fuzzy approach ignores the dependencies induced by the topology of the network
representing precedence constraints. In fact, the criticism from probability theory towards fuzzy
arithmetic makes some sense when the durations, release dates and due-dates are considered as
uncontrolable, because when due to randomness, this randomness is more naturally modeled via
probability theory. In particular, probabilistic methods easily account for random compensation
phenomena, assuming independent variables. Clearly, the max-min fuzzy arithmetic only refines
the crude worst- and best-case interval analysis, by means of various levels of plausibility.
Dependencies between fuzzy variables may be captured by changing the minimum into another
fuzzy conjunction, such as product, for instance. However when the lack of knowledge of precise
durations and the like accounts for suspended decisions, then the membership functions represent
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preference profiles and fuzzy arithmetics is fully justified as implementing fuzzy constraint
propagation (in the sense of Dubois, Fargier and Prade (1994)); but probability theory does not
apply at all in such a situation.

Note that here, the two computations pertaining to earliest starting times R(k) and latest starting
times D(i) are rather independent because release dates and due-dates of jobs are separately
specified. This paper is not interested in the critical path method where the due-date of each
operation is obtained after a forward propagation in the precedence graph. In the latter case the
update of the D(i)'s takes place after the calculations of the R(k)'s, and in this second step the
involved fuzzy variables are related since the fuzzy ending time obtained in the first step is taken as
a fuzzy due-date which then depends on the fuzzy durations of operations. Some solutions to this
problem are proposed by Nasution (1993).

Suppose the operation duration is precisely known as ti. Hence, the set of more or less
admissible starting times for the operation i according to the two flexible temporal constraints that
determine  its  time  window  is the fuzzy  interval [R(i),D(i)  Ti]    since    µ(–),D(i)](si + ti) =
µ(–),D(i) ti](si) (see Fig. 3).

0

1

rinfi dinfi – ti dsupi – ti dinfi dsupirsupi

R(i)

D(i)

[R(i), D(i)  ti]

si

Figure 3: possible values for si given the temporal constraints on operation i.

Equations (10)-(11) operate a projection of the temporal constraints pertaining to jobs over the
space of starting times of operations. It makes implicit constraints on starting times explicit, and
(9) can be expressed as:

Sat(s1, …, sn) = 0 if (s1, …, sn) violates a precedence or a capacity constraint (12)
= min (mini=1,n µ[R(i),+))(si), mini=1,n µ(-),D(i)](si + ti)) otherwise.

In the fuzzily constrained job-shop scheduling problem, solutions are not equally preferred:
satisfaction degrees induce a total ordering over the solutions of the problem defined by capacity
and precedence constraints. A fuzzy job-shop scheduling problem is in fact a constrained
optimization problem for which the best solutions are those requesting the least relaxation of
release dates or due dates. In any case the solutions violating any earliest release date or latest
completion date are not acceptable (sat = 0) whereas the solutions satisfying preferred release and
due dates (if they exist) are the best (sat = 1). Otherwise, an implicit relaxation of flexible
constraints is performed, achieving a trade-off between antagonistic constraints in the spirit of
(Descottes and Latombe, 1985): this framework allows for the treatment of partially inconsistent
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problems. In fact, the satisfaction degree of the best solution evaluates to what extent there is an
solution satisfying all the constraints.  The feasibility degree of the problem can be defined by: 

Cons = max(s1,…,sn) Sat(s1, …, sn) (13)

When the constraints are partially inconsistent, 0 < Cons < 1, since no assignment can perfectly
satisfy all the constraints. The lack of compensation between levels of satisfaction of constraints is
due to the nature of the problem. Namely one takes it for granted that no constraint should be
completely violated by solutions that are accepted as not completely unfeasible. For instance any
additive aggregation of membership grades in (9) might result in an optimal solution that
completely violates some constraint for the sake of fully respecting others. Hence the difference
between the satisfaction profile of a constraint and an objective function in the usual sense lies in
the absence of trade-off when performing aggregation of partial satisfaction levels, as opposed to
usual practice in multiple criteria optimization. Clearly any fuzzy conjunction operation 0 such that
a 0 b & min(a,b) can be used (e.g., the product of membership grades). However these fuzzy
conjunctions are not idempotent, hence would not tolerate dependent constraints: writing the same
constraint twice makes a difference, for instance. In the present problem, the degrees of
membership of starting times of operations to the fuzzy intervals induced by fuzzy temporal
constraints are not independent since time-windows on operations are induced by more global
temporal constraints on jobs. Hence the use of the minimum operation looks compulsory in (12)
because it copes with redundancy. If min were changed into product, problems (9) and (12) would
not be equivalent .

4. Fuzzy durations

The above framework can be extended to problems with operations involving fuzzy durations,
depending on the meaning conveyed by the fuzziness. First, durations can be subject to
preferences, when they are decision variables under control, just as starting times.  Second,
durations can also be partially out of control; this case will be considered in sections 4.2 to 4.4.

4.1 Controlable durations

Controlable durations, are subject to preferences, and may indeed be determined by tuning the
machine on which the operation is performed (for instance, tuning the speed of a machine-tool
affects the machining time). For a given operation to be optimally performed, ideal values of the
tuning parameters exist. More generally, fuzzy ranges that constrain feasible parameter values,
with various preference levels, can be modelled by fuzzy numbers (see Dubois, 1987). Two
conflicting requirements for the tuning can be envisaged: the shorter the duration, the better for the
sake of meeting scheduling constraints; however, the optimal tuning parameter values may lead to
a longer processing time ensuring a better quality of the processing.

The possible durations of operation "i may be described by a minimal duration tinfi and a
preferred duration tsupi. A fuzzy number T(i) can be defined, like R(i) and D(i). The duration ti of
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each operation "i is then a decision variable whose allowed values are restricted by the flexible
constraint ti ( T(i), that must be taken into account when computing the satisfaction degree of an
assignment (s1, …, sn, t1, …, tn):

Sat (s1, …, sn, t1, …, tn) = 0 if a capacity or a precedence constraint is violated. (14)
= mini=1,n min(µT(i)(ti), µ[R(i),+))(si), µ(-),D(i)](si + ti)) otherwise.

This approach is different from the usual cost-project minimisation (CPM) approach (e.g.
Bellman et al., 1982) where durations are tuned so as to minimise  the sum of the cost for
completing the operations. Here, the membership grades of durations reflect quality of processing
and do not compensate.The formulation can be simplified in such a way that it is possible to select
starting times first, and then to choose the optimal durations in accordance with these starting
times. Assume that (s1, …, sn) is fixed and that si & sk whenever a precedence constraint Pi#k
exists. Let i be the set of operations that must start after operation "i, that is i = {Ok, Pi#k} '
{Ok, Ci%k and si & sk}. The value of ti must be chosen such that si + ti & mink( i sk. One is then
led to compute the degree of membership of mink( i sk – si to the fuzzy set [Ti,+)), i.e., for each
operation i, noticing that µ[T(i),+)) is increasing in the wide sense:

µ[T(i),+)) (mink( i sk – si) = mink( i µ[T(i),+))(sk – si). (15)

Similarly, the degree to which operation "i fits in its fuzzy time window is at best

supti min(µR(i)(si), µD(i)(si + ti), µT(i)(ti)) = min(µR(i)(si), µD(i) T(i)(si)) (16)

using equation (8) that defines the fuzzy subtraction. Moreover the following less obvious result
can be established by projection of Sat (s1, …, sn, t1, …, tn) over the space of starting times (see
Appendix I):

Sat(s1, …, sn) = mini = 1,n min(mink( i µ[Ti,+))(sk – si), µR(i)(si), µD(i) T(i)(si)). (17)

In other terms, the satisfaction degree of the best duration assignment which can be obtained
from (s1, …, sn) is:

Sat(s1, …, sn) = min ( mini=1,n µ[R(i),+))(si), (18)
mini=1,n µ(–),D(i) T(i)](si),

minPi#k µ[T(i),+))(sk – si),
minCi%k max(µ[T(i),+)) (sk – si), µ[T(k),+))(si – sk))).

In equation (18) the feasibility degree of an assignment (s1, …, sn) can actually be read in terms
of possibility degrees describing preference, considering that ri (resp. di, ti) is fuzzily restricted by
R(i) (resp. D(i), T(i)), namely:

Sat(s1, …, sn) = min ( mini=1,n ,(ri ( (–),si]), (19)
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mini=1,n ,(di – ti ( [si, +))),
minPi#k ,(ti ( (–), sk – si]),
minCi%k ,(ti ( (–), sk – si] or tk ( (–), si – sk]))

Hence, an assignment of the starting times such than Sat(s1, …, sn) is maximal is first searched
for. If needed, the set of possible durations T'(i) for each task "i corresponding to a prescribed
starting time assignment (s1, …, sn) can be then computed. The best duration assignment which
can be obtained from (s1, …, sn) assigns to each ti the value with the highest degree in T'(i) such
that:

 T'(i) = T(i) * (–), D(i)  R(i)] *  [0, minPi#k(sk – si)]
*  [0, minCi%k max(sk – si, si – sk)]. (20)

4.2. Imprecise durations

In a second interpretation, fuzzy durations can be understood as ill-known parameters, due to
possible perturbations and can be again represented by possibility distributions. Indeed, possibility
distributions can be viewed as modelling uncertainty as well as preference (see Dubois, Fargier
and Prade (1993) for an exposition of this statement). Everything depends upon whether the
variable x attached to the possibility distribution +x is controllable or not. If x is controllable, +x is
a preference profile describing the preferred values of x. On the contrary if x is not controllable,
then +x models an agent's uncertainty about the value x will eventually take. In this section, it is
assumed that the duration of some operations may be subject to hazards or is ill-known because
partially unpredictable. Hence the knowledge about the durations is actually imprecise (e.g., ""i
will have a duration of approximately 5 time units"). The usual model of ill-known durations is
stochastic. If statistical data is available about this duration, this model is perfectly justified.
However, in many cases, statistical data is out of reach and the assumption of identically repeated
operations dubious. However some information about what duration is more plausible than
another is often available. This kind of qualitative information about uncertain parameters (be they
random or not) can be modelled by means of possibility distributions. They can be viewed as
nested confidence intervals with varying plausibility levels.

The possibility distribution +ti describing the more or less possible values for the duration
ti of a task "i corresponds to a trapezoidal fuzzy number T(i) represented by the 4-tuple (ti & t*i &
t*i & ti) such that ,(ti = x) = +ti (x) = µT(i)(x), see Figure 4. In this case, one looks for as robust
as possible a schedule given the imprecision over the durations and the flexibility of other temporal
constraints. The most robust schedules are those such that all the constraints are satisfied,
whatever the durations eventually are.
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 A precedence constraint Pi# k will be satisfied if whatever the real value of ti,
sk – si $ ti, i.e., if sk – si is greater than all the possible values of ti. In other terms, the satisfaction
degree of the precedence constraint is the necessity of the event ti & sk – si:

N(ti ( (–), sk – si]) = infti max(1 – µT(i)(ti), µ(–),sk–si](ti)) = µ]T(i),+)) (sk – si) (21)

where ]T(i),+)) is the set of numbers necessarily after T(i). Note that it involves only the
decreasing part of the possibility distribution µT(i). N(ti ( (–), sk – si]) = / means that if the
actual duration of operation "i is strictly less than sup T(i)1–/ = sup{x, µT(i)(x) $ 1 – /} then the
precedence constraint can be respected at degree /. Clearly the higher /, the safer the solution,
i.e., / = 1 means that the value of ti can be anything in the support of T(i).

Similarly, the satisfaction degree of a capacity constraint Ci%k is N(ti ( (–), sk – si] or tk (
(–), si – sk]). Since the durations are non-interactive, the joint possibility distribution of (ti,tk) is
+titk(x,y) = min(µT(i)(x),µT(k)(y)), and this satisfaction degree is equal to (see Dubois and Prade,
1988):

N(ti ( (–), sk – si] or tk ( (–), si – sk])
= max(N(ti ( (–), sk – si]), N(tk ((–), si – sk])) (22)

Let us now study the satisfaction of a due date constraint. Assume the starting time is si. Since
the true duration of "i is not known exactly, the possible values of its ending time si + ti are
described by a possibility distribution µsi.T(i), . denoting the addition of fuzzy quantities. What
is thus requested is that there is a possible value for the due date di, whose feasible values are
restricted by D(i), greater than all possible values of si + ti. The satisfaction degree of the due date
constraint is the inclusion degree of the fuzzy set si . T(i) in (–),D(i)] (instead of an intersection
degree in case of flexible durations), in other terms it is the necessity of the fuzzy event si + ti (
(–),D(i)] (see Dubois and Prade, 1988):

N(si + ti ( (–), D(i)]) = infti max (1 – µT(i) (ti), µ(–),D(i) si] (ti)) (23)

= N(ti ((–), D(i) si])

instead of its possibility degree ,(di – ti ( [si,+))) = ,(si + ti ( (–),D(i)]) (see equation (19)).

In summary, the satisfaction degree of a solution (s1, …, sn) is defined by:
Sat(s1, …, sn) = min ( mini=1,n ,(ri ( (–),si]), (24)

mini=1,n N(ti ( (–), D(i) si]),
minPi#k N(ti ( (–), sk – si]),
minCi%k N(ti ( (–), sk – si] or tk ( (–), si – sk])).

Hence, when fuzzy durations represent imprecise knowledge about the non controllable
duration of a task, the satisfaction degree of due dates, precedence and capacity constraints are
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necessity degrees which are motivated by the attempt to get a robust feasibility of the schedule,
facing hazardous events. This is in total contrast with the case when ti is a controllable decision
variable: the satisfaction degrees of due dates, precedence and capacity constraints are possibility
degrees because it is always possible to choose the best values of durations. It is then enough that
there exist durations satisfying the constraints in the best possible way, hence the feasibility is
expressed in terms of possibility only.

4.3 Uncertainty versus preference: an illustrative example

In order to better figure out the drastic difference between a fuzzy set modelling preference
and a fuzzy set modelling uncertainty, consider a very simple example of scheduling. In this
example the combinatorial difficulty is ruled out so as to focus on modelling acpects only.
Suppose Tom wants to attend a meeting in the morning at 8 a.m. He wants to know when to get
up, so as to arrive on time. He has to take the bus to reach the venue of the meeting, and the bus
ride takes about 1 hour. Besides he does not want to leave his house too early, say before 7, and
in any case not earlier than 6:30 h.. Clearly the time when he leaves his house is his choice. He
can express preferences on this decision variable by means of a linear fuzzy interval R with a
nondecreasing membership function, lower modal value 7 and support [6.5, 12]. As for the travel
time, Tom has no control on it. It depends on the waiting time (not more than 15 mn) and the
traffic situation, which never causes more than a 15 mn delay. His experience suggests that the
usual overall travel time (including the wait at the bus stop) is 1 hour. But if Tom is lucky (no
wait, no traffic jam) it can take only 45 mn. and, if unlucky, 1 hour and 15mn. This information
builds up a triangular fuzzy number T that models the uncertainty about the travel time; the
membership function of T does not reflect preference. Tom has preference on his arrival time: he
would like to arrive at 8 or before, but certainly not after 8:15 a.m..This makes up the fuzzy arrival
time D. How can Tom choose his actual starting time?

Assuming that R, T, and D are intervals, what Tom wants to find is a starting time s that does
not force him to get up too early (hence s ( R) such that whatever the travel time (hence for any t
( T) he arrives on time at the meeting (s+t ( D). Mathematically this means:

1 s such that: s ( R and 2t , if t( T then s+t ( D

When R, T, D are fuzzy sets it comes down to finding s that maximizes

min(µR(s), inft max( 1- µT(t), µD(s+t)))

The maximization and minimization are the fuzzy counterpart of the universal (2) and
existential  (1)  quantifiers;  and  max(1-a, b) is a multiple-valued implication. Clearly, the term
inft max( 1- µT(t), µD(s+t)) is equal to the degree of necessity of the fuzzy event s+t ( D given

the uncertain information t ( T, that is, N(t ((–), D s]) as in equation (23). Note that applying
possibility theory, as in the previous subsection, gives a systematic method for handling
uncertainty along with preference.
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The problem would be quite different if Tom had control on his travel time (say he takes his
car, and there is no traffic jam before 8 a.m.). Then the travel time t becomes controllable and T
represents Tom's preference about his drive (not to be above speed limit, driving not too slow
either, etc.). The problem becomes one of finding both s and t which maximize preferences about
starting time, driving time, and arrival hour, i.e. maxs,t min(µR(s), µT(t), µD(s+t))), quite a
different problem from the case when t is uncertain. This problem with preference only is trivially
solved by letting s = 7 and t = 1 with degree of preference 1. The other problem looks more tricky,
and is solved in the next section.

4.4. A unique formulation handles flexible as well as imprecise durations

When durations are decision parameters subject to flexible constraints, the different types of
constraints over the possible values of the starting times (see equation (18)) can be expressed by:

precedence constraints Pi#k: sk – si ( [T(i), +))

capacity constraints Ci%k: sk – si ( [T(i), +)) or si – sk ( [T(k), +))

release and due dates: si ( [R(i), D(i)  T(i)]

The scheduling problem defines a non-conjunctive constraint graph whose nodes represent the
operations. Precedence and temporal constraints define the conjunctive part of the graph: a fuzzy
temporal window [R(i),T(i)] is associated to each node. Each conjunctive edge Pi#k represents a
precedence constraint ""i must precede Ok", by means of a fuzzy inequality of the type sk – si $
T(i). Capacity constraints Ci%k define non-conjunctive edges (sk – si $ T(i) OR si – sk $ T(k))
which represent conflicts of the type ""i before Ok OR Ok before "i".

T(i)
3(i)

µ[3(i),+))

ti t*i t*i = 3inf
i ti = 3sup

i

1

0 sj – si

Figure 4: from ]T(i), +)) to [3(i), +))

This kind of graph can also represent constraints involving ill-known durations. Indeed, in this
case, a precedence constraint Pi#k requires that sk – si belongs to ]T(i),+)) the set of values
which are necessarily greater than T(i), or, in other terms, that sk – si belongs to [3(i),+)), the set
of values that are possibly greater than 3(i), 3(i) being defined by 3infi = sup core(T(i)) = t*i,
3supi = ti, µ3(i)(ti) = 1 – µT(i)(ti) for t*i & ti & ti. Then µ[3(i),+)) = µ]T(i),+)) (see Figure 4).

Now it is easy to see that, if 4' is the possibility measure computed with (3) with A = 3(i) and
P = (–), sk – si]:
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N(ti ( (–), sk – si]) = µ[3(i),+))(sk – si) = 4'(ti ( (–), sk – si]).

A little less obvious is the following result (which holds provided some continuity assumption on
the membership functions) (see Appendix I)

N(ti ( (–), D(i)  si] = supti min(µ[3(i),+))(ti), µ(–),D(i) si](ti))   (25)

= 4'(ti ( (–), D(i)  si]).

Hence the new form of the following constraints where durations are not controlable:

precedence constraints Pi#k: sk – si ( [3(i), +))

capacity constraints Ci%k: sk – si ( [3(i), +)) or si – sk ( [3(k), +))

release and due dates:  si ( [R(i), D(i) 3(i)]

Hence, a scheduling problem with uncertain durations can be formally expressed by the same
kind of constraints as a problem involving flexible durations, and thus be described by means of
the same kind of non conjunctive graph. But the interpretation is quite different: in case of flexible
durations, the fuzzy duration labels over the graph come from the specification of preferences and
represent the possible values that can be assigned to the ti's. In case of imprecisely known
durations, these labels come from the uncertainty about the real value of some durations: each of
them represents the set of values that are necessarily greater than the estimated duration of an
operation. Note that in case of flexible durations only the increasing part of T(i) is used (since it is
interesting only to shorten this duration in order to make the scheduling problem more feasible),
while in the case of uncertain durations, only the decreasing part of T(i) is used, under the form
3(i) (since the decision-maker has to be pessimistic about the value of ti in order to protect the
schedule against hazards). In the following, it is supposed that fuzzy durations T(i) represent
flexible durations, considering that imprecise durations can be handled, replacing T(i) by 3(i).

Example: Let us solve the mixed uncertainty/preference problem of Section 4.3. The fuzzy
travel time T is changed into 3, with a lower modal value 3inf = 1.25 and lower support limit 3inf
= 1. From the above result,

sups min(µR(s), inft max( 1- µT(t), µD(s+t))) = sups, t min(µR(s), µ3(t), µD(s+t)))

= sups min(µR(s), µD 3 (s)))

where using fuzzy arithmetic, D 3 has a linear increasing membership function, with upper
modal value (in hours) 8 - 1.25 = 6.75, and upper support limit 8.25 - 1 = 7.25. Finding the
optimum preference level is the matter of intersecting two straight lines (as in figure 5). The reader
can check that this level is .75, and that the optimal time for Tom to start safely enough is  6.875 =
µR-1(.75) (= 6: 52' 30" a.m.). This result presupposes that the travel time does not exceed 1.1875
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=  µ3-1(.75) (1h 11' 20"); note that this is very likely. Moreover taking these conditions for
granted, Tom will arrive at his meeting not later than  µD-1(.75) = 8.0625 (= 8: 03' 45" a.m.).
Note that this solution differs from the one when all fuzzy sets mean preference, and sounds quite
reasonable in practice.

5. Solving flexible job-shop scheduling problems

The solving approach consists in searching for a sequencing of operations on each machine
(like in most approaches), from which earliest and latest starting times can be computed. In other
terms, as pointed out in Section 2,  disjunctive constraints ""i before Ok OR Ok before "i" must
be transformed into simple precedence constraints by choosing one of the alternatives. It is based
on three basic procedures:

• a general search procedure that proceeds by managing new precedence constraints,
• a consistency enforcing procedure which propagates the effect of these decisions through
   the updated precedence (conjunctive) graph, 
• a constraint analysis procedure (or look-ahead analysis) that determines which precedence
   decision to make next, i.e., it generates precedence constraints by solving disjunctions.

5.1. Consistency Enforcing

Considering only the conjunctive part of the graph, each new precedence constraint Pi#k
implies that the fuzzy temporal window associated to Ok (resp. "i) must now be such that rk $ ri +
ti (resp. di & dk – tk). Hence, the temporal windows can be updated as follows:

R'(k) := max(R(k), R(i) . T(i))
D'(i) := min(D(i), D(k)  T(k))

where max and min are versions of the maximum and minimum operations extended to fuzzy
arguments. This is a variant of the initial computation of fuzzy temporal windows as in (10)-(11).
The acyclicity of the graph can be exploited to produce an efficient ordering for updating the
temporal windows. The R(k) are updated along precedence constraints, and the D(i) are updated
backwards.

It turns out that this method guarantees that the best among the earliest (resp. latest) starting
times according to the precedence constraints can then be obtained when assigning to each si the
lowest (resp. greatest) date among its best possible values, i.e., values s*i with highest
membership degree in the set [R(i), D(i)  T(i)] (see Figure 5).
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4(di – ri – ti $ 0)

1

0

R(i) D(i)

s*i

D(i)  T(i)

 [R(i), D(i)  T(i)]

Figure 5: consistency degree of "i's temporal window

Hence, the consistency of the conjunctive part of the problem, which is the satisfaction degree
of the best scheduling according to the precedence and limit date constraints, is given by:

Cons(conjunctive part) = mini=1,n supsi min(µ[R(i),+))(si), mini=1,n µ(–),D(i) T(i)](si))

= mini=1,n ,(di – ri – ti $ 0). (26)

Cons(conjunctive part) considers only the precedence constraints, without taking into account
the capacity constraints. It only yields an upper bound of the consistency of the global scheduling
problem. However, Cons(conjunctive part) = 0 means that a contradiction is detected: constraints
are totally inconsistent.

5.2. Search Procedure

The sequencing which is searched for is one of those having the best satisfaction degree.The
search procedure can be in fact a classical branch &bound algorithm using a depth-first strategy.
The nodes of the tree represent partial sequencing and its leaves complete sequences on machines:
extending a node means choosing a disjunction ("i precedes Ok OR Ok precedes "i) and selecting
one of its unexplored alternatives. This choice is done by the look-ahead procedure. The graph is
then modified according to this decision (the corresponding linear inequality is substituted to the
disjunction) and the consistency of the conjunctive part is enforced using the previous propagation
algorithm, propagating D(k) backwards and R(i) forwards through the new edge in the precedence
graph. Hence an estimate of Cons(conjunctive part) is obtained and associated to the node: this
degree is an upper bound of the satisfaction degree of the best complete sequencing that can be
reached from the node. A bound / represents the satisfaction degree of the best current complete
sequencing (initialized to value 0): only nodes with satisfaction degree greater than / should be
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explored. If the current node is such that Cons(conjunctive part) & /, the algorithm backtracks to a
node whose degree is greater than /. / is updated each time a complete sequencing better than the
previous one is reached.

This kind of algorithm clearly has a worst case behaviour not worse than that of classical
backtracking used to solve crisp scheduling problems. If the search time is limited, the use of a
depth first strategy allows to quickly obtain a sub-optimal solution which will be enhanced
according to the remaining time. Moreover, the flexibility of the constraints is used to guide the
search and allows the pruning of useless branches. Finally, it is possible to develop a large class
of search algorithms (e.g., beam search as in Fox and Strohm (1982)) based on the same
principles and integrating different variants (see Schiex, 1992).

5.3. Look ahead procedure

The efficiency of the search relies of course on the heuristic evaluation function that determines
which disjunction to be instanciated next. It is actually based on the extension of constraint
analysis tests (Erschler et al., 1976; Erschler and Esquirol, 1986) that have been described in
Section 2. For each disjunction, also called a conflict ("i precedes Ok OR Ok precedes "i), an
upper bound of the possibility of each alternative may be computed (Dubois, 1989):

,sup("i precedes Ok) = ,((dk – ri) – (ti + tk) $ 0) (27)
= supx$0 µD(k) R(i) T(i) T(k)(x)

= µ(–),D(k) R(i)](ti + tk) in case of crisp durations

This is the fuzzy version of Test-1(i,k) described in Section 2. ,sup("i precedes Ok) = 0 means
that the decision ""i precedes Ok" is inconsistent in the current search state according to "i and
Ok's temporal windows. Hence, decision "Ok precedes "i" must be chosen (otherwise, the
satisfaction degree of the sequencing will be 0). Note that the the calculation ,sup("i precedes Ok)
according to (27) only gives an upper bound of ,("i precedes Ok). For instance, it would be
inefficient in the three-operation example of Section 2. An approximation of ,sup("i precedes Ok)
better than the one computed by (27) can be obtained taking three operations into account, say "i,
Ok and "x, and letting "x vary, i.e. using a fuzzy extension of Test-2(i,k) described in Section 2:

,sup("i precedes Ok) = min( ,((dk – ri) – (ti + tk) $ 0), (28)
minOx (max ,((dk – ri) – (ti + tk + tx) $ 0),

,((dk – rx) – (ti + tk + tx) $ 0),
,((dx – ri) – (ti + tk + tx) $ 0)))

where the three additional terms pertain to the respective sequences: "i/"x/Ok, "x/"i/Ok and
"i/Ok/"x. Coming back to the three-operation example of Section 2, ,sup("i precedes Ok) = 0 is
obtained, which enforces the other precedence constraint.
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Note that max(,sup("i precedes Ok), ,sup(Ok precedes "i)) is an upper bound of the
satisfaction degree of the search state. Hence, backtracking can be caused by the look-ahead
analysis as soon as there is a conflict such that max (,sup ("i precedes Ok), ,sup(Ok precedes
" i)) & / , / being the satisfaction degree of the current best instantiation. Moreover,
min(,sup("i precedes Ok), ,sup(Ok precedes "i)) estimates the degree to which the satisfaction
will fall down if the best of the two alternatives is not chosen. The interest of choosing the best
alternative between Pi#k and Pk#i, that is, the criticity of the conflict ("i , Ok), is defined by:

C("i,Ok)= 1 – min(,sup("i precedes Ok), ,sup(Ok precedes "i)) (29)

The criticity of a resource is the maximal criticity of the conflicts between operations to which the
resource has been assigned. It evaluates the degree of necessity that either Oi should precede Ok or
Ok should precede Oi.

Hence, the look ahead procedure first computes the criticity of each conflict. Not all of the
remaining conflicts are analyzed at each search state, but only those involving at least one
operation whose fuzzy temporal window has been modified by the consistency enforcing
procedure while creating the search state (the criticity of the others remain unchanged). In order to
keep the satisfaction degree as high as possible, a conflict whose criticity is maximal is then
chosen to be instanciated by the most possible alternative (alternatives ("i precedes Ok) such as
,sup("i precedes Ok) & / will lead to a solution worse than the best current one: they do not have
to be envisaged). If several conflicts correspond to the maximal criticity, one can focus on the
machine having the larger set of critical conflicts. Since the set of the critical conflicts pertaining to
a machine is a fuzzy set, this cardinality is actually a fuzzy cardinality (sum of membership
grades).

Although the present framework is not additive like the one proposed in (Sadeh, 1991), its
heuristics are similar: the lower the quality of the best scheduling deriving from the choice of a
precedence constraint, the higher the priority of the conflict (and of the opposite decision). It is
quite different from the heuristic chosen in the fuzzy approach described in (Kerr and Walker,
1989), in which the most possible decisions are chosen regardless of their degrees of criticity. In
that work, the priority of a conflict is the maximum possibility of the alternatives: a conflict
involving two completely possible alternatives is paradoxically considered as interesting to the
same extent as a conflict involving one impossible alternative and a completely possible one. The
approach described here considers the latter conflict as more interesting and enforces the only
feasible decision. An illustrative example solved by the implemented method is given in Appendix
II.

The look-ahead procedure can be linked with a knowledge-based decision support module (see
for instance Bensana et al. (1988)): on the one hand, the knowledge-based module can be used to
break ties among otherwise equivalent candidates. On the other hand, there are situations where
the most critical conflicts are not critical enough to efficiently motivate a decision: even the worst
alternative will not decrease the satisfaction degree of the next node (because the highest criticity is
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lower than 1 – Cons(conjunctive part of the current node)). It is then better to use other criteria to
solve the conflicts, especially knowledge-based criteria (which can also exploit the possibility
degrees computed by the constraint analysis procedure). In the OPAL system (Bensana et al.,
1988), the constraint propagation is not fuzzy but is exactly the one of Erschler et al. (1976); fuzzy
sets are only used in the representation of various priority rules which are triggered in order to
compute preference profiles over precedence decisions. These preference profiles are combined
using a voting procedure that extends the majority rule. More elaborated aggregation schemes are
proposed by Dubois and Koning (1994).

6. Conclusion
Possibility theory offers a rich and powerful setting for the representation of scheduling

constraints pervaded with flexibility (e.g., flexible release dates, due dates and durations) or
uncertainty (e.g., imprecise durations). Classical constraint propagation (e.g., scheduling in a
conjunctive activity graph) and constraint analysis schemes can be easily extended to this new
framework. In any case, a fuzzy approach reveals suitable for scheduling problems involving
relaxable constraints or imprecise limit dates: explicitly taking the flexibility of the problem into
account does not significantly change the computational cost of the search procedure; the
complexity of consistency enforcing and analysis procedures may be multiplied by two in the
worst case. Moreover, empirical relaxations techniques are avoided since they often happen to be
more expensive, difficult to formulate, and suboptimal. This framework can be easily extended to
capture priority between constraints (e.g., "it is preferable to schedule "i before Ok but it is not
compulsory") see (Dubois et al., 1994). It should also be noticed that the fuzzy approach can
handle partially inconsistent problems. A solution (the instanciation with the maximal satisfaction
degree) will be provided as long as the problem is not totally inconsistent.

Preliminary experiments had been made (Mathé, 1987) to compare fuzzy constraint analysis
involving flexible release dates and due dates to crisp constraint analysis in the framework of the
Opal system (Bensana et al., 1988). Except for strongly constrained problems where a crisp
constraint analysis can make most of the decisions, these preliminary experiments suggested that
the fuzzy analysis might be more productive than the crisp analysis. The integration of fuzzy
durations has now been implemented and its computational comparison to crisp durations for real-
sized problems is currently performed. Moreover, the more elaborate look-ahead scheme (28) is
currently under experiments to determine whether it really enhances the predictiveness of the
search procedure and it significantly reduces the search space (improving the estimation of the
possibility of each alternative, the analysis will lead to more pruning during the search but each
step will be more time consuming). Results obtained so far are encouraging (Fargier, 1994). They
indicate that computational times to solve flexible jobshop scheduling problems are not
significantly greater than the times requested to solve hard, non-fuzzy ones, regarding to finding a
first feasible solution. Sometimes fuzzy jobshops get solved even faster. Moreover the first
solution found using the fuzzy formulation is almost systematically better in terms of quality:
starting times are chosen well inside the feasibility domains while the first solutions to crisp
formulations tend to stick to the boundaries of the feasibility domain. The solutions computed by
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the procedure depend on the choice of the membership functions, of course. However the
sensitivity should not be too dramatic, because due to the use of the minimum operation a small
change in the membership functions will be either directly reflected in the global satisfaction level
or ignored.  In this paper, an approach has been presented for computing predictive schedules
taking into account flexibilities and uncertainty. Clearly, one may also think of taking advantage of
fuzzy constraints in a real-time monitoring perspective.

Appendix I

1) Proof of the identity (17):

Sat(s1, …, sn) = mini=1,n min(mink( i µ[Ti,+))(sk – si), µR(i)(si), µD(i) T(i)(si)).

One must prove that, in this particular situation, the sup distributes over the min, that is,

supti min(µ(–),mink( i sk](si + ti), µT(i)(ti), µ(–),D(i)](ti + si)) =

min(supti min(µ(–),mink( i sk](si + ti), µT(i)(ti)), supti min(µT(i)(ti), µ(–),D(i)](ti + si))). (A1)

Indeed if this equality is established, then

supti min(µ(–),mink( i sk](si + ti), µT(i)(ti)) = supti & (mink( isk) - si µT(i)(ti)

= µ[T(i),+))(mink( i sk – si) = mink( i µ[T(i),+))(sk – si).

The other term has been computed in equation (16).

To establish the distributivity of the sup in (A1) the following lemma is needed:

Lemma: If A, B, C are three continuous fuzzy intervals then ((–),A] *  (–),B])  C =

(–), A  C] * (–), B  C].

Proof: Let f = µ(–),A] and g = µ(–),B]. f and g are decreasing functions on . Namely f(x) = 1,
2 x & a*, f(x) = 0, 2 x ( [a,+)), f is decreasing on [a*,a]. The same holds for g with respect to
b* and b. µC(x) = 0 for x 5 [c,c], µC(x) = 1 for x ( [c*,c*] 6 [c,c], µC is increasing on [c,c*],
and decreasing on [c*,c]. Now, it is always true that:

µ((–),A]*(–),B]) C(z)= supx min(f(x + z), g(x + z), µC(x))

 & min(supx min(f(x + z), µC(x)), supx min(g(x + z), µC(x))). (A2)

Let xf and xg be such that supx min(f(x + z), µC(x)) =min(f(xf + z), µC(xf)) and supx min(g(x +
z), µC(x)) = min(g(xg + z), µC(xg)). Assume f(xf + z) = µC(xf) = µC(xg) = g(xg + z) = 1, and
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without loss of generality xf & xg ; then g(xf + z) = 1, and xf maximizes min(f(x + z), g(x + z),
µC(x)) as well. Changing 1 into 0, the equality obviously holds in (A2). Assume now that
min(f(xf + z), µC(xf)) (  (0,1). Then it is obvious that xf (  (c,c*), and that f(xf + z) =
µC(xf) < 1. Assume f(xf + z) < g(xg + z). Hence µC(xf) < µC(xg) and xf < xg. Hence g(xf + z) >
g(xg + z) > f(xf + z). Hence

min(µC(xf), f(xf + z), g(xf + z)) = min(µC(xf), f(xf + z))

and xf is a maximum for min(µC(x), f(x + z), g(x + z)). Assume now f(xf + z) = g(xg + z).
Without loss generality assume xf & xg then g(xf + z) $ g(xg + z) = f(xf + z). Again xf is a
maximum for min(µC(x), f(x + z), g(x + z)).

Now it is enough to prove that µ(–),A] C(z) = µ(–),A C](z).

To see it notice that

µ(–),A] C(z) = supx min(µC(x), supy$x+z µA(y))

= supx,y:y$x+z min(µC(x), µA(y))
= supt$z supx min(µC(x), µA(t + x)) with t = y – x
= supt$z µA C(t) = µ(–),A C](t).

2) Proof of the identity (25)

N(ti ( (–), D(i)  si] ) = supti min(µ[3i,+))(ti), µ(–),D(i) si](ti)).

Let f = µ(–),D(i) si], g
– = µ(–),T(i)[, g+ = µ]T(i),+)) = µ[3i,+)) . It holds µT(i) = min (1-g+ ,1-g-). f

is continuous, decreasing in the wide sense, as well as g–, while g+ is continuous, increasing in
the wide sense. Moreover, g–(x) = 0, 2 x > t*i, g+(x) = 0, 2 x < t*i. (refer to fig.4).

Let t ( (t*i,t*i). Then

N(ti ( (–), D(i)  si)) = infx max(f(x), g+(x), g–(x))
= min (infx&t max(f(x), g–(x)), infx$t max(f(x), g+(x)))
= min(max(f(x*), g–(x*)), max(f(x*), g+(x*)))

for some x* $ t, and x* & t. If max(f(x*), g+(x*)) = 1 it means that ti & dinfi - si, hence f(x) = 1

for all x & ti. Hence N(ti ( (–), D(i)  si] ) = infx max(f(x), g+(x)) = 1. If max(f(x*), g+(x*)) =

0, then N(ti ( (–), D(i)  si]) = infx max(f(x), g+(x)) = 0. If max(f(x*), g+(x*)) ( (0,1) then
because f is decreasing while g+ is increasing in the neighborhood of x*, clearly f(x*) = g+(x*).
But max(f(x*), g–(x*)) $ f(x*) since f is decreasing. Hence in all cases it holds that
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N(ti ( (–), D(i)  si]) = infx max(f(x), g+(x)).

Now due to the continuity of f and g+, it is easy to check that

infx max(f(x), g+(x)) = supx min(f(x), g+(x)).

When T(i) is a regular closed interval g– and g+ are not continuous but it can be verified that the
result holds.
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