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Introduction

The cylindrical Kortewegde Vries equation admits a family of solutions which are expressed in terms of Fredholm determinants involving the Airy kernel operator [START_REF] Pöppe | The Fredholm determinant method for the KdV equations[END_REF][START_REF] Pöppe | Fredholm Determinants and the τ Function for the Kadomtsev Petviashvili Hierarchy[END_REF][START_REF] Cafasso | Airy kernel determinant solutions to the KdV equation and integro-dierential Painlevé equations[END_REF]. These solutions have an interesting probabilistic interpretation, as they are gap probabilities for random thinnings of the Airy point process [START_REF] Cafasso | Airy kernel determinant solutions to the KdV equation and integro-dierential Painlevé equations[END_REF], and they are therefore connected to important problems in integrable probability, such as the extreme value statistics of nite temperature free fermions [START_REF] Johansson | From Gumbel to TracyWidom[END_REF][START_REF] Liechty | Asymptotics of free fermions in a quadratic well at nite temperature and the MosheNeubergerShapiro random matrix model[END_REF][START_REF] Moshe | Generalized ensemble of random matrices[END_REF][START_REF] Le Doussal | Exact short-time height distribution in 1D KPZ equation and edge fermions at high temperature[END_REF], the distribution of the narrow wedge solution of the KardarParisiZhang equation [START_REF] Doussal | Large deviations for the KardarParisiZhang equation from the Kadomtsev Petviashvili equation[END_REF][START_REF] Quastel | KP governs random growth o a one dimensional substrate[END_REF][START_REF] Baik | Dierential equations for the KPZ and periodic KPZ xed points[END_REF], the edge eigenvalue statistics in the complex elliptic Ginibre Ensemble at weak non-Hermiticity [START_REF] Bothner | The complex elliptic Ginibre ensemble at weak non-Hermiticity: edge spacing distributions[END_REF], and multiplicative statistics of Hermitian random matrices [START_REF] Silva | Universality for multiplicative statistics of Hermitian random matrices and the integro-dierential Painlevé II Equation[END_REF].

In this work, we show that Darboux transformations of such solutions also enjoy a probabilistic interpretation: they are Jánossy densities of random thinnings of the Airy point process. We investigate the integrable structure of these solutions, and show how they are connected to the Stark equation and to an integro-dierential Painlevé II equation. In this way, we reveal a remarkable connection between the Airy point process and scattering theory for solutions of the cylindrical Kortewegde Vries equation. Moreover, we show that their tail asymptotics can be described as a superposition of simpler solutions. This soliton-like behavior nds its origin in the fact that certain conditional ensembles related to the Airy point process decorrelate asymptotically.

To set the ground and give motivation for this work, we start by recalling results about the Fredholm determinant

j σ (s) := 1 + ∞ n=1 (-1) n n! R n ρ Ai n (λ 1 + s, . . . , λ n + s) n i=1 σ(λ i )dλ i , (1.1) 
where σ : R → [0, 1] is a function satisfying Assumption A below, s ∈ R, and ρ Ai n (λ 1 , . . . , λ n ) := det K Ai (λ i , λ j ) 1≤i,j≤n

(1.2)
with K Ai the Airy kernel

K Ai (λ, µ) := +∞ 0 Ai(λ + η)Ai(µ + η) dη = Ai(λ)Ai ′ (µ) -Ai ′ (λ)Ai(µ) λ -µ , (1.3) 
Ai and Ai ′ being the Airy function and its derivative, respectively. We will consider functions σ satisfying the following properties.

Assumption A. The function σ : R → [0, 1] is smooth and there exists κ > 0 such that σ(λ) = O |λ| -3 2 -κ as λ → -∞.

Remark 1.1. For j σ (s) to be well dened, we need the trace condition R σ(λ)K Ai (λ, λ)dλ < ∞.

The decay in Assumption A is slightly stronger than this requirement. This will allow us to control the s → +∞ behavior of certain objects, see in particular Section 3.3.

As we shall prove in Lemma 2.1, it follows from Assumption A that 0 < j σ (s) ≤ 1 for all s ∈ R.

Moreover, as proved in [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions[END_REF][START_REF] Bothner | On the origins of Riemann-Hilbert problems in mathematics[END_REF][START_REF] Bothner | Momenta spacing distributions in anharmonic oscillators and the higher order nite temperature Airy kernel[END_REF][START_REF] Cafasso | Airy kernel determinant solutions to the KdV equation and integro-dierential Painlevé equations[END_REF], introducing v σ (s) := ∂ 2 s log j σ (s), (1.4) one has

v σ (s) = - R φ σ (λ; s) 2 σ ′ (λ)dλ, σ ′ (λ) := dσ(λ) dλ , (1.5) 
where φ σ (λ; s) solves the Stark equation ∂ 2 s + 2v σ (s) -s φ(λ; s) = λ φ(λ; s) 1 . More precisely, φ σ (λ; s) is the unique solution to the Stark boundary value problem ∂ 2 s + 2v σ (s) -s φ σ (λ; s) = λ φ σ (λ; s), φ σ (λ; s) ∼ Ai(λ + s), s → +∞.

(1.6) (See Proposition 3.10 for the proof of the boundary values under our current assumptions on σ). In particular, it follows by combining (1.5) and (1.6) that φ σ solves the integro-dierential Painlevé II equation of Amir, Corwin, and Quastel [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions[END_REF] ∂ 2 s φ σ (λ; s) = λ + s + 2 R φ σ (µ; s) 2 σ ′ (µ)dµ φ σ (λ; s). A one-parameter family of isospectral deformations of (1.6) can be constructed as follows. Let

T > 0 and introduce

J σ (X, T ) := 1 + ∞ n=1 (-1) n n! R n ρ Ai X,T ;n (λ 1 , . . . , λ n ) n i=1 σ(λ i )dλ i , (1.8) 
where ρ Ai X,T ;n (λ 1 , . . . , λ n ) := det K Ai X,T (λ i , λ j ) 1≤i,j≤n

(1.9)

for a shifted and dilated Airy kernel

K Ai X,T (λ, µ) := T -1 3 K Ai (T -1 3 (λ + X), T -1 3 (µ + X) .
(1.10) 1 The Stark equation is nothing else than the Schrödinger equation ∂ 2 s + 2u(s) φ(λ; s) = λφ(λ; s), for a potential u(s) = vσ(s) -s/2 with linear background -s/2.

∂ T V + 1 12 ∂ 3 X V + V ∂ X V + 1 2T V = 0.
(1.14)

More precisely, the variables x ∈ R, t > 0 of loc. cit. are related to X ∈ R, T > 0 of this paper as x = -XT -1 2 , t = T -1 2 , such that the KdV equation for u = u(x, t)

∂ t u + 1 6 ∂ 3 x u + 2 u ∂ x u = 0 (1.15) 
[14, equation (1.7)] is equivalent to the cKdV equation (1.14) for the function

V (X, T ) := T -1 u x = -XT -1 2 , t = T -1 2 + 1 2 XT -1 .
(1. [START_REF] Claeys | The generating function for the Airy point process and a system of coupled Painlevé II equations[END_REF] In the language of integrable PDEs, this implies that the Fredholm determinant J σ (X, T ) is a tau function of the cKdV equation. In particular, J = J σ (X, T ) solves the bilinear form of the cKdV equation

∂ X J ∂ T J -J ∂ X ∂ T J - 1 4 ∂ 2 X J 2 + 1 3 ∂ X J ∂ 3 X J - 1 12 J ∂ 4 X J - 1 2T J ∂ X J = 0.
(1.17)

The direct and inverse scattering transform for the cKdV equation has been established in [START_REF] Santini | Asymptotic behaviour (in t) of solutions of the cylindrical KdV equation[END_REF][START_REF] Santini | Asymptotic behaviour (in t) of solutions of the cylindrical KdV equation[END_REF][START_REF] Its | A RiemannHilbert approach to the inverse problem for the Stark operator on the line[END_REF][START_REF] Its | Large time asymptotics for the cylindrical Kortewegde Vries equation[END_REF] for smooth and decaying initial data.

Example 1.2. The simplest situation occurs when σ = 0. Then, J 0 (X, T ) = 1, V 0 (X, T ) = 0, φ 0 (λ; X, T ) = Ai T -1 3 (λ + X) .

(1.18)

Example 1.3. The function σ = 1 (0,+∞) does not satisfy Assumption A, but it is nevertheless an instructive degenerate situation. (The present setting could be extended to include such case, cf. T  1 T  10

Figure 1: The solution V 1 (0,+∞) (X, T ) as a function of X for some values of T .

Remark 1.4. The KdV and cKdV equations, (1.15) and (1.14), respectively, are completely equivalent from an algebraic point of view, since the transformation (1.16) denes a one-to-one correspondence of solutions. On the other hand, this correspondence drastically changes the analytic properties of solutions; e.g., if V is bounded then u is not, and vice versa. In view of the analytic properties of the solutions under consideration, we nd it more natural to work with the cKdV equation; moreover, the relevant RiemannHilbert problem in our analysis formally matches with the one for the inverse scattering theory of the cKdV of Its and Sukhanov [START_REF] Its | A RiemannHilbert approach to the inverse problem for the Stark operator on the line[END_REF][START_REF] Its | Large time asymptotics for the cylindrical Kortewegde Vries equation[END_REF], cf. Section 3.5.

To explain the probabilistic meaning of these cKdV solutions, let the shifted and dilated Airy point process be the determinantal point process [START_REF] Soshnikov | Determinantal random point elds[END_REF] on the real line induced by the correlation kernel K Ai X,T given in (1.10). Equivalently, it is the probability distribution (parametrically depending on X ∈ R, T > 0) on the space of locally nite congurations of points on the real line characterized by its m-point correlation functions ρ Ai X,T ;m dened in (1.9). More explicitly, this means that for all disjoint Borel sets B 1 , . . . , B ℓ ⊆ R and for all integers k 1 , . . . , k ℓ ≥ 1 summing up to ℓ j=1 k j = m, the expected number of m-tuples of points in a random conguration of which k

1 lie in B 1 , k 2 in B 2 , . . . , is 1 k 1 ! • • • k ℓ ! B k 1 1 ו••×B k ℓ l ρ Ai X,T ;m (λ 1 , . . . , λ m ) dλ 1 • • • dλ m . (1.21)
Then, the relation to the cKdV tau functions J σ (X, T ) is expressed by the identity

J σ (X, T ) = E j≥1 1 -σ(λ j ) (1.22)
where the expectation on the right involves the particles λ 1 > λ The σ-thinned shifted and dilated Airy point process is obtained from the shifted and dilated Airy point process by removing each particle in a conguration independently with (position-dependent) probability 1 -σ, thus retaining it with probability σ. This point process is also determinantal, with a correlation kernel given by σ(λ)K Ai X,T (λ, µ) σ(µ), cf. [34, eq (2.5)]; it follows that J σ (X, T ) is the gap probability of the σ-thinned process, i.e., the probability that a random point conguration in this process is empty. Moreover, if σ : R → [0, 1] decays suciently fast at -∞ (for instance, if it satises Assumption A) the σ-thinned shifted and dilated Airy point process has almost surely a nite number of particles (Remark 2.2). In such a case, we can dene the global Jánossy density of order m ≥ 0, denoted J σ (X, T |ν 1 , . . . , ν m ). These quantities are characterized by the property that for all disjoint Borel subsets B 1 , . . . , B ℓ ⊆ R such that ⊔ ℓ j=1 B j = R and all integers k 1 , . . . , k ℓ ≥ 1

summing up to ℓ j=1 k j = m, the probability that a conguration in the σ-thinned shifted and dilated Airy point process contains exactly m particles, of which k

1 lie in B 1 , k 2 in B 2 , . . . , is 1 k 1 ! • • • k ℓ ! B k 1 1 ו••×B k ℓ l J σ (X, T |ν 1 , . . . , ν m ) m j=1 σ(ν j )dν j . (1.23)
It is known [47, eq. (1.38)] that Jánossy densities can be expressed as

J σ (X, T |ν 1 , . . . , ν m ) = ∞ n=0 (-1) n n! R n ρ Ai X,T ;n+m (λ 1 , . . . , λ n , ν 1 , . . . , ν m ) n i=1 σ(λ i )dλ i . (1.24)
For brevity, we will collect the distinct real numbers ν i into a vector ν := (ν 1 , . . . , ν m ) and denote J σ (X, T |ν) := J σ (X, T |ν 1 , . . . , ν m ). To be consistent with the notation previously introduced, we have J σ (X, T ) = J σ (X, T |∅).

As in the case m = 0, it is interesting to study the situation when T is kept constant rst.

This is sucient to disclose the relation to Stark boundary value problems and to a generalized integro-dierential Painlevé II equation. In such case, T can be set to 1 without loss of generality because

J σ (X, T |ν) = T -m 3 J σ (XT -1 3 , 1|T -1 3 ν), σ(λ) := σ(T 1 3 λ).
(1.25)

Accordingly, we will formulate our results in which T is constant more concisely in terms of j σ (s|ν) := J σ (s, 1|ν), s ∈ R.

(1.26)

Our rst result on the integrable structure of the Jánossy densities is their expression in terms solely of the eigenfunctions of the Stark operator.

Theorem I. Let σ satisfy Assumption A and let φ σ (λ; s) be the unique solution to the Stark boundary value problem (1.6). For all s ∈ R and all ν = (ν 1 , . . . , ν m ) with ν i ̸ = ν j for all i ̸ = j, we have

j σ (s|ν) = det (L σ s (ν i , ν j )) m i,j=1 j σ (s|∅), (1.27) 
where

L σ s (λ, µ) = +∞ s φ σ (λ; r)φ σ (µ; r) dr = φ σ (λ; s)∂ s φ σ (µ; s) -∂ s φ σ (λ; s)φ σ (µ; s) λ -µ , (1.28) 
and

j σ (s|∅) = exp - +∞ s (r -s) R φ σ (λ; r) 2 σ ′ (λ)dλ dr . (1.29)
The proof is given in Section 3.4.

Remark 1.5. The kernel L σ s (•, •) induces a determinantal point process (depending parametrically on s ∈ R) which is obtained via a conditioning of the shifted Airy point process, in the following sense: assign independently to each point λ in a random conguration mark 1 with probability σ(λ) and mark 0 otherwise, then condition the resulting marked shifted Airy point process on the event that no points have mark 1. The conditional point process obtained in this manner is determinantal, and has correlation kernel L σ s (•, •), see Section 2.2 and [START_REF] Claeys | Determinantal point processes conditioned on randomly incomplete congurations[END_REF] and [START_REF] Bufetov | Quasi-symmetries of determinantal point processes[END_REF][START_REF] Bufetov | Conditional measures of determinantal point processes (Russian)[END_REF][START_REF] Bufetov | Kernels of conditional determinantal measures and the Lyons-Peres completeness conjecture[END_REF][START_REF] Silva | Universality for multiplicative statistics of Hermitian random matrices and the integro-dierential Painlevé II Equation[END_REF] for details. The factorization (1.27) receives an interesting probabilistic interpretation: it is the product of an mpoint correlation function in this conditional determinantal point process and of the gap probability of the σ-thinned shifted Airy point process.

Example 1.6. It is instructive to consider again the case σ = 0, in which case φ 0 (λ; s) = Ai(λ + s), and so (1.28) reduces to the shifted Airy kernel L 0 s (λ, µ; s) = K Ai (λ+s, µ+s), cf. (1.3). In this sense we can regard φ σ as a generalization of the Airy function, and L σ s as a generalization of the shifted Airy kernel; it is interesting to check that several properties of the Airy function and the shifted Airy kernel are preserved by this generalization. See for instance Proposition 3.10 and Corollary 3.11.

Example 1.7. The choice σ = 1 (0,+∞) is again not admissible in view of Assumptions A, but with v σ (s) = φ(0; s) 2 = -y HM (s) 2 , the degenerate case of (1.5), the Stark boundary value problem (1.6) still makes sense, and the kernel L 1 (0,+∞) s (λ, µ) is dened. Moreover, this kernel has appeared in the soft-to-hard edge transition in random matrix theory [START_REF] Claeys | Universality in unitary random matrix ensembles when the soft edge meets the hard edge[END_REF]Theorem 1.3]. In terms of the notations used in [START_REF] Claeys | Universality in unitary random matrix ensembles when the soft edge meets the hard edge[END_REF]Theorem 1.3], we have

φ 1 (0,+∞) (λ; s) = - 1 √ 2π f 0 (-λ; s), ∂ s φ 1 (0,+∞) (λ; s) = - 1 √ 2π g 0 (-λ; s) + p 0 (s)f 0 (-λ; s) ,
and Airy point process on absence of particles on (0, ∞). Recall also that j 1 (0,+∞) (s|∅) = j 1 (0,+∞) (s) = F TW (s) is the TracyWidom distribution in this case.

L 1 (0,+∞) s (λ; µ) = K soft/hard 0 (-λ, -µ; s).
Next we give a second expression for the Jánossy densities which is more directly parallel to equations (1.5), (1.6), and (1.7) for the case m = 0. This expression involves eigenfunctions of the

Stark operator with a modied potential.

Theorem II. Let σ satisfy Assumption A. For all s ∈ R and all ν = (ν 1 , . . . , ν m ) with ν i ̸ = ν j for all i ̸ = j, we have

∂ 2 s log j σ (s|ν) = R φ σ (λ; s|ν) 2 -σ ′ (λ) + m i=1 2 1 -σ(λ) λ -ν i dλ (1.31)
where φ σ (λ; s|ν) solves the Stark equation

∂ 2 s + 2v σ (s|ν) -s φ σ (λ; s|ν) = λφ σ (λ; s|ν) (1.32)
with potential v σ (s|ν) := ∂ 2 s log j σ (s|ν).

(1.33)

Moreover, φ σ (λ; s|ν) can be expressed in terms of φ σ (λ; s|∅) and ∂ s φ σ (λ; s|∅) as

φ σ (λ; s|ν) = det      φ σ (λ; s|∅) L σ s (λ, ν 1 ) • • • L σ s (λ, ν m ) φ σ (ν 1 , s|∅) L σ s (ν 1 , ν 1 ) • • • L σ s (ν 1 , ν m ) . . . . . . . . . . . . φ σ (ν m , s|∅) L σ s (ν m , ν 1 ) • • • L σ s (ν m , ν m )      det    L σ s (ν 1 , ν 1 ) • • • L σ s (ν 1 , ν m ) . . . . . . . . . L σ s (ν m , ν 1 ) • • • L σ s (ν m , ν m )    , (1.34) 
so that, in particular, φ σ (λ, s|ν) has zeros at λ = ν 1 , . . . , ν m .

The proof is given in Section 3.4. In the case m = 0, the eigenfunctions φ σ (λ; s|∅) of this theorem reduce to what we denoted just φ σ (λ; s) up to this point; for the sake of clarity, we will from now on use the notation φ σ (λ; s|∅). Similarly said for the notation v σ (s) = v σ (s|∅).

In 

∂ 2 s φ σ (λ; s|ν) = λ + s + 2 R φ σ (µ; s|ν) 2 σ ′ (µ) - m i=1 2 1 -σ(µ) µ -ν i dµ φ σ (λ; s|ν). (1.35) 
A general framework for studying integro-dierential equations related to a class of Fredholm determinants was developed in [START_REF] Krajenbrink | From Painlevé to Zakharov-Shabat and beyond: Fredholm determinants and integro-dierential hierarchies[END_REF].

Remark 1.8. Theorems I and II hold true more generally for all σ satisfying the decay condition of Assumption A even if they are only piecewise smooth with a nite number of jump singularities.

In this case, one has to add to σ ′ (λ) dλ a discrete measure supported at the singularities of σ. The extension to this case can be done following [START_REF] Cafasso | Airy kernel determinant solutions to the KdV equation and integro-dierential Painlevé equations[END_REF], as we will discuss in Section 3.8.

Remark 1.9. Jánossy densities in general carry important information about a point process, but the global Jánossy densities of a determinantal point process are only dened if the associated kernel denes a trace class operator. This is not the case for the Airy kernel operator. To remedy this, one commonly considers Jánossy densities of determinantal point processes restricted to bounded sets B [START_REF] Borodin | Janossy densities. I. Determinantal Ensembles[END_REF]. It is less customary to consider Jánossy densities of thinned determinantal point processes, as we do, but this has the advantage that, for a suitable class of thinning functions σ, global Jánossy densities exist. In the degenerate case σ = 1 B , we recover the Jánossy density of the determinantal point process restricted to the set B.

The description of Jánossy densities of determinantal point processes on R, restricted to bounded intervals B, in terms of solutions to certain dierential equations has been recently developed in [START_REF] Nishigaki | TracyWidom method for Jánossy density and joint distribution of extremal eigenvalues of random matrices[END_REF].

The author there proved that for determinantal point processes dened through kernels satisfying the TracyWidom criteria [START_REF] Tracy | Fredholm determinants, dierential equations and matrix models[END_REF], the TracyWidom method allows to express not only the gap probability (as proved in [START_REF] Tracy | Fredholm determinants, dierential equations and matrix models[END_REF]) but also the Jánossy densities of the process restricted to a bounded interval B, in terms of solutions to a system of dierential equations in the endpoints of B. For kernels also enjoying the integrable structure of ItsIzerginKorepinSlavnov [START_REF] Its | Dierential equations for quantum correlation functions[END_REF] (e.g., Airy, Bessel, sine kernels), the gap probability can be characterized by a RiemannHilbert (RH) problem. This provides an alternative approach to study underlying integrable dierential equations, and a powerful tool to tackle their asymptotics. In this work, we extend the RH approach to study Jánossy densities of the thinned shifted Airy point process. We are condent that our method can also be applied to other determinantal point processes with integrable structure, like the ones associated to Bessel and sine kernels.

To construct a family of solutions to the cKdV equation in terms of the Jánossy densities, we restore the full dependence on X, T and we introduce

V σ (X, T |ν) := ∂ 2 X log J σ (X, T |ν), X ∈ R, T > 0.
(1.36)

Theorem III. For all σ satisfying Assumption A and all ν = (ν 1 , . . . , ν m ) with ν i ̸ = ν j for all i ̸ = j, the function V = V σ (X, T |ν) solves the cKdV equation,

∂ T V + 1 12 ∂ 3 X V + V ∂ X V + 1 2T V = 0 , for all X ∈ R, T > 0.
(1.37)

The proof is in Section 3.7, see Corollary 3.13.

Example 1.10. When σ = 0 we have j 0 (s|∅) = 1 and L 0 s (λ, µ) = K Ai (λ + s, µ + s), such that, according to (1.27), 

j 0 (s|ν) = ρ Ai m (ν 1 + s, . . . , ν m + s) (1.38)
J 0 (X, T |ν) = det K Ai X,T (ν i , ν j ) m i,j=1
.

(1.39)

The associated cKdV solution V 0 (X,

T |ν) = ∂ 2 X log det K Ai X,T (ν i , ν j ) m i,j=1
is a special case of solitontype solution [START_REF] Nakamura | Bäcklund transformation of the cylindrical KdV equation[END_REF], cf. Figure 2, exhibiting right tail decay, and left tail rapid oscillations with decaying amplitude. It is straightforward to verify, using the asymptotics for the Airy function and its derivative, that for any T 0 > 0,

V 0 (X, T |ν) ∼ - m √ XT , as XT -1 3 → +∞, uniformly for T ≥ T 0 . (1.40) Indeed, K Ai X,T (v, w) ∼ 1 8πX e -2 3 T -1 2 (X+v) 3 2 e -2 3 T -1 2 (X+w) 3 2
as XT -1 3 → +∞, T ≥ T 0 , (1.41) and this allows to prove by induction on m that

det K Ai X,T (ν i , ν j ) m i,j=1 ∼ 1 (8πX) m e -4m 3 T -1 2 X 3 2 .
(1.42)

Since these asymptotics are moreover valid uniformly for complex X with | arg X| < δ and δ > 0 small, we can dierentiate the logarithm of this expression twice which yields (1.40).

Similarly, after straightforward computations involving the asymptotic behavior of the Airy function and its derivative, we obtain for the left tail if m = 1, as

XT -1 3 → -∞, T ≥ T 0 , J 0 (X, T |ν) = 1 π |X| -ν T 1 - √ T 4 (|X| -ν) -3 2 cos 4 3 √ T (|X| -ν) 3 2 + O X -3 T , (1.43) V 0 (X, T |ν) = 1 T |X| cos 4 3 √ T (|X| -ν) 3 2 + O(|X| -3 2 T -1 2 ).
(1.44)

Remark 1.11. The function σ and the parameters ν can be understood as scattering data for the cKdV solution under consideration. In analogy with [START_REF] Grava | Rigorous Asymptotics of a KdV Soliton Gas[END_REF][START_REF] Grava | Soliton versus the gas: Fredholm determinants, analysis, and the rapid oscillations behind the kinetic equation[END_REF], we could interpret σ as a function describing a gas of solitons.

Our nal result concerns the asymptotic behavior of the Jánossy densities and associated cKdV solutions when T → +∞, uniformly in X ∈ R. To this end, we formulate some stronger conditions on the function σ, cf. [START_REF] Cafasso | Airy kernel determinant solutions to the KdV equation and integro-dierential Painlevé equations[END_REF][START_REF] Charlier | Uniform tail asymptotics for Airy kernel determinant solutions to KdV and for the narrow wedge solution to KPZ[END_REF].

Assumption B. The function F := 1 1-σ extends to an entire function. Moreover:

F ′ ≥ 0 and (log F ) ′′ ≥ 0 on the real line;

F (λ) = 1 + c ′ -e -c -|λ| (1 + o(1)) as λ → -∞, F (λ) = c ′ + e c + λ (1 + O(e -ϵλ )) as λ → +∞, for some c ± , c ′ ± , ϵ > 0; F (λ) = O(e c + Re λ ) as Re λ → +∞.
In particular, the second assumption implies the strong decay σ(λ

) = c ′ -e -c -|λ| 1+o(1) as λ → -∞ and σ(λ) = 1 -1 c ′ + e -c + λ 1 + O(e -ϵλ ) as λ → +∞ (for the same constants c ± , c ′ ± , ϵ > 0).
The reader may want to keep in mind the prototype example of an admissible function σ given by σ

(λ) = 1 1+e -λ , such that F (λ) = 1 + e λ . Theorem IV. Let ν = (ν 1 , . . . , ν m ) with ν i ̸ = ν j for all i ̸ = j. (i) Let σ satisfy Assumption A. For any T 0 > 0, there exists c > 0 such that J σ (X, T |ν) = det K Ai X,T (ν i , ν j ) m i,j=1 1 + O e -cXT -1 3 ∼ (8πX) -m e -4m 3 X 3 2 T -1 2 , (1.45) V σ (X, T |ν) = V 0 (X, T |ν) + O e -cXT -1 3 ∼ - m √ XT , (1.46) uniformly in T ≥ T 0 as XT -1 3 → +∞. (ii) Let σ satisfy Assumption B. For any T 0 > 0, we have J σ (X, T |ν) ∼ |X| m 2 π m T m 2 J σ (X, T |∅) m j=1 1 1 -σ(ν j ) , (1.47) 
V σ (X, T |ν) = V σ (X, T |∅) + 1 |X|T m j=1 cos 4|X| 3 2 3T 1 2 (1 + A X,T ) - 2|X| 1 2 T 1 2 ν j (1 + B X,T (ν j )) + O(|X| -1 ), (1.48) uniformly for T ≥ T 0 as X T log 2 |X| → -∞, where A X,T , B X,T (ν) converge to 0 as X T log 2 |X| → -∞.
Moreover, in the same limit,

log J σ (X, T |∅) = ρ 3 T 2 - 4 15 (1 -ξ) 5 2 + 4 15 - 2 3 ξ + 1 2 ξ 2 + O |X| 3 2 T -1 2 , V σ (X, T |∅) = ρ 1 -1 -ξ + O |X| -1 2 T -1 2
,

where ρ := c 2 + /π 2 and ξ := X/(ρT ).

Observe the specic structure of the ν j -dependence of the cKdV solution V σ (X, T |ν) and the Jánossy density J σ (X, T |ν). For XT -1 3 → +∞, the leading order behaviors of V σ (X, T |ν) and J σ (X, T |ν) depend on the number of points m but not explicitly on the positions ν 1 , . . . , ν m . On the other hand, for X T log 2 |X| → -∞, the eect of ν is more prominent. For J σ (X, T |ν), it results in a product of factors depending on ν j , while for V σ (X, T |ν), the presence of ν 1 , . . . , ν m results in a superposition of rapidly oscillating terms depending on ν j .

It is remarkable that both in the left and right tail asymptotics of V σ (X, T |ν), we recognize (up to a sub-leading phase shift in the oscillatory terms) a superposition of m 1-soliton solutions whose tail asymptotics are described in Example 1.10, in addition to the leading order and ν-independent contribution coming from V σ (X, T |∅).

For -KT log 2 |X| ≤ X ≤ M T 1 3 , the ν j -dependence is more involved and less explicit, as we will explain in Section 4.4. 

X T

XT -1 3 =M intermediate regimes vanishing: V σ (X, T |ν) ∼ -m √ XT superposition of V σ (X,

Methodology and outline

In Section 2, we will gather several properties and identities for the Jánossy densities on which we will rely later, and we will give a probabilistic interpretation to the kernel L σ s . Two dierent factorizations of the Jánossy densities will be of particular importance.

In Section 3, we will characterize the Jánossy densities and other relevant quantities in terms of a 2 × 2 matrix-valued RiemannHilbert (RH) problem, by relying on the ItsIzerginKorepinSlavnov method [START_REF] Its | Dierential equations for quantum correlation functions[END_REF]. This RH characterization shows strong similarities with the one from [START_REF] Bertola | Darboux transformations and random point processes[END_REF] and we give a detailed comparison with the general methods of op. cit. in Section 3.6. Moreover, we establish a connection between the RH problem, the Stark boundary value problem (1.6), and the cKdV equation (1.14). This will enable us to prove Theorem I, Theorem II, and Theorem III. Section 4 will be devoted to the asymptotic analysis of the RH problem from Section 3. We will distinguish several regions in the (X, T )-plane wich will require a dierent type of asymptotic analysis, and which lead to the results presented in Theorem IV. In this section, we also use previous asymptotic results [START_REF] Cafasso | Airy kernel determinant solutions to the KdV equation and integro-dierential Painlevé equations[END_REF][START_REF] Charlier | Uniform tail asymptotics for Airy kernel determinant solutions to KdV and for the narrow wedge solution to KPZ[END_REF] for the case m = 0 in which Jánossy densities reduce to gap probabilities.

Preliminaries on Jánossy densities

In this section, we study in more detail the Jánossy densities j σ (s|ν) introduced in (1.26). The results could be easily translated into parallel results for J σ (X, T |ν) by (1.25) and the observation that σ satises Assumption A if σ does, but we will omit the details for the sake of brevity.

Operator preliminaries

For a given g ∈ L ∞ (R), let M g be the multiplication operator on L 2 (R) dened by M g f = gf for all f ∈ L 2 (R), and let K Ai s be the operator acting on L 2 (R) through the shifted Airy kernel,

(K Ai s f )(λ) = R K Ai s (λ, µ)f (µ)dµ, K Ai s (λ, µ) := K Ai (λ + s, µ + s), f ∈ L 2 (R), (2.1) 
with K Ai dened in (1.3). It is worth recalling that K Ai s is an orthogonal projector which can be represented as A s M 1 (0,+∞) A s where A s is the unitary involution of L 2 (R) dened by

(A s f )(λ) = +∞ -∞ Ai(λ + µ + s)f (µ) dµ, f ∈ L 2 (R), (2.2) 
where the integral in the right-hand side is taken as an L 2 -limit of

+∞ -Λ as Λ → +∞. Lemma 2.1. Let σ satisfy Assumption A. The operator K σ s := M √ σ K Ai s M √ σ is trace class on L 2 (R) and j σ (s|∅) = det L 2 (R)
1 -K σ s .

(2.3) Moreover, 0 < j σ (s|∅) ≤ 1 for all s ∈ R.

We denote the Fredholm determinant of a trace class perturbation of the identity by det

L 2 (R)
.

Proof. We have K σ s = HH † where H := M √ σ A s 1 (0,+∞) . It follows by the asymptotic properties of the Airy function at +∞ that H is HilbertSchmidt provided σ satises Assumption A. Therefore, K σ s is the composition of two HilbertSchmidt operators, hence it is trace class on L 2 (R). Then, (2.3) follows by the classical formula for Fredholm determinants of operators with an integral kernel. Next, since K Ai s is an orthogonal projector and 0

≤ σ ≤ 1, we have (K σ s ) 2 ≤ K σ s because (K σ s ) 2 = M √ σ K Ai s M σ K Ai s M √ σ ≤ M √ σ (K Ai s ) 2 M √ σ = M √ σ K Ai s M √ σ = K σ s , (2.4 
)

such that 0 ≤ K σ s ≤ 1 and so 0 ≤ j σ (s|∅) ≤ 1. It remains to show that j σ (s|∅) ̸ = 0, or, equivalently, that 1 is not an eigenvalue of K σ s . For, assume f ∈ L 2 (R) is such that K σ s f = f . Setting g := K Ai s ( √ σf ), we have √ σg = f and so, since K Ai s is an orthogonal projector, ∥g∥ 2 = ∥K Ai s ( √ σf )∥ 2 ≤ ∥ √ σf ∥ 2 = ∥σg∥ 2 .
(2.5)

Therefore, since 0 ≤ σ ≤ 1, we have (σ -1)g = 0 almost everywhere on R. Since σ → 0 at +∞ (cf. Assumption A), g has to vanish on some open set of R. On the other hand, g is the restriction to the real line of an entire function, as it follows from the fact that A s h is entire for all h with support bounded below by standard properties of the Airy function. Therefore, g is identically zero, so is f , and

1 is not an eigenvalue of K σ s . Remark 2.2. M √ σ K Ai s M √ σ acts on L 2 (R) through the kernel σ(λ)σ(µ)K Ai (λ + s, µ + s)
, which is a correlation kernel for the σ-thinned shifted Airy point process. It follows from Lemma 2.1 and from the general theory of determinantal point processes [START_REF] Soshnikov | Determinantal random point elds[END_REF]Theorem 4] that the σ-thinned shifted and dilated Airy point process has almost surely a nite number of particles. On the other hand, since K Ai is not trace class, the Airy point process has almost surely an innite number of particles; it is however trace class once restricted to half-lines (t, +∞) so that the Airy point process has almost surely a largest particle.

Conditional ensembles

According to Lemma 2.1, the operator 1 -K σ s is invertible, and, therefore, so is 1 -M σ K Ai s . Thus, it makes sense to introduce

L σ s := K Ai s (1 -M σ K Ai s ) -1 = K Ai s + K Ai s M √ σ (1 -K σ s ) -1 M √ σ K Ai s .
(2.6)

As we shall review below following the ItsIzerginKorepinSlavnov method [START_REF] Its | Dierential equations for quantum correlation functions[END_REF], L σ s is an integral kernel operator, whose kernel we denote by L σ s (•, •). It has been proved by the rst two authors of this paper [START_REF] Claeys | Determinantal point processes conditioned on randomly incomplete congurations[END_REF], building on [START_REF] Bufetov | Quasi-symmetries of determinantal point processes[END_REF][START_REF] Bufetov | Conditional measures of determinantal point processes (Russian)[END_REF][START_REF] Bufetov | Kernels of conditional determinantal measures and the Lyons-Peres completeness conjecture[END_REF], that this kernel induces a determinantal point process dened as follows. Consider the shifted Airy process and construct a σ-marked point process by assigning to each point λ in a random conguration, independently, a mark 1 with probability σ(λ) or a mark 0 with probability 1 -σ(λ). Conditioning the marked point process on the event that there are no points with mark 1, it is shown in op. cit. that the resulting conditional ensemble is determinantal, with correlation kernel with respect to the deformed reference measure 1 -σ(λ) dλ given precisely by L σ s (•, •). Let us introduce the following notation. Given vectors u = (u 1 , . . . , u m ) ∈ R m and w = (w 1 , . . . , w n ) ∈ R n , introduce the m × n matrix K Ai s (u, w) ∈ R m×n with entries

K Ai s (u, w) i,j := K Ai s (u i , w j ), 1 ≤ i ≤ m, 1 ≤ j ≤ n.
(2.7)

Lemma 2.3. For any vector ν = (ν 1 , . . . , ν m ), with ν i ̸ = ν j for all i ̸ = j, K Ai s (ν, ν) is positivedenite.

Proof. According to (1.3) and to (2.7), we can rewrite K Ai s (ν, ν) as a Gram matrix

K Ai s (ν, ν) i,j = +∞ 0 Ai(ν i + η + s)Ai(ν j + η + s) dη = Ai(ν i + •), Ai(ν j + •) L 2 (s,+∞) . (2.8)
Hence, it suces to show that the m vectors Ai(ν i + •) ∈ L 2 (s, +∞), for 1 ≤ i ≤ m, are linearly independent when the points ν 1 , . . . , ν m are distinct. In order to obtain a contradiction, let us assume that the linear span of these m vectors is k-dimensional with k < m and, without loss of generality, that Ai(ν i + •) for i = 1, . . . , k form a basis. Then, there exists c 1 , . . . , c k ∈ C such that Ai(ν m + t) = k i=1 c i Ai(ν i + t) identically in t. Subtract (t + ν m ) times this relation from the second derivative of this relation in t to get, using the Airy equation, 0

= k i=1 (ν i -ν m )c i Ai(ν i + t). Hence c i = 0 for all 1 ≤ i ≤ k because ν m ̸ = ν i for all i ̸ = m, and so Ai(ν m + t) = 0 identically in t, a contradiction.
According to Lemma 2.3, for distinct points ν 1 , . . . , ν m ∈ R, collected into a vector ν := (ν 1 , . . . , ν m ), we can introduce the integral kernel operator H ν s acting on L 2 (R) through the kernel

H ν s (λ, µ) := det K Ai s (λ, ν), (µ, ν) det K Ai s (ν, ν) = K Ai s (λ, µ) -K Ai s (λ, ν)K Ai s (ν, ν) -1 K Ai s (ν, µ), (2.9) 
where the second equality stems from the well-known formula

det A B C D = det(D) det A -BD -1 C , if det D ̸ = 0, (2.10) 
for the determinant of a block matrix with lower-right corner invertible. It follows from the results in [START_REF] Shirai | Random point elds associated with certain Fredholm determinants. II. Fermion shifts and their ergodic and Gibbs properties[END_REF] that H ν s (λ, µ) is the kernel of the reduced Palm measure of the shifted Airy process at (distinct) points ν 1 , . . . , ν m , which can be interpreted as the shifted Airy point process conditioned on congurations containing points at ν 1 , . . . , ν m and then removing the points ν 1 , . . . , ν m from the conguration.

Factorizations of Jánossy densities

We can factorize the Jánossy densities j σ (s|ν) in two dierent ways: the rst one utilizes the Palm kernels H ν s , the second one involves the kernels L σ s of the conditional ensembles. It is convenient to introduce notations similar to (2.7) for these kernels, namely, given vectors u = (u 1 , . . . , u m ) ∈ R m and w = (w 1 , . . . ,

w n ) ∈ R n , we introduce matrices L σ s (u, w) ∈ R m×n and H ν s (u, w) ∈ R m×n with entries (L σ s (u, w)) i,j = L σ s (u i , w j ), (H ν s (u, w)) i,j = H ν s (u i , w j ), 1 ≤ i ≤ m, 1 ≤ j ≤ n.
(2.11) Proposition 2.4. For all σ satisfying Assumption A and all ν = (ν 1 , . . . , ν m ) with ν i ̸ = ν j for i ̸ = j,

we have the identities

j σ (s|ν) = det K Ai s (ν, ν) det L 2 (R) 1 -M √ σ H ν s M √ σ ,
(2.12)

j σ (s|ν) = det (L σ s (ν, ν)) det L 2 (R) 1 -M √ σ K Ai s M √ σ = det (L σ s (ν, ν)) j σ (s|∅).
(2.13)

Proof. We start by rewriting (1.24):

j σ (s|ν) = n≥0 (-1) n n! R n det K Ai s (λ, ν), (λ, ν) n i=1 σ(λ i )dλ i = det K Ai s (ν, ν) ∞ n=0 (-1) n n! R n det (H ν s (λ, λ)) n i=1 σ(λ i )dλ i , (2.14) 
where we denote λ = (λ 1 , . . . , λ n ), (λ, ν) = (λ 1 , . . . , λ n , ν 1 , . . . , ν m ), and we manipulate the determinant of block matrices using (2.10) and Lemma 2.3 as

det K Ai s (λ, ν), (λ, ν) = det K Ai s (λ, λ) K Ai s (λ, ν) K Ai s (ν, λ) K Ai s (ν, ν) = det K Ai s (ν, ν) det K Ai s (λ, λ) -K Ai s (λ, ν)K Ai s (ν, ν) -1 K Ai s (ν, λ) = det K Ai s (ν, ν) det (H ν s (λ, λ)) .
(2.15)

Hence, (2.12) is established. Next, let us introduce the operator

N := M √ σ (K Ai s -H ν s )M √ σ such that det L 2 (R) (1 -M √ σ H ν s M √ σ ) = det L 2 (R) (1 -K σ s ) det L 2 (R) 1 + (1 -K σ s ) -1 N . (2.16)
From (2.9) we know that the kernel of

N is N (λ, µ) = σ(λ)σ(µ)K Ai s (λ, ν)K Ai s (ν, ν) -1 K Ai s (ν, µ), such that the kernel of (I -K σ s ) -1 N is L σ s (λ, ν) K Ai s (ν, ν) -1 K Ai s (ν, µ) σ(µ) (2.17) where L σ s (•, •) is the kernel of (1 -K σ s ) -1 M √ σ K Ai s .
By the general formula for the Fredholm deter- minant of a nite-rank perturbation of the identity, cf. [22, Theorem 3.2], we obtain (I m denotes the m × m identity matrix)

det L 2 (R) 1 + (1 -K σ s ) -1 N = det I m + K Ai s (ν, ν) -1 R K Ai s (ν, λ) σ(λ) L σ s (λ, ν)dλ = det K Ai s (ν, ν) + R K Ai s (ν, λ) σ(λ) L σ s (λ, ν)dλ det K Ai s (ν, ν) = det L σ s (ν, ν) det K Ai s (ν, ν) (2.18) 
where we use the second identity in (2.6). Finally, (2.13) follows from (2.12).

Remark 2.5. Both factorizations (2.12) and (2.13) have a natural probabilistic interpretation as products of an m-point correlation function with a gap probability. In the rst factorization, we have the m-point correlation function in the shifted and rescaled Airy point process, multiplied with the gap probability in the σ-thinning of the Palm measure at points ν 1 , . . . , ν m associated to the shifted and rescaled Airy point process. In the second factorization, we have the m-point correlation function in the conditional ensemble associated to the shifted and rescaled Airy point process introduced above, multiplied with the gap probability in the σ-thinning of the thinned shifted and rescaled Airy point process. In the rst factorization, the correlation function is simpler, but the gap probability is on the other hand simpler in the second factorization.

Using the above result, it is now easy to show that Jánossy densities are strictly positive for all distinct ν 1 , . . . , ν m .

Proposition 2.6. For all σ satisfying Assumption A and all ν = (ν 1 , . . . , ν m ) with ν i ̸ = ν j for i ̸ = j, we have det L σ s (ν, ν) > 0 and j σ (s|ν) > 0.

Proof. The operator

N := M √ σ (K Ai s -H ν s )M √ σ is nonnegative-denite. Indeed, for all ϕ ∈ L 2 (R), ⟨N ϕ, ϕ⟩ = h † K Ai s (ν, ν) -1 h ≥ 0 , (2.19) 
where h = R √ σ(λ)ϕ(λ)K Ai s (ν, λ)dλ. Hence, we have proved that

1 -M √ σ H ν s M √ σ ≥ 1 -K σ s .
(2.20)

Since 1 -K σ s is (strictly) positive-denite by Lemma 2.1, the operator

1 -M √ σ H ν s M √
σ is also positive-denite, hence invertible. Therefore, j σ (s|ν) > 0 by Lemma 2.3 and the rst factorization of Jánossy densities (2.12), and therefore det L σ s (ν, ν) > 0 by the second one (2.13).

RH characterization of Jánossy densities

The aim of the section is to give RH characterizations of Jánossy densities, in order to prove Theorems I, II, and III.

RH problems

The operator M σ K Ai s is integrable in the sense of ItsIzerginKorepinSlavnov (IIKS) [27], namely it is a kernel operator whose kernel can be expressed as

f (λ; s)h(µ; s) λ -µ , f (λ; s) := σ(λ) -i Ai ′ (λ + s) Ai(λ + s) , h(µ; s) := -i Ai(µ + s) Ai ′ (µ + s) . (3.1)
Therefore, according to op. cit., the resolvent operator (1 

-M σ K Ai s ) -1 -1 can
Y σ,+ (λ; s) = Y σ,-(λ; s) I -2πi f (λ; s)h ⊤ (λ; s) , λ ∈ R, (3.2) 
where the subscript + (respectively, -) indicates the boundary value from above (respectively, below) the real axis.

(c) As λ → ∞, we have

Y σ (λ; s) = I + 1 λ β σ (s) iη σ (s) iα σ (s) -β σ (s) + O(λ -2 ), (3.3) 
for some α σ (s), β σ (s), and η σ (s).

The following result has been proven in [START_REF] Cafasso | Airy kernel determinant solutions to the KdV equation and integro-dierential Painlevé equations[END_REF]. For the reader's convenience, we oer a direct proof based on the IIKS method.

Proposition 3.1. The RH problem for Y σ has a unique solution for all s ∈ R and we have

∂ s log j σ (s|∅) = -α σ (s), (3.4) 
where α σ is given in (3.3).

Proof. The upshot of IIKS theory [START_REF] Its | Dierential equations for quantum correlation functions[END_REF] is that the RH problem for Y σ is uniquely solvable if and only if 1 -M σ s K Ai s is invertible. The latter condition holds true by Lemma 2.1. Moreover, in this case, the resolvent operator (1

-M σ K Ai s ) -1 -1 is also an integral operator with kernel f ⊤ (λ; s)Y ⊤ σ (λ; s)Y -⊤ σ (µ; s)h(µ; s) λ -µ . (3.5)
Therefore, using Jacobi variational formula and the identity

∂ s K Ai s (λ, µ) = -Ai(λ + s)Ai(µ + s), (3.6) 
which follows directly from (1.3), we compute

∂ ∂s log j σ (s|∅) as -tr (1 -M σ K Ai s ) -1 M σ ∂ s K Ai s = -tr (1 -M σ K Ai s ) -1 -1 M σ ∂ s K Ai s -tr M σ ∂ s K Ai s = R R f ⊤ (λ; s)Y ⊤ σ (λ; s)Y -⊤ σ (µ; s)h(µ; s) λ -µ σ(µ)Ai(µ + s)Ai(λ + s)dλdµ + R σ(µ)Ai(µ + s) 2 dµ = R (i, 0) R h(λ; s)f ⊤ (λ; s)Y ⊤ σ (λ; s) λ -µ dλ Y -⊤ σ (µ; s)h(µ; s)σ(µ)Ai(µ + s)dµ + R σ(µ)Ai(µ + s) 2 dµ ( * ) = R (i, 0) I -Y ⊤ σ (µ; s) Y -⊤ σ (µ; s)h(µ; s)σ(µ)Ai(µ + s)dµ + R σ(µ)Ai(µ + s) 2 dµ = R (i, 0)Y -⊤ σ (µ; s)h(µ; s)f ⊤ (µ; s) 0 1 dµ, (3.7) 
where we use the expressions of f , h given in (3.1), and in the equality ( * ) we use the identity

Y ⊤ σ (µ) = I - R h(λ; s)f ⊤ (λ; s)Y ⊤ σ (λ; s) λ -µ dλ, (3.8) 
which follows from the RH problem satised by Y σ and the SokhotskiPlemelj formula. Finally, (3.7) can be simplied by a residue computation:

R (i, 0)Y -⊤ σ (µ; s)h(µ; s)f ⊤ (µ; s) 0 1 dµ = i 1 2πi R Y -⊤ σ,+ (µ; s) -Y -⊤ σ,-(µ; s) dµ 1,2 = i res µ=∞ Y -⊤ σ (µ; s) 1,2 = -α σ (s), (3.9) using (3.3). 
Next we consider the following RH problem which depends on s ∈ R and on a nite number of distinct points ν 1 , . . . , ν m , ν i ̸ = ν j for i ̸ = j, as usual collected into the vector ν := (ν 1 , . . . , ν m ). When m = 0, condition (c) below is empty.

RH problem for Ψ σ 

Ψ σ,+ (λ; s|ν) = Ψ σ,-(λ; s|ν) 1 1 -σ(λ) 0 1 , λ ∈ R, λ ̸ = ν 1 , . . . , ν m .
(3.10) (c) For all i = 1, . . . , m, as λ → ν i from either side of the real axis we have

Ψ σ (λ; s|ν)(λ -ν i ) -σ 3 = O(1). (3.11) (d) As λ → ∞, we have Ψ σ (λ; s|ν) = I + 1 λ q σ (s|ν) ir σ (s|ν) ip σ (s|ν) -q σ (s|ν) + O(λ -2 ) λ 1 4 σ 3 Ge -2 3 λ 3 2 -sλ 1 2 σ 3 C δ (3.12)
for any δ ∈ (0, π 2 ). Here we take the principal branches of λ , analytic in C \ (-∞, 0] and positive for λ > 0, and

σ 3 := 1 0 0 -1 , G := 1 √ 2 1 -i -i 1 , C δ :=      I, | arg λ| < π -δ, 1 0 ∓1 1 , π -δ < ± arg λ < π. (3.13)
Remark 3.2. We shall explain in detail in Section 3.5 the relation of this RH problem with the one in [START_REF] Its | Large time asymptotics for the cylindrical Kortewegde Vries equation[END_REF] related to the inverse scattering for the cKdV equation.

Remark 3.3. The solution to this RH problem is unique by a standard argument in RH problems based on Liouville and Morera theorems. Moreover, as we will show, the solution exists and can be constructed in terms of the solution to the RH problem for Y σ (by an Airy dressing) and of a suitable matrix-valued rational function (by a Schlesinger transformation [START_REF] Bertola | Darboux transformations and random point processes[END_REF]).

We rst recall the case m = 0, which has already been considered in [START_REF] Cafasso | Airy kernel determinant solutions to the KdV equation and integro-dierential Painlevé equations[END_REF]. To this end we introduce the Airy model RH problem in the following form.

RH problem for Φ Ai 

Φ Ai + (λ) = Φ Ai -(λ) 1 1 0 1 , λ ∈ R. (3.14) (c) As λ → ∞, Φ Ai has the asymptotic behavior Φ Ai (λ) = I + λ -1 0 7i 48 0 0 + O(λ -2 ) λ 1 4 σ 3 Ge -2 3 λ 3 2 σ 3 C δ , (3.15) 
for any 0 < δ < π/2 where G, C δ are given in (3.13) and the branches of λ The (unique) solution can be expressed in terms of the Airy function as

Φ Ai (λ) :=              - √ 2π Ai ′ (λ) -e 2iπ 3 Ai ′ (e -2iπ 3 λ) i Ai(λ) -ie -2iπ 3 Ai(e -2iπ 3 λ) , if Im λ > 0, - √ 2π Ai ′ (λ) e -2iπ
3 Ai ′ (e 

Ψ σ (λ; s|∅) = 1 is 2 4 0 1 Y σ (λ; s)Φ Ai s (λ) (3.17) where Φ Ai s (λ) := Φ Ai (λ + s). Moreover, p σ (s|∅) = α σ (s) + s 2 4 , (3.18) 
and the kernel L σ s (λ, µ) of the operator L σ s := K Ai s (1 -M σ K Ai s ) -1 can be written as

L σ s (λ, µ) = Ψ σ (µ; s|∅) -1 Ψ σ (λ; s|∅) 2,1
2πi(λ -µ) . 

I -2πi f (λ; s)h ⊤ (λ; s) = Φ Ai s,-(λ) 1 1 -σ(λ) 0 1 Φ Ai s,+ (λ) -1 , (3.20) 
which follows directly from the identities

f (λ; s) = i σ(λ) √ 2π Φ Ai s (λ) 1 0 , h(λ; s) = - 1 √ 2π Φ Ai s (λ) -⊤ 0 1 , (3.21) 
and from condition (b) in the RH problem for Φ Ai . Finally, combining conditions (c) in the RH problems for Y and Φ Ai , we obtain that as λ → ∞ we have 

Y σ (λ; s)Φ Ai s (λ) = I + λ -1 β(s) i η(s) + 7 48 iα(s) -β(s) + O(λ -2 ) (λ + s) 1 4 σ 3 Ge -2 3 (λ+s)
(1 -M σ K Ai s ) -1 -1 = M σ L σ
s , along with the identities (3.17) and (3.21) Proposition 3.5. The RH problem for Ψ σ has a unique solution for all s ∈ R and all ν = (ν 1 , . . . , ν m ) with ν i ̸ = ν j for i ̸ = j, which can be expressed as

Ψ σ (λ; s|ν) = M (λ; s|ν)Ψ σ (λ; s|∅), (3.23) 
where M is a rational function of λ, with poles at λ = ν 1 , . . . , ν m only, given by

M (λ; s|ν) = I - 1 2πi m i,j=1 L σ s (ν, ν) -1 j,i λ -ν j Ψ σ (ν i ; s|∅) 0 1 0 0 Ψ -1 σ (ν j ; s|∅), (3.24) 
where we use the notation (2.11).

Proof. By the conditions in the RH problem for Ψ σ it is straightforward to verify that M (λ; s|ν) := Ψ σ (λ; s|ν)Ψ σ (λ; s|∅) -1 is a rational matrix with simple poles at ν 1 , . . . , ν m only and M (λ; s|ν) → I as λ → ∞. 

M (λ; s|ν)Ψ σ (λ; s|∅)(λ -ν j ) -σ 3 = O(1), as λ → ν j , j = 1, . . . , m, (3.26) 
and we claim that this condition uniquely determines the coecients M j (s|ν). Indeed, the expansion at λ → ν j of the left-hand side of (3.26) gives

I+ M j (s|ν) λ -ν j + 1≤i≤m i̸ =j M i (s|ν) ν j -ν i +O(λ-ν j ) Ψ σ (ν j ; s|∅)+Ψ ′ σ (ν j ; s|∅)(λ-ν j )+O((λ-ν j ) 2 ) (λ-ν j ) -σ 3 (3.27)
where Ψ ′ σ (λ; s|ν) := ∂ λ Ψ σ (λ; s|ν). Vanishing of singular terms in this Laurent series yields

M j (s|ν)Ψ σ (ν j ; s|∅) 1 0 = 0 0 , (3.28) 
I + 1≤i≤m i̸ =j M i (s|ν) ν j -ν i Ψ σ (ν j ; s|∅) + M j (s|ν)Ψ ′ σ (ν j ; s|∅) 1 0 = 0 0 . (3.29)
Equation (3.28) implies existence of a column vector a j = a j (s|ν) ∈ C 2 , for every j = 1, . . . , m, such that M j (s|ν) = a j (0, 1)Ψ -1 σ (ν j ; s|∅). 

Ψ σ (ν j ; s|∅) 1 0 + 1≤i≤m i̸ =j a i (0, 1)Ψ -1 σ (ν i ; s|∅)Ψ σ (ν j ; s|∅) 1 0 ν j -ν i = 2πi L σ s (ν,ν) j,i
+ a j (0, 1)Ψ -1 σ (ν j ; s|∅)Ψ ′ σ (ν j ; s|∅)

1 0 = 2πi L σ s (ν,ν) j,j = 0 0 (3.31)
and so, cf. Proposition 2.6,

Ψ σ (ν j ; s|∅) 1 0 + 2πi m i=1 a i L σ s (ν, ν) j,i = 0 0 ⇒ a j = - 1 2πi m i=1 L σ s (ν, ν) -1 j,i Ψ σ (ν i ; s|∅) 1 0 , (3.32) 
and by (3.30), we nally get (3.24).

Stark equation

It is convenient to introduce the following variant of Ψ σ , namely

Θ σ (λ; s|ν) := 1 p σ (s|ν) 0 1 e iπ 4 σ 3 Ψ σ (λ; s|ν)e -iπ 4 σ 3 . (3.33) 
The RH conditions on Ψ σ imply that Θ σ is the unique solution to the following RH problem.

RH problem for Θ s 

Θ σ,+ (λ; s|ν) = Θ σ,-(λ; s|ν) 1 i(1 -σ(λ)) 0 1 , λ ∈ R, λ ̸ = ν 1 , . . . , ν m . (3.34) 
(c) For all i = 1, . . . , m, as λ → ν i from either side of the real axis we have

Θ σ (λ; s|ν)(λ -ν i ) -σ 3 = O(1). (3.35) (d) As λ → ∞, we have Θ σ (λ; s|ν) = 1 p 0 1 I + λ -1 q -r p -q + O(λ -2 ) λ 1 4 σ 3 1 1 -1 1 √ 2 e -2 3 λ 3 2 -sλ 1 2 σ 3 C δ (3.36)
for any δ ∈ (0, π 2 ); here p = p σ (s|ν), q = q σ (s|ν), and r = r σ (s|ν) are the same as in (3.12), C δ is in (3.13), and the branches of λ The formula (3.19) is equivalent to

L σ s (λ, µ) = Θ σ (µ; s|∅) -1 Θ σ (λ; s|∅) 2,1
2π(λ -µ) .

(3.37) Proposition 3.6. For any λ ∈ C \ R and for any ν = (ν 1 , . . . , ν m ) with ν i ̸ = ν j for i ̸ = j, Θ σ (λ; s|ν) is dierentiable in s, and

∂ s Θ σ (λ; s|ν) = 0 λ + 2∂ s p σ (s|ν) 1 0 Θ σ (λ; s|ν) , (3.38) 
where p σ (s|ν) appears in (3.12).

Proof. The dierentiability of Θ σ in s, and the fact (3.36) continues to hold after dierentiating formally in s, can be proved using standard techniques from RH theory, and we refer the reader to [14, Section 3] for details. The matrix function A(λ; s|ν) := ∂ s Θ σ (λ; s|ν)Θ σ (λ; s|ν) -1 is entire in λ;

indeed it has no jump across the real axis and no singularities at ν because of the RH conditions (b) and (c) for Θ σ . Moreover, condition (d) in the RH problem for Θ σ implies that

A(λ; s|ν) = 0 λ + p 2 + 2q + ∂ s p 1 0 + λ -1 ⋆ ⋆ -p 2 -2q + ∂ s p ⋆ + O(λ -2 ), λ → ∞, (3.39) 
where p = p σ (s|ν) and q = q σ (s|ν) are as in (3.36) and ⋆ denote expressions which are not relevant to us now. Since A(λ; s|ν) is entire, Liouville's theorem implies that A(λ; s|ν) coincides with the linear and constant terms in the Laurent series (3.39) and that higher order terms vanish. This yields p σ (s|ν

) 2 + 2q σ (s|ν) = ∂ s p σ (s|ν), (3.40) 
and the proof is complete.

From equation (3.38) it follows that

Θ σ (λ; s|ν) = - √ 2π ∂ s φ σ (λ; s|ν) ∂ s χ σ (λ; s|ν) φ σ (λ; s|ν) χ σ (λ; s|ν) , (3.41) 
where either f = φ σ (λ; s|ν) or f = χ σ (λ; s|ν) solves

∂ 2 s -2 ∂ s p σ (s|ν) f = λf.
(3.42) Proposition 3.7. We have

∂ s L σ s (λ, µ) = -φ σ (λ; s|∅)φ σ (µ; s|∅) (3.43) 
Proof. We use (3.37) to compute

∂ s L σ s (λ, µ) = tr ∂ s Θ σ (λ; s|∅)E 12 Θ σ (µ; s|∅) -1 2π(λ -µ) = tr A(λ; s|∅) -A(µ; s|∅) Θ σ (λ; s|∅)E 12 Θ σ (µ; s|∅) -1 2π(λ -µ) = tr E 12 Θ σ (λ; s|∅)E 12 Θ σ (µ; s|∅) -1 2π , (3.44) 
where we used the cyclic property of the trace and Proposition 3.6 and we denoted

E 12 := 0 1 0 0 , A(λ; s|∅) := 0 λ + 2∂ s p σ (s|∅) 1 0 . (3.45)
Finally, it suces to insert (3.41) into (3.44).

We can nally characterize the Jánossy densities in terms of the RH problem for Ψ σ .

Proposition 3.8. For all s ∈ R and all nite sets ν = (ν 1 , . . . , ν m ) with ν i ̸ = ν j for all i ̸ = j, we have

∂ s log j σ (s|ν) = s 2 4 -p σ (s|ν) (3.46)
where p σ (s|ν) appears in (3.12).

Proof. Using Proposition 3.5 we get

ip σ (s|ν) -ip σ (s|∅) = M 1 ∞ (s|ν) 2,1 (3.47) 
where M (λ; s|ν)

= I + λ -1 M 1 ∞ (s|ν) + O(λ -2 ) as λ → ∞. Using (3.24) we compute M 1 ∞ (s|ν) = - 1 2πi m i,j=1 L σ s (ν, ν) -1 j,i Ψ σ (ν i ; s|∅) 0 1 0 0 Ψ -1 σ (ν j ; s|∅) (3.48)
and so, using (3.33) and (3.41), we obtain

M 1 ∞ (s|ν) 2,1 = i m i,j=1 L σ s (ν, ν) -1 j,i φ σ (ν i ; s|∅)φ σ (ν j ; s|∅) (3.49)
On the other hand, by (3.43) we have

∂ s log det L σ s (ν, ν) = m i,j=1 L σ s (ν, ν) -1 j,i ∂ L σ s (ν, ν) i,j ∂s = - m i,j=1
L σ s (ν, ν) -1 j,i φ σ (ν i ; s|∅)φ σ (ν j ; s|∅) 

3.3

Asymptotics as s → +∞

The jump matrix of condition (b) in the RH problem for Y can be rewritten, thanks to (3.21), as

I -2πi f (λ; s)h ⊤ (λ; s) = I + Φ Ai s (λ) 0 σ(λ) 0 0 Φ Ai s (λ) -1 .
(3.52)

We now show that this jump matrix is close to the identity in the appropriate norms in order to apply the standard small-norm RH theory [START_REF] Its | Large N asymptotics in random matrices: the Riemann-Hilbert approach. Random matrices, random processes and integrable systems[END_REF]. To this end, we introduce the following notation for a measurable matrix-valued function X : R → C m×n :

∥X∥ p :=              max 1≤i≤m, 1≤j≤n R |X i,j (µ)| p dµ 1/p , p ∈ [1, +∞), max 1≤i≤m, 1≤j≤n ess sup µ∈R |X i,j (µ)| , p = ∞.
(3.53) Lemma 3.9. Let σ satisfy Assumption A. Then, with the same κ > 0 as in Assumption A, we have

Φ Ai s 0 σ 0 0 (Φ Ai s ) -1 p = O(s -κ ), as s → +∞, p = 1, 2, ∞. (3.54)
Proof. The entries in Φ Ai s (λ) 0 σ(λ) 0 0 Φ Ai s (λ) -1 are (possibly, up to a sign) σ(λ)B(λ + s) where B(λ) is one of the functions Ai(λ) 2 , Ai(λ)Ai ′ (λ), or Ai ′ (λ) 2 . By Assumption A, there are Λ, C 1 > 0 such that λ < -Λ implies σ(λ) < C 1 |λ| -3 2 -κ . Assuming s ≥ 2Λ, we have, using standard asymptotic properties of Ai and Ai ′ :

for λ ≥ -s/2, σ(λ) ≤ 1 and |B(λ + s)| ≤ C 2 exp(-λ -s) for some C 2 > 0, for λ ≤ -s/2, σ(λ) ≤ C 1 |λ| -3 2 -κ and |B(λ + s)| ≤ C 3 |λ| 1 2
for some C 3 > 0.

Therefore, as s → +∞ we get:

∥σ(λ)B(λ + s)∥ 1 ≤ -s/2 -∞ C 1 C 3 |λ| -κ-1 dλ + +∞ -s/2
C 2 e -λ-s dλ = O(s -κ ),

(3.55) ∥σ(λ)B(λ + s)∥ 2 2 ≤ -s/2 -∞ (C 1 C 3 ) 2 |λ| -2κ-2 dλ + +∞ -s/2
C 2 2 e -λ-s dλ = O(s -2κ-1 ),

(3.56) ∥σ(λ)B(λ + s)∥ ∞ ≤ max C 1 C 3 s 2 -κ-1
, C 2 e -s/2 = O(s -κ-1 ),

(3.57)
and the lemma is proved.

Proposition 3.10. If σ satises Assumption A, we have

φ σ (λ; s|∅) = Ai(λ + s) 1 + O(s -1 2 -κ ) , s → +∞, (3.58) 
for all λ ∈ R.

Proof. Rewriting condition (b) in the RH problem for Y as

Y σ,+ (λ; s) -Y σ,-(λ; s) = Φ Ai s (λ) 0 σ(λ) 0 0 Φ Ai s (λ) -1 Y σ (λ; s), λ ∈ R, (3.59) 
standard RH theory implies that we can write 

Y σ (λ; s) = I + 1 2πi R (Y σ,-(µ; s) -I)Φ Ai s (µ) 0 σ(µ) 0 0 Φ Ai s (µ) -1 dµ µ -λ + 1 2πi R Φ Ai s (µ) 0 σ(µ) 0 0 Φ Ai s (µ) -1 dµ µ -λ . ( 3 
φ σ (λ; s|∅) = Ai(λ + s) + 1 √ 2π R (0, 1)(Y σ,-(µ) -I)Φ Ai s (µ) 1 0 σ(µ)K Ai s (λ, µ)dµ + 1 √ 2π R (0, 1)Φ Ai s (µ) 1 0 σ(µ)K Ai s (λ, µ)dµ. (3.62)
Hence, for some C > 0,

φ σ (λ; s|∅) Ai(λ + s) -1 ≤ C      ∥Y σ,--I∥ 2 Φ Ai s 1 0 σK Ai s (•, λ) 2 Ai(λ + s) + Φ Ai s 1 0 σK Ai s (•, λ) 1 Ai(λ + s)      . (3.63)
Therefore, denoting A either Ai or Ai ′ , we need to estimate the L p (R, dµ)-norm

(for p = 1, 2) of a(µ) := A(µ + s)σ(µ) K Ai s (λ, µ) Ai(λ + s) (3.64)
as s → +∞, for xed λ. We can assume s is suciently large such that s > 2|λ| and Ai(λ + s)

≤ |Ai ′ (λ + s)|. When µ ≤ -s/2, we have |A(µ + s)| = O(|µ| 1 4 ), σ(µ) = O(|µ| -3 2 -κ ), and K Ai s (λ, µ) Ai(λ + s) ≤ |Ai ′ (λ + s)| Ai(λ + s) (|Ai(µ + s)| + |Ai ′ (µ + s)|) |λ -µ| = O(s -1 2 |µ| 1 4 ) (3.65) hence a(µ) = O(|µ| -1-κ s -1 2
). 

K Ai s (λ, µ) Ai(λ + s) ≤ +∞ s Ai(λ + η) Ai(λ + s) Ai(µ + η)dη ≤ +∞ s
Ai(µ + η)dη = O(e -µ-s ).

(3.67)

Hence ∥a∥ L 1 (R) = O(s -1 2 -κ ) and ∥a∥ L 2 (R) = O(s -1-κ
), so that resuming from (3.63) we get

φ σ (λ; s|∅) Ai(λ + s) -1 = O(s -1 2 -κ ), (3.68)
and the proof is complete.

Corollary 3.11. We have Finally, in order to prove (1.29), we rst consider the following chain of equalities, where we use (3.51) and the asymptotics as s → +∞ of Section 3.3:

L σ s (λ, µ) = +∞ s φ σ (λ; r|∅)φ σ (µ; r|∅)dr.
log j σ (s|∅) = - +∞ s ∂ r log j σ (r|∅)dr = +∞ s (r -s)∂ 2 r log j σ (r|∅)dr = +∞ s (r -s)v σ (r|∅)dr.
In the rst step we use lim r→+∞ j σ (r|∅

) = lim r→+∞ det L 2 (R) (1 -K σ s ) = 1 because K σ s converges to
the zero operator in trace-norm when s → +∞. Indeed, K σ s is a non-negative trace-class operator with (jointly) continuous integral kernel so that its trace-norm is

R σ(λ)K Ai s (λ, λ)dλ = -s/2 -∞ σ(λ)K Ai s (λ, λ) O(|λ| -1-κ ) dλ + +∞ -s/2 σ(λ)K Ai s (λ, λ) O(exp(-λ-s)) = O(s -κ ) (3.70)
as s → +∞; here we use that as s → +∞ we have σ

(λ) = O(λ -3 2 -κ ) and K Ai s (λ, λ) = O(|λ| 1 
2 ) for λ < -s/2, and σ(λ (λ -ν i ).

) = O(1) and K Ai s (λ, λ) = O(exp(-λ -s)) for λ > -s/2 (cf. Assumption A).
(3.71)

As it follows from conditions (b) and (c) in the RH problem for Θ σ , Ξ(λ; s|ν) is a sectionally analytic matrix-valued function of λ satisfying a jump condition across the real axis of the form 

Ξ + (λ; s|ν) = Ξ -(λ; s|ν) 1 i(1 -σ(λ))ξ(λ|ν) 2 0 1 , λ ∈ R.
C + (λ; s|ν) -C -(λ; s|ν) = Ξ(λ; s|ν) 0 iξ(λ|ν) 2 (1 -σ(λ))2∂ λ log ξ(λ|ν) -σ ′ (λ) 0 0 Ξ(λ; s|ν) -1 , (3.73)
for all λ ∈ R. In the right-hand side of this equation we omit the choice of boundary values for Ξ as the expression is independent from this choice, as it can be shown by (3.72). It therefore follows from a contour deformation argument that

R Ξ(λ; s|ν) 0 iξ(λ|ν) 2 (1-σ(λ))2∂ λ log ξ(λ|ν)-σ ′ (λ) 0 0 Ξ(λ; s|ν) -1 dλ 2πi = lim R→+∞ c R C(λ; s|ν) dλ 2πi , (3.74)
where c R is the clock-wise oriented circle |λ| = R. By the identity

C := ∂ λ Ξ Ξ -1 = ∂ λ Θ σ Θ -1 σ -(∂ λ log ξ)Θ σ σ 3 Θ -1 σ (3.75)
and the asymptotic relation (3.36) we obtain that, as λ → ∞ uniformly in the complex plane, we have 2 ).

C(λ; s|ν) 2,1 = 1 + λ -1 s 2 -∂ s p σ (s|ν) + O(λ - 3 
(3.76)

Here we also use (3.40). Taking the (2, 1)-entry of (3.74), we obtain, also using Proposition 3.8, 

- R φ σ (λ; s|ν) 2 (1 -σ(λ))2∂ λ log ξ(λ|ν) -σ ′ (λ) dλ = ∂ s p σ (s|ν) - s 2 = -∂
φ σ (λ; s|ν) =   1 - m i,j=1 L σ s (ν, ν) -1 j,i λ -ν j φ σ (ν i ; s|∅)∂ s φ σ (ν j ; s|∅)   φ σ (λ; s|∅) +   m i,j=1 L σ s (ν, ν) -1 j,i λ -ν j φ σ (ν i ; s|∅)φ σ (ν j ; s|∅)   ∂ s φ σ (λ; s|∅) = φ σ (λ; s|∅) - m i,j=1 L σ s (ν, ν) -1 j,i φ σ (ν i ; s|∅)L σ s (λ, ν i ) = 1 det L σ s (ν, ν) det      φ σ (λ; s|∅) L σ s (λ, ν 1 ) • • • L σ s (λ, ν m ) φ σ (ν 1 , s|∅) L σ s (ν 1 , ν 1 ) • • • L σ s (ν 1 , ν m ) . . . . . . . . . . . . φ σ (ν m , s|∅) L σ s (ν m , ν 1 ) • • • L σ s (ν m , ν m )      . (3.78)
where in the second step we use (1.28) and in the third a standard manipulation of the determinant of a block matrix. Therefore (1.34) holds true and the proof is complete.

3.5

Comparison with inverse scattering for the Stark operator

We now comment on the connection between our probabilistic construction based on the σ-thinned (shifted) Airy process and the classical inverse scattering problem for the Stark operator, as described in [START_REF] Its | Large time asymptotics for the cylindrical Kortewegde Vries equation[END_REF], see also [START_REF] Santini | Asymptotic behaviour (in t) of solutions of the cylindrical KdV equation[END_REF][START_REF] Santini | Asymptotic behaviour (in t) of solutions of the cylindrical KdV equation[END_REF]. The latter can be formulated through the following RH problem, cf. [

RH problem for M 

M + (µ; ξ) = 0 -s(µ) s(µ) 1 M -(µ; ξ), µ ∈ R. (3.79) (c) As µ → ∞, we have M (µ; ξ) = M ∞ (µ; ξ) I + o(1) , M ∞ (ξ; µ) :=            -w 0 (ξ -µ) -w ′ 0 (ξ -µ) w 1 (ξ -µ) w ′ 1 (ξ -µ) , Im µ > 0, w 2 (ξ -µ) w ′ 2 (ξ -µ) w 0 (ξ -µ) w ′ 0 (ξ -µ) , Im µ < 0, (3.80) 
where

w 0 (k) := 2i √ πAi(k), w 1 (k) := 2 √ πe πi 6 Ai(e 2πi 3 k), w 2 (k) := 2 √ πe -πi 6 Ai(e -2πi 3 k). (3.81) In (3.79), s(µ) = a(µ) a(µ) -1 
(for µ ∈ R), and a(µ) is part of the scattering data for the Stark operator. In particular, cf. [29, Theorem 2.2], a(µ) is analytic and nonzero in the half-plane Im µ < 0 and a(µ) = 1 + o(|µ| -1

2 ) as µ → ∞ within Im µ ≤ 0. Then, the matrix

Ψ(λ; s) := 1 √ 2 0 -i 1 0 ×              M ⊤ (-λ; s) 0 a(-λ) -1 -a(-λ) 0 , Im λ > 0, M ⊤ (-λ; s)   a(-λ) 0 0 a(-λ) -1   , Im λ < 0, (3.82) 
essentially solves the RH problem for Ψ σ , for σ(λ) = 1 -|a(-λ)| -2 and m = 0, with the caveat that it only satises a slightly weaker normalization at λ = ∞ in which the sub-leading term is just o(1) rather than O(λ -1 ). Indeed, the expression in the right-hand side of (3.82) is analytic for λ ∈ C \ R by the above mentioned properties of a, and a direct computation suces to ascertain that

Φ Ai (λ + s) = 1 √ 2 0 -i 1 0 M ⊤ ∞ (-λ; s) ×      0 1 -1 0 , Im λ > 0, I, Im λ < 0, (3.83) 
such that the normalization at ∞ of the two RH problems match (up to the order of the subleading contribution, as we already mentioned). Moreover, a direct computation shows that the jump condition of the RH problem for Ψ σ is satised by the right-hand side of (3.82).

There is however an essential dierence between our assumptions on σ, and the assumptions in [START_REF] Its | Large time asymptotics for the cylindrical Kortewegde Vries equation[END_REF]. Whereas we consider functions σ converging to 0 at -∞, but not necessarily converging to 0 at +∞, cf. Assumption A, it is required in [29, Theorem 2.2(c)] that σ(λ) = 1 -|a(-λ)| -2 → 0 as λ → ±∞. Hence, the class of functions σ that we consider, is not included in the class of scattering data considered by classical inverse scattering theory for the Stark operator.

3.6

Connection with the theory of Schlesinger transformations [START_REF] Jimbo | Monodromy preserving deformation of linear ordinary dierential equations with rational coecients[END_REF][START_REF] Bertola | The Dependence on the Monodromy Data of the Isomonodromic Tau Function[END_REF][START_REF] Bertola | Darboux transformations and random point processes[END_REF].

It is also worth to make a comparison of our setting with the general theory of Schlesinger transformations. For a general RH problem depending on parameters, one can dene the MalgrangeBertola dierential on the space of parameters [START_REF] Bertola | The Dependence on the Monodromy Data of the Isomonodromic Tau Function[END_REF]. The general denition, applied to the RH problem for Γ(λ; s) := Ψ σ (λ -s; s|∅), specializes to the following one-form in s:

Ω = ω(s)ds, ω(s) := R tr Γ -1 -(λ; s) dΓ -(λ; s) dλ dJ Γ (λ; s) ds J -1 Γ (λ; s) dλ 2πi , (3.84) 
where

J Γ (λ; s) = 1 1 -σ(λ -s) 0 1
. Using the form of J Γ and the jump condition Γ + (λ; s) = Γ -(λ; s)J Γ (λ; s), the integrand can be rewritten as

tr Γ -1 -(λ; s) dΓ -(λ; s) dλ 0 σ ′ (λ -s) 0 0 = 1 2 tr Γ -1 -(λ; s) d 2 Γ -(λ; s) dλ 2 -Γ -1 + (λ; s) d 2 Γ + (λ; s) dλ 2 (3.85)
and hence a residue computation gives

ω(s) = - 1 2 res λ=∞ tr Γ -1 (λ; s) d 2 Γ(λ; s) dλ 2 = s 2 4 -p σ (s|∅) = ∂ s log j σ (s|∅). (3.86) 
The logarithmic potential j σ of Ω is then termed tau function of the RH problem [START_REF] Bertola | The Dependence on the Monodromy Data of the Isomonodromic Tau Function[END_REF]. Note that a tau function in this sense is dened only up to a multiplicative (integration) constant. Accordingly, we can say that the Fredholm determinant j σ (s|∅) is the tau function associated with the RH problem for Γ(λ; s).

Pole insertion in a RH problem (Schlesinger transformation ) and its eect on Ω have been studied in depth in [START_REF] Bertola | Darboux transformations and random point processes[END_REF] (expanding on [START_REF] Jimbo | Monodromy preserving deformation of linear ordinary dierential equations with rational coecients[END_REF][START_REF] Bertola | The Dependence on the Monodromy Data of the Isomonodromic Tau Function[END_REF]) for RH problems with identity normalization at innity and insertion of poles o the jump contour. The general results of op. cit. formally match with our setting. Namely, in our setting we consider the RH problem for Γ(λ; s|ν) := Ψ(λ -s; s|ν) which is obtained from the one for Γ by inserting poles at ν i + s such that Γ(λ; s|ν) = (λ -ν i -s) 

(λ -µ)(λ -ν i -s)(µ -ν j -s) dλ = -2πi L σ s (ν i , ν j ), i, j = 1, . . . , m. (3.87) 
Hence, the above-mentioned [4, Theorem 2.2 part (3)] predicts that the tau function associated with the RH problem for Γ(λ; s|ν) is (within an absolute multiplicative constant) j σ (s|∅) times the determinant of L σ s (ν, ν), i.e. j σ (s|ν) by (2.12), as we showed in Proposition 3.8.

Isospectral deformation and cKdV: proof of Theorem III

As explained in Section 1, the connection with the cKdV equation is made by studying the shifted and dilated Airy kernel

K Ai X,T (λ, µ) := T -1 3 K Ai T -1 3 (λ + X), T -1 3 (µ + X) , (3.88) 
where X ∈ R, T ≥ 0 are parameters. The corresponding Jánossy density J σ (X, T |ν), dened in (1.24), is recovered from j σ (s|ν) by (1.25). In view of Proposition 3.8, we have

∂ X log J σ (X, T |ν) = T -1 3 ∂ s log j σ (s|T -1 3 ν) s=XT -1 3 = X 2 4T -T -1 3 p σ (XT -1 3 ; T -1 3 ν). (3.89) 
Throughout this section we use the notation σ(λ) = σ(T 1 3 λ), as in (1.25). It is straightforward to verify by the RH problem for Ψ σ that the matrix

Ψ σ (λ; X, T |ν) := T 1 12 σ 3 Ψ σ (λT -1 3 ; XT -1 3 |T -1 3 ν) (3.90)
is the (unique) solution to the following RH problem.

RH problem for Ψ σ

(a) Ψ σ (•; X, T |ν) : C \ R → C 2×2 is
analytic for all X ∈ R, T > 0, and all ν.

(b) The boundary values of Ψ σ (•; X, T |ν) are continuous on R \ {ν 1 , . . . , ν m } and are related by

Ψ σ,+ (λ; X, T |ν) = Ψ σ,-(λ; X, T |ν) 1 1 -σ(λ) 0 1 , λ ∈ R, λ ̸ = ν i .
(3.91) (c) For all i = 1, . . . , m, as λ → ν i from either side of the real axis we have

Ψ σ (λ; X, T |ν)(λ -ν i ) -σ 3 = O(1). (3.92) (d) As λ → ∞, we have Ψ σ (λ; X, T |ν) = I + 1 λ q σ (X, T |ν) i r σ (X, T |ν) i p σ (X, T |ν) -q σ (X, T |ν) + O(λ -2 ) λ 1 4 σ 3 Ge -T -1 2 2 3 λ 3 2 +Xλ 1 2 σ 3 C δ (3.93)
for any δ ∈ (0, π 2 ). Here we take principal branches of the roots of λ as explained after (3.12), and G, C δ are as in (3.13). Moreover, the coecients in the sub-leading term are related to the ones in (3.12) by

q σ (X, T |ν) = T 1 3 q σ (XT -1 3 |T -1 3 ν), r σ (X, T |ν) = T 1 2 r σ (XT -1 3 |T -1 3 ν), p σ (X, T |ν) = T 1 6 p σ (XT -1 3 |T -1 3 ν). (3.94) 
It is convenient to reformulate (3.89) using (3.94), as 

∂ X log J σ (X, T |ν) = X 2 4T -T -1 2 p σ (X, T |ν).
; XT -1 3 |T -1 3 ν) = 1 p σ (X, T |ν) 0 1 e iπ 4 σ 3 Ψ σ (λ; X, T |ν)e -iπ 4 σ 3 = - √ 2π T 1 2 ∂ X φ σ (λ; X, T |ν) T 1 2 ∂ X χ σ (λ; X, T |ν) φ σ (λ; X, T |ν) χ σ (λ; X, T |ν) (3.96)
where we dene, cf. (3.41),

φ σ (λ; X, T |ν) = T -1 12 φ σ (λT -1 3 ; XT -1 3 |T -1 3 ν), χ σ (λ; X, T |ν) = T -1 12 χ σ (λT -1 3 ; XT -1 3 |T -1 3 ν).
(3.97) Proposition 3.12. Let V σ (X, T |ν) := ∂ 2 X log J σ (X, T |ν) and f be in the linear span of φ σ (λ; X, T |ν) and χ σ (λ; X, T |ν). We have the Lax pair

L f = λf, A f = ∂ T f, (3.98) 
where

L := T ∂ 2 X + 2T V σ (X, T |ν) -X, A := - 1 3 ∂ 3 X -V σ (X, T |ν)∂ X - 1 2 ∂ X V σ (X, T |ν) + 1 3 T -1 - 1 12 T -3 2 .
(3.99)

Proof. Although the rst equation L f = λf follows directly from (3.42) by using (3.97), it is convenient to deduce it again; doing so will provide us with additional information useful in the derivation of the second equation.

We start by noting that the matrix function A(λ; X, T |ν) := ∂ X Θ σ (λ; X, T |ν) Θ σ (λ; X, T |ν) -1 has no jump across the real axis because the jump condition for Θ σ across the real axis does not depend on X as if follows from (3.96) along with condition (b) in the RH problem for Ψ σ . Once more, we refer the reader to [START_REF] Cafasso | Airy kernel determinant solutions to the KdV equation and integro-dierential Painlevé equations[END_REF]Section 3] for the rigorous justication of the dierentiability of the RH solution.

Moreover, it is readily checked, cf. (3.36), that as λ → ∞ we have

Θ σ (λ; s|ν) = 1 p σ (X, T |ν) 0 1 I + 1 λ q σ (X, T |ν) -r σ (X, T |ν) p σ (X, T |ν) -q σ (X, T |ν) + 1 λ 2 ⋆ ⋆ n σ (X, T |ν) ⋆ + O(λ -3 ) λ σ 3 /4 1 1 -1 1 √ 2 e -T -1 2 2 3 λ 3 2 +Xλ 1 2 σ 3 C δ (3.100)
for any δ ∈ (0, π 2 ). The notations are as in (3.36) but now we also need to explicitly record the (2, 1)-entry of the second sub-leading term in the asymptotic series, denoted n σ .

Next, from (3.100), we deduce that A has an expansion for large λ of the form

A = T -1 2 0 λ + p 2 σ + 2 q σ + T 1 2 ∂ X p σ 1 0 + λ -1 T -1 2 ⋆ ⋆ T 1 2 ∂ X p σ -p 2 σ -2 q σ n σ + r σ + p 3 σ + 3 p σ q σ -1 2 T 1 2 ∂ X p 2 σ + 2 q σ + O(λ -2 ). (3.101) 
Liouville theorem guarantees then that A is a polynomial in λ. Consequently, the higher-order Laurent coecient in this expansion must vanish; we do not need the information coming from the rst row (and we have accordingly omitted these terms), while from the second row at order λ -1 we obtain

p 2 σ + 2 q σ = T 1 2 ∂ X p σ , n σ + r σ + p 3 σ + 3 p σ q σ = 1 2 T ∂ 2 X p σ . (3.102)
Summarizing, also thanks to (3.95), we have

A = T -1 2 0 λ + 2T 1 2 ∂ X p σ 1 0 = T -1 2 0 λ -2V σ + X 1 0 . (3.103)
Comparing with (3.96) we obtain L f = λf whenever f is in the linear span of φ σ , χ σ . Next, the matrix function B(λ; X, T |ν) := ∂ T Θ σ (λ; X, T |ν) Θ σ (λ; X, T |ν) -1 has no jump across the real axis because the jump condition for Θ σ across the real axis does not depend on T , and so B is entire in λ. It then follows from an application of Liouville theorem that B is a polynomial in λ. In particular, from (3.100), the (2, 1)-entry of B is expressed as

3T 3 2 B 2,1 = -λ + p 2 σ + 2 q σ - 3X 2 = -λ + T 1 2 ∂ X p σ - 3 2 X = -λ -T V σ -X, (3.104) 
and, similarly, the (2, 2)-entry of B as

3T 3 2 B 2,2 = -n σ + r σ + p 3 σ + 3 p σ q σ = - 1 2 T ∂ 2 X p σ = 1 2 T 3 2 ∂ X V σ - 1 4 . 
(3.105)

We have used (3.102) and (3.95) to simplify these expressions. Comparing with (3.96), we must have

∂ T f = - λ + T V σ + X 3T ∂ X f + 2∂ X V σ -T -3 2 12 f, (3.106) 
for f equal to either φ σ or χ σ , and hence for any f in their linear span. By the relation L f = λf obtained above we can rewrite the last relation by using λ∂ X f = ∂ X (L f ) which nally yields

∂ T f = A f .
Corollary 3.13. The function V σ (X, T |ν) := ∂ 2 X log J σ (X, T |ν) satises the cKdV equation (1.14).

Proof. This is a classical argument [START_REF] Lax | Integrals of nonlinear equations of evolution and solitary waves[END_REF]. From the compatibility condition of (3.98) we obtain

∂ T L + [L , A ] f = 0.
(3.107)

A direct computation gives that ∂ T L + [L , A ] is the operator of multiplication with the function

V σ (X, T |ν) + 2T ∂ T V σ (X, T |ν) + 2T V σ (X, T |ν)∂ X V σ (X, T |ν) + 1 6 T ∂ 3 X V σ (X, T |ν).
(3.108)

The equation (3.107) must be true for any f in the linear span of φ σ , χ σ . Since det Θ σ = 1 identically in all variables λ, X, T , the functions φ σ and χ σ never vanish simultaneously, hence (3.108) must vanish identically.

This proves Theorem III.

3.8

Generalization to discontinuous σ's

In this section we briey explain how to extend the results to a broader class of functions σ, including in particular σ = 1 (0,+∞) .

Assumption C. The function σ : R → [0, 1] is such that σ = σ 0 + f j=1 w j 1 (ξ j ,+∞) for some (nite) integer f ≥ 0, some w 1 , . . . , w f > 0 and some ξ 1 , . . . , ξ f ∈ R, and a smooth function σ 0 such that σ 0 (λ) = O(|λ| -3 2 -κ ) as λ → -∞ for some κ > 0.

These are the assumptions made in [START_REF] Cafasso | Airy kernel determinant solutions to the KdV equation and integro-dierential Painlevé equations[END_REF], to which we refer for more details, and they include the setting of [START_REF] Claeys | The generating function for the Airy point process and a system of coupled Painlevé II equations[END_REF] which corresponds to the case σ 0 = 0. Under these more general assumptions, the RH problems for Y σ and Ψ σ have to be complemented with the condition that Y σ and Ψ σ have, at worst, logarithmic singularities at ξ j .

Theorem I holds true verbatim except for (1.29), which is to be replaced by

j σ (s|∅) = exp   - +∞ s (r -s)   R φ σ (λ; r|∅) 2 σ ′ 0 (λ)dλ + f j=1 ∆ j φ σ (ξ j ; r|∅) 2     (3.109)
where ∆ j := w j -w j-1 for 2 ≤ j ≤ f and ∆ 1 := w 1 . This follows directly from [14, equations (1.8) and (1.26)].

Moreover, Theorem II holds true verbatim except for (1.31), which is to be replaced by 4 Asymptotics

∂ 2 s log j σ (s|ν) = R φ σ (λ; s|ν) 2 -σ ′ 0 (λ) + m i=1 2 1 -σ(λ) λ -ν i dλ - f j=1 ∆ j φ σ (ξ j ; s|ν) 2 , ( 3 

Outline

The goal of this section is to prove Theorem IV.

The proof of part (i) of Theorem IV will rely on elementary operator estimates, starting from the analogue of the factorization (2.12) in the cKdV variables,

J σ (X, T |ν) = det K Ai X,T (ν, ν) det L 2 (R) 1 -M √ σ H ν X,T M √ σ , (4.1) 4.3 
Left tail: X/T → -∞

In this section we use the results of [START_REF] Charlier | Uniform tail asymptotics for Airy kernel determinant solutions to KdV and for the narrow wedge solution to KPZ[END_REF]; the latter rely on Assumption B, which we assume throughout this section. We recall the transformation x = -XT -1 2 and t = T -1 2 between the cKdV variables of the present paper and the KdV variables of [START_REF] Charlier | Uniform tail asymptotics for Airy kernel determinant solutions to KdV and for the narrow wedge solution to KPZ[END_REF]. For the ease of notations, we will denote Θ(λ) := Θ σ (λ; X, T |∅) throughout this section for the function dened in (3.96). Let us now assume that, for an arbitrary T 0 > 0 and for a suciently large K > 0, we have X ≤ -KT and T ≥ T 0 . In this regime (in fact, in the larger regime X ≤ -KT

2 ), the relevant asymptotics have been studied

in [START_REF] Charlier | Uniform tail asymptotics for Airy kernel determinant solutions to KdV and for the narrow wedge solution to KPZ[END_REF] via a RH analysis involving a series of transformations which we can condense in the relation

Θ ± (|X|w) = 1 p 0 1 e iπ 4 σ 3 |X| 1 4 σ 3 1 -i|X| 3 2 T -1 2 g 1 0 1 R(w) × (w -a) 1 4 σ 3 G 1 0 ±e -|X| 3 2 T -1 2 ϕ ± (w) 1 e |X| 3 2 T -1 2 (g ± (w)-g 0 )σ 3 e -iπ 4 σ 3 , (4.19) 
for w suciently close to 0. Here, cf. [15, equations (4.15), (4.17)], with principal branches for the roots,

g(w) = w a g ′ (s)ds, g ′ (w) = -(w -a) 1 2 1 + T 1 2 2π|X| 1 2 a -∞ σ ′ (|X|s) 1 -σ(|X|s) 1 √ a -s ds s -w , g 0 = T 1 2 log 1 -σ(|X|a) 2|X| 3 2 , ϕ(w) = 2 g(w) -g 0 + T 1 2 log 1 -σ(|X|w) |X| 3 2 . (4.20)
Moreover, G is given in (3.13) and p = p σ (X, T |∅). The value of a = a(X, T ) is implicitly dened by the endpoint condition, namely g

′ + (w) -g ′ -(w) = O (w -a) 1 2
as w → a with w < a, cf. 

R(w)

= I + O(|X| -3 2 T 1 2 ), ∂ w R(w) = O(|X| -3 2 T 1 2 ), (4.21) 
uniformly in w, T ≥ T 0 , X ≤ -KT . Finally, the value of g 1 is given explicitly in [15, equation (4.16)] but it is not needed for our current purposes.

As explained in Section 4.1, in order to describe the behavior of J σ (X, T |ν), V σ (X, T |ν) in this regime we will use equations (4.4) and (4.7). Thus what is fundamental to understand is the behavior of L σ X,T (ν i , ν j ). The following two lemmas will show how the kernel behaves on and o the diagonal. We are interested in values of Θ at ν = |X|w, hence we assume throughout this section that w is real and small. Therefore, (4.19) implies

Θ ± (|X|w) = 1 p + X 2 T 1 2 g 1 0 1 |X| 1 4 σ 3 O(1) e |X| 3 2 T -1 2 (g ± (w)-g 0 ) 0 ∓ie |X| 3 2 T -1 2 (g ∓ (w)-g 0 ) e -|X| 3 2 T -1 2 (g ± (w)-g 0 ) (4.22)
where we also use the identity ϕ ± = g ± -g 

p + X 2 T -1 2 g 1 = O(|X| -1 T 1 2 ), (4.23) 
such that the previous relation implies

Θ ± (|X|w) = 1 O(|X| -1 T 1 2 ) 0 1 |X| 1 4 σ 3 O(1) e |X| 3 2 T -1 2 (g ± (w)-g 0 ) 0 ∓ie |X| 3 2 T -1 2 (g ∓ (w)-g 0 ) e -|X| 3 2 T -1 2 (g ± (w)-g 0 )
.

(4.24)

Finally, we study the last factor, involving g, g 0 . By (4.20) and the SokhotskiPlemelj formula, we have

g ′ ± (w) = ∓i √ a -w 1 + |X| -1 2 T 1 2 2π p.v. a -∞ σ ′ (|X|s) 1 -σ(|X|s) 1 √ a -s ds s -w ± i T 1 2 |X| -1 2 2 √ a -w σ ′ (|X|w) 1 -σ(|X|w) , (4.25) 
where p.v. is the principal value integral. It follows that 

Re g

′ ± (w) = T 1 2 2|X| 1 2 σ ′ (|X|w) 1 -σ(|X|w)
Θ ± (ν) = 1 O(|X| -1 T 1 2 ) 0 1 |X| 1 4 σ 3 O(1) (4.28) 
because from (4.27) we have

e |X| 3 2 T -1 2 g ± (ν|X| -1 )-g 0 = 1 1 -σ(ν) (4.29)
which is bounded away from 0 and ∞, uniformly in the regime under consideration. In particular, by (3.96) 4 ). From (4.6) and (4.30), we immediately obtain boundedness of the kernel L σ X,T (ν 1 , ν 2 ) for ν 1 ̸ = ν 2 .

, φ σ (ν; X, T |∅) = O(|X| -1 4 ), T 1 2 ∂ X φ σ (ν; X, T |∅) = O(|X| 1 
Namely, we have proved the following lemma.

Lemma

4.3. Let T 0 > 0, ν 1 ̸ = ν 2 ∈ R be xed. There exists K > 0 such that L σ X,T (ν 1 , ν 2 ) = O(1) (4.31) 
uniformly for X ≤ -KT and T ≥ T 0 .

On the other hand, we now show that on the diagonal, the kernel L σ X,T (ν, ν) grows.

Lemma 4.4. Let T 0 > 0, ν ∈ R be xed. We have

L σ X,T (ν, ν) ∼ |X| 1 2 πT 1 2 1 1 -σ(ν) , as X T log 2 |X| → -∞, (4.32) 
uniformly for T ≥ T 0 . In particular, L σ X,T (ν, ν)

-1 = O(|X| -1 2 T 1 2 ).
Proof. We combine (4.6) (in the conuent limit µ, λ → ν) with (4.19) to get

L σ X,T (ν, ν) = 1 2π Θ -1 + (ν)∂ ν Θ + (ν) 2,1 = 1 2πi e -χ(g + ( ν |X| )-g 0 )σ 3 1 0 -e -χϕ + ( ν |X| ) 1 G -1 -ν |X| -a -1 4 σ 3 R -1 ( ν |X| ) ∂ ν R( ν |X| ) -ν |X| -a 1 4 σ 3 G 1 0 e -χϕ + ( ν |X| ) 1 e χ(g + ( ν |X| )-g 0 )σ 3 2,1 = 1 2πi e -χ(g + ( ν |X| )-g 0 ) 0 -e χ(g -( ν |X| )-g 0 ) e χ(g + ( ν |X| )-g 0 ) G -1 -ν |X| -a -1 4 σ 3 R -1 ( ν |X| ) ∂ ν R( ν |X| ) -ν |X| -a 1 4 σ 3 G e χ(g + ( ν |X| )-g 0 ) 0 e χ(g -( ν |X| )-g 0 ) e -χ(g + ( ν |X| )-g 0 ) 2,1 (4.33) 
where we denote χ := |X| is bounded away from 0, ∞ and so the triangular matrices appearing in (4.33) are O(1). Therefore, when the derivative in ν acts in (4.33) it produces terms of order O(|X| -1 ) when it acts on the rst two factors, see also (4.21), and another term when it acts on the triangular matrix, which provides the leading asymptotic contribution, yielding

L σ X,T (ν, ν) = χ 2πi |X| e χ g + ( ν |X| )+g -( ν |X| )-2g 0 g ′ -( ν |X| ) -g ′ + ( ν |X| ) + O(|X| -1 ). (4.34)
By the construction of g, cf. [15, Section 4.2], we have (recall that F = 1/(1 -σ))

χ g + (w) + g -(w) -2g 0 = log F (|X|w), (4.35) 
hence we can rewrite the last expression as

L σ X,T (ν, ν) = |X| 1 2 2πi T 1 2 F (ν) g ′ -( ν |X| ) -g ′ + ( ν |X| ) + O(|X| -1 ). (4.36) 
Next, we use (4.25), a change of integration variable, and an integration by parts in order to get

g ′ -(w) -g ′ + (w) = 2i √ a -w 1 + T 1 2 2π|X| 1 2 p.v. a|X| -∞ (log F ) ′ (s) 1 a -s|X| -1 ds s -|X|w = 2i √ a -w + T 1 2 2π|X| 1 2 a|X| -∞ (log F ) ′′ (s) log √ a -w + a -s|X| -1 √ a -w -a -s|X| -1 ds . (4.37)
Now, it is useful to recall the following asymptotic properties for a = a(X, T ) from [15, Proposition 4.1]:

a = √ 1 + y -1 2 y y= π 2 c 2 + |X|/T + O(|X| -3 2 T 1 2 ) (4.38)
uniformly in -X/T ≤ K, T ≥ T 0 (for any K, T 0 > 0). Hence,

a = 1 - 2c + T 1 2 π|X| 1 2 + O(|X| -1 T ), a - ν |X| = 1 - c + T 1 2 π|X| 1 2 + O(|X| -1 T ), (4.39) 
as X/T → -∞, T ≥ T 0 . Let us now show that the second term in (4.37) is sub-dominant. To start with, notice that, in the same limit, and uniformly for s ∈ (-∞, a|X|), Remark 4.5. It is straightforward to adapt the above proof in order to obtain asymptotics in the full region X/T → -∞, slightly larger than the region X T log 2 |X| → -∞. Note however that the error term will then no longer be small, and the asymptotic expression contains several terms, see (4.42) and (4.43). For the sake of simplicity, we present the results only as X T log 2 |X| → -∞.

log a -ν|X| -1 + a -s|X| -1 a -ν|X| -1 -a -s|X| -1 = log 4a|X| |s -ν| + O(1) + O log(s|X| -1 ) . (4.40) It follows that L σ X,T (ν, ν) = |X| 1 2 π T 1 2 F (ν) 1 - c + T 1 
Using the two previous results, we can prove an important decorrelation property: since the matrix L σ X,T (ν, ν) is dominated by its diagonal, the m-point correlation function det L σ X,T (ν, ν)

decomposes at leading order into a product of one-point correlation functions. Similarly, its second logarithmic derivative decomposes at leading order into a sum of rapidly oscillating terms.

Proposition 4.6. Let T 0 > 0, ν ∈ R m . We have

det L σ X,T (ν, ν) = 1 + O(|X| -1 2 T 1 2 ) m i=1 L σ X,T (ν i , ν i ) (4.44) ∂ 2 X log det L σ X,T (ν, ν) = 1 |X|T m i=1 cos 4|X| 3 2 3T 1 2 
(1 + A X,T ) -2|X| Proof. For the ease of notation, let us denote L = ( L ij ) for the m × m matrix with entries L ij := L σ X,T (ν i , ν j ). By Lemma 4.3 and Lemma 4.4 we have

L ij = L ii δ ij + O(|X| -1 2 T 1 2
) , 1 ≤ i, j ≤ m. Taking determinants we get (4.44). Moreover, (4.46) also implies ( L -1 ) ij = 1 We have the relation T 1 2 ∂ X L ij = -φ i φ j , where we denote φ i := φ σ (ν i ; X, T |∅). This is the analogue, for the full set of cKdV variables X, T , of the relation (3.43). As a consequence, T 1 2 ∂ 2 X L ij = -(∂ X φ i ) φ j -φ i (∂ X φ j ). Hence, by (4.30), we have

L ii δ ij + O(|X| -1 2 T 1 2 ) = δ ij L ii + O(|X| -1 T ), 1 ≤ i, j ≤ m.
∂ X L ij = O(|X| -1 2 T -1 2 ), ∂ 2 X L ij = O(T -1
). . By (4.4), we have J σ (X, T |ν) = det (L(ν i , ν j )) m i,j=1 J σ (X, T |∅), 
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. In the latter, we recognize the Vandermonde determinant, and the result follows.

Middle-intermediate regime: -K ′ T 1 2 ≤ X ≤ -M T 1 3 for some K ′ , M > 0. Here, the asymptotic analysis of the RH problem for Θ has also been completed in [START_REF] Cafasso | Airy kernel determinant solutions to the KdV equation and integro-dierential Painlevé equations[END_REF], but the asymptotics are implicit and described in terms of the solution of an integro-dierential generalization of the fth Painlevé equation.

(1. 7 )

 7 It is worth observing that the relation (1.5) is the analogue, for potentials with linear background, of the classical Trace Formula obtained by Deift and Trubowitz [20, Equation (1) R , page 183] in scattering theory for the Schrödinger equation for potentials with zero background.

Remark 1 . 8 and

 18 Section 3.8.) The integro-dierential Painlevé II equation reduces to the Painlevé II equation, and (1.5) is the celebrated TracyWidom formula. The cKdV tau function and solution

(1. 30 )

 30 Then we can identify the Stark boundary problem (1.6) with [18, Equations (1.12)(1.15)]. Furthermore, L 1 (0,+∞) s is the kernel of the determinantal point process obtained by conditioning the shifted

Figure 2 :

 2 Figure 2: First line: 1-soliton cKdV solution V 0 (X, T |ν) with ν = (-2) as a function of X for various values of T . Second line: 2-soliton cKdV solution V 0 (X, T |ν) with ν = (0, 3) as a function of X for various values of T .

|X| T log 2 |X|Figure 3 :

 23 Figure 3: Phase diagram showing the dierent tail asymptotics for V σ (X, T |ν), uniform in the indicated regions for xed M, K > 0.

  be characterized in terms of the following RH problem (see proof of Proposition 3.1 below). RH problem for Y σ (a) Y σ (•; s) : C \ R → C 2×2 is analytic for all s ∈ R. (b) The boundary values of Y σ (•; s) are continuous on R and are related by

  (a) Ψ σ (•; s|ν) : C \ R → C 2×2 is analytic for all s ∈ R and all ν.(b) The boundary values of Ψ σ (•; s|ν) are continuous on R \ {ν 1 , . . . , ν m } and are related by

1 4 σ 3 and λ 1 2
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  (a) Φ Ai is analytic in C \ R. (b) The boundary values of Φ Ai are continuous on R and are related by

4 .

 4 When m = 0, the RH problem for Ψ σ has a unique solution for all s ∈ R which can written as

(3. 19 )

 19 Proof. As explained in Remark 3.3, uniqueness of the solution follows from standard arguments, so it suces to verify that (3.17) solves the RH problem. Condition (a) is easily checked, while for condition (b) we use the identity

3 2 σ 3 C

 33 δ (3.22) and expanding for λ large and s xed we verify condition (d) in the RH problem for Ψ σ along with the claimed relation (3.18). Finally, (3.19) follows directly from the expression (3.5) for the kernel of

  in the RH problem for Ψ σ then translates to the condition

(3. 30 )

 30 Plugging (3.30) into (3.29) using(3.19) we get

(

  a) Θ σ (•; s|ν) : C \ R → C 2×2 is analytic for all s ∈ R and all nite ν ⊂ R. (b) The boundary values of Θ σ (•; s|ν) are continuous on R \ ν and are related by

1 4 σ 3 and λ 1 2

 11 are taken as in (3.12).

( 3 .

 3 50)and the proof now follows from (3.47) because log j σ (s|ν) = log det L σ s (ν, ν) + log j σ (s|∅) by (2

( 3 .

 3 66) When µ ≥ -s/2, we have |A(µ + s)| = O(e -µ-s ), σ(µ) = O(1), and

  directly by integrating (3.43) from s to +∞ thanks to (3.58). 3.4 Proofs of Theorems I and II Proof of Theorem I. The rst relation (1.27) is nothing else than (2.13). The rst equality in (1.28) is (3.69) while the second one is a rewriting of (3.37) using (3.41). That φ σ solves the Stark boundary value problem (1.6) with potential v σ (s|∅) := ∂ 2 s log j σ (s|∅) follows from (3.42), (3.51), and (3.58).

The identity φ 2

 2 (λ; s|∅)dσ(λ) = -v σ (s|∅), proved in [14, Proposition 4.1], completes the proof. This identity also follows by setting ν = ∅ in the more general identity (3.77) below, which will be shown in the proof of Theorem II by an adaptation of the argument in loc. cit. (and not relying on the case ν = ∅).

  Proof of Theorem II. Let us introduce Ξ(λ; s|ν) := Θ σ (λ; s|ν)ξ(λ|ν) -σ 3 , ξ(λ|ν) := m i=1

( 3 .

 3 72)It follows that C(λ; s|ν) := ∂ λ Ξ(λ; s|ν) Ξ(λ; s|ν) -1 is also a sectionally analytic matrix-valued function of λ satisfying a jump condition across the real axis of the form

(

  a) M (•; ξ) : C \ R → C 2×2 is analytic for all ξ ∈ R.(b) The boundary values of M (•; ξ) are continuous on R and are related by

-σ 3 O

 3 (1) for i = 1, . . . , m. The characteristic matrix of [4, Denition 2.2], such that the logarithmic dierential of its determinant expresses the variation between the MalgrangeBertola dierential after pole insertion [4, Theorem 2.2 part (3)], would reduce in the present setting to res λ=ν i +s res µ=ν j +s Γ -1 (λ; s)Γ(µ; s) 2,1

( 3 . 1 12 σ 3

 313 95) Introduce now, cf. (3.33) and (3.41), Θ σ (λ; X, T |ν) := T Θ σ (λT -1 3

  .110) and Theorem III holds true verbatim. These two generalizations are obtained by studying the local behavior of Ψ σ near the logarithmic singularities at the points ξ j , as is done in the end of the proof of [14, Proposition 4.1], cf. equations (4.5) and (4.6) there.

  [15, equation (4.3)]. For X ≤ -KT and T ≥ T 0 , a is bounded away from zero and innity, and by[START_REF] Charlier | Uniform tail asymptotics for Airy kernel determinant solutions to KdV and for the narrow wedge solution to KPZ[END_REF] Lemma 4.5],

alog 1 -

 1 Re g ± (ζ) -g 0 ) = w Re g ′ ± (s)ds -g 0 = -σ(|X|w) .

(4. 27 )

 27 Finally, let us set w = |X| -1 ν, for a xed ν and suciently large |X|. It follows from the last estimates and (4.24) that

2 π|X| 1 2 + O |X| -1 2 T 1 2

 21 log |X| as XT -1 log -2 |X| → -∞.(4.41) To achieve this bound, we used a|X| -∞ (log F ) ′′ (s)ds = +∞ -∞ (log F ) ′′ (s)ds + o(1) = c + + o(1) = O(1)

(4. 42 )

 42 (note that, by Assumption B,+∞ -∞ (log F ) ′′ (s)ds = lim s→+∞ (log F ) ′ (s) -lim s→-∞ (log F ) ′ (s) = c + ) and a|X| -∞ (log F ) ′′ (s) log 4 |s -ν| ds = +∞ -∞ (log F ) ′′ (s) log 4 |s -ν| ds + o(1) = O(1), (4.43) which, in turn, follow by the Lebesgue dominated convergence theorem, and a similar bound for a|X| -∞ (log F ) ′′ (s) log |s|ds. Thus we obtain L σ X,T (ν, ν)

ν i ( 1 +

 1 B X,T (ν i )) + O(|X| -1 ) (4.45) uniformly for T ≥ T 0 as X T log 2 |X| → -∞, where A X,T , B X,T (ν) converge to 0 as X T log 2 |X| → -∞.

(4. 47 )( 2 X 2 X

 4722 In the second equality we use again Lemma 4.4.) By a direct computation, we have∂ log L ij )( L -1 ) ji -m i,j,k,l=1 (∂ X L ij )( L -1 ) jk (∂ X L kl )( L -1 ) li .

(4. 49 )

 49 Therefore, byLemma 4.4, (4.47), and (4.49), we have the estimatesm i,j=1 (∂ 2 X L ij )( L -1 ) ji = m i=1 ∂ 2 X L ii L ii + O(|X| -1 ), m i,j,k,l=1 (∂ X L ij )( L -1 ) jk (∂ X L kl )( L -1 ) li = O(|X| -2 ).

( 4 . 1 LπT m i=1 1 L 1 2, 2 + 3 2 T - 1 2 1 2 p + iχg 1 1 ,

 411123111 50)In the last one we combined(4.47) andLemma 4.4 to get ( L -1 ) ij = O(|X| -ii φ i ∂ X φ i + O(|X| -1 ) = -1 ii Θ(ν i )E 12 Θ(ν i ) -O(|X| -1 ),(4.51)where the elementary unit matrix E 12 is dened in(3.45), and where we used (3.96).Using(4.19), we can write after straightforward computationsΘ(ν)E 12 Θ(ν) as before, v = 0, 1 R( ν |X| ), w = R( ν |X| ) -1 i|X| -χϕ + ( ν |X| ) 1 G -1 ( ν |X| -a) -σ 3 4 . (4.54) Using (4.21) and the asymptotic estimate (4.23), we obtainv = O(χ -1 ), 1 + O(χ -1 ) , w = O(χ -1 ) 1 + O(χ -1 ), as X/T → -∞,

log 2

 2 |X| → -∞. By (4.20), we can simplify the expression for B and obtainB = -iF (ν)( ν |X| -a) ϕ + ( ν |X|) is purely imaginary and B is bounded and bounded away from 0, we have

2 =

 2 vBw = -F (ν) cos χ|ϕ + ( ν |X| )| + O(χ -1 ).

F 3 2

 3 (ν i ) Lii cos χ|ϕ + ( ν i |X| )| + O(|X| -1 ) T -1 2 |ϕ + ( ν i |X| )| + O(|X| -1 ),(4.59)where we used Lemma 4.4. It remains to compute|ϕ + ( ν i |X| )| = a ν i /|X||(g + -g -) ′ (s)|ds.

( 4 .

 4 60) Proof. Let us abbreviate L = L σ X,T and L = L 1 (0,+∞) s=XT -1 3

( 4 . 3 1≤j<k≤m(ν k -ν j ) 2 ,L(ν 1 , ν 1 )

 43211 72)hence by(4.63), it remains to prove thatdet (L(ν i , ν j )) m i,j=1 ∼ C m T -m 2 (4.73)in the relevant limit. Since L(•, •) is entire in its variables, we haveL(ν i , ν j ) = L(ν 1 , ν 2 ) • • • L(ν 1 , ν m ) L(ν 2 , ν 1 ) L(ν 2 , ν 2 ) • • • L(ν 2 , ν m ) . . . . . . . . . . . . L(ν m , ν 1 ) L(ν m , ν 2 ) • • • L(ν m , ν m )

( 4 . 3 L

 43 75)Then we use Proposition 4.7 to obtainL (i-1,j-1) (0, 0) ∼ T -i+j-1 (i-1,j-1) (0, 0), as T → ∞, |XT -1 3 | ≤ M . (4.76)Expanding (4.75) by the BinetCauchy identity, we immediately see that the leading order as T → ∞

  [START_REF] Baik | Dierential equations for the KPZ and periodic KPZ xed points[END_REF] 

  other words, Theorem II states that the Stark equation with potential ∂ 2 s log j σ (s|ν) is obtained by Darboux transformations (in the original spirit of Darboux[START_REF] Darboux | Sur une proposition relative aux équations linéaires[END_REF]) of the Stark equation with potential ∂ 2 s log j σ (s|∅). , by the asymptotics φ σ (λ; s|∅) ∼ Ai(λ + s) = φ 0 (λ; s|∅) as s → +∞, one obtains that the appropriate boundary condition for the solution to the Stark equation (1.32) is φ σ (λ; s|ν) ∼ φ 0 (λ; s|ν) as s → +∞. The function φ 0 (λ; s|ν) is explicit in terms of the Ai and Ai ′ functions, by(1.34) and L 0 s = K Ai

	Moreovers .
	It follows by combining (1.31), (1.32), and (1.33), that φ σ (λ; s|ν) satises a deformation of the
	integro-dierential Painlevé II equation:

3 2 T

 2 -1 2 and in the last step we use the relation ϕ + = g + -g -, cf.[15, equation below (4.17)]. As we proved in (4.29), e

	χ(g ± ( ν |X| )-g 0 )
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where H Ai X,T is the integral operator with kernel, similarly to (2.9), H ν X,T (λ, µ) := det K Ai X,T (λ, ν), (µ, ν) det K Ai X,T (ν, ν)

Consequently, by (1.11), we also have

We will prove in Section 4.2 that the second factor in (4.1) is close to 1 and that the second term in (4.3) is close to 0, and this will result in part (i) of Theorem IV.

For part (ii) of Theorem IV, we will instead use the analogue of (2.13) in the cKdV variables X, T . Using (1.25), (1.27), and (1.28), we obtain the identity

where

with σ(λ) = σ(T 1 3 λ) as in (1.25), which can be rewritten by (1.28) and (3.96)(3.97) as

It also follows that

The asymptotic behavior of the second factor in (4.4) and of the rst term in (4.7) has been established in [START_REF] Cafasso | Airy kernel determinant solutions to the KdV equation and integro-dierential Painlevé equations[END_REF][START_REF] Charlier | Uniform tail asymptotics for Airy kernel determinant solutions to KdV and for the narrow wedge solution to KPZ[END_REF], and can be summarized as follows in the cases where XT -1 2 → -∞.

Theorem 4.1. Let σ satisfy Assumption B. For any T 0 > 0 there exists K > 0 such that

where ρ := c 2 + /π 2 and ξ := X/(ρT ), uniformly for X ≤ -KT

Therefore, in order to prove part (ii) of Theorem IV we only need to study, in Section 4.3, the additional contributions to (4.4) and (4.7) coming from det L σ X,T (ν i , ν j )

4.2

Right tail:

We start with a Fredholm determinant estimate for the operator M √ σ H Ai X,T M √ σ , not only valid for large positive X, but also for complex large X with arg X suciently small. Lemma 4.2. Let σ satisfy Assumption A and let ν = (ν 1 , . . . , ν m ) with ν i ̸ = ν j for all i ̸ = j. For any T 0 > 0 there exist M, c, δ > 0 such that det

uniformly for |X| ≥ M T 

uniformly for |X| ≥ M T 1 3 , | arg X| < δ, and T ≥ T 0 , where R + = max{R, 0}, for any c > 0, and uniformly for λ, µ ∈ R. Hence, by (4.2),

uniformly for the same values of X, T, λ, µ. We can now use the triangular inequality in the Fredholm series det

in order to obtain det

where Hadamard's inequality guarantees that det O( 1)

, and in the last step we set

n! ξ n is a power series in ξ with innite radius of convergence, hence

and since the integral on the right-hand side is nite by Assumption A, we have ξ = O(e -cT -1 3 Re X )

and the proof is complete.

Taking logarithms on both sides in (4.1), we obtain

and it follows from Lemma 4.2 (for real X) that det

as X, T → ∞ uniformly for X ≥ M T 1 3 and T ≥ T 0 . This implies (1.45).

Taking the second logarithmic X-derivative in (1.45), we obtain

(4.17 

and thus we prove (1.46), so the proof of part (i) of Theorem IV is concluded.

For this, we recall (4.37) and the estimates below that equation; in the same way as in the proof of Lemma 4.4, we then obtain

The argument of the cosine is thus equal to

with A X,T → 0, B X,T (ν i ) → 0 as X T log 2 |X| → -∞, and the result follows.

Combining the above result with (4.4), and then substituting the asymptotics from Lemma 4.4, we complete the proof of part (ii) of Theorem IV.

With some more eort, we could obtain asymptotics in the slightly bigger asymptotic region where X/T → -∞, as already mentioned in Remark 4.5.

4.4

Intermediate regimes: -KT ≤ X ≤ M T 1 3

We will now discuss the asymptotic behavior as T → ∞ of various relevant quantities in the intermediate regimes where -KT ≤ X ≤ M T 1 3 for suciently large constants K, M > 0. The asymptotics for the Jánossy density J σ (X, T |ν) and the cKdV solution V σ (X, T |ν) become, unfortunately, rather involved and implicit. In order to understand the mechanisms behind these asymptotics, an interesting and relevant object to consider, is the kernel L σ X,T (ν 1 , ν 2 ). Indeed, in view of the factorization (4.4), determinants of this kernel describe the eect of the points ν 1 , . . . , ν m on the Jánossy densities J σ (X, T |ν), and the second logarithmic X-derivative of such determinants describe the eect of the points ν 1 , . . . , ν m on the cKdV solutions V σ (X, T |ν). Recall that the kernel L σ X,T (ν 1 , ν 2 ) is expressed in terms of the RH solution Θ through (4.6). We distinguish three further asymptotic regimes.

Left-intermediate regime:

-KT ≤ X ≤ -K ′ T 1 2 for any K, K ′ > 0. The asymptotic analysis of the RH problem for Θ has been carried through in [START_REF] Charlier | Uniform tail asymptotics for Airy kernel determinant solutions to KdV and for the narrow wedge solution to KPZ[END_REF] and is very similar to the one utilized for the left tail. However, there is an important dierence in that the decorrelation property from Proposition 4.6 no longer holds. For that reason, even if we could obtain asymptotics for L σ X,T (ν 1 , ν 2 ), the explicit asymptotic behavior of the determinants det L σ X,T (ν, ν) and their logarithmic derivatives becomes cumbersome for m > 1.

Right-intermediate regime

for any M > 0. In this case, it was proved in [START_REF] Cafasso | Airy kernel determinant solutions to the KdV equation and integro-dierential Painlevé equations[END_REF]Theorem 1.15] that there exists a (suciently large) T 0 > 0 such that for all M > 0 we have

uniformly for |X| ≤ M T 1 3 and T ≥ T 0 , where y HM is the HastingsMcLeod solution of the Painlevé II equation, and F TW is the Tracy-Widom distribution (see also Example 1.3).

The asymptotic analysis of Θ has also been obtained in [START_REF] Cafasso | Airy kernel determinant solutions to the KdV equation and integro-dierential Painlevé equations[END_REF], and it implies that the leading order asymptotics of L σ X,T (λ, µ) are determined by the soft-to-hard edge transition kernel L 1 (0,∞) s from Example 1.7, as we prove next.

Proposition 4.7. Let M > 0. As T → ∞, we have uniformly for -M T

, and uniformly for ν 1 , ν 2 in compact subsets of the real line that

and this error estimate continues to hold upon dierentiating an arbitrary number of times with respect to ν 1 and ν 2 .

Proof. The proof relies on the RH analysis performed in [START_REF] Cafasso | Airy kernel determinant solutions to the KdV equation and integro-dierential Painlevé equations[END_REF]Section 6]: the result is that, for every xed ν ∈ C, we have the factorization

where p σ = p σ (X, T |∅), a has an explicit expression which is not needed for our purposes (cf. [14, equation (6.10)]). The matrix S should be interpreted as an error term: it satises a small-norm RH problem, which means that, provided |w| < 1, S(w

(for any M > 0). In particular, for every xed ν 1 , ν 2 ∈ R and T suciently large we also have

(4.67)

Combining this with (4.6) and (4.66), we get

where we also use the identity

which is a special case of (3.19). The last term is O(T -2 3 ) since it is a combination of the entries of the rst column of Ψ 1 (0,+∞) (ν i T -1

3 ), i = 1, 2, which are both entire. The above identities extend to ν 1 , ν 2 in compact subsets of the complex plane, hence we can apply Cauchy's formula to dierentiate, without aecting the error term.

A rst, crucial, obstruction for obtaining explicit asymptotics for the Jánossy densities J σ (X, T |ν) lies in the fact that the kernel L 1 (0,+∞) s=XT -1 3 is itself a transcendental object, which we cannot evaluate explicitly. However, we can proceed in the hope of describing J σ (X, T |ν) asymptotically in terms of the σ-independent quantity L 1 (0,+∞) where the asymptotics for J σ (X, T |∅) are given by (4.63). For m > 1, we can estimate J σ (X, T |ν) as follows.

Proposition 4.8. Let M > 0, ν = (ν 1 , . . . , ν m ) ∈ R m , and ν i ̸ = ν j for i ̸ = j. As T → ∞, we have uniformly for -M T (ν k -ν j ) 2 J 1 (0,∞) (X, T |∅), for some constant C m > 0 possibly depending on m but not on σ, ν, X, T .