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Hybrid Persistency of Excitation in Adaptive Estimation for Hybrid Systems

We propose a framework of stability analysis for a class of linear non-autonomous hybrid systems, with solutions evolving in continuous time governed by an ordinary differential equation and undergoing instantaneous changes governed by a difference equation. Furthermore, the jumps may also be triggered by exogeneous hybrid signals. The proposed framework builds upon a generalization of notions of persistency of excitation (PE) and uniform observability (UO), which we redefine to fit the realm of hybrid systems. Most remarkably we propose for the first time in the literature a definition of hybrid persistency of excitation. Then, we establish conditions, under which, hybrid PE implies hybrid UO and, in turn, uniform exponential stability (UES) and input-to-state stability (ISS). Our proofs rely on an original statement for hybrid systems, expressed in terms of Lp bounds on the solutions. We also demonstrate the utility of our results on generic adaptive estimation problems. The first one concerns the so-called gradient systems, reminiscent of the popular gradient-descent algorithm. The second one pertains to the design of adaptive observers/identifiers for a class of hybrid systems that are nonlinear in the input and in the output, and linear in the unknown parameters. In both cases, we illustrate through meaningful examples that the proposed hybrid framework succeeds in scenarii where the classical purely continuousor discrete-time counterparts fail.

I. INTRODUCTION

Persistency of excitation [START_REF] Åstrom | Numerical identification of linear dynamic systems from normal operating records[END_REF], roughly speaking, is the property of a function of time that consists in the function's energy never vanishing. Mathematically, the PE property may be expressed in various forms, depending, e.g., on whether its scalar argument is considered as a real or integer variable, that is, on whether the function is evolving in continuous or discrete time. Over five decades, several definitions of PE have been proposed, in various contexts, to guarantee different stability properties. For linear time-varying systems, some PE properties guarantee uniform (in the initial time) exponential stability [START_REF] Anderson | Exponential stability of linear equations arising in adaptive identification[END_REF] or uniform global asymptotic stability [START_REF] Morgan | On the uniform asymptotic stability of certain linear nonautonomous differential equations[END_REF]. With careful handling, which involves replacing some instance of the state in the system's equations with the system's solutions [START_REF] Khalil | Nonlinear systems[END_REF], PE-based statements tailored for linear systems may also apply to nonlinear systems [START_REF] Loría | Uniform exponential stability of linear timevarying systems: revisited[END_REF]. In this case, a solutiondependent PE notion is necessary and sufficient to ensure uniform asymptotic stability. For particular classes of nonlinear non-autonomous systems forms of solution-independent PE conditions have been proposed, tailored for functions that depend both on time and the state [START_REF] Lee | A general stability criterion for timevarying systems using a modified detectability condition[END_REF], [START_REF] Lee | On the equivalence relations of detectability and PE conditions with applications to stability analysis of time-varying systemss[END_REF], [START_REF] Panteley | Relaxed persistency of excitation for uniform asymptotic stability[END_REF]. A non-solutiondependent relaxed PE condition tailored for nonlinear systems is provided in [START_REF] Loría | A nested Matrosov theorem and persistency of excitation for uniform convergence in stable non-autonomous systems[END_REF], where it is also showed to be necessary for uniform global asymptotic stability of generic nonlinear non-autonomous systems.

The classes of systems where the PE property is used include, but are not restricted to, those appearing in problems of identification [START_REF] Tao | Adaptive Control Design and Analysis[END_REF], adaptive control [START_REF] Narendra | Persistent excitation in adaptive systems[END_REF], [START_REF] Ioannou | Robust adaptive control[END_REF], model identification [START_REF] Kurdila | Persistency of excitation in identification using radial basis function approximants[END_REF], learning-based identification [START_REF] Sridhar | Improving neural network robustness via persistency of excitation[END_REF], and state estimation [START_REF] Besanc ¸on | An overview on observer tools for nonlinear systems[END_REF], [START_REF] Zhang | Adaptive observer for multiple-input-multiple-output (mimo) linear time-varying systems[END_REF]. For instance, the so-called gradient systems, which appear in the context of gradient-descent estimation algorithms are among the linear time-varying systems where PE is necessary and sufficient for UES of the origin. Moreover, convergence rate estimates [START_REF] Brockett | The rate of descent for degenerate gradient flows[END_REF], [START_REF] Loría | Uniform exponential stability of linear timevarying systems: revisited[END_REF] and strict Lyapunov functions for gradient systems are available in the literature [START_REF] Chowdhury | On the estimation of algebraic connectivity in graphs with persistently exciting interconnections[END_REF]. Other forms of sufficient conditions that involve relaxing the PE property for gradient systems, e.g., by admitting the excitation to last only over a finite window of time, have also been investigated for continuous-time systems [START_REF] Chowdhary | Exponential parameter and tracking error convergence guarantees for adaptive controllers without persistency of excitation[END_REF] as well as for data-driven models [START_REF] De Persis | On persistency of excitation and formulas for data-driven control[END_REF], [START_REF] Markovsky | On the persistency of excitation[END_REF]. Relaxed forms of PE are considered for gradient systems in [START_REF] Praly | Convergence of the gradient algorithm for linear regression models in the continuous and discrete time cases[END_REF], but these cannot ensure uniform convergence of the estimation errors towards the origin.

One of the landmark results in the study of PE is that it is equivalent to uniform observability (UO) [START_REF] Anderson | Stability of adaptive systems[END_REF] for passive systems satisfying structural properties reminiscent of the Kalman-Yacubovich-Popov Lemma [START_REF] Anderson | Exponential stability of linear equations arising in adaptive identification[END_REF]. The first results on stability of the so-called model-reference-adaptive control schemes rely on such a fact [START_REF] Ioannou | Robust adaptive control[END_REF], [START_REF] Narendra | Stable adaptive systems[END_REF]. For nonlinear timevarying systems, there is an equivalence between PE and zero-state detectability [START_REF] Lee | A general stability criterion for timevarying systems using a modified detectability condition[END_REF]. The PE property is also broadly present in the context of adaptive observer/identifier design, both for linear and nonlinear systems [START_REF] Besanc ¸on | On adaptive observers for state affine systems[END_REF], [START_REF] Loría | Adaptive observers with persistency of excitation for synchronization of chaotic systems[END_REF], [START_REF] Zhang | Adaptive observer for multiple-input-multiple-output (mimo) linear time-varying systems[END_REF], [START_REF] Gevers | Robustness of adaptive observers for time varying systems[END_REF], [START_REF] Guyader | Adaptive observer for discrete time linear time varying systems[END_REF]. Roughly speaking, the parameter estimation strategy relies on injecting external signals into the system, to excite all the modes and render the system observable, uniformly in the initial conditions.

As it is well established nowadays, the coexistence of continuous-and discrete-time phenomena (what we call hybrid phenomena) is unavoidable in some scenarios of control systems. This is the case under the presence of impacts provoking instantaneous changes in the state, as in manufacturing systems [START_REF] Chryssolouris | Manufacturing systems: theory and practice[END_REF], cyber-physical systems [START_REF] Sanfelice | Analysis and design of cyber-physical systems. a hybrid control systems approach[END_REF] or when combining continuous and discrete state variables, or in the presence of shocks and reflection-propagation [START_REF] Chen | The mathematics of shock reflectiondiffraction and von Neumann's conjectures[END_REF]. It is also the case under constrained sensing and actuation, as in power [START_REF] Zaupa | Hybrid control of self-oscillating resonant converters[END_REF] and network control systems [START_REF] Hespanha | A survey of recent results in networked control systems[END_REF]. In the aforementioned situations the solutions have a continuous evolution, governed by a continuous-time system, provided that they stay in a set called the flow set. Furthermore, they experience instantaneous changes, governed by a discrete-time system, once they reach a subset called the jump set. The control of these systems may require the estimation of some parameters that can affect the continuous-or the discrete-time dynamics, but they can also affect the flow and the jump sets. Hence, there is a need to extend the PE-based framework to the realm of the general class of hybrid systems.

In this paper, which is the outgrowth of [START_REF] Saoud | A hybrid gradient algorithm for linear regression with hybrid signals[END_REF], we study PE in the realm of hybrid systems, using the framework of [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, stability, and robustness[END_REF]. This framework covers impulsive systems, which are a type of non-autonomous systems that experience jumps under the influence of a piece-wise continuous signal, and not only depending on whether the state trajectory is in the flow or the jump set at a given instant. Our main contribution is the formulation of a property of PE tailored for a class of hybrid systems. The property we define captures, with particular efficacy, the richness of time-varying piece-wise-continuous signals; richness that cannot be captured otherwise by classical definitions of PE, defined purely in continuous or discrete time. For instance, we show that a hybrid version of the classical gradient-descent identification algorithm successfully estimates the unknown parameters of a hybrid input-output plant in cases where purely continuous-or purely discretetime algorithms fail. More importantly, we establish that HPE implies a hybrid form of UO for the considered class of linear time-varying hybrid systems. In turn, we establish UES and ISS under HPE. These statements are presented in Section IV. In that light, we stress that other definitions of observability for hybrid systems have been proposed in the literature, e.g., [START_REF] Vidal | Observability of linear hybrid systems[END_REF], [START_REF] Vázquez | Observability of linear hybrid systems with unknown inputs and discrete dynamics modeled by petri nets[END_REF], but these are restricted to switched systems. Finally, we address the problem of adaptive observer/identifier design for a class of uncertain hybrid systems, which are affine in the unmeasured states and linear in the unknown parameters. Based on well-known designs of adaptive observers/identifiers in continuous-and discrete-time [START_REF] Besanc ¸on | On adaptive observers for state affine systems[END_REF], [START_REF] Loría | Adaptive observers with persistency of excitation for synchronization of chaotic systems[END_REF], [START_REF] Zhang | Adaptive observer for multiple-input-multiple-output (mimo) linear time-varying systems[END_REF], [START_REF] Gevers | Robustness of adaptive observers for time varying systems[END_REF], [START_REF] Guyader | Adaptive observer for discrete time linear time varying systems[END_REF], we show that a properly constructed hybrid observer/identifier achieves uniform exponential convergence of the observation and estimation errors. Different from [START_REF] Johnson | Parameter estimation for hybrid dynamical systems using hybrid gradient descent[END_REF], where only the identification problem is solved by assuming either CPE or DPE, our result holds under the relaxed HPE. Finally, we illustrate through a simple but meaningful example of an impact mechanical system, how the proposed hybrid observer/identifier may supersede its purely continuous-or discrete-time counterparts.

In the next section, for completeness, we recall some definitions and notations that pertain to the hybrid-systems framework of [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, stability, and robustness[END_REF].

II. PRELIMINARIES ON HYBRID SYSTEMS

After [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, stability, and robustness[END_REF], a hybrid dynamical system H is the combination of a constrained differential equation and a constrained difference equation given by H :

" 9 x " F pxq x P C x `" Gpxq x P D, (1) 
where x P X Ď R mx denotes the state variable, X the state space, C Ď X and D Ď X denote the flow and jump sets, respectively, and F : C Ñ R mx and G : D Ñ R mx correspond to the flow and jump maps. Solutions to (1) consist in functions with hybrid time domain defined as follows.

Definition 1 (hybrid signal and hybrid arc): A hybrid signal φ is a function defined on a hybrid time domain denoted dom φ Ă R ě0 ˆZě0 . The hybrid signal φ is parameterized by ordinary time t P R ě0 and a discrete counter j P Z ě0 . Its domain of definition is denoted dom φ and is such that, for each pT, Jq P dom φ, dom φ X pr0, T s ˆt0, 1, . . . , Juq " Y J j"0 prt j , t j`1 s ˆtjuq for a sequence tt j u J`1 j"0 such that t j`1 ě t j , t 0 " 0, and t j`1 " T . Moreover, if for each j P N, the function t Þ Ñ φpt, jq is locally absolutely continuous on the interval I j :" tt : pt, jq P dom φu, then the hybrid signal φ is said to be a hybrid arc. Definition 2 (Solution to H):

A hybrid arc φ : dom φ Ñ R m φ is a solution to H if φp0, 0q P clpCq Y D;
(S2) for all j P Z ě0 such that I j φ " tt : pt, jq P dom φu has nonempty interior, φpt, jq P C for all t P intpI j φ q, 9 φpt, jq " F pφpt, jqq for almost all t P I j φ ;

(S3) for all pt, jq P dom φ such that pt, j `1q P dom φ, φpt, jq P D, φpt, j `1q " Gpφpt, jqq. A solution φ to H is said to be maximal if there is no solution ψ to H such that φpt, jq " ψpt, jq for all pt, jq P dom φ and dom φ is a proper subset of dom ψ. It is said to be nontrivial if dom φ contains at least two points. It is said to be continuous if it is nontrivial and never jumps. It is said to be eventually discrete if T :" sup t dom φ ă 8 and dom φ X ptT u ˆZě0 q contains at least two points. It is said to be eventually continuous if J :" sup j dom φ ă 8 and dom φ X pR ě0 ˆtJuq contains at least two points. System H is said to be forward complete if the domain of each maximal solution is unbounded.

We are interested in sufficient conditions for UES of a closed set A Ă X for a hybrid system H :" pC, F, D, Gq. This property is defined in terms of the distance of φ to the set A, i.e., |φ| A :" inf zPA |φ ´z|, where | ¨| denotes Euclidean norm, as follows-cf. [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, stability, and robustness[END_REF].

Definition 3 (UES): Let the closed subsets pA, Dq Ă X X . The set A is said to be UES for H on D if there exist κ and λ ą 0 such that, for each solution φ to H starting from x o P D at p0, 0q, we have |φpt, jq| A ď κ|x o | A e ´λpt`jq @pt, jq P dom φ.

(2)

If D " X , we say that the set A is UES for H. ˝

III. INTEGRAL CHARACTERIZATION OF UES

Our first statement is an original characterization of UES for hybrid systems, in terms of uniform L p -integrability conditions. It is reminiscent of [START_REF] Panteley | Relaxed persistency of excitation for uniform asymptotic stability[END_REF]Lemma 2] for continuous-time systems and in [START_REF] Loría | Summation-type conditions for uniform asymptotic convergence in discrete-time systems: applications in identification[END_REF] for discrete-time systems. However, as the solutions of hybrid systems may flow and jump, we first introduce certain notations related to integration over a hybrid time domain.

Hybrid Integral: Consider a function with hybrid domain φ : dom φ Ñ R nˆn and let K P R ą0 Yt`8u and pt, jq P dom φ.

We use E φ t,j,K Ă dom φ to denote the shortest hybrid time domain, starting from pt, jq, of length larger or equal than K and contained in dom φ. Note that if K is finite, then there exists a unique ps K , m K q P dom φ, such that

K ď ps K ´tq `pm K ´jq ă K `1, (3) 
and a unique non-decreasing sequence tt j , t j`1 , ..., t m K , t m K `1u with t j :" t and t m K `1 :" s K ,

such that

E φ t,j,K :" rt j , t j`1 s ˆtju Y ¨¨¨Y rt m K , t m K `1s ˆtm K u.
Thus, the hybrid integral of φ over the domain E φ t,j,K is defined as

ż E φ t,j,K φps, iqdps, iq :" m K ÿ i"j ż ti`1 ti φps, iqds `mK ´1 ÿ i"j φpt i`1 , iq.
In particular, for K " `8, we have s 8 `m8 " `8.

Akin to the case where signals evolve purely in continuous or discrete time-cf. [START_REF] Desoer | Feedback Systems: Input-Output Properties[END_REF], given a function φ, with hybrid domain starting at pt o , j o q P dom φ, we define the hybrid L pnorm, with p P r1, 8q, as ) .

ˇˇφ ˇˇAp :" « ż E φ to ,
In the case that A " t0u we simply write |φ| p and |φ| 8 . Then, the following statement generalizes [5, Lemma 3] to the realm of hybrid systems.

Theorem 1 (Hybrid-integral characterization of UES): Consider the hybrid system H :" pC, F, D, Gq, as defined in (1), and let pA, Dq Ă X ˆX be closed subsets. Assume that there exist c and p ą 0 such that, for each φ, solution to H starting from x o P D, we have max

! ˇˇφ ˇˇA8 , ˇˇφ ˇˇAp ) ď c ˇˇx o ˇˇA . (6) 
Then, the set A is UES on D and (2) holds with λ :" 1 pc p and κ :" c expp1{pq.

Proof

: We first remark that the solutions φ start at p0, 0q, so the L-norms in [START_REF] Lee | A general stability criterion for timevarying systems using a modified detectability condition[END_REF] are to be considered on E φ 0,0,8 . Now, following the proof lines of [5, Lemma 3], we note that condition [START_REF] Lee | A general stability criterion for timevarying systems using a modified detectability condition[END_REF] 

ˇˇφpt i`1 , iq ˇˇp A ě 1 c p « m K ÿ i"j ż ti`1 ti sup ! ˇˇφpτ, kq ˇˇp A : pτ, kq P E φ t,j,K ) ds ff `1 c p « m K ´1 ÿ i"j sup ! ˇˇφpτ, kq ˇˇp A : pτ, kq P E φ t,j,K ) ff ě s K ´t `mK ´j c p sup ! ˇˇφpτ, kq ˇˇp A : pτ, kq P E φ t,j,K ) ě K c p ˇˇφps K , m K q ˇˇp A ,
where the last inequality comes from [START_REF] Morgan | On the uniform asymptotic stability of certain linear nonautonomous differential equations[END_REF]. Then, we define K :" c p and we use [START_REF] Lee | On the equivalence relations of detectability and PE conditions with applications to stability analysis of time-varying systemss[END_REF] The statement follows.

IV. UES AND ISS FOR TIME-VARYING HYBRID SYSTEMS

Consider the non-autonomous hybrid system of the form

H 1 : # 9
ζ " F 1 pζ, t, jq t P intpI j A q ζ `" G 1 pζ, t, jq pt, jq, pt, j `1q P dom A, [START_REF] Tao | Adaptive Control Design and Analysis[END_REF] with state

ζ P R m ζ , F 1 , G 1 : X Ñ R m ζ , X :" R m ζ dom
A, and such that A is a hybrid signal whose domain is dom A and I j A :" tt : pt, jq P dom Au. A may be an exogenous hybrid signal or may also depend on the system's hybrid trajectories-see Section V for examples. Then, the solutions to [START_REF] Tao | Adaptive Control Design and Analysis[END_REF] are hybrid arcs whose domain is a subset of dom A. That is, the solutions of (10) jump whenever A jumps.

To study the behavior of the solutions to [START_REF] Tao | Adaptive Control Design and Analysis[END_REF], we recast it in the form of (1), by including the hybrid time as a bidimensional state variable. That is, defining x :" rξ J p qs J , system [START_REF] Tao | Adaptive Control Design and Analysis[END_REF] can be rewritten as

H : $ ' ' ' ' ' ' ' & ' ' ' ' ' ' ' % » - 9 ξ 9 p 9 q fi fl " » - F 1 pξ, p, qq 1 0 fi fl x P C » - ξ p q `fi fl " » - G 1 pξ, p, qq p q `1 fi fl x P D, (11) 
where the flow and jump sets are, respectively, defined as C :" X and D :" tx P X : pp, q `1q P dom Au. Then, a solution ζ to [START_REF] Tao | Adaptive Control Design and Analysis[END_REF], starting from the initial condition ζ o P R m ζ at pt o , j o q P dom A, must coincide with a solution φ to [START_REF] Narendra | Persistent excitation in adaptive systems[END_REF], starting from the initial condition pξ o , t o , j o q at p0, 0q. In this case, we have ppt, jq " t `to and qpt, jq " j `jo for all pt, jq P dom φ. We use this fact in what follows of the paper to analyze time-varying hybrid systems in the form of [START_REF] Tao | Adaptive Control Design and Analysis[END_REF].

Remark 1: If the set tpξ, p, qq P X : ξ " 0u is UES for H, as per Definition 3, then the origin tζ " 0u is UES for H 1 , that is, every solution ζ, starting at pt o , j o q from ζ o , satisfies |ζpt, jq| ď κ|ζ o |e ´λpt`j´to´joq @pt, jq P dom ζ,

with κ and λ independent of pt o , j o q. '

A. Problem formulation and standing hypotheses

In the sequel, we focus on perturbed non-autonomous hybrid systems of the form-cf. Eq. ( 10),

H 1 ν : $ & % 9 ζ " ´Apt, jqζ `νpt, jq t P intpI j A q ζ `" r I m ζ ´Bpt, jq sζ `νpt, jq pt, jq, pt, j `1q P dom A, (13) 
where A and B (are assumed to) have the same hybrid time domain, that is, A and B : dom

A Ñ R m ζ ˆmζ . Furthermore, ν : dom A Ñ R m ζ
is an external hybrid perturbation. The index ν in H ν is to distinguish the system in (13) from the unperturbed dynamics resulting from setting ν " 0.

Remark 2: This class of systems is important as it covers a number of interesting cases that appear in adaptive estimation. For instance, when ν " 0 and Apt, jq and Bpt, jq are both symmetric and positive semidefinite, system (13) generalizes the so called gradient system, studied both in continuous and discrete time in the context of identification [START_REF] Anderson | Exponential stability of linear equations arising in adaptive identification[END_REF], [START_REF] Brockett | The rate of descent for degenerate gradient flows[END_REF] and multi-agent systems [START_REF] Javed | Excitation conditions for uniform exponential stability of the cooperative gradient algorithm over weakly connected digraphs[END_REF], [START_REF] Chowdhury | On the estimation of algebraic connectivity in graphs with persistently exciting interconnections[END_REF]. The functions A and B may come from expressing outputs and inputs along solutions; namely, for a system 9 z " A z py, uqz, we let Apt, jq :" A z pypt, jq, upt, jqq. This artifice is commonly used to analyze some nonlinear observers [START_REF] Besanc ¸on | An overview on observer tools for nonlinear systems[END_REF], [START_REF] Zhang | Adaptive observer for multiple-input-multiple-output (mimo) linear time-varying systems[END_REF]. See also Section V. '

In what follows, we investigate sufficient conditions for the origin tζ " 0u to be UES for H 1 0 (that is, (13) with ν " 0) and for the system H 1 ν to be ISS with respect to ν ı 0. For hybrid systems, ISS means that there exist a class K 8 function α and a class KL function β such that, for each solution ζ to

H 1 ν , starting from ζ o P R m ζ , at pt o , j o q P dom A, we have |ζpt, jq| A ď βp|ζ o | A , t `j ´to ´jo q `α ´sup ! |νps, iq| : ps, iq P dom φzE ζ t,j,8
)f or all pt, jq P E ζ to,jo,8 . We solve these problems under two standing hypotheses reminiscent of others that are common in the context of continuous-or discrete-time systems. The first one essentially guarantees boundedness of the solutions and uniform global stability of the origin tζ " 0u for H 1 0 . Roughly, for H 1 0 , we require the existence of a Lyapunov function with negative semidefinite derivative along flows and non-increasing over jumps. The second Assumption imposes uniform boundedness of the matrices A and B.

Assumption 1 (Lyapunov (Non-Strict) Inequalities): There exists a symmetric matrix

P : dom A Ñ R m ζ ˆmζ and constants p 1 , p 2 ą 0 such that p 1 ď |P | 8 ď p 2 .
Furthermore, there exist symmetric positive semi-definite matrices Q c , Q d : dom P Ñ R m ζ ˆmζ such that, for all t P intpI j A q, 9 P pt, jq ´Apt, jq J P pt, jq ´P pt, jqApt, jq ď ´Qc pt, jq, [START_REF] Sridhar | Improving neural network robustness via persistency of excitation[END_REF] and, for all pt, jq P dom A such that pt, j `1q P dom A,

rI m ζ ´Bpt, jqs J P pt, j `1qrI m ζ ´Bpt, jqs ´P pt, jq ď ´Qd pt, jq. (15) 
Assumption 2 (Uniform Boundedness): There exist Ā, B ą 0 such that |B| 8 ď B and |A| 8 ď Ā.

In addition to Assumptions 1 and 2, we investigate the role of HUO and HPE.

B. UES and ISS under HUO

Consider the linear system H 1 0 , i.e., [START_REF] Kurdila | Persistency of excitation in identification using radial basis function approximants[END_REF] with ν " 0. We introduce the hybrid transition matrix M : dom

A dom A Ñ R m ζ ˆmζ such that, for each ppt, jq, pt o , j o qq P dom A ˆdom A, the solution ζ starting from ζ o at pt o , j o q satisfies ζpt, jq " Mppt, jq, pt o , j o qqζ o . (16) 
The hybrid transition matrix M is the solution to the system

9 Mppt, jq, pt o , j o qq " ´Apt, jqMppt, jq, pt o , j o qq t P I j A (17a) Mppt, j `1q, pt o , j o qq " " I m ζ ´Bpt, jq ‰ Mppt, jq, pt o , j o qq pt, jq, pt, j `1q P dom A (17b) Mppt o , j o q, pt o , j o qq " I m ζ . (17c) 
Then, we introduce the following property. Definition 4 (HUO): The pair pA, Bq satisfying Assumption 1 is HUO if there exist K, µ ą 0 such that, for each pt o , j o q P dom A, ż

E A to ,jo ,K
M pps, jq, pt o , j o qq J Φps, jqM pps, jq, pt o , j o qq dps, jq

ě µI m ζ , (18) 
where

Φ : dom Φ Ñ R m ζ ˆmζ , with dom Φ " dom Q c " dom Q d , is given by Φpt, jq :" " Q c pt, jq if t P intpI j A q Q d pt, jq otherwise. ( 19 
)
Remark 3: Following up on Remark 2, we note that particular instances of HUO pairs pertain to multi-variable systems, where Q c pt, jq and Q d pt, jq result from designing a hybrid input. Thus, the required HUO property may be induced (by design). ' Theorem 2 (HUO implies UES and ISS): If for the hybrid system H 1 0 , defined by ( 13) with ν " 0, Assumptions 1 and 2 hold, and the pair pA, Bq is HUO, then the origin tζ " 0u is UES, and H 1 ν is ISS with respect to ν.

Proof

: The stability of the origin tζ " 0u for H 1 0 may be analyzed using the framework described in Section II, by rewriting the system as one that is time-invariant, of the form [START_REF] Narendra | Persistent excitation in adaptive systems[END_REF], with flow and jump maps

F ν pxq :" r´ξ J App, qq J `νJ 1 0s J (20a)
G ν pxq :" rξ J rI m ζ ´Bpp, qqs J `νJ p q `1s J , (20b) state x :" pξ, p, qq P X :" R m ζ ˆdom A, and flow and jump sets defined by C :" X and D :" tx P X : pp, q `1q P dom Au, respectively. In particular, after Remark 1, the UES bound [START_REF] Ioannou | Robust adaptive control[END_REF] holds for

H 1 0 if the set A :" tx P X : ξ " 0u (21) 
is UES (as per Definition 3) for H, defined by ( 11), [START_REF] De Persis | On persistency of excitation and formulas for data-driven control[END_REF], C, and D as defined above. Thus, to prove the first item we use Theorem 1 and this equivalent time-invariant representation of H 1 0 . That is, we explicitly compute c ą 0 such that, along each solution φ to ( 11)-( 20), with ν " 0 and starting from

x o :" pξ o , t o , j o q, at p0, 0q, it holds that max ! ˇˇφ ˇˇ2 A8 , ˇˇφ ˇˇ2 A2 ) ď c ˇˇx o ˇˇ2 A , ( 22 
)
where A is defined in [START_REF] Markovsky | On the persistency of excitation[END_REF].

To that end, we introduce the Lyapunov function candidate

V pxq :" ξ J P pp, qqξ, (23) 
where P is introduced in Assumption 1. Furthermore, after the latter, we have

x∇V pxq, F 0 pxqy ď ´ξJ Q c pp, qqξ,
for each x P C, while

V pG 0 pxqq ´V pxq ď ´1 2 ξ J Q d pp, qqξ,
for each x P D. Therefore, after [START_REF] Chowdhary | Exponential parameter and tracking error convergence guarantees for adaptive controllers without persistency of excitation[END_REF], along the maximal solution φ, we have 9 V pφpt, jqq ď ´ξpt, jq J Φpppt, jq, qpt, jqqξpt, jq, for all t P intpI j A q, while V pφpt, j `1qq´V pφpt, jqq ď ´ξpt, jq J Φpppt, jq, qpt, jqqξpt, jq for all pt, jq P dom φ such that pt, j `1q P dom φ. Thus, using the fact that Q c and Q d are positive definite from Assumption 1, it follows that V pφpt, jqq ď V pφp0, 0qq @pt, jq P E φ 0,0,8 , which implies that, for each pt, jq P E φ 0,0,8 , we have

p 1 ˇˇξpt, jq ˇˇ2 ď V pφpt, jqq ď V pφp0, 0qq ď p 2 ˇˇξ o ˇˇ2 .
Finally, since |ξ| " ˇˇφ ˇˇA , we conclude that

ˇˇφ ˇˇ2 A8 ď p 2 p 1 ˇˇφp0, 0q ˇˇ2 A .
This establishes the first bound in [START_REF] Praly | Convergence of the gradient algorithm for linear regression models in the continuous and discrete time cases[END_REF].

Next, we compute the second bound. To that end, we follow the proof steps of [26, Proposition 1]. Let the HUO property generate K ą 0 and, for each pt, jq P dom φ, a unique pair ps K , m K q P dom φ satisfying (3). We have

V pφpt, jqq´V pφps K , m K qq ě ż E φ t,j,K
ξps, iq J Φps, iqξps, iqdps, iq.

The hybrid arc ξps, iq, with ps, iq P E φ t,j,K , starting at pt, jq coincides with ζps, iq starting at pt `to , j `jo q. Therefore, the relation ζps `to , i `jo q " M `ps`t o , i`j o q, pt`t o , j `jo q ˘ζ`p t`t o , j `jo q ˘, which holds under [START_REF] Zhang | Adaptive observer for multiple-input-multiple-output (mimo) linear time-varying systems[END_REF], implies that ξps, iq " Mpps, iq, pt, jqqξpt, jq,

where Mpps, iq, pt, jqq :" Mpps `to , i `jo q, pt `to , j `jo qq.

As a result, we obtain

V pφpt, jqq ´V pφps K , m K qq ě ξpt, jq J ż E φ t,j,K
Mpps, iq, pt, jqq J Φps, iq Ď Mpps, iq, pt, jqqdps, iq ˆξpt, jq ě µ ˇˇξpt, jq ˇˇ2 .

Next, we use the fact that

ˇˇξpt, jq ˇˇ2 ě p 1 p 2 ˇˇξps K , m K q ˇˇ2 , to obtain V pφpt, jqq ´V pφps K , m K qq ě µ p 1 p 2 ˇˇξps K , m K q ˇˇ2 .
Now, integrating on both sides over E φ 0,0,8 , and using the fact that |ξps, iq| 2 " |φps, iq| 2 A @ps, iq P E φ 0,0,8 , we obtain ż

E φ 0,0,K V pφps, iqqdps, iq ě p 1 µ p 2 ż E φ 0,0,8 ˇˇφps, iq ˇˇ2 A dps, iq ´p1 µ p 2 ż E φ 0,0,K ˇˇφps, iq ˇˇ2 A dps, iq,
which, in turn, implies that

ż E φ 0,0,8 ˇˇφps, iq ˇˇ2 A dps, iq ď p 2 p 1 µ ż E φ 0,0,K V pφps, iqqdps, iq `żE φ 0,0,K ˇˇφps, iq ˇˇ2 A dps, iq ď pK `1q " p 2 2 p 1 µ `p2 p 1  ˇˇφp0, 0q ˇˇ2 A .
This completes the proof of UES.

Next, to prove ISS of H 1 ν with respect to ν, we introduce the function W : X Ñ R ě0 given by W pxq :" ξ J Ppp, qqξ, where Ppp, qq :"

ż E A p,q,8
" Mpps, iq, pp, qqqMpps, iq, pp, qqq J ‰ dps, iq, and we prove the following claim. Claim 1: Under UES of the set A for H 1 0 , the fact that Mppp, qq, pp, qqq " I m ζ -see (17c), and A being bounded, we conclude that there exist p M ě p m ą 0 such that

p m I m ζ ď Ppp, qq ď p M I m ζ @pp, qq P dom A. ( 24 
)
Proof : The upper bound in ( 24) is a straightforward consequence of UES of the set A for H 1 0 and the definition of the hybrid transition matrix M.

To prove the lower bound, we consider the following complementary cases: 1) If pp, qq P dom A and pp, q `1q P dom A, we conclude that Ppp, qq "

I m ζ `Ppp, q `1q ě I m ζ .
2) If prp, p `1s, qq P dom A, we conclude that Ppp, qq ě

ż p`1 p " Mpps, qq, pp, qqqMpps, qq, pp, qqq J ‰ ds. ě ż p`1 p e p´2 Āps´pqq dsI m ζ " ż 1 0 e ´2 Ās dsI m ζ .
To obtain the second inequality, we used (17a) and boundedness of the matrix A. 3) If prp, p `λs, qq P dom A and pp `λ, q `1q P dom A, for some λ P p0, 1q. In this case, we have

Ppp, qq ě Mppp `λ, qq, pp, qqqMppp `λ, qq, pp, qqq J ě e ´2 Āλ I m ζ ě e ´2 ĀI m ζ .
Furthermore, using (17a) and (17b) along maximal trajectories, we conclude that 9 Ppp, qq " ´Im ζ ´App, qq J Ppp, qq ´Ppp, qqApp, qq for all t P intpI j A q, while Ppp, qq " I m ζ `Bpp, qq J Ppp, q `1qBpp, qq for all pp, qq P dom A such that pp, q `1q P dom A. Therefore, x∇W pxq, F 0 pxqy " ´|ξ| 2 , @ x P C W pG 0 pxqq ´W pxq " ´|ξ| 2 , @ x P D,

where F ν and G ν are defined in [START_REF] De Persis | On persistency of excitation and formulas for data-driven control[END_REF]. In turn, 

x∇W pxq, F ν pxqy " ´|ξ| 2 `2ξ J Ppp, qqν ď ´1 2 |ξ| 2 `4p M |ν| 2 ď ´1 2p M W pxq `4p M |ν| 2 ,
W pG ν pxqq ´W pG 0 pxqq " 2ν J Ppp, q `1qrI m ζ ´Bpp, qqsξ `νJ Ppp, q `1qν ď c|ν| 2 `1 2 |ξ| 2 , where c :" p M `p2 M b 12 M . In turn, W pG ν pxqq ´W pxq " ´1 2p M W pxq `c|ν| 2 .
So, along the system's trajectories, we have

9 W pφpt, jqq ď ´1 2p M W pφpt, jqq `4p M |νpt, jq| 2 ,
for all t P intpI j φ q, and W pφpt, j `1qq ´W pφpt, jqq

ď ´1 2p M W pφpt, jqq `c|νpt, jq| 2 ,
for all pt, jq P dom φ such that pt, j `1q P dom φ. Finally, we introduce

ν :" sup ! |νps, iq| : ps, iq P dom φzE φ t,j,8
) ,

and the comparison perturbed hybrid system

H w : $ ' ' ' ' ' ' ' & ' ' ' ' ' ' ' % » - 9 w 9 p 9 q fi fl " » - f 1 pw, νq 1 0 fi fl x P C w » - w pq `fi fl " » - g 1 pw, νq p q `1 fi fl x P D w , with f 1 pw, νq :" ´1 2p M w `4p M ν2 w P C w g 1 pw, νq :" " 1 ´1 2p M ı w `cν 2 w P D w ,
where C w :" R ě0 ˆdom φ and D w :" tpw, p, qq P R ě0 ˆ dom φ : pp, q`1q P dom φu. Thus, we conclude using Lemma 1 that the solutions φ w to H w and φ to H in (11) obtained from (13) satisfy W pφpt, jqq ď φ w pt, jq for all pt, jq P dom φ, solving for H w , it follows that there exist a, b ą 0 such that W pφpt, jqq ď W pφp0, 0qqe ´apt`jq `bν, and ISS of H 1 ν follows.

C. UES and ISS Under HPE

The following is a relaxed PE property, which captures the richness of signals that may fail to be PE if considered as functions of purely continuous or purely discrete time.

Definition 5 (HPE): The pair pA, Bq of hybrid arcs A, B : dom A Ñ R m ζ ˆmζ , i.e., with dom A " dom B, is said to be HPE if there exist K and µ ą 0 such that ż

E A to ,jo ,K Φ AB ps, iqdps, iq ě µI m ζ @pt o , j o q P dom A, (25) 
where Φ AB : dom A Ñ R m ζ ˆmζ is given by Φ AB pt, jq :" " Apt, jq if t P intpI j A q Bpt, jq otherwise.

As

for purely continuous-time systems, an important property of HPE is that it implies HUO. Theorem 3, below, generalizes to the realm of hybrid systems, the well-known fact that PE implies UO-see [START_REF] Anderson | Stability of adaptive systems[END_REF], [START_REF] Ioannou | Robust adaptive control[END_REF]. Yet, Theorem 3 is not a direct extension since its proof approach is original. For instance, it differs from that used in [START_REF] Anderson | New results in linear system stability[END_REF] for continuous-time systems by being direct and not relying on many intermediate results.

Assumption 3 (Structural Properties): For each pt, jq P dom A, Apt, jq " Apt, jq J ě 0, Bpt, jq " Bpt, jq J ě 0, and |Bpt, jq| 8 ď 1.

Theorem 3 (HPE implies HUO): Consider the hybrid system H 1 0 under Assumptions 2 and 3, and let the pair pA, Bq be HPE. Then, the pair pA, Bq is HUO.

Proof

: Under Assumption 3, it follows that Assumption 1 holds with P " I m θ , Q c pt, jq " Apt, jq, and Q d pt, jq " Bpt, jq. Therefore, to verify the HUO property, it suffices to find µ o ą 0 such that, for each pt o , j o q P dom A, we have

ż E A to ,jo ,K Γ o ps, jqdps, jq ě µ o I m ζ , (26) 
where we defined Γ o ps, jq :" M pps, jq, pt o , j o qq J Φ AB ps, jqM pps, jq, pt o , j o qq to compact the notation, K comes from the HPE of pA, Bq.

Then, to establish (26), we show that, for each

ζ o P R m ζ , ζ J o ż E A to ,jo ,K Γ o ps, jqdps, jq ζ o ě µ o |ζ o | 2 .
To that end, first we note that

ζ J o ż E A to ,jo ,K Γ o ps, jqdps, jq ζ o " ż E A to,jo ,K
ζps, jq J Φ AB ps, jqζps, jqdps, jq and we proceed to find µ o ą 0 such that Ṽ :"

ż E A to ,jo ,K ζps, jq J Φ AB ps, jqζps, jqdps, jq ě µ o |ζ o | 2 . ( 27 
)
So, to prove [START_REF] Gevers | Robustness of adaptive observers for time varying systems[END_REF], we express Ṽ as

Ṽ " m K ÿ j"jo V F pjq `mK ÿ j"jo V G pjq, (28) 
where

V F pjq :" ż tj `1 tj ζps, jq J Aps, jqζps, jqds, (29) 
V G pjq :" ζpt j`1 , jq J Bpt j`1 , jqζpt j`1 , jq,

and we compute suitable lower bounds for these functions.

In regards to V F , we show that, for each ρ ą 0 and for each j P tj o , . . . , m K u, 

V F pjq ě ρ 1 `ρ ż tj`1 tj ˇˇAps, jq 1 2 ζ o ˇˇ2ds ´ρp Ā2 `2 Āqp2pj ´jo q `1qpt j`1 ´tj qpt j`1 ´tjo `1q Ṽ . ( 31 
´j´1 ÿ i"j0 ż ti`1 ti Aps, iqζps, iqds ´j´1 ÿ i"j0 Bpt i`1 , iqζpt i`1 , iq. (32) 
Hence, we obtain Bpt k`1 , kqζpt k`1 , kq ˇˇ2ds.

V F pjq " ż tj`1 tj ˇˇAps, jq 1 
Next, using the fact that |a ´b| 2 ě ρ 1`ρ |a| 2 ´ρ|b| 2 for all ρ ą 0, we obtain

V F pjq ě ´ρ ż tj`1 tj ˇˇAps, jq 1 2 ż s tj Apu, jqζpu, jqdu `Aps, jq 1 2 j´1 ÿ k"jo ż t k`1 t k Apu, kqζpu, kqdu `Aps, jq 1 2 j´1 ÿ k"jo Bpt k`1 , kqζpt k`1 , kq ˇˇ2ds `ρ 1 `ρ ż tj`1 tj ˇˇAps, jq 1 2 ζ o ˇˇ2ds.
Furthermore, using the boundedness of A according to Assumption 2 and the fact that

| N ř i"1 a i | 2 ď N N ř i"1 |a i | 2 , we obtain V F pjq ě ´ρ Āp2pj ´jo q `1q ˆż tj`1 tj « ˇˇˇż s tj Apu, jqζpu, jqdu ˇˇˇ2 `j´1 ÿ k"jo ˇˇˇż t k`1 t k Apu, kqζpu, kqdu ˇˇˇ2 `j´1 ÿ k"jo |Bpt k`1 , kqζpt k`1 , kq| 2 ff ds `ρ 1 `ρ ż tj`1 tj ˇˇAps, jq 1 2 ζ o ˇˇ2 ds.
Next, using the triangular and Cauchy-Schwartz inequalities, we obtain

V F pjq ě ´ρ Āp2pj ´jo q `1q ˆż tj`1 tj " ps ´tj q ż s tj |Apu, jqζpu, jq| 2 du `j´1 ÿ k"jo pt k`1 ´tk q ż t k`1 t k |Apu, kqζpu, kq| 2 du `j´1 ÿ k"jo |Bpt k`1 , kqζpt k`1 , kq| 2  ds `ρ 1 `ρ ż tj`1 tj ˇˇAps, jq 1 2 ζ o ˇˇ2 ds.
Then, using the fact that 0 ď ps ´tj q ż s tj |Apu, jqζpu, jq| 2 du ď pt j`1 ´tj q ż tj`1 tj |Apu, jqζpu, jq| 2 du, we obtain

V F pjq ě ´ρ Āp2pj ´jo q `1qpt j`1 ´tj qpt j`1 ´tjo `1q ˆ« j ÿ k"jo ż t k`1 t k |Aps, kqζps, kq| 2 ds `j´1 ÿ k"jo |Bpt k`1 , kqζpt k`1 , kq| 2 ff `ρ 1 `ρ ż tj`1 tj ˇˇAps, jq 1 2 ζ o ˇˇ2 ds,
and using A " A 1 2 A 1 2 and B " B 1 2 B 1 2
, we conclude that V F pjq ě ´ρ Āp Ā `2qp2pj ´jo q `1qpt j`1 ´tj q ˆpt j`1 ´tjo `1q

« j ÿ k"jo ż t k`1 t k ˇˇA 1 2 ps, kqζps, kq ˇˇ2ds `1 2 j´1 ÿ k"jo ˇˇBptk`1, kq 1 2 ζpt k`1 , kq ˇˇ2 ff `ρ 1 `ρ ż tj`1 tj ˇˇAps, jq 1 2 ζ o ˇˇ2 ds.
Hence, (31) follows. Next, we show that, for each ρ ą 0 and for each j P tj o , . . . , m K u, the following inequality holds:

V G pjq ě ´ρ 2 p2pj ´jo q `1qp Āpt j`1 ´tjo q `2q Ṽ `ρ{2 1 `ρ ˇˇBptj`1, jq 1 2 ζ o ˇˇ2 , (33) 
For this, we first note that 2V G pjq " ˇˇB 1 2 pt j`1 , jqζpt j`1 , jq ˇˇ2 . Then, using [START_REF] Zaupa | Hybrid control of self-oscillating resonant converters[END_REF], we obtain

V G pjq " 1 2 ˇˇˇB pt j`1 , jq 1 2 ζ o `Bpt j`1 , jq 1 2 j ÿ k"jo ż t k`1 t k Apu, kqζpu, kqdu `Bpt j`1 , jq 1 2 j´1 ÿ k"jo Bpt k`1 , kqζpt k`1 , kq ˇˇˇ2 .
Now, using the fact that |a ´b| 2 ě ρ 1`ρ |a| 2 ´ρ|b| 2 for all ρ ą 0, we obtain

V G pjq ě ´ρ 2 ˇˇˇB pt j`1 , jq 1 2 j ÿ k"jo ż t k`1 t k Apu, kqζpu, kqdu `B 1 2 pt j`1 , jq j´1 ÿ k"jo Bpt k`1 , kqζpt k`1 , kq ˇˇˇ2 `ρ{2 1 `ρ ˇˇBptj`1, jq 1 2 ζ o ˇˇ2. Next, using | N ř i"1 a i | 2 ď N N ř i"1 |a i | 2
, the boundedness of B by 1, and the Cauchy-Schwartz inequality, we obtain

V G pjq ě ´ρ 2 p2pj ´jo q `1q ˆ« j ÿ k"jo ż t k`1 t k pt k`1 ´tk q |Apu, kqζpu, kq| 2 du `j´1 ÿ k"jo ˇˇB 1 2 pt j`1 , jqζpt k`1 , kq ˇˇ2 ff `ρ{2 1 `ρ ˇˇBptj`1, jq 1 2 ζ o ˇˇ2 .
Finally, using the boundedness of A, according to Assumption 2, we obtain

V G pjq ě ´ρ 2 p2pj ´jo q `1qp Āpt j`1 ´tjo q `2q ˆ« j ÿ k"jo ż t k`1 t k ˇˇApu, kq 1 2 ζpu, kq ˇˇ2 du `j´1 ÿ k"jo 1 2 ˇˇBptj`1, jq 1 2 ζpt j`1 , jq ˇˇ2 ff `ρ{2 1 `ρ ˇˇBptj`1, jq 1 2 ζ o ˇˇ2 .
Hence, [START_REF] Hespanha | A survey of recent results in networked control systems[END_REF] follows. Now, combining [START_REF] Chen | The mathematics of shock reflectiondiffraction and von Neumann's conjectures[END_REF] and [START_REF] Hespanha | A survey of recent results in networked control systems[END_REF], we obtain the following upper bound on Ṽ for each ρ ą 0:

Ṽ ě ρ 1 `ρ m K ´1 ÿ j"jo ˇˇBptj`1, jq 1 2 ζ o ˇˇ2 `2ρ 1 `ρ m K ÿ j"jo ż tj`1 tj ˇˇAps, jq 1 2 ζ o ˇˇ2 ds ´ρ 2 Ṽ m K ÿ j"jo
p2pj ´jo q `1qp Āpt j`1 ´tjo q `2q ´ρ Āp Ā `2q Ṽ m K ÿ j"jo p2pj ´jo q `1qpt j`1 ´tj qpt j`1 ´tjo `1q.

Hence,

Ṽ ě 2ρ|ζ o | 2 1 `ρ ż E A to ,jo ,K Φ AB ps, iqdps, iq ´ρpm K ´jo `1q 2 Ṽ ˆ" Ā 2 ps K ´tjo q `2q `Āp Ā `1qps K ´tjo qps K ´tjo `1q
 Finally, using the HPE of the pair pA, Bq, we conclude that

Ṽ ě 2ρµ 1 `ρ |ζ o | 2 ´ρpK `2q 2 ˆ" Ā 2 pK `1q `1 `Āp Ā `2qpK `1qpK `2q  Ṽ . ( 34 
)
Thus, [START_REF] Gevers | Robustness of adaptive observers for time varying systems[END_REF] follows by choosing

ρ :" 1{pK `2q 2 Ā 2 pK `1q `1 `Āp Ā `2qpK `1qpK `2q
.

The importance of Theorem 3 relies on the following statement, whose proof is direct and, yet, it generalizes similar results available for continuous-or discrete-time systems.

Theorem 4 (UES + ISS under HPE): Consider the hybrid system H 1 0 , defined by ( 13) with ν " 0, under Assumptions 2 and 3, and let the pair pA, Bq be HPE. Then, the origin tζ " 0u is UES for H 1 0 and H 1 ν is ISS with respect to u.

Proof

: After Theorem 3, the HUO property holds. Under Assumption 3, it follows that Assumption 1 holds with P " I m θ , Q c pt, jq " Apt, jq, and Q d pt, jq " Bpt, jq. Thus, the statement follows from a direct application of Theorem 2.

V. ADAPTIVE ESTIMATION UNDER HPE

A. The Hybrid gradient-descent algorithm

To put our contributions in perspective, we first consider a classical identification problem, based on the linear regression model y "

ψ J θ, (35) 
where ψ : dom ψ Ñ R m θ is the regressor, θ P R m θ is a constant vector of unknown parameters, and y : dom y Ñ R is the output. Usually, the domains of y and ψ are considered to be subsets of the real numbers or the natural numbers. Then, an estimate of θ, denoted θ, may be carried out dynamically, in function of the tracking error e :" ŷ ´y, where ŷ :" ψ J θ.

A well-known identification law is based on the minimization of the cost Jpeq :" p1{2qe 2 and defined by the gradient of the latter.

In the continuous-time setting, i.e., if the regressor's domain is dom ψ " r0, `8q, the gradient-based update law for θ is given by 9 θ " ´γ∇ θ Jpeq, where ∇ θ J denotes the gradient of J " p1{2qpψ J θ ´ψJ θq 2 with respect to θ. Hence, 9 θ " ´γψptqrψptq J θ ´yptqs, γ ą 0

-see [START_REF] Narendra | Stable Adaptive Systems[END_REF]. In this case, the dynamics of the estimation error θ :" θ ´θ is given by

9 θ " ´γψptqψptq J θ ( 37 
)
and it is well-known (see, e.g., [START_REF] Narendra | Persistent excitation in adaptive systems[END_REF]) that, if ψ is bounded, the following condition of continuous-time PE (CPE) is necessary and sufficient for UES of the origin for (37).

(CPE) There exist T ą 0 and µ ą 0 such that

ż t`T t ψpsqψpsq J ds ě µI m θ @t ě 0. (38) 
Moreover, a lower bound on the convergence rate is provided in [START_REF] Brockett | The rate of descent for degenerate gradient flows[END_REF], [START_REF] Anderson | Exponential stability of linear equations arising in adaptive identification[END_REF], and [START_REF] Loría | Uniform exponential stability of linear timevarying systems: revisited[END_REF], and a strict Lyapunov function is constructed in [START_REF] Chowdhury | On the estimation of algebraic connectivity in graphs with persistently exciting interconnections[END_REF].

In the discrete-time setting, i.e., if the regressor's domain is dom ψ " Z ě0 , the gradient algorithm is given by θpt `1q " θptq ´σptq∇ θ Jpeq,

where σ : Z ě0 Ñ r0, 1s is given by σptq :" γ 1`γ|ψptq| 2 , and γ ą 0 is the adaptation rate [START_REF] Tao | Adaptive Control Design and Analysis[END_REF]. Therefore, the dynamics of the estimation error is given by θ`"

ˆIm θ ´γψptqψptq J 1 `γ|ψptq| 2 ˙θ. (40) 
In the latter case, the discrete-time PE condition reads-cf.

[44], [1]: (DPE) There exist N ą 0 and µ ą 0 such that

N ÿ s"0 ψpsqψpsq J ě µI m θ . (41) 
Remark 4: Note that some of the existing approaches to analyze (37) translate naturally to the analysis of (40) under DPE; see, e.g., [START_REF] Tao | Adaptive Control Design and Analysis[END_REF]. Other relaxed forms of PE are also available, but these do not lead to uniform forms of convergence-see e.g., [START_REF] Morgan | On the stability of nonautonomous differential equations 9 x " rA `Bptqsx with skew-symmetric matrix Bptq[END_REF], [START_REF] Praly | Convergence of the gradient algorithm for linear regression models in the continuous and discrete time cases[END_REF], [START_REF] Chowdhary | Exponential parameter and tracking error convergence guarantees for adaptive controllers without persistency of excitation[END_REF]. ' Even though PE as defined above, in continuous or discrete time, is necessary for UES, in some simple cases it may be over-restrictive. For instance, when the data pψ, yq of the linear regression model ( 35) is hybrid; namely, when it is allowed to exhibit both continuous-and discrete-time evolution, to have ypt, jq " ψpt, jq J θ pt, jq P dom ψ.

In this case, the classical gradient-descent algorithms recalled above are ineffective. This is because the continuous-time update law [START_REF] Vidal | Observability of linear hybrid systems[END_REF] exploits the data only on the time intervals on which they evolve continuously, while the discrete-time gradient algorithm [START_REF] Loría | Summation-type conditions for uniform asymptotic convergence in discrete-time systems: applications in identification[END_REF] exploits the data only at discrete time instants. If, in contrast to this, the regressor is hybrid, we design a hybrid gradient-descent algorithm in a way that whenever the data pψ, yq jump, i.e., undergo an instantaneous change, θ is updated via [START_REF] Loría | Summation-type conditions for uniform asymptotic convergence in discrete-time systems: applications in identification[END_REF]; whenever the data pψ, yq flow, i.e., evolve continuously, θ is updated via [START_REF] Vidal | Observability of linear hybrid systems[END_REF]. More precisely, (HG1) when ψ flows, that is, for all t P intpI j ψ q, with I j ψ :" tt : pt, jq P dom ψu, θ is updated by 9 θ " ´γψpt, jqr ψpt, jq J θpt, jq ´ypt, jq s.

(HG2) Alternatively, when ψ jumps, that is, for all pt, jq P dom ψ such that pt, j `1q P dom ψ, the estimate θ is updated using θpt, j `1q " θpt, jq ´γψpt, jqr ψpt, jq J θpt, jq ´ypt, jq s 1 `γ|ψpt, jq| 2 .

Then, the dynamics of the parameter estimation error θ " θ´θ is governed by the hybrid system H 1 0 , (13), with ζ :" θ, ν " 0, Apt, jq :" γψpt, jqψpt, jq J , (43)

Bpt, jq :" ´γψpt, jqψpt, jq J 1 `γ|ψpt, jq| 2 , ( 44 
)
which satisfy the structural properties in Assumption 3. Furthermore, it is assumed that, by design, there exists ψ ą 0 such that |ψ| 8 ď ψ holds and the pair pA, Bq is HPE.

In the following example, we illustrate a scenario, where the regressor ψ in ( 42) is a hybrid signal.

Example 1 (Regressor gathering real-time and old data): Consider the continuous-time input-output model

y 1 ptq " ψ 1 ptq J θ t ě 0, (45) 
where ψ 1 : R ě0 Ñ R m θ is the input and y 1 : R ě0 Ñ R is the output. The pair pψ 1 , y 1 q defines the real-time input-output data. On the other hand, we assume that we have a memory containing a pair of old input-output data, which we denote by pψ 2 , y 2 q. The old data needs to be treated at specific times defining the sequence tt 1 , t 2 , ..., t J u Ă R ě0 with t j ď t j`1 . As a result, the old input-output data satisfy y 2 pt j q " ψ 2 pt j q J θ @j P t1, 2, ..., Ju.

The incorporation of old data can be done periodically, it can also be triggered by an external supervisory algorithm. As a result, we introduce the hybrid time domain

dom ψ :" r0, t 1 s ˆt0u Y rt 1 , t 2 s ˆt1u Y ... Y rt J , `8q ˆtJu.
Furthermore, we introduce the pair of hybrid input-output data, gathering both old and real-time data, given by ψpt, jq :"

" ψ 1 ptq if t P intpI j ψ q ψ 2 pt j`1 q
otherwise, and ypt, jq :"

" y 1 ptq if t P intpI j ψ q y 2 pt j`1 q otherwise.
The pair of hybrid input-output data is related to the parameter θ according to [START_REF] Anderson | New results in linear system stability[END_REF].

The hybrid gradient algorithm in this context allows to continuously explore real-time data on the open intervals intpI j ψ q, j P t1, 2, ..., Ju, and to discretely exploit old data over the sequence of times tt j u 8 j"1 .

Remark 5: When the hybrid arc ψ is eventually continuous (respectively, eventually discrete or Zeno), HPE of the pair pA, Bq reduces to CPE of ψψ J (respectively, DPE). Furthermore, when the regressor ψ is scalar (i.e, m θ " 1), HPE of the pair pA, Bq implies that either CPE or DPE holds. However, in the general case that m θ ą 1, it is possible that HPE hold, but none of the conditions CPE and DPE be satisfied. ' For illustration, let us consider the linear relationship in [START_REF] Anderson | New results in linear system stability[END_REF], where the regressor function ψ is given by ψptq :" # rsinptq 0s J @t P p2jπ, 2pj `1qπq, j P Z ě0 r0.5 1s J otherwise, [START_REF] Altın | Hybrid systems with delayed jumps: Asymptotic stability via robustness and lyapunov conditions[END_REF] so, over successive continuous intervals of time, ψptqψptq J " " sinptq 2 0 0 0  @t P p2jπ, 2pj `1qπq, j P Z ě0 , while at discrete instants, ψptqψptq J :" " 0.25 0.5 0.5 1  @t P t2π, 4π, ...u.

The function ψψ J defined in [START_REF] Altın | Hybrid systems with delayed jumps: Asymptotic stability via robustness and lyapunov conditions[END_REF] does not satisfy neither CPE nor DPE. However, the corresponding maps A and B (with γ " 1), defined on dom A " dom B " Ť 8 j"0 r2jπ, 2pj `1qπs, are given by Apt, jq "

" sinptq 2 0 0 0  , Bpt, jq " " 0.1111 0.2222 0.2222 0.4444  .
The pair pA, Bq is HPE, with K " 2π `1 and µ " 0.21. HPE is less conservative than its counterparts CPE and DPE as it captures the fact that the richness of a signal may be enhanced by an appropriate mingling of exciting flows and jumps, which, otherwise, are insufficient to guarantee that neither [START_REF] Johnson | Parameter estimation for hybrid dynamical systems using hybrid gradient descent[END_REF] nor [START_REF] Javed | Excitation conditions for uniform exponential stability of the cooperative gradient algorithm over weakly connected digraphs[END_REF] hold. The latter being necessary, θ Ñ 0 in either case, but θ Ñ 0 under the hybrid gradient-descent algorithm-see Fig. 1 Corollary 1: Consider the hybrid system H 1 0 , defined by [START_REF] Ioannou | Robust adaptive control[END_REF] with A and B as in [START_REF] Narendra | Stable Adaptive Systems[END_REF] and [START_REF] Bai | Persistency of excitation, sufficient richness and parameter convergence in discrete time adaptive control[END_REF], respectively. Let ν " 0 and assume that the pair pA, Bq is HPE and, there exists ψ ą 0 such that |ψ| 8 ď ψ. Then, the origin t θ " 0u is UES and the system's trajectories satisfy [START_REF] Ioannou | Robust adaptive control[END_REF] with computable parameters κp ψ, µ, Kq and λp ψ, µ, Kq.

˝

B. Hybrid adaptive Observer/Identifier design

We address now a classical problem of adaptive observer/identifier design, recast in the realm of hybrid systems. We show how well-known designs may be applied using excitation signals that flow and jump. For clarity, we start by revisiting an existing design-method for continuous-and discrete-time systems.

1) Rationale: Consider the problem of estimating the state x P R mx , and a vector of unknown constant parameters θ P R m θ , of a nonlinear system driven by an input u P R mu , based on the measurement of an output y :" Hx, y P R my . That is, to produce estimates px, θq such that the estimation errors pe, θq :" px ´x, θ ´θq converge to zero asymptotically.

If the output y is measured continuously in time, indexed by the variable t, the plant may be modeled by

9 x " A c py, uqx `Ψc py, uqθ, (48) 
whereas, if the output measurements are made at discrete instants, indexed by j, we shall use the model

x `" A d py, uqx `Ψd py, uqθ. (49) 
This choice of models is motivated by the abundant literature on estimator design for systems that are affine in the unmeasured variable x and linear in θ. The problem is completely solved for continuous-as well as for discrete-time systems. However, available designs may fail if the system's dynamics is hybrid. Say, if it is governed by [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF] when x belongs to a flow set C Ă R mx ˆRě0 ˆN, and by (49), when x is in a jump set D Ă R mx ˆRě0 ˆN. More precisely, a more general model of the plant is the hybrid system

Σ P : # 9
x " A c py, uqx `Ψc py, uqθ x P C

x `" A d py, uqx `Ψc py, uqθ x P D.

Addressing the observer/identifier design problem for hybrid systems is not purely motivated by intellectual curiosity (or challenge). We describe next a realistic scenario in which the problem arises naturally.

Remark 6: We stress that after obvious modifications, the developments that follow remain valid if the functions A c , A d , Ψ c , and Ψ d as well as the sets C and D depend on the (hybrid) time. That is, Σ P can have the general form

Σ P : $ ' ' & ' ' % 9 
x " A c pt, j, y, uqx `Ψc pt, j, y, uqθ 9 t " 1, 9 j " 0 px, t, jq P C

x `" A d pt, j, y, uqx `Ψc pt, j, y, uqθ t `" t, j `" j `1 px, t, jq P D.

' Example 2: Consider the continuous-time plant [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF] and, for simplicity, let the entire state be measurable, that is, let y " x. Furthermore, let t Þ Ñ py 1 ptq, u 1 ptqq be a pair of realtime input-output data defined in continuous time. Hence, by letting t Þ Ñ A 1 ptq :" A c py 1 ptq, u 1 ptqq and t Þ Ñ B 1 ptq :" Ψ c py 1 ptq, u 1 ptqq, we conclude that the real-time state variable x 1 is governed by

9 x 1 " A 1 ptqx 1 `B1 ptqθ t ě 0. (51) 
Now, suppose that the past experiences have generated other pairs of input-output data. Let t Þ Ñ py 2 ptq, u 2 ptqq be one such pairs, also defined in continuous time. We assume that we were able to save the input-output data corresponding to a specific sequence of times in the past tτ 1 , τ 2 , ..., τ J u Ă R ď0 . More specifically, we are able to save the sequence tpy 2 pτ j q, u 2 pτ j qqu J j"1 , and a sequence of pairs tA 2 pjq, B 2 pjqu J j"1 Ă R mxˆmx ˆRmxˆm θ , so that the old state vector x 2 satisfies x 2 pτ j`1 q " A 2 pjqx 2 pτ j q`B 2 pjqθ, @j P t1, 2, ..., Ju. (52)

To compute the pair j Þ Ñ pA 2 pjq, B 2 pjqq, we let A 2 :" A c py 2 , u 2 q and B 2 :" Ψ c py 2 , u 2 q. Furthermore, by letting M 2 be the transition matrix corresponding to the system 9 x " A 2 ptqx, we conclude that

x 2 pτ j`1 q " M 2 pτ j`1 , τ j qx 2 pτ j q`ż τj`1 τj M 2 pτ j`1 , sqB 2 psqdsθ.
Hence, we obtain, for each j P t1, 2, ..., Ju, A 2 pjq :" M 2 pτ j`1 , τ j q and B 2 pjq :" ş τj`1 τj M 2 pτ j`1 , sqB 2 psqds. As a result, the old state x 2 is governed by the discrete system

x 2 " A 2 pjqx 2 `B2 pjqθ j P t1, 2, ..., Ju. (53) 
Now, as in Example 1, we assume that the old data py 2 , u 2 q needs to be treated at specific times defining the sequence tt 1 , t 2 , ..., t J u Ă R ě0 with t j ď t j`1 . The latter takes us to introduce the hybrid domain

E :" r0, t 1 s ˆt0u Y rt 1 , t 2 s ˆt1u Y ... Y rt J , `8q ˆtJu.
The dynamics of both old and real-time data is governed by a hybrid system in the form of Σ P . To see this, we consider the augmented state vector px, t, jq P R 2mx ˆE, where x :" px 1 , x 2 q. Furthermore, we introduce the hybrid arcs defined on E by Ψc pt, jq :"

" B 1 ptq 0  , Ψd pt, jq :" " 0 B 2 pjq  ,
Āc pt, jq :" blkdiagtA 1 ptq, 0u, Ād pt, jq :" blkdiagtI mx , A 2 pjqu.

Thus, the plant with the available (old and real-time) data can be accurately modelled as in (50) with the right-hand sides and the flow and jump sets therein being dependent on the hybrid time pt, jq-cf. Remark 6. That is, we introduce the time-varying hybrid system ΣP :

" 9
x " Āc pt, jqx `Ψ c pt, jqθ t P intpI j E q x `" Ād pt, jqx `Ψ d pt, jqθ pt, jq, pt, j `1q P E.

The scenario described above suggests that an efficient adaptive observer/identifier should be able to explore real-time data py 1 , u 1 q to estimate θ over each interval I j E . Moreover, it should exploit old data py 2 , u 2 q at the specific times tt j u J j"1 . The latter sequence of times can be periodic or dictated an external supervisory algorithm.

In what follows of this section, we construct a dynamics hybrid observer/identifier and establish asymptotic stability of the origin, in the space of the estimation errors. The proposed observer/identifier design for Σ P builds upon the designs in [START_REF] Zhang | Adaptive observer for multiple-input-multiple-output (mimo) linear time-varying systems[END_REF] for continuous-and in [START_REF] Guyader | Adaptive observer for discrete time linear time varying systems[END_REF] for discrete-time systems, [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF] and (49)-we revisit them below. As in [START_REF] Loría | Adaptive observers with persistency of excitation for synchronization of chaotic systems[END_REF], we use a PE condition along the trajectories, to guarantee the convergence of the estimation errors. However, in contrast to these and other similar works, the design takes into account the fact that the system's solution is hybrid, which flows and jumps. As we show on a concrete example, the richness induced by the hybrid behavior is fundamental to achieve the estimation goals, when other algorithms fail.

2) The continuous-time estimator: The following development is inspired by [START_REF] Zhang | Adaptive observer for multiple-input-multiple-output (mimo) linear time-varying systems[END_REF]. Consider the continuous-time estimator 9

x " A c py, uqx `Kc py, uqpy ´ŷq `Ψc py, uq θ `vc , (54) where Ψ c py, uq θ is meant to compensate for the effect of the uncertainty in [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF], the term K c py, uqpy ´ŷq is common in Luenberger and Kalman-filter based observers, and v c is a term to be designed. It is assumed that an observer gain K c py, uq is known such that the origin for the the dynamical system 9 η " A η py, uqη, A η :" rA c py, uq ´Kc py, uqHs

is exponentially stable, uniformly in some admissible pairs pu, yq. Indeed, the state-estimation error dynamics, resulting from subtracting (54) from ( 48) is given by 9 e " A η py, uqe ´Ψc py, uq θ ´vc .

Hence, it is left to design v c and 9 θ " 9 θ such that the second and third terms on the right-hand side of (56) vanish. For 9 θ we seek an implementable classic adaptation law of gradient type, so we pose 9 θ :" γ c ψpy ´ŷq, γ c ą 0,

with ψ to be determined. To render this adaptation law of the "gradient" form 9 θ " ´γc r ¨sθ , we let e :" η ´Γθ or, equivalently, η :" e `Γθ

where Γ is to be defined so that η satisfies both (58) and (55). That is, the latter becomes a target equation for η in (58). Now, differentiating on both sides of (58), we obtain

9 η " A η η ´rA η Γ `Ψc ´9 Γs θ `γc ΓψHe ´vc , (59) 
in which we temporarily dropped all the arguments to avoid a cumbersome notation. We see that we recover (55) if we set v c :" ΓψHe, which may be implemented as v c :" γ c Γψpy ´ŷq, and 9 Γ :" A η Γ `Ψc . It is left to define ψ in (57). To that end, we note that the latter is equivalent to 9 θ " ´γc ψHΓ θ `γc ψHη, in which, η is guaranteed to converge to zero exponentially. So, we set ψ :" Γ J H J to obtain the perturbed gradient-descent system 9 θ " ´γc ψψ J θ `γc ψHη.

(60)

It is intuitively clear that if ψψ J is PE, along the system's trajectories, the parameters θ Ñ 0. Since also η Ñ 0, we obtain that e Ñ 0. This is the rationale that leads to the design of the adaptive observer/identifier for the bilinear system [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF], in continuous time, given by 9

x " A c x `Kc py ´ŷq `Ψc θ `γc Γψpy ´ŷq, (61a) 9 θ " γ c ψpy ´ŷq, ψ :" Γ J H J , (61b) 9 Γ " rA c ´Kc HsΓ `Ψc ,

-cf. [START_REF] Zhang | Adaptive observer for multiple-input-multiple-output (mimo) linear time-varying systems[END_REF], [START_REF] Loría | Adaptive observers with persistency of excitation for synchronization of chaotic systems[END_REF].

3) The discrete-time estimator: In discrete time, a similar reasoning leads to the hybrid estimator given by

x`" A d x `"K d `γd Γ `ψ 1 `γd |ψ| 2  py ´ŷq `Ψd θ, (62a) θ`" θ `γd ψ 1 `γd |ψ| 2 py ´ŷq, γ d ą 0, (62b) 
Γ `" rA d ´Kd HsΓ `Ψd , (62c) 
where K d is designed so that η `" rA d ´Kd Hsη is UES. Next, we use the designs above, tailored separately for systems [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF] and (49), to construct a properly defined hybrid estimator for the plant, seen as a time-varying hybrid system. To that end, we start by underlining some technical aspects that were left out in Example 2 for the sake of clarity.

4) The hybrid estimator: Consider the autonomous hybrid plant Σ P . Given an initial condition x o P C Y D, and an input signal u : dom u Ñ R mu belonging to a subset of admissible hybrid arcs denoted by U, we denote by λ :" px o , uq the vector of variables that parameterize the system's solutions. That is, we denote by φ λ the solution, which, without loss of generality, starts at pt o , j o q P dom u. The solution φ λ flows and jumps depending on the flow and jump sets C and D. Furthermore, we assume that dom u " dom φ λ . There is no loss of generality in this hypothesis because the domain of u can be adjusted by creating virtual jumps, so that the pair pu, φ λ q forms a solution pair to Σ P .

In turn, the hybrid system produces an output trajectory pt, jq Ñ y λ pt, jq, given by y λ pt, jq :" Hφ λ pt, jq, which is also parameterized by λ. In addition, we let the set I j λ :" t : pt, jq P dom φ λ ( and, for any function py, uq Þ Ñ M py, uq such that M P tA c , K c , Ψ c , A d , K d , Ψ d , A η , B η u, we define M λ pt, jq :" M py λ pt, jq, upt, jqq. Thus, after eqs. ( 61) and (62), we introduce the proposed hybrid observer/identifier:

9 x " A λ c x `Kλ c py ´ŷq `Ψλ c θ `γc Γ c ψ λpy ´ŷq, (63a) 9 θ " γ c Γ J c H J py ´ŷq, (63b) 9 Γ c " A λ η Γ c `Ψλ c , 9 Γ d " 0 @t P intpI j λ q, (63c) 
x`" 

A λ d x `"K λ d `γd Γ d ψ λ 1 `
" Γ c pt, jq J H J if t P intpI λ j q Γ d pt, jq J H J otherwise.
Note that ψ λ is parameterized by the vector λ, which includes λ but also includes the initial conditions pΓ co , Γ do q for pΓ c , Γ d q; namely, λ :" pλ, Γ co , Γ do q.

Remark 7: Note that in assuming that all hybrid arcs have the same hybrid domain dom φ it is required to know when the system's trajectories φ λ jump. This is an implicit standing assumption that is needed for a coherent definition of the resulting time-varying hybrid system. However, it is little conservative in that it is not tantamount to assuming the knowledge of unmeasured variables. ' The following is our main statement of this section. Proposition 1: Consider the hybrid plant Σ P in (50), governed by ( 48) when x P C and governed by (49) when x P D. Assume that A d , Ψ c , Ψ d , A c , and A d are continuous, let φ λ be a parameterized solution, such that the corresponding inputoutput pair pu, y λ q is uniformly bounded (in λ and in the hybrid domain) and let Σ λpt, jq :"

γ d ψ λpt, jqψ λpt, jq J 1 `γd |ψ λpt, jq| 2 . ( 65 
)
Then, the origin tpe, θq " p0, 0qu is globally exponentially stable, uniformly in λ if (i) for each λ, the pair pA λ η , B λ η q satisfies Assumption 1; and it is HUO uniformly in λ; In (i) and (ii) we require HUO and HPE to hold uniformly in λ and λ, respectively. This means that inequalities [START_REF] Chowdhury | On the estimation of algebraic connectivity in graphs with persistently exciting interconnections[END_REF] and ( 25) hold with pK, µq independent of pλ, λq. ' Proof : The proof follows by invoking Theorems 2 and 4. To show this, we start by writing the error dynamics in the form [START_REF] Kurdila | Persistency of excitation in identification using radial basis function approximants[END_REF]. Using e :" x ´x, θ :" θ ´θ, the previously introduced notation, Eqs. ( 48), (49), (61), and (62), we obtain the estimation error dynamics 9 e " A λ η pt, jqe ´Ξλ c pt, jq θ ´γc Γ c pt, jqψ λpt, jqHη (66a) 9 θ " ´γc ψ λpt, jqψ λpt, jq J θ `γc ψ λpt, jqHη (66b)

9 η " A λ η pt, jqη (66c) 
for all t P I j λ , where to abbreviate we also introduced 

Ξ λ c pt, jq :" " Ψ λ c pt, jq ´γc Γ c pt,
for all pt, jq P dom φ λ such that pt, j `1q P dom φ λ . To show this, we invoke again Theorem 2 under Items (i) and (ii) of the proposition. This time, we regard the equations (66a)-(67a) as a time-varying hybrid system of the form (13) with state ζ " e and parameterized input ν λ defined as ν λpt, jq " # ´Ξλ c pt, jq θpt, jq t P intpI j λ q ´Ξλ d pt, jq θpt, jq otherwise.

(71)

Note that the input defined in (71) corresponds to uniformly bounded functions in factor of the solution to (69b)-(70b), while the origin te " 0u is UES for the system 9 e " A λ η pt, jqe t P intpI j λ q e `" " I mx ´Bλ η pt, jq ‰ e pt, jq, pt, j `1q P dom φ λ , as already established since, by assumption, for this system A λ η and B λ η satisfy Assumptions 1-2 and the HUO property. Furthermore, under the same conditions, (69)-( 70) is ISS with respect to ν λ in (71). It is only left to establish UES of t θ " 0u for (69b)-(70b), which has exactly the form of the gradientdescent error dynamics studied in the previous section-see (65). Therefore, UES for (69b)-(70b) follows provided that the pair ´ψλ ψ λJ , Σ λ¯i s HPE, uniformly in λ, that is Item (ii) of the proposition.

5) A numerical example:

We illustrate the performance of the hybrid observer/identifier designed above on the vertical bouncing-ball system with actuated jumps given by

Σ p : $ ' & ' % 9 x " " x 2 ´θ‰ J x P R ě0 ˆR x `" " 0 ´θ 12.2625 x 2 `u x P tx 1 " 0, x 2 ď 0u ,
where x P R 2 includes the ball position and velocity, u P R is the input, y " x 1 is the output, and θ P R is a constant unknown parameter. The constant parameter θ in both the flow and the jump dynamics is not physically motivated, but it allows to illustrate the importance of HPE. The dynamical model of the considered example is of the type as in ( 48)-(49), with A c " " 0 1 0 ´0.1



, A d " " ´1 0 0 0  , H " r1 0s, B c " 0, B d " " 0 1 ‰ J , Ψ c " " 0 ´1‰ J , and Ψ d " " 0 ´x2

12.2625 ‰ J , The objective is to jointly estimate the state x 2 and the unknown parameter θ using the measurement of y " x 1 and the knowledge of the system's structure. We assume that we can detect instantaneously when the solution of the system jumps. Then, following Proposition 1, we design the observer gains so as to satisfy Assumption 1. First, we find scalars a c , a d ă 0, β, M ą 0, matrices K c , K d P R mxˆmy , and a positive definite symmetric matrix P P R mxˆmx such that pA c ´Kc Hq J P `P pA c ´Kc Hq ď a c P (72a) pA d ´Kd Hq J P pA d ´Kd Hq ď e a d P (72b) a c t `ad j ď M ´βpt `jq @pt, jq PR ě0 ˆNě0 . (72c) Indeed, under inequalities (72) Assumption 1 holds with Q d " pe a d ´1qI m θ . Then, using the Schur complement, condition (72) boils down to solving the LMI A J c P `P A c ´Lc H ´HJ L J c ă 0, " P pP A d ´Ld Hq J P A d ´Ld H P  ą 0, which can be done using the toolbox YALMIP [START_REF] Lofberg | Yalmip: A toolbox for modeling and optimization in matlab[END_REF]. The variables of the LMIs are P P R 2ˆ2 and L c , L d P R 2 , and the observation gains are set to K c " P ´1L c and K d " P ´1L d . Thus, we implemented the hybrid adaptive observer (63)-(64) and performed several illustrative simulations, with and without HPE. The results are showed in Figures 2345. We show the evolution of the state estimation errors e i , the filtered regressors Γ c and Γ d , and the parameter estimation error θ ´θ. In all the figures, the solid blue lines represent the flows and dashed red lines represent the jumps.

The adaptation gains are set to γ c " 0.4 and γ d " 0.8 and for the observation gains we use the toolbox YALMIP, to find K c " r0.7215 1.1184s J and K d " r´0.5 0.5s J , which satisfy the conditions from Proposition 1. The initial conditions were set to xp0, 0q " r4 0.1s J , Γ c p0, 0q " r2 4s J , Γ d p0, 0q " r4 3s J , and θp0, 0q " 8.

First, we set u " 0, so the system lacks excitation; the results are shown in Figure 2. It is showed that the state estimation errors converge (exponentially), but the parameter estimate θ does not converge to θ. This is due to the fact that the pair ´ψλ ψ λJ , Σ λ¯i s not HPE. Fig. 4. Performance of the discrete-time adaptive observer/identifier from [START_REF] Guyader | Adaptive observer for discrete time linear time varying systems[END_REF] with u " 20.

In two other runs of simulation, we set u " 20 and used the purely continuous-time adaptive observer from [START_REF] Zhang | Adaptive observer for multiple-input-multiple-output (mimo) linear time-varying systems[END_REF]-see the results in Figure 3, and the purely discrete-time adaptive observer from [START_REF] Guyader | Adaptive observer for discrete time linear time varying systems[END_REF]-the results are showed in Figure 4. In both cases, neither the state-estimation nor the parameter-estimation errors vanish.

Finally, in a fourth simulation we tested the hybrid adaptive observer/identifier under the same conditions. In Figure 5, one can appreciate that both the state-and parameter-estimation errors vanish. Indeed, in this case, the pair ´ψλ ψ λJ , Σ λ¯i s HPE with K " 2 and µ " 0.7. 

VI. CONCLUSION AND FUTURE WORK

This paper generalized some stability and robustness properties of linear time-varying systems, encountered in estimation theory, to the more general context of hybrid systems. By introducing the class of linear (non-autonomous) hybrid systems in H u , we showed that a relaxed (hybrid) version of the wellknown PE condition is sufficient to guarantee UES as well as ISS. The proposed hybrid framework applies to the estimation problem when a input-output regression model is fed with hybrid data. Furthermore, it allows the design and analysis of adaptive observers/identifiers for a uncertain hybrid systems capable of tracking both the state and the unknown parameters. For future work, while we assumed the jumps of the estimation algorithm to be synchronized with the jumps of the hybrid regressor, this condition may be unrealistic in practice, since the regressor's jumps cannot always be detected instantaneously. Hence, robustness of the proposed approach with respect to delays in the jumps detection could be analyzed along the lines of [START_REF] Altın | Hybrid systems with delayed jumps: Asymptotic stability via robustness and lyapunov conditions[END_REF].
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 1 Fig. 1. Evolution of the norm of the parameter error θ using continuous, discrete, and hybrid gradient algorithms
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 8162 Fig.2. Performance of the adaptive observer with u " 0, i.e., without HPE. The estimation errors | θ| fail to vanish
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 3 Fig.3. Performance of the continuous-time adaptive observer/identifier from[START_REF] Zhang | Adaptive observer for multiple-input-multiple-output (mimo) linear time-varying systems[END_REF] with persistent input u " 20.
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 5 Fig. 5. Performance of the hybrid adaptive observer with u " 20.

  implies that, for all pt, jq P E φ

	sup |φps, iq| p A : ps, iq P E φ t,j,8	(	ď c p |φpt, jq| p A	(7)
	and				ż	
					t,j,8 E φ ˇˇφps, iq	ˇˇp A dps, iq ď c p |φpt, jq| p A .	(8)
	Next, we define the hybrid arc v : dom φ Ñ R ě0 given by
							ż
					vpt, jq :"	t,j,8 E φ ˇˇφps, iq	ˇˇp A dps, iq,
	and we distinguish the two following cases: for all t such that
	the solution flows, that is, if t P intpI j φ q with I j φ :" tt : pt, jq P
	dom φu, we have	
	9 vpt, jq "	d dt	"ż tj`1 t |φps, jq| p A ds 	" ´|φpt, jq| p A ď	´1 c p vpt, jq;
	the last inequality follows from (8). If the solution jumps, that
	is, for all pt, jq P dom φ such that pt, j `1q P dom φ, we have
	vpt, j `1q ´vpt, jq " ´|φpt, jq| p A ď	´1 c p vpt, jq;
	again, the last inequality follows from (8). As a result, using
	the comparison principle for hybrid systems-Lemma 1 in the
	Appendix, while replacing a therein by 1 c p , we conclude that
					vpt, jq ď e	´t`j c p vp0, 0q.	(9)
	Now, we consider a parameter K ą 0 and note that, for each pt, jq P E φ 0,0,8 ,
			ż				ż
	vpt, jq "	E φ t,j,8 ˇˇφps, iq	ˇˇp A dps, iq ě	t,j,K E φ	ˇˇφps, iq	ˇˇp A dps, iq
	ě	m K ÿ i"j	ż ti`1 ˇˇφps, iq ti	ˇˇp A ds	ÿ `mK ´1 i"j
	0,0,8 ,					

  for all x P C, where the first inequality follow from Young's inequality, and W pG ν pxqq ´W pxq " ´|ξ| 2 `W pG ν pxqq ´W pG 0 pxqq, for all x P D. On the other hand, after Assumption 2, there exists b 1 M such that |I m ζ ´Bpp, qq| ď b 1 M for all pp, qq P dom A, one gets using Young's inequality that

  )To better see this, we note that ζpt, jq " ζ o ´ż t

tj

Aps, jqζps, jqds

  jqψ λpt, jqHΓ c pt, jq Global exponential stability, uniform in the initial time and in λ, follows after Item (i) of the Proposition, invoking Theorem 2.On the other hand, equations (66a)-(66b) together with (67a)-(67b) form, in turn, another system of the form (13), with state ζ :" re J θJ s J and parameterized input

									ν λpt, jq :"	$ ' ' ' & ' ' ' %	" "	´γc Γ c pt, jqψ λpt, jqHηpt, jq γ c ψ λpt, jqHηpt, jq ∆ λpt, jqηpt, jq Γ d pt, jq∆ λpt, jqηpt, jq 		t P intpI j λ q otherwise.	(68)
									Since η converges uniformly and exponentially to zero and the
									factors of ηpt, jq in (68) are uniformly bounded (both in the
									initial time and in λ), it is only left to show that the system
									(66a)-(66b) together with (67a)-(67b) is ISS with respect to ν λ, as in (68). After the proof of Theorem 2, ISS follows if the origin is UES for the system with ν λ " 0, which is
									governed by
									9 e " A λ η pt, jqe	´Ξλ c pt, jq θ	(69a)
									9 θ " ´γc ψ λpt, jqψ λpt, jq J θ	(69b)
									for all t P I j λ , and
									e	`" "	I mx	´Bλ η pt, jq	‰	e	´Ξλ d pt, jq θ	(70a)
									«
									θ`"	I m
									ı
									,
	and						
	e	`" " I mx	´Bλ η pt, jq	‰	e	´Ξλ d pt, jq θ ´Γd pt, jq∆ λpt, jqη
									(67a)
	θ`"	" I m θ	´Σλ pt, jq	ı	θ	`∆λ pt, jqη,	(67b)
	η	`" " I mx	´Bλ η pt, jq	‰	η	(67c)

for all pt, jq P dom φ λ such that pt, j `1q P dom φ λ , where

Ξ λ d pt, jq :" " Ψ λ d pt, jq ´Γd pt, jqΣ λpt, jq ‰ ∆ λpt, jq :" γ d ψ λpt, jqH 1 `γd |ψ λpt, jq| 2 .

The equations (66c)-(67c) constitute a time-varying system of the form (13) with ζ " η and ν " 0. θ ´γd ψ λpt, jqψ λpt, jq J 1 `γd |ψ λpt, jq| 2 ff θ,
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APPENDIX

A. Hybrid Comparison Lemma

We introduce the following comparison lemma for hybrid systems, which is a particular case of [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF]Lemma C.1].

Lemma 1: Consider a hybrid arc v : dom v Ñ R ě0 and assume the existence of a, b ą 0 such that ' For all pt, jq P dom v such that pt, j `1q R dom v, 9 vpt, jq ď ´avpt, jq `b.

' For all pt, jq P dom v such that pt, j `1q P dom v, vpt, j `1q ´vpt, jq ď ´avpt, jq `b.

Then, there exists c ą 0 such that vpt, jq ď e ´apt`jq vp0, 0q cb for all pt, jq P dom v.

The proof follows the same steps as the proof of [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF]Lemma C.1] for the particular case where the hybrid arc αpt, jq " a is constant, and for which, the map γ α : R ě0 ˆdom v is explicitly given by γ α pr, t, jq " e ´apt`jq r.