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Hybrid Persistency of Excitation in Adaptive Estimation
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A. Saoud M. Maghenem A. Lorı́a R. G. Sanfelice

[Draft generated on Tuesday 4th July, 2023]

Abstract— We propose a framework of stability analysis
for a class of linear non-autonomous hybrid systems, with
solutions evolving in continuous time governed by an or-
dinary differential equation and undergoing instantaneous
changes governed by a difference equation. Furthermore,
the jumps may also be triggered by exogeneous hybrid sig-
nals. The proposed framework builds upon a generalization
of notions of persistency of excitation (PE) and uniform
observability (UO), which we redefine to fit the realm of
hybrid systems. Most remarkably we propose for the first
time in the literature a definition of hybrid persistency of ex-
citation. Then, we establish conditions, under which, hybrid
PE implies hybrid UO and, in turn, uniform exponential sta-
bility (UES) and input-to-state stability (ISS). Our proofs rely
on an original statement for hybrid systems, expressed in
terms of Lp bounds on the solutions. We also demonstrate
the utility of our results on generic adaptive estimation
problems. The first one concerns the so-called gradient
systems, reminiscent of the popular gradient-descent algo-
rithm. The second one pertains to the design of adaptive
observers/identifiers for a class of hybrid systems that are
nonlinear in the input and in the output, and linear in the
unknown parameters. In both cases, we illustrate through
meaningful examples that the proposed hybrid framework
succeeds in scenarii where the classical purely continuous-
or discrete-time counterparts fail.

I. INTRODUCTION

Persistency of excitation [1], roughly speaking, is the prop-
erty of a function of time that consists in the function’s energy
never vanishing. Mathematically, the PE property may be
expressed in various forms, depending, e.g., on whether its
scalar argument is considered as a real or integer variable,
that is, on whether the function is evolving in continuous
or discrete time. Over five decades, several definitions of PE
have been proposed, in various contexts, to guarantee different
stability properties. For linear time-varying systems, some PE
properties guarantee uniform (in the initial time) exponential
stability [2] or uniform global asymptotic stability [3]. With
careful handling, which involves replacing some instance of

A. Saoud is with CentraleSupelec, University Paris-Saclay, Gif-
sur-Yvette, France, and the School of Computer Science at Mo-
hammed VI Polytechnical University, Benguerir, Morocco (e-mail: ad-
nane.soud@centralesupelec.fr). M. Maghenem is with GIPSA-Lab,
CNRS, and University of Grenoble Alpes, Grenoble, France (e-mail:
mohamed.maghenem@cnrs.fr); A. Lorı́a is with L2S, CNRS, 91192 Gif-
sur-Yvette, France (e-mail: antonio.loria@cnrs.fr); R. G. Sanfelice is
with the Dept. of Electrical and Computer Engineering, University of
California, Santa Cruz, CA, USA (e-mail:ricardo@ucsc.edu). The work
of M. Maghenem and A. Lorı́a was supported by the French ANR via
project HANDY, contract number ANR-18-CE40-0010, and the ANR PIA
funding: ANR-20-IDEES-0002.

the state in the system’s equations with the system’s solutions
[4], PE-based statements tailored for linear systems may also
apply to nonlinear systems [5]. In this case, a solution-
dependent PE notion is necessary and sufficient to ensure
uniform asymptotic stability. For particular classes of nonlin-
ear non-autonomous systems forms of solution-independent
PE conditions have been proposed, tailored for functions that
depend both on time and the state [6], [7], [8]. A non-solution-
dependent relaxed PE condition tailored for nonlinear systems
is provided in [9], where it is also showed to be necessary
for uniform global asymptotic stability of generic nonlinear
non-autonomous systems.

The classes of systems where the PE property is used
include, but are not restricted to, those appearing in prob-
lems of identification [10], adaptive control [11], [12], model
identification [13], learning-based identification [14], and state
estimation [15], [16]. For instance, the so-called gradient
systems, which appear in the context of gradient-descent
estimation algorithms are among the linear time-varying sys-
tems where PE is necessary and sufficient for UES of the
origin. Moreover, convergence rate estimates [17], [5] and
strict Lyapunov functions for gradient systems are available
in the literature [18]. Other forms of sufficient conditions that
involve relaxing the PE property for gradient systems, e.g., by
admitting the excitation to last only over a finite window of
time, have also been investigated for continuous-time systems
[19] as well as for data-driven models [20], [21]. Relaxed
forms of PE are considered for gradient systems in [22], but
these cannot ensure uniform convergence of the estimation
errors towards the origin.

One of the landmark results in the study of PE is that
it is equivalent to uniform observability (UO) [23] for pas-
sive systems satisfying structural properties reminiscent of
the Kalman-Yacubovich-Popov Lemma [2]. The first results
on stability of the so-called model-reference-adaptive control
schemes rely on such a fact [12], [24]. For nonlinear time-
varying systems, there is an equivalence between PE and
zero-state detectability [6]. The PE property is also broadly
present in the context of adaptive observer/identifier design,
both for linear and nonlinear systems [25], [26], [16], [27],
[28]. Roughly speaking, the parameter estimation strategy
relies on injecting external signals into the system, to excite
all the modes and render the system observable, uniformly in
the initial conditions.

As it is well established nowadays, the coexistence of
continuous- and discrete-time phenomena (what we call hybrid
phenomena) is unavoidable in some scenarios of control
systems. This is the case under the presence of impacts
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provoking instantaneous changes in the state, as in manu-
facturing systems [29], cyber-physical systems [30] or when
combining continuous and discrete state variables, or in the
presence of shocks and reflection-propagation [31]. It is also
the case under constrained sensing and actuation, as in power
[32] and network control systems [33]. In the aforementioned
situations the solutions have a continuous evolution, governed
by a continuous-time system, provided that they stay in a set
called the flow set. Furthermore, they experience instantaneous
changes, governed by a discrete-time system, once they reach
a subset called the jump set. The control of these systems may
require the estimation of some parameters that can affect the
continuous- or the discrete-time dynamics, but they can also
affect the flow and the jump sets. Hence, there is a need to
extend the PE-based framework to the realm of the general
class of hybrid systems.

In this paper, which is the outgrowth of [34], we study
PE in the realm of hybrid systems, using the framework of
[35]. This framework covers impulsive systems, which are a
type of non-autonomous systems that experience jumps under
the influence of a piece-wise continuous signal, and not only
depending on whether the state trajectory is in the flow or
the jump set at a given instant. Our main contribution is the
formulation of a property of PE tailored for a class of hybrid
systems. The property we define captures, with particular
efficacy, the richness of time-varying piece-wise-continuous
signals; richness that cannot be captured otherwise by classical
definitions of PE, defined purely in continuous or discrete
time. For instance, we show that a hybrid version of the
classical gradient-descent identification algorithm successfully
estimates the unknown parameters of a hybrid input-output
plant in cases where purely continuous- or purely discrete-
time algorithms fail. More importantly, we establish that HPE
implies a hybrid form of UO for the considered class of linear
time-varying hybrid systems. In turn, we establish UES and
ISS under HPE. These statements are presented in Section IV.
In that light, we stress that other definitions of observability
for hybrid systems have been proposed in the literature,
e.g., [36], [37], but these are restricted to switched systems.
Finally, we address the problem of adaptive observer/identifier
design for a class of uncertain hybrid systems, which are
affine in the unmeasured states and linear in the unknown
parameters. Based on well-known designs of adaptive ob-
servers/identifiers in continuous- and discrete-time [25], [26],
[16], [27], [28], we show that a properly constructed hybrid
observer/identifier achieves uniform exponential convergence
of the observation and estimation errors. Different from [38],
where only the identification problem is solved by assuming
either CPE or DPE, our result holds under the relaxed HPE.
Finally, we illustrate through a simple but meaningful example
of an impact mechanical system, how the proposed hybrid
observer/identifier may supersede its purely continuous- or
discrete-time counterparts.

In the next section, for completeness, we recall some
definitions and notations that pertain to the hybrid-systems
framework of [35].

II. PRELIMINARIES ON HYBRID SYSTEMS

After [35], a hybrid dynamical system H is the combina-
tion of a constrained differential equation and a constrained
difference equation given by

H :

"

9x “ F pxq x P C
x` “ Gpxq x P D,

(1)

where x P X Ď Rmx denotes the state variable, X the
state space, C Ď X and D Ď X denote the flow and jump
sets, respectively, and F : C Ñ Rmx and G : D Ñ Rmx
correspond to the flow and jump maps. Solutions to (1) consist
in functions with hybrid time domain defined as follows.

Definition 1 (hybrid signal and hybrid arc): A hybrid sig-
nal φ is a function defined on a hybrid time domain denoted
domφ Ă Rě0 ˆ Zě0. The hybrid signal φ is parameterized
by ordinary time t P Rě0 and a discrete counter j P Zě0.
Its domain of definition is denoted domφ and is such that,
for each pT, Jq P domφ, domφX pr0, T s ˆ t0, 1, . . . , Juq “
YJj“0 prtj , tj`1s ˆ tjuq for a sequence ttju

J`1
j“0 such that

tj`1 ě tj , t0 “ 0, and tj`1 “ T . Moreover, if for each j P N,
the function t ÞÑ φpt, jq is locally absolutely continuous on
the interval Ij :“ tt : pt, jq P domφu, then the hybrid signal
φ is said to be a hybrid arc. ˝

Definition 2 (Solution to H): A hybrid arc φ : domφ Ñ
Rmφ is a solution to H if φp0, 0q P clpCq YD;
(S2) for all j P Zě0 such that Ijφ “ tt : pt, jq P domφu has

nonempty interior,

φpt, jq P C for all t P intpIjφq,
9φpt, jq “ F pφpt, jqq for almost all t P Ijφ;

(S3) for all pt, jq P domφ such that pt, j ` 1q P domφ,

φpt, jq P D, φpt, j ` 1q “ Gpφpt, jqq.
˝

A solution φ to H is said to be maximal if there is no
solution ψ to H such that φpt, jq “ ψpt, jq for all pt, jq P
domφ and domφ is a proper subset of domψ. It is said to be
nontrivial if domφ contains at least two points. It is said to
be continuous if it is nontrivial and never jumps. It is said to
be eventually discrete if T :“ supt domφ ă 8 and domφX
ptT u ˆ Zě0q contains at least two points. It is said to be
eventually continuous if J :“ supj domφ ă 8 and domφX
pRě0ˆtJuq contains at least two points. System H is said to
be forward complete if the domain of each maximal solution
is unbounded.

We are interested in sufficient conditions for UES of a
closed set A Ă X for a hybrid system H :“ pC,F,D,Gq.
This property is defined in terms of the distance of φ to the
set A, i.e., |φ|A :“ inf

zPA
|φ´ z|, where | ¨ | denotes Euclidean

norm, as follows—cf. [35].
Definition 3 (UES): Let the closed subsets pA,Dq Ă X ˆ

X . The set A is said to be UES for H on D if there exist κ
and λ ą 0 such that, for each solution φ to H starting from
xo P D at p0, 0q, we have

|φpt, jq|A ď κ|xo|Ae
´λpt`jq @pt, jq P domφ. (2)

If D “ X , we say that the set A is UES for H. ˝
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III. INTEGRAL CHARACTERIZATION OF UES

Our first statement is an original characterization of UES
for hybrid systems, in terms of uniform Lp-integrability con-
ditions. It is reminiscent of [8, Lemma 2] for continuous-time
systems and in [39] for discrete-time systems. However, as
the solutions of hybrid systems may flow and jump, we first
introduce certain notations related to integration over a hybrid
time domain.

Hybrid Integral: Consider a function with hybrid domain φ :
domφÑ Rnˆn and let K P Rą0Yt`8u and pt, jq P domφ.
We use Eφt,j,K Ă domφ to denote the shortest hybrid time
domain, starting from pt, jq, of length larger or equal than K
and contained in domφ. Note that if K is finite, then there
exists a unique psK ,mKq P domφ, such that

K ď psK ´ tq ` pmK ´ jq ă K ` 1, (3)

and a unique non-decreasing sequence

ttj , tj`1, ..., tmK , tmK`1u with tj :“ t and tmK`1 :“ sK ,

such that

Eφt,j,K :“ rtj , tj`1s ˆ tju Y ¨ ¨ ¨ Y rtmK , tmK`1s ˆ tmKu.

Thus, the hybrid integral of φ over the domain Eφt,j,K is
defined as
ż

Eφt,j,K

φps, iqdps, iq :“
mK
ÿ

i“j

ż ti`1

ti

φps, iqds`
mK´1
ÿ

i“j

φpti`1, iq.

In particular, for K “ `8, we have s8 `m8 “ `8.
Akin to the case where signals evolve purely in continuous

or discrete time—cf. [40], given a function φ, with hybrid
domain starting at pto, joq P domφ, we define the hybrid Lp-
norm, with p P r1,8q, as

ˇ

ˇφ
ˇ

ˇ

Ap :“

«

ż

Eφto,jo,8

ˇ

ˇφps, iq
ˇ

ˇ

p

Adps, iq

ff
1
p

(4)

and the hybrid L8 norm,
ˇ

ˇφ
ˇ

ˇ

A8 :“ sup
!

ˇ

ˇφpt, jq
ˇ

ˇ

A : pt, jq P Eφto,jo,8

)

. (5)

In the case that A “ t0u we simply write |φ|p and |φ|8.
Then, the following statement generalizes [5, Lemma 3] to

the realm of hybrid systems.
Theorem 1 (Hybrid-integral characterization of UES):

Consider the hybrid system H :“ pC,F,D,Gq, as defined in
(1), and let pA,Dq Ă X ˆ X be closed subsets. Assume that
there exist c and p ą 0 such that, for each φ, solution to H
starting from xo P D, we have

max
!

ˇ

ˇφ
ˇ

ˇ

A8,
ˇ

ˇφ
ˇ

ˇ

Ap

)

ď c
ˇ

ˇxo
ˇ

ˇ

A. (6)

Then, the set A is UES on D and (2) holds with λ :“ 1
pcp

and κ :“ c expp1{pq. ˝

Proof : We first remark that the solutions φ start at p0, 0q,
so the L-norms in (6) are to be considered on Eφ0,0,8. Now,
following the proof lines of [5, Lemma 3], we note that
condition (6) implies that, for all pt, jq P Eφ0,0,8,

sup
 

|φps, iq|pA : ps, iq P Eφt,j,8
(

ď cp|φpt, jq|pA (7)

and ż

Eφt,j,8

ˇ

ˇφps, iq
ˇ

ˇ

p

Adps, iq ď cp|φpt, jq|pA. (8)

Next, we define the hybrid arc v : domφÑ Rě0 given by

vpt, jq :“

ż

Eφt,j,8

ˇ

ˇφps, iq
ˇ

ˇ

p

Adps, iq,

and we distinguish the two following cases: for all t such that
the solution flows, that is, if t P intpIjφq with Ijφ :“ tt : pt, jq P
domφu, we have

9vpt, jq “
d

dt

„
ż tj`1

t

|φps, jq|pAds



“ ´|φpt, jq|pA ď ´
1

cp
vpt, jq;

the last inequality follows from (8). If the solution jumps, that
is, for all pt, jq P domφ such that pt, j`1q P domφ, we have

vpt, j ` 1q ´ vpt, jq “ ´|φpt, jq|pA ď
´1

cp
vpt, jq;

again, the last inequality follows from (8). As a result, using
the comparison principle for hybrid systems—Lemma 1 in the
Appendix, while replacing a therein by 1

cp , we conclude that

vpt, jq ď e´
t`j
cp vp0, 0q. (9)

Now, we consider a parameter K ą 0 and note that, for each
pt, jq P Eφ0,0,8,

vpt, jq “

ż

Eφt,j,8

ˇ

ˇφps, iq
ˇ

ˇ

p

Adps, iq ě

ż

Eφt,j,K

ˇ

ˇφps, iq
ˇ

ˇ

p

Adps, iq

ě

mK
ÿ

i“j

ż ti`1

ti

ˇ

ˇφps, iq
ˇ

ˇ

p

Ads`
mK´1
ÿ

i“j

ˇ

ˇφpti`1, iq
ˇ

ˇ

p

A

ě
1

cp

«

mK
ÿ

i“j

ż ti`1

ti

sup
!

ˇ

ˇφpτ, kq
ˇ

ˇ

p

A : pτ, kq P Eφt,j,K

)

ds

ff

`
1

cp

«

mK´1
ÿ

i“j

sup
!

ˇ

ˇφpτ, kq
ˇ

ˇ

p

A : pτ, kq P Eφt,j,K

)

ff

ě
sK ´ t`mK ´ j

cp
sup

!

ˇ

ˇφpτ, kq
ˇ

ˇ

p

A : pτ, kq P Eφt,j,K

)

ě
K

cp
ˇ

ˇφpsK ,mKq
ˇ

ˇ

p

A,

where the last inequality comes from (3). Then, we define
K :“ cp and we use (7) and (9) to conclude that, for each
pt, jq P Eφ0,0,8,
ˇ

ˇφpsK ,mKq
ˇ

ˇ

p

A ď vpt, jq ď e´
t`j
cp vp0, 0q ď cpe´

t`j
cp

ˇ

ˇφp0, 0q
ˇ

ˇ

p

A.

The last inequality implies that, for each ps, iq P

domφzEφ0,0,K ,
ˇ

ˇφps, iq
ˇ

ˇ

A ď ce
K
pcp e´

s`i
pcp

ˇ

ˇφp0, 0q
ˇ

ˇ

A.

On the other hand, for each ps, iq P Eφ0,0,K ,
ˇ

ˇφps, iq
ˇ

ˇ

A ď c
ˇ

ˇφp0, 0q
ˇ

ˇ

A ď ce
K
pcp e´

s`i
pcp

ˇ

ˇφp0, 0q
ˇ

ˇ

A.

The statement follows.
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IV. UES AND ISS FOR TIME-VARYING HYBRID SYSTEMS

Consider the non-autonomous hybrid system of the form

H1 :

#

9ζ “ F 1pζ, t, jq t P intpIjAq
ζ` “ G1pζ, t, jq pt, jq, pt, j ` 1q P domA,

(10)

with state ζ P Rmζ , F 1, G1 : X Ñ Rmζ , X :“ Rmζ ˆ
domA, and such that A is a hybrid signal whose domain
is domA and IjA :“ tt : pt, jq P domAu. A may be an
exogenous hybrid signal or may also depend on the system’s
hybrid trajectories—see Section V for examples. Then, the
solutions to (10) are hybrid arcs whose domain is a subset of
domA. That is, the solutions of (10) jump whenever A jumps.

To study the behavior of the solutions to (10), we recast
it in the form of (1), by including the hybrid time as a bi-
dimensional state variable. That is, defining x :“ rξJ p qsJ,
system (10) can be rewritten as

H :

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

»

–

9ξ
9p
9q

fi

fl “

»

–

F 1pξ, p, qq
1
0

fi

fl x P C

»

–

ξ`

p`

q`

fi

fl “

»

–

G1pξ, p, qq
p

q ` 1

fi

fl x P D,

(11)

where the flow and jump sets are, respectively, defined as
C :“ X and D :“ tx P X : pp, q ` 1q P domAu. Then, a
solution ζ to (10), starting from the initial condition ζo P Rmζ
at pto, joq P domA, must coincide with a solution φ to (11),
starting from the initial condition pξo, to, joq at p0, 0q. In this
case, we have ppt, jq “ t ` to and qpt, jq “ j ` jo for all
pt, jq P domφ. We use this fact in what follows of the paper
to analyze time-varying hybrid systems in the form of (10).

Remark 1: If the set tpξ, p, qq P X : ξ “ 0u is UES for H,
as per Definition 3, then the origin tζ “ 0u is UES for H1,
that is, every solution ζ, starting at pto, joq from ζo, satisfies

|ζpt, jq| ď κ|ζo|e
´λpt`j´to´joq @pt, jq P dom ζ, (12)

with κ and λ independent of pto, joq. ‚

A. Problem formulation and standing hypotheses

In the sequel, we focus on perturbed non-autonomous hybrid
systems of the form—cf. Eq. (10),

H1ν :

$

&

%

9ζ “´Apt, jqζ ` νpt, jq t P intpIjAq
ζ`“r Imζ ´Bpt, jq sζ ` νpt, jq

pt, jq, pt, j ` 1q P domA,
(13)

where A and B (are assumed to) have the same hybrid time
domain, that is, A and B : domAÑ Rmζˆmζ . Furthermore,
ν : domA Ñ Rmζ is an external hybrid perturbation. The
index ν in Hν is to distinguish the system in (13) from the
unperturbed dynamics resulting from setting ν ” 0.

Remark 2: This class of systems is important as it covers a
number of interesting cases that appear in adaptive estimation.
For instance, when ν ” 0 and Apt, jq and Bpt, jq are both
symmetric and positive semidefinite, system (13) generalizes
the so called gradient system, studied both in continuous and
discrete time in the context of identification [2], [17] and

multi-agent systems [41], [18]. The functions A and B may
come from expressing outputs and inputs along solutions;
namely, for a system 9z “ Azpy, uqz, we let Apt, jq :“
Azpypt, jq, upt, jqq. This artifice is commonly used to analyze
some nonlinear observers [15], [16]. See also Section V. ‚

In what follows, we investigate sufficient conditions for the
origin tζ “ 0u to be UES for H10 (that is, (13) with ν ” 0)
and for the system H1ν to be ISS with respect to ν ı 0. For
hybrid systems, ISS means that there exist a class K8 function
α and a class KL function β such that, for each solution ζ to
H1ν , starting from ζo P Rmζ , at pto, joq P domA, we have

|ζpt, jq|A ď βp|ζo|A, t` j ´ to ´ joq

` α
´

sup
!

|νps, iq| : ps, iq P domφzEζt,j,8

)¯

for all pt, jq P Eζto,jo,8.
We solve these problems under two standing hypotheses

reminiscent of others that are common in the context of
continuous- or discrete-time systems. The first one essentially
guarantees boundedness of the solutions and uniform global
stability of the origin tζ “ 0u for H10. Roughly, for H10, we
require the existence of a Lyapunov function with negative
semidefinite derivative along flows and non-increasing over
jumps. The second Assumption imposes uniform boundedness
of the matrices A and B.

Assumption 1 (Lyapunov (Non-Strict) Inequalities):
There exists a symmetric matrix P : domA Ñ Rmζˆmζ
and constants p1, p2 ą 0 such that p1 ď |P |8 ď p2.
Furthermore, there exist symmetric positive semi-definite
matrices Qc, Qd : domP Ñ Rmζˆmζ such that, for all
t P intpIjAq,

9P pt, jq´Apt, jqJP pt, jq´P pt, jqApt, jq ď ´Qcpt, jq, (14)

and, for all pt, jq P domA such that pt, j ` 1q P domA,

rImζ ´Bpt, jqs
JP pt, j ` 1qrImζ ´Bpt, jqs ´ P pt, jq

ď ´Qdpt, jq. (15)

Assumption 2 (Uniform Boundedness): There exist Ā, B̄ ą
0 such that |B|8 ď B̄ and |A|8 ď Ā.

In addition to Assumptions 1 and 2, we investigate the role
of HUO and HPE.

B. UES and ISS under HUO

Consider the linear system H10, i.e., (13) with ν ” 0.
We introduce the hybrid transition matrix M : domA ˆ
domA Ñ Rmζˆmζ such that, for each ppt, jq, pto, joqq P
domA ˆ domA, the solution ζ starting from ζo at pto, joq
satisfies

ζpt, jq “Mppt, jq, pto, joqqζo. (16)

The hybrid transition matrix M is the solution to the system

9Mppt, jq, pto, joqq “ ´Apt, jqMppt, jq, pto, joqq t P IjA
(17a)

Mppt, j ` 1q, pto, joqq “
“

Imζ ´Bpt, jq
‰

Mppt, jq, pto, joqq

pt, jq, pt, j ` 1q P domA (17b)
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Mppto, joq, pto, joqq “ Imζ . (17c)

Then, we introduce the following property.
Definition 4 (HUO): The pair pA,Bq satisfying Assump-

tion 1 is HUO if there exist K, µ ą 0 such that, for each
pto, joq P domA,
ż

EAto,jo,K

M pps, jq, pto, joqq
J

Φps, jqM pps, jq, pto, joqq dps, jq

ě µImζ , (18)

where Φ : dom Φ Ñ Rmζˆmζ , with dom Φ “ domQc “
domQd, is given by

Φpt, jq :“

"

Qcpt, jq if t P intpIjAq
Qdpt, jq otherwise.

(19)

˝

Remark 3: Following up on Remark 2, we note that partic-
ular instances of HUO pairs pertain to multi-variable systems,
where Qcpt, jq and Qdpt, jq result from designing a hybrid
input. Thus, the required HUO property may be induced (by
design). ‚

Theorem 2 (HUO implies UES and ISS): If for the hybrid
system H10, defined by (13) with ν ” 0, Assumptions 1 and 2
hold, and the pair pA,Bq is HUO, then the origin tζ “ 0u is
UES, and H1ν is ISS with respect to ν. ˝

Proof : The stability of the origin tζ “ 0u for H10 may
be analyzed using the framework described in Section II, by
rewriting the system as one that is time-invariant, of the form
(11), with flow and jump maps

Fνpxq :“ r´ξJApp, qqJ ` νJ 1 0sJ (20a)

Gνpxq :“ rξJrImζ ´Bpp, qqs
J ` νJ p q ` 1sJ, (20b)

state x :“ pξ, p, qq P X :“ Rmζ ˆ domA, and flow and jump
sets defined by C :“ X and D :“ tx P X : pp, q ` 1q P
domAu, respectively. In particular, after Remark 1, the UES
bound (12) holds for H10 if the set

A :“ tx P X : ξ “ 0u (21)

is UES (as per Definition 3) for H, defined by (11), (20), C,
and D as defined above. Thus, to prove the first item we use
Theorem 1 and this equivalent time-invariant representation
of H10. That is, we explicitly compute c ą 0 such that, along
each solution φ to (11)-(20), with ν ” 0 and starting from
xo :“ pξo, to, joq, at p0, 0q, it holds that

max
!

ˇ

ˇφ
ˇ

ˇ

2

A8,
ˇ

ˇφ
ˇ

ˇ

2

A2

)

ď c
ˇ

ˇxo
ˇ

ˇ

2

A, (22)

where A is defined in (21).
To that end, we introduce the Lyapunov function candidate

V pxq :“ ξJP pp, qqξ, (23)

where P is introduced in Assumption 1. Furthermore, after
the latter, we have

x∇V pxq, F0pxqy ď ´ξ
JQcpp, qqξ,

for each x P C, while

V pG0pxqq ´ V pxq ď ´
1

2
ξJQdpp, qqξ,

for each x P D. Therefore, after (19), along the maximal
solution φ, we have

9V pφpt, jqq ď ´ξpt, jqJΦpppt, jq, qpt, jqqξpt, jq,

for all t P intpIjAq, while

V pφpt, j ` 1qq´V pφpt, jqq

ď ´ξpt, jqJΦpppt, jq, qpt, jqqξpt, jq

for all pt, jq P domφ such that pt, j`1q P domφ. Thus, using
the fact that Qc and Qd are positive definite from Assumption
1, it follows that

V pφpt, jqq ď V pφp0, 0qq @pt, jq P Eφ0,0,8,

which implies that, for each pt, jq P Eφ0,0,8, we have

p1

ˇ

ˇξpt, jq
ˇ

ˇ

2
ď V pφpt, jqq ď V pφp0, 0qq ď p2

ˇ

ˇξo
ˇ

ˇ

2
.

Finally, since |ξ| “
ˇ

ˇφ
ˇ

ˇ

A, we conclude that
ˇ

ˇφ
ˇ

ˇ

2

A8 ď
p2

p1

ˇ

ˇφp0, 0q
ˇ

ˇ

2

A.

This establishes the first bound in (22).

Next, we compute the second bound. To that end, we follow
the proof steps of [26, Proposition 1]. Let the HUO property
generate K ą 0 and, for each pt, jq P domφ, a unique pair
psK ,mKq P domφ satisfying (3). We have

V pφpt, jqq´V pφpsK ,mKqq ě

ż

Eφt,j,K

ξps, iqJΦps, iqξps, iqdps, iq.

The hybrid arc ξps, iq, with ps, iq P Eφt,j,K , starting at pt, jq
coincides with ζps, iq starting at pt ` to, j ` joq. Therefore,
the relation

ζps` to, i` joq “

M
`

ps`to, i`joq, pt`to, j`joq
˘

ζ
`

pt`to, j`joq
˘

,

which holds under (16), implies that

ξps, iq “Mpps, iq, pt, jqqξpt, jq,

where Mpps, iq, pt, jqq :“Mpps` to, i` joq, pt` to, j` joqq.
As a result, we obtain

V pφpt, jqq ´ V pφpsK ,mKqq ě

ξpt, jqJ
ż

Eφt,j,K

Mpps, iq, pt, jqqJΦps, iqĎMpps, iq, pt, jqqdps, iq

ˆ ξpt, jq ě µ
ˇ

ˇξpt, jq
ˇ

ˇ

2
.

Next, we use the fact that
ˇ

ˇξpt, jq
ˇ

ˇ

2
ě
p1

p2

ˇ

ˇξpsK ,mKq
ˇ

ˇ

2
,

to obtain

V pφpt, jqq ´ V pφpsK ,mKqq ě µ
p1

p2

ˇ

ˇξpsK ,mKq
ˇ

ˇ

2
.

Now, integrating on both sides over Eφ0,0,8, and using the fact
that

|ξps, iq|2 “ |φps, iq|2A @ps, iq P Eφ0,0,8,
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we obtain
ż

Eφ0,0,K

V pφps, iqqdps, iq ě
p1µ

p2

ż

Eφ0,0,8

ˇ

ˇφps, iq
ˇ

ˇ

2

Adps, iq

´
p1µ

p2

ż

Eφ0,0,K

ˇ

ˇφps, iq
ˇ

ˇ

2

Adps, iq,

which, in turn, implies that
ż

Eφ0,0,8

ˇ

ˇφps, iq
ˇ

ˇ

2

Adps, iq ď
p2

p1µ

ż

Eφ0,0,K

V pφps, iqqdps, iq

`

ż

Eφ0,0,K

ˇ

ˇφps, iq
ˇ

ˇ

2

Adps, iq

ď pK ` 1q

„

p2
2

p1µ
`
p2

p1



ˇ

ˇφp0, 0q
ˇ

ˇ

2

A.

This completes the proof of UES.
Next, to prove ISS of H1ν with respect to ν, we introduce

the function W : X Ñ Rě0 given by

W pxq :“ ξJPpp, qqξ,

where

Ppp, qq :“

ż

EAp,q,8

“

Mpps, iq, pp, qqqMpps, iq, pp, qqqJ
‰

dps, iq,

and we prove the following claim.
Claim 1: Under UES of the set A for H10, the fact that

Mppp, qq, pp, qqq “ Imζ—see (17c), and A being bounded,
we conclude that there exist pM ě pm ą 0 such that

pmImζ ď Ppp, qq ď pMImζ @pp, qq P domA. (24)

Proof : The upper bound in (24) is a straightforward
consequence of UES of the set A for H10 and the definition
of the hybrid transition matrix M.

To prove the lower bound, we consider the following
complementary cases:

1) If pp, qq P domA and pp, q ` 1q P domA, we conclude
that

Ppp, qq “ Imζ ` Ppp, q ` 1q ě Imζ .

2) If prp, p` 1s, qq P domA, we conclude that

Ppp, qq ě
ż p`1

p

“

Mpps, qq, pp, qqqMpps, qq, pp, qqqJ
‰

ds.

ě

ż p`1

p

ep´2Āps´pqqdsImζ “

ż 1

0

e´2ĀsdsImζ .

To obtain the second inequality, we used (17a) and
boundedness of the matrix A.

3) If prp, p ` λs, qq P domA and pp ` λ, q ` 1q P domA,
for some λ P p0, 1q. In this case, we have

Ppp, qq ěMppp` λ, qq, pp, qqqMppp` λ, qq, pp, qqqJ

ě e´2ĀλImζ ě e´2ĀImζ .

Furthermore, using (17a) and (17b) along maximal trajec-
tories, we conclude that

9Ppp, qq “ ´Imζ ´App, qqJPpp, qq ´ Ppp, qqApp, qq

for all t P intpIjAq, while

Ppp, qq “ Imζ `Bpp, qq
JPpp, q ` 1qBpp, qq

for all pp, qq P domA such that pp, q`1q P domA. Therefore,

x∇W pxq, F0pxqy “ ´|ξ|
2, @x P C

W pG0pxqq ´W pxq “ ´|ξ|
2, @x P D,

where Fν and Gν are defined in (20). In turn,

x∇W pxq, Fνpxqy “ ´|ξ|2 ` 2ξJPpp, qqν

ď ´
1

2
|ξ|2 ` 4pM |ν|

2 ď ´
1

2pM
W pxq ` 4pM |ν|

2,

for all x P C, where the first inequality follow from Young’s
inequality, and

W pGνpxqq ´W pxq “ ´|ξ|
2 `W pGνpxqq ´W pG0pxqq,

for all x P D. On the other hand, after Assumption 2, there
exists b1M such that |Imζ ´ Bpp, qq| ď b1M for all pp, qq P
domA, one gets using Young’s inequality that

W pGνpxqq ´W pG0pxqq “ 2νJPpp, q ` 1qrImζ ´Bpp, qqsξ

` νJPpp, q ` 1qν

ď c|ν|2 `
1

2
|ξ|2,

where c :“ pM ` p2
Mb

12
M . In turn,

W pGνpxqq ´W pxq “ ´
1

2pM
W pxq ` c|ν|2.

So, along the system’s trajectories, we have

9W pφpt, jqq ď ´
1

2pM
W pφpt, jqq ` 4pM |νpt, jq|

2,

for all t P intpIjφq, and

W pφpt, j ` 1qq ´W pφpt, jqq

ď ´
1

2pM
W pφpt, jqq ` c|νpt, jq|2,

for all pt, jq P domφ such that pt, j`1q P domφ. Finally, we
introduce

ν̄ :“ sup
!

|νps, iq| : ps, iq P domφzEφt,j,8

)

,

and the comparison perturbed hybrid system

Hw :

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

»

–

9w
9p
9q

fi

fl “

»

–

f 1pw, ν̄q
1
0

fi

fl x P Cw

»

–

w`

p`

q`

fi

fl “

»

–

g1pw, ν̄q
p

q ` 1

fi

fl x P Dw,

with

f 1pw, ν̄q :“´
1

2pM
w ` 4pM ν̄

2 w P Cw

g1pw, ν̄q :“
”

1´
1

2pM

ı

w ` cν̄2 w P Dw,

where Cw :“ Rě0 ˆ domφ and Dw :“ tpw, p, qq P Rě0 ˆ
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domφ : pp, q`1q P domφu. Thus, we conclude using Lemma
1 that the solutions φw to Hw and φ to H in (11) obtained
from (13) satisfy W pφpt, jqq ď φwpt, jq for all pt, jq P domφ,
solving for Hw, it follows that there exist a, b ą 0 such that

W pφpt, jqq ďW pφp0, 0qqe´apt`jq ` bν̄,

and ISS of H1ν follows.

C. UES and ISS Under HPE

The following is a relaxed PE property, which captures the
richness of signals that may fail to be PE if considered as
functions of purely continuous or purely discrete time.

Definition 5 (HPE): The pair pA,Bq of hybrid arcs A,B :
domAÑ Rmζˆmζ , i.e., with domA “ domB, is said to be
HPE if there exist K and µ ą 0 such that
ż

EAto,jo,K

ΦABps, iqdps, iq ě µImζ @pto, joq P domA, (25)

where ΦAB : domAÑ Rmζˆmζ is given by

ΦABpt, jq :“

"

Apt, jq if t P intpIjAq
Bpt, jq otherwise.

˝

As for purely continuous-time systems, an important prop-
erty of HPE is that it implies HUO. Theorem 3, below,
generalizes to the realm of hybrid systems, the well-known
fact that PE implies UO—see [23], [12]. Yet, Theorem 3 is
not a direct extension since its proof approach is original. For
instance, it differs from that used in [42] for continuous-time
systems by being direct and not relying on many intermediate
results.

Assumption 3 (Structural Properties): For each pt, jq P

domA, Apt, jq “ Apt, jqJ ě 0, Bpt, jq “ Bpt, jqJ ě 0,
and |Bpt, jq|8 ď 1.

Theorem 3 (HPE implies HUO): Consider the hybrid sys-
tem H10 under Assumptions 2 and 3, and let the pair pA,Bq
be HPE. Then, the pair pA,Bq is HUO. ˝

Proof : Under Assumption 3, it follows that Assumption
1 holds with P “ Imθ , Qcpt, jq “ Apt, jq, and Qdpt, jq “
Bpt, jq. Therefore, to verify the HUO property, it suffices to
find µo ą 0 such that, for each pto, joq P domA, we have

ż

EAto,jo,K

Γops, jqdps, jq ě µoImζ , (26)

where we defined

Γops, jq :“M pps, jq, pto, joqq
J

ΦABps, jqM pps, jq, pto, joqq

to compact the notation, K comes from the HPE of pA,Bq.
Then, to establish (26), we show that, for each ζo P Rmζ ,

ζJo

ż

EAto,jo,K

Γops, jqdps, jq ζo ě µo|ζo|
2.

To that end, first we note that

ζJo

ż

EAto,jo,K

Γops, jqdps, jq ζo “

ż

EAto,jo,K

ζps, jqJΦABps, jqζps, jqdps, jq

and we proceed to find µo ą 0 such that

Ṽ :“

ż

EAto,jo,K

ζps, jqJΦABps, jqζps, jqdps, jq ě µo|ζo|
2. (27)

So, to prove (27), we express Ṽ as

Ṽ “
mK
ÿ

j“jo

VF pjq `
mK
ÿ

j“jo

VGpjq, (28)

where

VF pjq :“

ż tj`1

tj

ζps, jqJAps, jqζps, jqds, (29)

VGpjq :“ ζptj`1, jq
JBptj`1, jqζptj`1, jq, (30)

and we compute suitable lower bounds for these functions.
In regards to VF , we show that, for each ρ ą 0 and for each
j P tjo, . . . ,mKu,

VF pjq ě
ρ

1` ρ

ż tj`1

tj

ˇ

ˇ

ˇ
Aps, jq

1
2 ζo

ˇ

ˇ

ˇ

2

ds

´ ρpĀ2 ` 2Āqp2pj ´ joq ` 1qptj`1 ´ tjqptj`1 ´ tjo ` 1qṼ .
(31)

To better see this, we note that

ζpt, jq “ ζo ´

ż t

tj

Aps, jqζps, jqds

´

j´1
ÿ

i“j0

ż ti`1

ti

Aps, iqζps, iqds´
j´1
ÿ

i“j0

Bpti`1, iqζpti`1, iq.

(32)

Hence, we obtain

VF pjq “

ż tj`1

tj

ˇ

ˇ

ˇ
Aps, jq

1
2 ζo `Aps, jq

1
2

ż s

tj

Apu, jqζpu, jqdu

`Aps, jq
1
2

j´1
ÿ

k“jo

ż tk`1

tk

Apu, kqζpu, kqdu

`Aps, jq
1
2

j´1
ÿ

k“jo

Bptk`1, kqζptk`1, kq
ˇ

ˇ

ˇ

2

ds.

Next, using the fact that |a ´ b|2 ě ρ
1`ρ |a|

2 ´ ρ|b|2 for all
ρ ą 0, we obtain

VF pjq ě ´ρ

ż tj`1

tj

ˇ

ˇ

ˇ
Aps, jq

1
2

ż s

tj

Apu, jqζpu, jqdu

`Aps, jq
1
2

j´1
ÿ

k“jo

ż tk`1

tk

Apu, kqζpu, kqdu

`Aps, jq
1
2

j´1
ÿ

k“jo

Bptk`1, kqζptk`1, kq
ˇ

ˇ

ˇ

2

ds

`
ρ

1` ρ

ż tj`1

tj

ˇ

ˇ

ˇ
Aps, jq

1
2 ζo

ˇ

ˇ

ˇ

2

ds.

Furthermore, using the boundedness of A according to

Assumption 2 and the fact that |
N
ř

i“1

ai|
2 ď N

N
ř

i“1

|ai|
2, we

obtain
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VF pjq ě ´ρĀp2pj ´ joq ` 1q ˆ

ż tj`1

tj

«

ˇ

ˇ

ˇ

ˇ

ż s

tj

Apu, jqζpu, jqdu

ˇ

ˇ

ˇ

ˇ

2

`

j´1
ÿ

k“jo

ˇ

ˇ

ˇ

ˇ

ż tk`1

tk

Apu, kqζpu, kqdu

ˇ

ˇ

ˇ

ˇ

2

`

j´1
ÿ

k“jo

|Bptk`1, kqζptk`1, kq|
2

ff

ds

`
ρ

1` ρ

ż tj`1

tj

ˇ

ˇ

ˇ
Aps, jq

1
2 ζo

ˇ

ˇ

ˇ

2

ds.

Next, using the triangular and Cauchy-Schwartz inequalities,
we obtain

VF pjq ě ´ρĀp2pj ´ joq ` 1q

ˆ

ż tj`1

tj

„

ps´ tjq

ż s

tj

|Apu, jqζpu, jq|
2
du

`

j´1
ÿ

k“jo

ptk`1 ´ tkq

ż tk`1

tk

|Apu, kqζpu, kq|
2
du

`

j´1
ÿ

k“jo

|Bptk`1, kqζptk`1, kq|
2



ds

`
ρ

1` ρ

ż tj`1

tj

ˇ

ˇ

ˇ
Aps, jq

1
2 ζo

ˇ

ˇ

ˇ

2

ds.

Then, using the fact that

0 ď ps´ tjq

ż s

tj

|Apu, jqζpu, jq|
2
du

ď ptj`1 ´ tjq

ż tj`1

tj

|Apu, jqζpu, jq|
2
du,

we obtain

VF pjq ě ´ρĀp2pj ´ joq ` 1qptj`1 ´ tjqptj`1 ´ tjo ` 1q

ˆ

«

j
ÿ

k“jo

ż tk`1

tk

|Aps, kqζps, kq|
2
ds

`

j´1
ÿ

k“jo

|Bptk`1, kqζptk`1, kq|
2

ff

`
ρ

1` ρ

ż tj`1

tj

ˇ

ˇ

ˇ
Aps, jq

1
2 ζo

ˇ

ˇ

ˇ

2

ds,

and using A “ A
1
2A

1
2 and B “ B

1
2B

1
2 , we conclude that

VF pjq ě ´ ρĀpĀ` 2qp2pj ´ joq ` 1qptj`1 ´ tjq

ˆ ptj`1 ´ tjo ` 1q

«

j
ÿ

k“jo

ż tk`1

tk

ˇ

ˇ

ˇ
A

1
2 ps, kqζps, kq

ˇ

ˇ

ˇ

2

ds

`
1

2

j´1
ÿ

k“jo

ˇ

ˇ

ˇ
Bptk`1, kq

1
2 ζptk`1, kq

ˇ

ˇ

ˇ

2
ff

`
ρ

1` ρ

ż tj`1

tj

ˇ

ˇ

ˇ
Aps, jq

1
2 ζo

ˇ

ˇ

ˇ

2

ds.

Hence, (31) follows. Next, we show that, for each ρ ą 0 and

for each j P tjo, . . . ,mKu, the following inequality holds:

VGpjq ě
´ρ

2
p2pj ´ joq ` 1qpĀptj`1 ´ tjoq ` 2qṼ

`
ρ{2

1` ρ

ˇ

ˇ

ˇ
Bptj`1, jq

1
2 ζo

ˇ

ˇ

ˇ

2

, (33)

For this, we first note that 2VGpjq “
ˇ

ˇ

ˇ
B

1
2 ptj`1, jqζptj`1, jq

ˇ

ˇ

ˇ

2

.

Then, using (32), we obtain

VGpjq “
1

2

ˇ

ˇ

ˇ

ˇ

Bptj`1, jq
1
2 ζo

`Bptj`1, jq
1
2

j
ÿ

k“jo

ż tk`1

tk

Apu, kqζpu, kqdu

`Bptj`1, jq
1
2

j´1
ÿ

k“jo

Bptk`1, kqζptk`1, kq

ˇ

ˇ

ˇ

ˇ

2

.

Now, using the fact that |a ´ b|2 ě ρ
1`ρ |a|

2 ´ ρ|b|2 for all
ρ ą 0, we obtain

VGpjq ě ´
ρ

2

ˇ

ˇ

ˇ

ˇ

Bptj`1, jq
1
2

j
ÿ

k“jo

ż tk`1

tk

Apu, kqζpu, kqdu

`B
1
2 ptj`1, jq

j´1
ÿ

k“jo

Bptk`1, kqζptk`1, kq

ˇ

ˇ

ˇ

ˇ

2

`
ρ{2

1` ρ

ˇ

ˇ

ˇ
Bptj`1, jq

1
2 ζo

ˇ

ˇ

ˇ

2

.

Next, using |
N
ř

i“1

ai|
2 ď N

N
ř

i“1

|ai|
2, the boundedness of B by

1, and the Cauchy-Schwartz inequality, we obtain

VGpjq ě
´ρ

2
p2pj ´ joq ` 1q

ˆ

«

j
ÿ

k“jo

ż tk`1

tk

ptk`1 ´ tkq |Apu, kqζpu, kq|
2
du

`

j´1
ÿ

k“jo

ˇ

ˇ

ˇ
B

1
2 ptj`1, jqζptk`1, kq

ˇ

ˇ

ˇ

2
ff

`
ρ{2

1` ρ

ˇ

ˇ

ˇ
Bptj`1, jq

1
2 ζo

ˇ

ˇ

ˇ

2

.

Finally, using the boundedness of A, according to Assump-
tion 2, we obtain

VGpjq ě
´ρ

2
p2pj ´ joq ` 1qpĀptj`1 ´ tjoq ` 2q

ˆ

«

j
ÿ

k“jo

ż tk`1

tk

ˇ

ˇ

ˇ
Apu, kq

1
2 ζpu, kq

ˇ

ˇ

ˇ

2

du

`

j´1
ÿ

k“jo

1

2

ˇ

ˇ

ˇ
Bptj`1, jq

1
2 ζptj`1, jq

ˇ

ˇ

ˇ

2
ff

`
ρ{2

1` ρ

ˇ

ˇ

ˇ
Bptj`1, jq

1
2 ζo

ˇ

ˇ

ˇ

2

.

Hence, (33) follows. Now, combining (31) and (33), we obtain
the following upper bound on Ṽ for each ρ ą 0:

Ṽ ě
ρ

1` ρ

mK´1
ÿ

j“jo

ˇ

ˇ

ˇ
Bptj`1, jq

1
2 ζo

ˇ

ˇ

ˇ

2
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`
2ρ

1` ρ

mK
ÿ

j“jo

ż tj`1

tj

ˇ

ˇ

ˇ
Aps, jq

1
2 ζo

ˇ

ˇ

ˇ

2

ds

´
ρ

2
Ṽ

mK
ÿ

j“jo

p2pj ´ joq ` 1qpĀptj`1 ´ tjoq ` 2q

´ ρĀpĀ` 2qṼ
mK
ÿ

j“jo

p2pj ´ joq ` 1qptj`1 ´ tjqptj`1 ´ tjo ` 1q.

Hence,

Ṽ ě
2ρ|ζo|

2

1` ρ

ż

EAto,jo,K

ΦABps, iqdps, iq ´ ρpmK ´ jo ` 1q2Ṽ

ˆ

„

Ā

2
psK ´ tjoq ` 2q ` ĀpĀ` 1qpsK ´ tjoqpsK ´ tjo ` 1q



Finally, using the HPE of the pair pA,Bq, we conclude that

Ṽ ě
2ρµ

1` ρ
|ζo|

2 ´ ρpK ` 2q2

ˆ

„

Ā

2
pK ` 1q ` 1` ĀpĀ` 2qpK ` 1qpK ` 2q



Ṽ . (34)

Thus, (27) follows by choosing

ρ :“
1{pK ` 2q2

Ā
2 pK ` 1q ` 1` ĀpĀ` 2qpK ` 1qpK ` 2q

.

The importance of Theorem 3 relies on the following
statement, whose proof is direct and, yet, it generalizes similar
results available for continuous- or discrete-time systems.

Theorem 4 (UES + ISS under HPE): Consider the hybrid
system H10, defined by (13) with ν ” 0, under Assumptions
2 and 3, and let the pair pA,Bq be HPE. Then, the origin
tζ “ 0u is UES for H10 and H1ν is ISS with respect to u. ˝

Proof : After Theorem 3, the HUO property holds. Under
Assumption 3, it follows that Assumption 1 holds with P “
Imθ , Qcpt, jq “ Apt, jq, and Qdpt, jq “ Bpt, jq. Thus, the
statement follows from a direct application of Theorem 2.

V. ADAPTIVE ESTIMATION UNDER HPE

A. The Hybrid gradient-descent algorithm

To put our contributions in perspective, we first consider a
classical identification problem, based on the linear regression
model

y “ ψJθ, (35)

where ψ : domψ Ñ Rmθ is the regressor, θ P Rmθ is a
constant vector of unknown parameters, and y : dom y Ñ R
is the output. Usually, the domains of y and ψ are considered
to be subsets of the real numbers or the natural numbers. Then,
an estimate of θ, denoted θ̂, may be carried out dynamically,
in function of the tracking error e :“ ŷ´ y, where ŷ :“ ψJθ̂.
A well-known identification law is based on the minimization
of the cost Jpeq :“ p1{2qe2 and defined by the gradient of the
latter.

In the continuous-time setting, i.e., if the regressor’s domain
is domψ “ r0,`8q, the gradient-based update law for θ̂ is
given by 9̂

θ “ ´γ∇θ̂Jpeq, where ∇θ̂J denotes the gradient of

J “ p1{2qpψJθ̂ ´ ψJθq2 with respect to θ̂. Hence,

9̂
θ “ ´γψptqrψptqJθ̂ ´ yptqs, γ ą 0 (36)

—see [43]. In this case, the dynamics of the estimation error
θ̃ :“ θ̂ ´ θ is given by

9̃
θ “ ´γψptqψptqJθ̃ (37)

and it is well-known (see, e.g., [11]) that, if ψ is bounded, the
following condition of continuous-time PE (CPE) is necessary
and sufficient for UES of the origin for (37).
(CPE) There exist T ą 0 and µ ą 0 such that

ż t`T

t

ψpsqψpsqJds ě µImθ @t ě 0. (38)

Moreover, a lower bound on the convergence rate is provided
in [17], [2], and [5], and a strict Lyapunov function is
constructed in [18].

In the discrete-time setting, i.e., if the regressor’s domain is
domψ “ Zě0, the gradient algorithm is given by

θ̂pt` 1q “ θ̂ptq ´ σptq∇θ̂Jpeq, (39)

where σ : Zě0 Ñ r0, 1s is given by σptq :“ γ
1`γ|ψptq|2 , and

γ ą 0 is the adaptation rate [10]. Therefore, the dynamics of
the estimation error is given by

θ̃` “

ˆ

Imθ ´
γψptqψptqJ

1` γ|ψptq|2

˙

θ̃. (40)

In the latter case, the discrete-time PE condition reads—cf.
[44], [1]:
(DPE) There exist N ą 0 and µ ą 0 such that

N
ÿ

s“0

ψpsqψpsqJ ě µImθ . (41)

Remark 4: Note that some of the existing approaches to an-
alyze (37) translate naturally to the analysis of (40) under DPE;
see, e.g., [10]. Other relaxed forms of PE are also available,
but these do not lead to uniform forms of convergence—see
e.g., [45], [22], [19]. ‚

Even though PE as defined above, in continuous or discrete
time, is necessary for UES, in some simple cases it may be
over-restrictive. For instance, when the data pψ, yq of the linear
regression model (35) is hybrid; namely, when it is allowed to
exhibit both continuous- and discrete-time evolution, to have

ypt, jq “ ψpt, jqJθ pt, jq P domψ. (42)

In this case, the classical gradient-descent algorithms recalled
above are ineffective. This is because the continuous-time
update law (36) exploits the data only on the time intervals
on which they evolve continuously, while the discrete-time
gradient algorithm (39) exploits the data only at discrete
time instants. If, in contrast to this, the regressor is hybrid,
we design a hybrid gradient-descent algorithm in a way that
whenever the data pψ, yq jump, i.e., undergo an instantaneous
change, θ̂ is updated via (39); whenever the data pψ, yq flow,
i.e., evolve continuously, θ̂ is updated via (36). More precisely,

(HG1) when ψ flows, that is, for all t P intpIjψq, with Ijψ :“
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tt : pt, jq P domψu, θ̂ is updated by

9̂
θ “ ´γψpt, jqrψpt, jqJθ̂pt, jq ´ ypt, jq s.

(HG2) Alternatively, when ψ jumps, that is, for all pt, jq P
domψ such that pt, j ` 1q P domψ, the estimate θ̂ is
updated using

θ̂pt, j ` 1q “ θ̂pt, jq ´
γψpt, jqrψpt, jqJθ̂pt, jq ´ ypt, jq s

1` γ|ψpt, jq|2
.

Then, the dynamics of the parameter estimation error θ̃ “ θ̂´θ
is governed by the hybrid system H10, (13), with ζ :“ θ̃, ν ” 0,

Apt, jq :“ γψpt, jqψpt, jqJ, (43)

Bpt, jq :“ ´
γψpt, jqψpt, jqJ

1` γ|ψpt, jq|2
, (44)

which satisfy the structural properties in Assumption 3. Fur-
thermore, it is assumed that, by design, there exists ψ̄ ą 0
such that |ψ|8 ď ψ̄ holds and the pair pA,Bq is HPE.

In the following example, we illustrate a scenario, where
the regressor ψ in (42) is a hybrid signal.

Example 1 (Regressor gathering real-time and old data):
Consider the continuous-time input-output model

y1ptq “ ψ1ptq
Jθ t ě 0, (45)

where ψ1 : Rě0 Ñ Rmθ is the input and y1 : Rě0 Ñ R is
the output. The pair pψ1, y1q defines the real-time input-output
data. On the other hand, we assume that we have a memory
containing a pair of old input-output data, which we denote
by pψ2, y2q. The old data needs to be treated at specific times
defining the sequence tt1, t2, ..., tJu Ă Rě0 with tj ď tj`1.
As a result, the old input-output data satisfy

y2ptjq “ ψ2ptjq
Jθ @j P t1, 2, ..., Ju. (46)

The incorporation of old data can be done periodically, it
can also be triggered by an external supervisory algorithm. As
a result, we introduce the hybrid time domain

domψ :“ r0, t1sˆ t0uY rt1, t2sˆ t1uY ...YrtJ ,`8qˆtJu.

Furthermore, we introduce the pair of hybrid input-output data,
gathering both old and real-time data, given by

ψpt, jq :“

"

ψ1ptq if t P intpIjψq
ψ2ptj`1q otherwise,

and

ypt, jq :“

"

y1ptq if t P intpIjψq
y2ptj`1q otherwise.

The pair of hybrid input-output data is related to the parameter
θ according to (42).

The hybrid gradient algorithm in this context allows to
continuously explore real-time data on the open intervals
intpIjψq, j P t1, 2, ..., Ju, and to discretely exploit old data
over the sequence of times ttju8j“1. ˝

Remark 5: When the hybrid arc ψ is eventually continuous
(respectively, eventually discrete or Zeno), HPE of the pair
pA,Bq reduces to CPE of ψψJ (respectively, DPE). Further-
more, when the regressor ψ is scalar (i.e, mθ “ 1), HPE of the

pair pA,Bq implies that either CPE or DPE holds. However,
in the general case that mθ ą 1, it is possible that HPE hold,
but none of the conditions CPE and DPE be satisfied. ‚

For illustration, let us consider the linear relationship in
(42), where the regressor function ψ is given by

ψptq :“

#

rsinptq 0sJ @t P p2jπ, 2pj ` 1qπq, j P Zě0

r0.5 1sJ otherwise,
(47)

so, over successive continuous intervals of time,

ψptqψptqJ “

„

sinptq2 0

0 0



@t P p2jπ, 2pj ` 1qπq, j P Zě0,

while at discrete instants,

ψptqψptqJ :“

„

0.25 0.5
0.5 1



@t P t2π, 4π, ...u.

The function ψψJ defined in (47) does not satisfy neither CPE
nor DPE. However, the corresponding maps A and B (with
γ “ 1), defined on domA “ domB “

Ť8

j“0r2jπ, 2pj`1qπs,
are given by

Apt, jq “

„

sinptq2 0
0 0



, Bpt, jq “

„

0.1111 0.2222
0.2222 0.4444



.

The pair pA,Bq is HPE, with K “ 2π ` 1 and µ “ 0.21.
HPE is less conservative than its counterparts CPE and DPE

as it captures the fact that the richness of a signal may be
enhanced by an appropriate mingling of exciting flows and
jumps, which, otherwise, are insufficient to guarantee that
neither (38) nor (41) hold. The latter being necessary, θ̃ Ñ 0
in either case, but θ̃ Ñ 0 under the hybrid gradient-descent
algorithm—see Fig. 1 below. The previous observations are

0 10 20 30 40 50 60 70 80
0

2

4

6

continuous gradient descent
discrete gradient descent
hybrid gradient descent

Fig. 1. Evolution of the norm of the parameter error θ̃ using continuous,
discrete, and hybrid gradient algorithms

captured in the following statement that follows as a direct
corollary of Theorem 4 and yet, covers the gradient-based
algorithms for purely continuous- or discrete-time systems,
and stems as a corollary of Theorem 4.

Corollary 1: Consider the hybrid system H10, defined by
(12) with A and B as in (43) and (44), respectively. Let ν ” 0
and assume that the pair pA,Bq is HPE and, there exists ψ̄ ą 0
such that |ψ|8 ď ψ̄. Then, the origin tθ̃ “ 0u is UES and the
system’s trajectories satisfy (12) with computable parameters
κpψ̄, µ,Kq and λpψ̄, µ,Kq. ˝
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B. Hybrid adaptive Observer/Identifier design

We address now a classical problem of adaptive ob-
server/identifier design, recast in the realm of hybrid systems.
We show how well-known designs may be applied using
excitation signals that flow and jump. For clarity, we start
by revisiting an existing design-method for continuous- and
discrete-time systems.

1) Rationale: Consider the problem of estimating the state
x P Rmx , and a vector of unknown constant parameters θ P
Rmθ , of a nonlinear system driven by an input u P Rmu , based
on the measurement of an output y :“ Hx, y P Rmy . That
is, to produce estimates px̂, θ̂q such that the estimation errors
pe, θ̃q :“ px´ x̂, θ̂ ´ θq converge to zero asymptotically.

If the output y is measured continuously in time, indexed
by the variable t, the plant may be modeled by

9x “ Acpy, uqx`Ψcpy, uqθ, (48)

whereas, if the output measurements are made at discrete
instants, indexed by j, we shall use the model

x` “ Adpy, uqx`Ψdpy, uqθ. (49)

This choice of models is motivated by the abundant lit-
erature on estimator design for systems that are affine in
the unmeasured variable x and linear in θ. The problem is
completely solved for continuous- as well as for discrete-time
systems. However, available designs may fail if the system’s
dynamics is hybrid. Say, if it is governed by (48) when x
belongs to a flow set C Ă RmxˆRě0ˆN, and by (49), when
x is in a jump set D Ă Rmx ˆ Rě0 ˆ N. More precisely, a
more general model of the plant is the hybrid system

ΣP :

#

9x “ Acpy, uqx`Ψcpy, uqθ x P C

x`“ Adpy, uqx`Ψcpy, uqθ x P D.
(50)

Addressing the observer/identifier design problem for hybrid
systems is not purely motivated by intellectual curiosity (or
challenge). We describe next a realistic scenario in which the
problem arises naturally.

Remark 6: We stress that after obvious modifications, the
developments that follow remain valid if the functions Ac, Ad,
Ψc, and Ψd as well as the sets C and D depend on the (hybrid)
time. That is, ΣP can have the general form

ΣP :

$

’

’

&

’

’

%

9x “ Acpt, j, y, uqx`Ψcpt, j, y, uqθ
9t “ 1, 9j “ 0

px, t, jq P C

x` “ Adpt, j, y, uqx`Ψcpt, j, y, uqθ
t` “ t, j` “ j ` 1

px, t, jq P D.

‚

Example 2: Consider the continuous-time plant (48) and,
for simplicity, let the entire state be measurable, that is, let
y “ x. Furthermore, let t ÞÑ py1ptq, u1ptqq be a pair of real-
time input-output data defined in continuous time. Hence, by
letting t ÞÑ A1ptq :“ Acpy1ptq, u1ptqq and t ÞÑ B1ptq :“
Ψcpy1ptq, u1ptqq, we conclude that the real-time state variable
x1 is governed by

9x1 “ A1ptqx1 `B1ptqθ t ě 0. (51)

Now, suppose that the past experiences have generated other

pairs of input-output data. Let t ÞÑ py2ptq, u2ptqq be one
such pairs, also defined in continuous time. We assume that
we were able to save the input-output data corresponding to
a specific sequence of times in the past tτ1, τ2, ..., τJu Ă
Rď0. More specifically, we are able to save the sequence
tpy2pτjq, u2pτjqqu

J
j“1, and a sequence of pairs

tA2pjq, B2pjqu
J
j“1 Ă Rmxˆmx ˆ Rmxˆmθ ,

so that the old state vector x2 satisfies

x2pτj`1q “ A2pjqx2pτjq`B2pjqθ, @j P t1, 2, ..., Ju. (52)

To compute the pair j ÞÑ pA2pjq, B2pjqq, we let A2 :“
Acpy2, u2q and B2 :“ Ψcpy2, u2q. Furthermore, by letting
M2 be the transition matrix corresponding to the system
9x “ A2ptqx, we conclude that

x2pτj`1q “M2pτj`1, τjqx2pτjq`

ż τj`1

τj

M2pτj`1, sqB2psqdsθ.

Hence, we obtain, for each j P t1, 2, ..., Ju, A2pjq :“
M2pτj`1, τjq and B2pjq :“

şτj`1

τj
M2pτj`1, sqB2psqds. As a

result, the old state x2 is governed by the discrete system

x`2 “ A2pjqx2 `B2pjqθ j P t1, 2, ..., Ju. (53)

Now, as in Example 1, we assume that the old data py2, u2q

needs to be treated at specific times defining the sequence
tt1, t2, ..., tJu Ă Rě0 with tj ď tj`1. The latter takes us to
introduce the hybrid domain

E :“ r0, t1s ˆ t0u Y rt1, t2s ˆ t1u Y ...Y rtJ ,`8q ˆ tJu.

The dynamics of both old and real-time data is governed by
a hybrid system in the form of ΣP . To see this, we consider
the augmented state vector px, t, jq P R2mx ˆ E, where x :“
px1, x2q. Furthermore, we introduce the hybrid arcs defined

on E by Ψ̄cpt, jq :“

„

B1ptq
0



, Ψ̄dpt, jq :“

„

0
B2pjq



,

Ācpt, jq :“ blkdiagtA1ptq, 0u,

Ādpt, jq :“ blkdiagtImx , A2pjqu.

Thus, the plant with the available (old and real-time) data can
be accurately modelled as in (50) with the right-hand sides
and the flow and jump sets therein being dependent on the
hybrid time pt, jq—cf. Remark 6. That is, we introduce the
time-varying hybrid system

Σ̄P :

"

9x “ Ācpt, jqx` Ψ̄cpt, jqθ t P intpIjEq
x` “ Ādpt, jqx` Ψ̄dpt, jqθ pt, jq, pt, j ` 1q P E.

The scenario described above suggests that an efficient adap-
tive observer/identifier should be able to explore real-time data
py1, u1q to estimate θ over each interval IjE . Moreover, it
should exploit old data py2, u2q at the specific times ttjuJj“1.
The latter sequence of times can be periodic or dictated an
external supervisory algorithm. ˝

In what follows of this section, we construct a dynamics
hybrid observer/identifier and establish asymptotic stability of
the origin, in the space of the estimation errors. The proposed
observer/identifier design for ΣP builds upon the designs in
[16] for continuous- and in [28] for discrete-time systems, (48)
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and (49)—we revisit them below. As in [26], we use a PE
condition along the trajectories, to guarantee the convergence
of the estimation errors. However, in contrast to these and
other similar works, the design takes into account the fact
that the system’s solution is hybrid, which flows and jumps.
As we show on a concrete example, the richness induced by
the hybrid behavior is fundamental to achieve the estimation
goals, when other algorithms fail.

2) The continuous-time estimator: The following develop-
ment is inspired by [16]. Consider the continuous-time esti-
mator

9̂x “ Acpy, uqx̂`Kcpy, uqpy ´ ŷq `Ψcpy, uqθ̂ ` vc, (54)

where Ψcpy, uqθ̂ is meant to compensate for the effect of the
uncertainty in (48), the term Kcpy, uqpy ´ ŷq is common in
Luenberger and Kalman-filter based observers, and vc is a term
to be designed. It is assumed that an observer gain Kcpy, uq
is known such that the origin for the the dynamical system

9η “ Aηpy, uqη, Aη :“ rAcpy, uq ´Kcpy, uqHs (55)

is exponentially stable, uniformly in some admissible pairs
pu, yq. Indeed, the state-estimation error dynamics, resulting
from subtracting (54) from (48) is given by

9e “ Aηpy, uqe´Ψcpy, uqθ̃ ´ vc. (56)

Hence, it is left to design vc and 9̃
θ “

9̂
θ such that the second

and third terms on the right-hand side of (56) vanish. For 9̃
θ

we seek an implementable classic adaptation law of gradient
type, so we pose

9̂
θ :“ γcψpy ´ ŷq, γc ą 0, (57)

with ψ to be determined. To render this adaptation law of
the “gradient” form 9̃

θ “ ´γcr ¨ sθ̃, we let e :“ η ´ Γθ̃ or,
equivalently,

η :“ e` Γθ̃, (58)

where Γ is to be defined so that η satisfies both (58) and (55).
That is, the latter becomes a target equation for η in (58).
Now, differentiating on both sides of (58), we obtain

9η “ Aηη ´ rAηΓ`Ψc ´ 9Γsθ̃ ` γcΓψHe´ vc, (59)

in which we temporarily dropped all the arguments to avoid
a cumbersome notation. We see that we recover (55) if we
set vc :“ ΓψHe, which may be implemented as vc :“
γcΓψpy ´ ŷq, and 9Γ :“ AηΓ ` Ψc. It is left to define ψ
in (57). To that end, we note that the latter is equivalent
to 9̃
θ “ ´γcψHΓθ̃ ` γcψHη, in which, η is guaranteed to

converge to zero exponentially. So, we set ψ :“ ΓJHJ to
obtain the perturbed gradient-descent system

9̃
θ “ ´γcψψ

Jθ̃ ` γcψHη. (60)

It is intuitively clear that if ψψJ is PE, along the system’s
trajectories, the parameters θ̃ Ñ 0. Since also η Ñ 0, we
obtain that eÑ 0. This is the rationale that leads to the design
of the adaptive observer/identifier for the bilinear system (48),

in continuous time, given by

9̂x “ Acx̂`Kcpy ´ ŷq `Ψcθ̂ ` γcΓψpy ´ ŷq, (61a)
9̂
θ “ γcψpy ´ ŷq, ψ :“ ΓJHJ, (61b)
9Γ “ rAc ´KcHsΓ`Ψc, (61c)

—cf. [16], [26].

3) The discrete-time estimator: In discrete time, a similar
reasoning leads to the hybrid estimator given by

x̂` “ Adx̂`

„

Kd `
γdΓ

`ψ

1` γd|ψ|2



py ´ ŷq `Ψdθ̂, (62a)

θ̂` “ θ̂ `
γdψ

1` γd|ψ|2
py ´ ŷq, γd ą 0, (62b)

Γ` “ rAd ´KdHsΓ`Ψd, (62c)

where Kd is designed so that η` “ rAd ´KdHsη is UES.
Next, we use the designs above, tailored separately for

systems (48) and (49), to construct a properly defined hybrid
estimator for the plant, seen as a time-varying hybrid system.
To that end, we start by underlining some technical aspects
that were left out in Example 2 for the sake of clarity.

4) The hybrid estimator: Consider the autonomous hybrid
plant ΣP . Given an initial condition xo P CYD, and an input
signal u : domuÑ Rmu belonging to a subset of admissible
hybrid arcs denoted by U , we denote by λ :“ pxo, uq the
vector of variables that parameterize the system’s solutions.
That is, we denote by φλ the solution, which, without loss of
generality, starts at pto, joq P domu. The solution φλ flows
and jumps depending on the flow and jump sets C and D.
Furthermore, we assume that domu “ domφλ. There is no
loss of generality in this hypothesis because the domain of
u can be adjusted by creating virtual jumps, so that the pair
pu, φλq forms a solution pair to ΣP .

In turn, the hybrid system produces an output trajectory
pt, jq Ñ yλpt, jq, given by yλpt, jq :“ Hφλpt, jq, which is
also parameterized by λ. In addition, we let the set Ijλ :“
 

t : pt, jq P domφλ
(

and, for any function py, uq ÞÑMpy, uq
such that M P tAc,Kc,Ψc, Ad,Kd,Ψd, Aη, Bηu, we define
Mλpt, jq :“ Mpyλpt, jq, upt, jqq. Thus, after eqs. (61) and
(62), we introduce the proposed hybrid observer/identifier:

9̂x “ Aλc x̂`K
λ
c py ´ ŷq `Ψλ

c θ̂ ` γcΓcψ
λ̄py ´ ŷq, (63a)

9̂
θ “ γcΓ

J
cH

Jpy ´ ŷq, (63b)
9Γc “ AληΓc `Ψλ

c ,
9Γd “ 0 @t P intpIjλq, (63c)

x̂` “ Aλd x̂`

„

Kλ
d `

γdΓ
`
d ψ

λ̄

1` γd|ψλ̄|2



py ´ ŷq `Ψλ
d θ̂, (64a)

θ̂` “ θ̂ `
γdψ

λ̄

1` γd|ψλ̄|2
py ´ ŷq, (64b)

Γ`c “ Γc, Γ`d “ rI ´B
λ
η sΓd `Ψλ

d otherwise, (64c)

where Aλη :“ Aλc ´K
λ
cH , Bλη :“ Aλd ´K

λ
dH , and

ψλ̄pt, jq :“

"

Γcpt, jq
JHJ if t P intpIλj q

Γdpt, jq
JHJ otherwise.
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Note that ψλ̄ is parameterized by the vector λ̄, which
includes λ but also includes the initial conditions pΓco,Γdoq
for pΓc,Γdq; namely, λ̄ :“ pλ,Γco,Γdoq.

Remark 7: Note that in assuming that all hybrid arcs have
the same hybrid domain domφ it is required to know when
the system’s trajectories φλ jump. This is an implicit standing
assumption that is needed for a coherent definition of the
resulting time-varying hybrid system. However, it is little
conservative in that it is not tantamount to assuming the
knowledge of unmeasured variables. ‚

The following is our main statement of this section.
Proposition 1: Consider the hybrid plant ΣP in (50), gov-

erned by (48) when x P C and governed by (49) when x P D.
Assume that Ad, Ψc, Ψd, Ac, and Ad are continuous, let φλ be
a parameterized solution, such that the corresponding input-
output pair pu, yλq is uniformly bounded (in λ and in the
hybrid domain) and let

Σλ̄pt, jq :“
γdψ

λ̄pt, jqψλ̄pt, jqJ

1` γd|ψλ̄pt, jq|2
. (65)

Then, the origin tpe, θ̃q “ p0, 0qu is globally exponentially
stable, uniformly in λ̄ if

(i) for each λ, the pair pAλη , B
λ
η q satisfies Assumption 1;

and it is HUO uniformly in λ;
(ii) the pair

´

ψλ̄ψλ̄
J
,Σλ̄

¯

is HPE, uniformly in λ̄. ˝

Remark 8: In (i) and (ii) we require HUO and HPE to hold
uniformly in λ and λ̄, respectively. This means that inequalities
(18) and (25) hold with pK,µq independent of pλ, λ̄q. ‚

Proof : The proof follows by invoking Theorems 2 and 4.
To show this, we start by writing the error dynamics in the
form (13). Using e :“ x ´ x̂, θ̃ :“ θ̂ ´ θ, the previously
introduced notation, Eqs. (48), (49), (61), and (62), we obtain
the estimation error dynamics

9e “ Aληpt, jqe´ Ξλ̄c pt, jqθ̃ ´ γcΓcpt, jqψ
λ̄pt, jqHη (66a)

9̃
θ “ ´ γcψ

λ̄pt, jqψλ̄pt, jqJθ̃ ` γcψ
λ̄pt, jqHη (66b)

9η “ Aληpt, jqη (66c)

for all t P Ijλ, where to abbreviate we also introduced

Ξλ̄c pt, jq :“
”

Ψλ
c pt, jq ´ γcΓcpt, jqψ

λ̄pt, jqHΓcpt, jq
ı

,

and

e` “
“

Imx ´B
λ
η pt, jq

‰

e´ Ξλ̄dpt, jqθ̃ ´ Γ`d pt, jq∆
λ̄pt, jqη

(67a)

θ̃` “
”

Imθ ´ Σλ̄pt, jq
ı

θ̃ `∆λ̄pt, jqη, (67b)

η` “
“

Imx ´B
λ
η pt, jq

‰

η (67c)

for all pt, jq P domφλ such that pt, j ` 1q P domφλ, where

Ξλ̄dpt, jq :“
“

Ψλ
dpt, jq ´ Γ`d pt, jqΣ

λ̄pt, jq
‰

∆λ̄pt, jq :“
γdψ

λ̄pt, jqH

1` γd|ψλ̄pt, jq|2
.

The equations (66c)-(67c) constitute a time-varying system of
the form (13) with ζ “ η and ν ” 0. Global exponential
stability, uniform in the initial time and in λ, follows after

Item (i) of the Proposition, invoking Theorem 2.

On the other hand, equations (66a)-(66b) together with
(67a)-(67b) form, in turn, another system of the form (13),
with state ζ :“ reJ θ̃JsJ and parameterized input

νλ̄pt, jq :“

$

’

’

’

&

’

’

’

%

„

´γcΓcpt, jqψ
λ̄pt, jqHηpt, jq

γcψ
λ̄pt, jqHηpt, jq



t P intpIjλq
„

Γ`d pt, jq∆
λ̄pt, jqηpt, jq

∆λ̄pt, jqηpt, jq



otherwise.
(68)

Since η converges uniformly and exponentially to zero and the
factors of ηpt, jq in (68) are uniformly bounded (both in the
initial time and in λ), it is only left to show that the system
(66a)-(66b) together with (67a)-(67b) is ISS with respect to
νλ̄, as in (68). After the proof of Theorem 2, ISS follows
if the origin is UES for the system with νλ̄ ” 0, which is
governed by

9e “ Aληpt, jqe´ Ξλ̄c pt, jqθ̃ (69a)
9̃
θ “ ´ γcψ

λ̄pt, jqψλ̄pt, jqJθ̃ (69b)

for all t P Ijλ, and

e` “
“

Imx ´B
λ
η pt, jq

‰

e´ Ξλ̄dpt, jqθ̃ (70a)

θ̃` “

«

Imθ ´
γdψ

λ̄pt, jqψλ̄pt, jqJ

1` γd|ψλ̄pt, jq|2

ff

θ̃, (70b)

for all pt, jq P domφλ such that pt, j`1q P domφλ. To show
this, we invoke again Theorem 2 under Items (i) and (ii) of
the proposition. This time, we regard the equations (66a)-(67a)
as a time-varying hybrid system of the form (13) with state
ζ “ e and parameterized input νλ̄ defined as

νλ̄pt, jq “

#

´Ξλ̄c pt, jqθ̃pt, jq t P intpIjλq

´Ξλ̄dpt, jqθ̃pt, jq otherwise.
(71)

Note that the input defined in (71) corresponds to uniformly
bounded functions in factor of the solution to (69b)-(70b),
while the origin te “ 0u is UES for the system

9e “ Aληpt, jqe t P intpIjλq

e` “
“

Imx ´B
λ
η pt, jq

‰

e pt, jq, pt, j ` 1q P domφλ,

as already established since, by assumption, for this system
Aλη and Bλη satisfy Assumptions 1–2 and the HUO property.
Furthermore, under the same conditions, (69)-(70) is ISS with
respect to νλ̄ in (71). It is only left to establish UES of tθ̃ “ 0u
for (69b)-(70b), which has exactly the form of the gradient-
descent error dynamics studied in the previous section—see
(65). Therefore, UES for (69b)-(70b) follows provided that
the pair

´

ψλ̄ψλ̄
J
,Σλ̄

¯

is HPE, uniformly in λ̄, that is Item
(ii) of the proposition.

5) A numerical example: We illustrate the performance of
the hybrid observer/identifier designed above on the vertical
bouncing-ball system with actuated jumps given by

Σp :

$

’

&

’

%

9x “
“

x2 ´θ
‰J

x P Rě0 ˆ R

x` “

„

0
´ θ

12.2625x2 ` u



x P tx1 “ 0, x2 ď 0u ,
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where x P R2 includes the ball position and velocity, u P R
is the input, y “ x1 is the output, and θ P R is a constant
unknown parameter. The constant parameter θ in both the
flow and the jump dynamics is not physically motivated, but
it allows to illustrate the importance of HPE.

The dynamical model of the considered example is of

the type as in (48)-(49), with Ac “

„

0 1
0 ´0.1



, Ad “
„

´1 0
0 0



, H “ r1 0s, Bc “ 0, Bd “
“

0 1
‰J

, Ψc “

“

0 ´1
‰J

, and Ψd “
“

0 ´ x2

12.2625

‰J
,

The objective is to jointly estimate the state x2 and the
unknown parameter θ using the measurement of y “ x1 and
the knowledge of the system’s structure. We assume that we
can detect instantaneously when the solution of the system
jumps. Then, following Proposition 1, we design the observer
gains so as to satisfy Assumption 1. First, we find scalars
ac, ad ă 0, β, M ą 0, matrices Kc,Kd P Rmxˆmy , and a
positive definite symmetric matrix P P Rmxˆmx such that

pAc ´KcHq
JP ` P pAc ´KcHq ď acP (72a)

pAd ´KdHq
JP pAd ´KdHq ď eadP (72b)

act` adj ďM ´ βpt` jq @pt, jq PRě0 ˆ Ně0. (72c)

Indeed, under inequalities (72) Assumption 1 holds with Qd “
pead ´ 1qImθ . Then, using the Schur complement, condition
(72) boils down to solving the LMI

AJc P ` PAc ´ LcH ´H
JLJc ă 0,

„

P pPAd ´ LdHq
J

PAd ´ LdH P



ą 0,

which can be done using the toolbox YALMIP [46]. The
variables of the LMIs are P P R2ˆ2 and Lc, Ld P R2, and the
observation gains are set to Kc “ P´1Lc and Kd “ P´1Ld.

Thus, we implemented the hybrid adaptive observer (63)-
(64) and performed several illustrative simulations, with and
without HPE. The results are showed in Figures 2–5.
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Fig. 2. Performance of the adaptive observer with u “ 0, i.e., without
HPE. The estimation errors |θ̃| fail to vanish

We show the evolution of the state estimation errors ei, the
filtered regressors Γc and Γd, and the parameter estimation
error θ̂´θ. In all the figures, the solid blue lines represent the
flows and dashed red lines represent the jumps.

The adaptation gains are set to γc “ 0.4 and γd “ 0.8
and for the observation gains we use the toolbox YALMIP,
to find Kc “ r0.7215 1.1184sJ and Kd “ r´0.5 0.5sJ,
which satisfy the conditions from Proposition 1. The initial
conditions were set to x̂p0, 0q “ r4 0.1sJ, Γcp0, 0q “
r2 4sJ, Γdp0, 0q “ r4 3sJ, and θ̂p0, 0q “ 8.

First, we set u “ 0, so the system lacks excitation; the
results are shown in Figure 2. It is showed that the state
estimation errors converge (exponentially), but the parameter
estimate θ̂ does not converge to θ. This is due to the fact that
the pair

´

ψλ̄ψλ̄
J
,Σλ̄

¯

is not HPE.
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Fig. 3. Performance of the continuous-time adaptive observer/identifier
from [16] with persistent input u ” 20.
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Fig. 4. Performance of the discrete-time adaptive observer/identifier
from [28] with u ” 20.
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In two other runs of simulation, we set u ” 20 and used
the purely continuous-time adaptive observer from [16]—see
the results in Figure 3, and the purely discrete-time adaptive
observer from [28]—the results are showed in Figure 4. In both
cases, neither the state-estimation nor the parameter-estimation
errors vanish.

Finally, in a fourth simulation we tested the hybrid adaptive
observer/identifier under the same conditions. In Figure 5, one
can appreciate that both the state- and parameter-estimation
errors vanish. Indeed, in this case, the pair

´

ψλ̄ψλ̄
J
,Σλ̄

¯

is
HPE with K “ 2 and µ “ 0.7.
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Fig. 5. Performance of the hybrid adaptive observer with u ” 20.

VI. CONCLUSION AND FUTURE WORK

This paper generalized some stability and robustness proper-
ties of linear time-varying systems, encountered in estimation
theory, to the more general context of hybrid systems. By in-
troducing the class of linear (non-autonomous) hybrid systems
in Hu, we showed that a relaxed (hybrid) version of the well-
known PE condition is sufficient to guarantee UES as well as
ISS. The proposed hybrid framework applies to the estimation
problem when a linear input-output regression model is fed
with hybrid data. Furthermore, it allows the design and analy-
sis of adaptive observers/identifiers for a class of uncertain
hybrid systems capable of tracking both the state and the
unknown parameters. For future work, while we assumed the
jumps of the estimation algorithm to be synchronized with the
jumps of the hybrid regressor, this condition may be unrealistic
in practice, since the regressor’s jumps cannot always be
detected instantaneously. Hence, robustness of the proposed
approach with respect to delays in the jumps detection could
be analyzed along the lines of [47].

APPENDIX

A. Hybrid Comparison Lemma
We introduce the following comparison lemma for hybrid

systems, which is a particular case of [48, Lemma C.1].

Lemma 1: Consider a hybrid arc v : dom v Ñ Rě0 and
assume the existence of a, b ą 0 such that

‚ For all pt, jq P dom v such that pt, j ` 1q R dom v,

9vpt, jq ď ´avpt, jq ` b.

‚ For all pt, jq P dom v such that pt, j ` 1q P dom v,

vpt, j ` 1q ´ vpt, jq ď ´avpt, jq ` b.

Then, there exists c ą 0 such that vpt, jq ď e´apt`jqvp0, 0q `
cb for all pt, jq P dom v. ˝

The proof follows the same steps as the proof of [48, Lemma
C.1] for the particular case where the hybrid arc αpt, jq “ a
is constant, and for which, the map γα : Rě0 ˆ dom v is
explicitly given by γαpr, t, jq “ e´apt`jqr.
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