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Abstract
Explicit kinetic schemes applied to the nonlinear shallow water equations have been extensively

studied in the past. The novelty of this paper is to investigate an implicit version of such methods in
order to improve their stability properties. In the case of a flat bathymetry we obtain a fully implicit
kinetic solver satisfying a discrete entropy inequality and keeping the water height non negative
without any restriction on the time step. Remarkably, a simplified version of this nonlinear implicit
scheme allows to express the update explicitly which we implement in practice. An extension to the
2D case is also discussed. The case of varying bottoms is then dealt with through an iterative solver
combined with the hydrostatic reconstruction technique. We show that this scheme preserves the
water height positivity under a CFL condition and satisfies a discrete entropy inequality without
error term, which is an improvement over its explicit version. Finally we perform some numerical
validations underlying the advantages and the computational cost of our strategy.

Keywords: Shallow water equations, well-balanced schemes, hydrostatic reconstruction, kinetic
solver, fully discrete entropy inequality
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1 Introduction
Mathematical models for free surface flows are widely studied but their analysis and numerical ap-
proximation remain a challenging issue. The incompressible Navier-Stokes system with free surface
being very difficult to study, it is often replaced by the classical Saint-Venant system [22, 14] that
is a hyperbolic system of conservation laws approximating various geophysical flows, such as rivers,
coastal areas, and oceans when completed with a Coriolis term, and granular flows when completed
with friction terms.

The derivation of an efficient, robust and stable numerical scheme for the Saint-Venant system has
received an extensive coverage, we refer the reader to [8, 17, 15, 23] and references therein. One of
the challenges involves the construction of a well-balanced scheme i.e. preserving some characteristic
stationary solutions. In a recent work, some of the authors have proposed a numerical scheme for
the Saint-Venant system with topography (1) satisfying a fully discrete entropy inequality [3]. The
proposed numerical scheme is based on a kinetic solver [6, 20, 7, 4, 16, 11] coupled with the hydrostatic
reconstruction technique introduced in [2] for the numerical treatment of the topography source term.
Based on the results obtained in [3], Bouchut and Lhebrard have proved the convergence of the the
kinetic hydrostatic reconstruction scheme for the Saint-Venant system (1), see [9].

Finite volume approaches for the approximation of conservation laws have to deal with a CFL
constraint that can be very restrictive for some applications where large time scales and significant
wave velocities have to be considered. This is for instance the case in the low Froude regime, where the
surface gravity waves travel at a much larger velocity than the fluid particles. Moreover, the explicit in
time discretization induces a non-negative term in the discrete energy balance that cannot be always
controlled by the dissipation coming from the upwinding of the numerical fluxes, see [3]. The novelties
of this paper are:

• to propose a fully implicit kinetic scheme in 1d and 2d for the Saint-Venant system satisfying a
fully discrete entropy inequality without any restriction on the time step,

• to evaluate the practical interest of implicit schemes for the Saint-Venant system in the sense
that the CFL constraint for explicit schemes is replaced in the context of implicit schemes by
the computational costs due to the computation of the numerical fluxes. Indeed in the explicit
setting, the numerical fluxes at an interface depend on the value of the variables at the two
neighbouring vertices whereas in the implicit context, the numerical fluxes depend on the value
of the variables at all vertices (the stencil encompasses the whole computational domain).

Notice that an implicit scheme often requires to invert an operator – here a matrix – at each time step.
However, the kinetic scheme gives a very favorable context in which we have an explicit expression of
the inverse of the operator. Hence, one can hardly imagine a truly implicit scheme for the Saint-Venant
system with a lower computational cost than a kinetic solver.

The aim of this paper is to propose an implicit – in time – version of the kinetic scheme given in [3]
and to study its properties. More precisely, we prove some stability properties and most importantly,
we derive a fully discrete entropy inequality without any error term.

This paper is organized as follows. First, we recall the formulation of the Saint-Venant system, its
kinetic description and the framework of its numerical approximation in the context of a kinetic solver.
Then, the implicit kinetic scheme for the Saint-Venant system without topography is proposed and
studied in 1d and in the 2d case. An iterative version of the implicit scheme is proposed in Section 5
where the topography can be taken into account through the hydrostatic reconstruction technique [4].
Finally, numerical examples are given to evaluate the interest of our approach.
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2 The Saint-Venant system and its kinetic interpretation
2.1 The Saint-Venant system
The classical Saint Venant system for shallow water describes the height of water h(t, x) ≥ 0, and the
water velocity u(t, x) ∈ R (x denotes a coordinate in the horizontal direction) in the direction parallel
to the bottom. It assumes a slowly varying topography z(x), and reads

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x(hu
2 + g

h2

2
) + gh∂xz = 0,

(1)

where g > 0 is the gravity constant. This system is completed with an entropy (energy) inequality

∂t

(
h
u2

2
+ g

h2

2
+ ghz

)
+ ∂x

((
h
u2

2
+ gh2 + ghz

)
u

)
≤ 0. (2)

We shall denote U = (h, hu)T and

η(U) = h
u2

2
+ g

h2

2
, G(U) =

(
h
u2

2
+ gh2

)
u, (3)

the entropy and entropy fluxes without topography.

2.2 Kinetic interpretation of the Saint-Venant system
The reader can refer to [3] and references therein for a complete presentation of the description of the
Saint-Venant system.

The classical kinetic Maxwellian (see e.g. [20]) is given by

M(U, ξ) =
1

gπ

(
2gh− (ξ − u)2

)1/2
+

, (4)

where ξ ∈ R and x+ ≡ max(0, x) for any x ∈ R. It satisfies the following moment relations,∫
R
M(U, ξ) dξ = h,

∫
R
ξM(U, ξ) dξ = hu,∫

R
ξ2M(U, ξ) dξ = hu2 + g

h2

2
.

(5)

These definitions allow us to obtain a kinetic representation of the Saint-Venant system.

Lemma 2.1 If the topography z(x) is Lipschitz continuous, the pair of functions (h, hu) is a weak
solution to the Saint-Venant system (1) if and only if M(U, ξ) satisfies the kinetic equation

∂tM + ξ∂xM − g(∂xz)∂ξM = Q, (6)

for some “collision term” Q(t, x, ξ) that satisfies, for a.e. (t, x),∫
R
Qdξ =

∫
R
ξQdξ = 0. (7)

Proof. If (6) and (7) are satisfied, we can multiply (6) by (1, ξ)T , and integrate with respect to ξ.
Using (5) and (7) and integrating by parts the term in ∂ξM , we obtain (1). Conversely, if (h, hu) is a
weak solution to (1), just define Q by (6); it will satisfy (7) according to the same computations. �
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The standard way to use Lemma 2.1 is to write a kinetic relaxation equation [18, 19, 12, 6, 7], like

∂tf + ξ∂xf − g(∂xz)∂ξf =
M − f

ε
, (8)

where f(t, x, ξ) ≥ 0, M = M(U, ξ) with U(t, x) =
∫
(1, ξ)T f(t, x, ξ)dξ, and ε > 0 is a relaxation

time. In the limit ε → 0 we recover formally the formulation (6), (7). We refer to [6] for general
considerations on such kinetic relaxation models without topography, the case with topography being
introduced in [20]. Note that the notion of kinetic representation as (6), (7) differs from the so called
kinetic formulations where a large set of entropies is involved, see [21]. For systems of conservation
laws, these kinetic formulations include non-advective terms that prevent from writing down simple
approximations. In general, kinetic relaxation approximations can be compatible with just a single
entropy. Nevertheless this is enough for proving the convergence as ε → 0, see [5].

The interest of the particular form (4) lies in its link with a kinetic entropy. Consider the kinetic
entropy,

H(f, ξ, z) =
ξ2

2
f +

g2π2

6
f3 + gzf, (9)

where f ≥ 0, ξ ∈ R and z ∈ R, and its version without topography

H0(f, ξ) =
ξ2

2
f +

g2π2

6
f3. (10)

Then one can check the relations∫
R
H
(
M(U, ξ), ξ, z

)
dξ = η(U) + ghz, (11)

∫
R
ξH
(
M(U, ξ), ξ, z

)
dξ = G(U) + ghzu. (12)

One has the following entropy relations.

Lemma 2.2 (i) For any f(ξ) ≥ 0, setting h =
∫
f(ξ)dξ, hu =

∫
ξf(ξ)dξ (assumed finite), one has

η(U) =

∫
R
H0

(
M(U, ξ), ξ

)
dξ ≤

∫
R
H0

(
f(ξ), ξ

)
dξ. (13)

(ii) The kinetic entropy inequality

∂tH(M, ξ, z) + ∂x
(
ξH(M, ξ, z)

)
− g(∂xz)∂ξH(M, ξ, z) = H ′(M, ξ, z)Q,

holds, leading to the macroscopic inequality

∂t

∫
R
H(M, ξ, z)dξ + ∂x

∫
R
ξH(M, ξ, z)dξ ≤ 0.

Proof of Lemma 2.2. The property (i) is proved in [20]. For proving (ii), we multiply (6) by
H ′(M, ξ, z) and an integration in ξ of the obtained equation gives the result. �

2.3 Kinetic scheme for the Saint-Venant system
For numerical purposes it is usual to replace the right-hand side in the kinetic relaxation equation (8)
by a time discrete projection to the Maxwellian state. When space discretization is present it leads to
flux-vector splitting schemes, see [7] for the case without topography, [20] for the case with topography,
and [4] for the 2d case on unstructured meshes.
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We would like to approximate the solution U(t, x), x ∈ R, t ≥ 0 of the system (1) by discrete values
Un
i , i ∈ Z, n ∈ N. In order to do so, we consider a grid of points xi+1/2, i ∈ Z,

. . . < xi−1/2 < xi+1/2 < xi+3/2 < . . . ,

and we define the cells (or finite volumes) and their lengths

Ci =]xi−1/2, xi+1/2[, ∆xi = xi+1/2 − xi−1/2.

We consider discrete times tn with tn+1 = tn + ∆tn, and we define the piecewise constant functions
Un(x) corresponding to time tn and z(x) as

Un(x) = Un
i , z(x) = zi, for xi−1/2 < x < xi+1/2. (14)

A finite volume scheme for solving (1) is a formula of the form

Un+1
i = Un

i − σi(Fi+1/2− − Fi−1/2+), (15)

where σi = ∆tn/∆xi, telling how to compute the values Un+1
i knowing Un

i and discretized values zi
of the topography. Here we consider first-order explicit three points schemes where

Fi+1/2− = Fl(U
n+p
i , Un+p

i+1 , zi+1 − zi), Fi+1/2+ = Fr(U
n+p
i , Un+p

i+1 , zi+1 − zi), (16)

with p = 0, 1. The value p = 0 classically corresponds a first order explicit time scheme for solving (1)
whereas p = 1 means an implicit time scheme. In this paper, we focus on the case p = 1. The functions
Fl/r(Ul, Ur,∆z) ∈ R2 are the numerical fluxes, see [8].

Indeed the method used in [20] in order to solve (1) can be viewed as solving

∂tf + ξ∂xf − g(∂xz)∂ξf = 0 (17)

for the unknown f(t, x, ξ), over the time interval (tn, tn+1), with initial data

f(tn, x, ξ) = M(Un(x), ξ). (18)

Defining the update as

Un+1
i =

1

∆xi

∫ xi+1/2

xi−1/2

∫
R

(
1
ξ

)
f(tn+1−, x, ξ) dxdξ, (19)

and
fn+1
i (ξ) =

1

∆xi

∫ xi+1/2

xi−1/2

f(tn+1−, x, ξ) dx, (20)

the formula (19) can then be written

Un+1
i =

∫
R

(
1
ξ

)
fn+1
i (ξ) dξ. (21)

This formula can in fact be written under the form (15), (16) for some numerical fluxes Fl/r.

3 An implicit kinetic scheme
In this section we consider the problem (1) without topography, and the kinetic scheme (17)-(21). First
we present and study the discrete implicit kinetic then we detail the macroscopic scheme obtained from
the kinetic discretization.
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3.1 Implicit scheme without topography
Without topography, the kinetic scheme is a flux vector splitting scheme [7]. The update (20) of the
solution of (17),(18) simplifies to the discrete kinetic scheme

fn+1−
i = Mi − σξ

(
1ξ<0f

n+1−
i+1 + 1ξ>0f

n+1−
i − 1ξ<0f

n+1−
i − 1ξ>0f

n+1−
i−1

)
, (22)

with σ = ∆tn/∆x. We rewrite the previous equations under the form
−σ1ξ>0ξf

n+1−
i−1 + (1 + σ|ξ|)fn+1−

i + σ1ξ<0ξf
n+1−
i+1 = Mi

(1 + σ|ξ|)fn+1−
1 + σ1ξ<0ξf

n+1−
2 = M1 + σ1ξ>0ξM

n+1
0 ,

−σ1ξ>0ξf
n+1−
P−1 + (1 + σ|ξ|)fn+1−

P = MP − σ1ξ<0ξM
n+1
P+1,

(23)

The quantities Mn+1
0 = M(Un+1

0 , ξ) and Mn+1
P+1 = M(Un+1

P+1, ξ) appearing the last two lines of (23)
account for the imposed boundary conditions. In a first step, we assume that Mn+1

0 and Mn+1
P+1 are

two known kinetic Maxwellian, their expressions will be discussed in more details in the paragraph
devoted to the practical computation of the implicit variables, see paragraph 3.4.

With obvious notations, the system (23) consists in finding fn+1 = {fn+1−
i }i∈{1,...,P} satisfying

(I+ σL)fn+1 = M + σBn+1, (24)

where I is the identity matrix of length P and the three vectors fn+1, M and Bn+1 of RP are defined
by

fn+1 =



fn+1
1
...

fn+1
i
...

fn+1
P

 , M =



M1

...
Mi

...
MP

 and Bn+1 =


1ξ>0ξM

n+1
0 ,

0
...
0

−1ξ<0ξM
n+1
P+1,

 . (25)

The practical computation of the densities vector fn+1 will be discussed in paragraph 3.2. Hereafter,
we focus on the properties of the numerical scheme (23) and the two following results hold.

Lemma 3.1 The matrix I+ σL defined by (24)

(i) is invertible for any σ and ξ,

(ii) its inverse (I+ σL)−1 has only positive coefficients.

Proposition 3.2 The numerical scheme (23) satisfies the following properties

(i) the discretization (23) is consistent with (1),

(ii) the system (23) – or equivalently the system (24) – admits an unique solution and the solution
satisfies

fn+1−
i = fn+1−

i (ξ) ≥ 0, ∀1 ≤ i ≤ P, ∀ξ ∈ R.

Proposition 3.3 Since the system (24) admits a unique solution of positive quantities, it defines an
implicit kinetic scheme. Moreover, the numerical scheme defined by (24) satisfies the fully discrete
entropy equality

H0(f
n+1−
i ) = H0(Mi)− σ

(
Hn+1−

0,i+1/2 −Hn+1−
0,i−1/2

)
−Ψ(fn+1−

i ,Mi) (26)

+ σξ
(
1ξ<0Ψ(fn+1−

i , fn+1−
i+1 )− 1ξ>0Ψ(fn+1−

i , fn+1−
i−1 )

)
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where Hn+1−
0,i+1/2, Hn+1−

0,i−1/2 are given by

Hn+1−
0,i+1/2 = ξ1ξ<0H0(f

n+1−
i+1 ) + ξ1ξ>0H0(f

n+1−
i ), (27)

Hn+1−
0,i−1/2 = ξ1ξ<0H0(f

n+1−
i ) + ξ1ξ>0H0(f

n+1−
i−1 ), (28)

and where the function Ψ is defined by

Ψ : R2 3 (a, b) 7−→ g2π2

6
(b+ 2a)(b− a)2. (29)

Since Ψ is positive on R2
+, the last two terms of equality (26) define a nonpositive dissipative term.

Notice that the results obtained in the two propositions 3.2 and 3.3 do not require any CFL
condition. A consequence of Proposition 3.3 is that, when using the classical Maxwellian (4), the
macroscopic scheme associated to (22) will satisfy a discrete entropy inequality that always dissipates
the energy. In fact since the Maxwellian (4) minimizes the functional (13) we have the following upper
bound on the macroscopic entropy η(Un+1

i )

η(Un+1
i ) =

∫
R
H0(M(Un+1

i , ξ), ξ)dξ ≤
∫
R
H0(f

n+1−
i (ξ), ξ)dξ.

We then use equality (26) yielding

η(Un+1
i ) ≤ η(Un

i )− σ

(∫
R
Hn+1−

0,i+1/2(ξ)dξ −
∫
R
Hn+1−

0,i−1/2(ξ)dξ

)
+

∫
R
Di(ξ)dξ, (30)

where Di is the negative dissipation term corresponding to the last three lines of (26).

Proof of Lemma 3.1. The matrix I+ σL writes

I+ σL =



1 + σ1|ξ| σ1ξ1ξ≤0 0 . . . 0

−σ2ξ1ξ≥0 1 + σ2|ξ| σ2ξ1ξ≤0
. . .

...

0
. . . . . . . . . 0

...
. . . −σP−1ξ1ξ≥0 1 + σP−1|ξ| σP−1ξ1ξ≤0

0 . . . 0 −σP ξ1ξ≥0 1 + σP |ξ|


,

and it is easy to see that the matrix I + σL is strictly diagonally dominant and hence invertible.
Moreover the matrix Λ = I+ σL is such that

Λi,i > 0, and Λi,j ≤ 0, when i 6= j,

meaning I+ σL is a monotone matrix and hence the solution of (24) satisfies

fn+1−
i =

(
(I+ σL)−1(M + σBn+1,k)

)
i
≥ 0, ∀i,

proving the result.
Denoting Ld (resp. Lnd) the diagonal (resp. non diagonal) part of L we can write

I+ σL = (I+ σLd)
(
I− (I+ σLd)−1(−σLnd)

)
,

where all the entries of the matrix

J = (I+ σLd)−1(−σLnd),

are non negative and less than 1. And hence, we can write

(I+ σL)−1 = (I− J)
−1

(I+ σLd)−1 =

∞∑
k=0

Jk(I+ σLd)−1,

proving all the entries of (I+ σL)−1 are non negative. �
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Proof of prop. 3.2. (i) The four terms in parentheses in (22) are conservative, and are classically
consistent with ξ∂xf in (17).
(ii) This is a direct consequence of Lemma 3.1. �

The proof of Proposition 3.3 makes use of the following Lemma which will also be useful later.

Lemma 3.4 The following idendity holds for any real pair (a, b) and for any ξ ∈ R

H(b, ξ) = H(a, ξ) + ∂fH(a, ξ)(b− a) + Ψ(a, b), (31)

with the function Ψ defined in (29). Especially, we recover the convexity of H(·, ξ) on R+ thanks to
the positivity of Ψ on R2

+.

Proof of Lemma 3.4. For any (a, b) in R2 there holds

∂fH(a)(b− a) =
ξ2

2
b+

g2π2

2
a2b− ξ2

2
a− g2π2

2
a3

= H(b) +
g2π2

2
a2b− g2π2

6
b3 −H(a)− g2π2

2
a3 +

g2π2

6
a3

= H(b)−H(a)− g2π2

6

(
b3 − a3 − 3a2(b− a)

)
,

and equality (31) is recovered using the formula

b3 − a3 − 3a2(b− a) = (b+ 2a)(b− a)2.

�

Proof of prop. 3.3. The proof follows similar lines as what was done in the case of the fully explicit
version of the kinetic scheme in [3]. Instead of multiplying Equation (22) by ∂fH0(f

n
i ), we multiply it

with ∂fH0(f
n+1−
i ), which leads to

∂fH0(f
n+1−
i )(fn+1−

i −Mi) = − σξ1ξ<0∂fH0(f
n+1−
i )(fn+1−

i+1 − fn+1−
i ) (32)

+ σξ1ξ>0∂fH0(f
n+1−
i )(fn+1−

i−1 − fn+1−
i ) .

In (32) we recognize three terms of the form ∂fH(a)(b−a) with a = fn+1−
i and b ∈ {fn+1−

i−1 ,Mi, f
n+1−
i+1 }.

Taking advantage of Lemma 3.4 we can write

H(fn+1−
i )−H(Mi) + Ψ(fn+1−

i ,Mi) =

− σξ1ξ<0

(
H(fn+1−

i+1 )−H(fn+1−
i )−Ψ(fn+1−

i , fn+1−
i+1 )

)
+ σξ1ξ>0

(
H(fn+1−

i−1 )−H(fn+1−
i )−Ψ(fn+1−

i , fn+1−
i−1 )

)
,

and we conclude by grouping the expressions. �

3.2 Practical computation of fn+1−

When dealing with implicit schemes, one has often to invert an operator and the key point of the
numerical scheme (24) is the computation of the inverse of the matrix I + σL. In our case, it will be
possible to compute analytically this inverse thanks to the triangular structure of the matrix, which is
due to the upwinding of the fluxes in (22). More precisely we decompose (I+σL)−1 as the contributions
of the left- and right-going information, which gives

(I+ σL)−1 = (I+ σL+)−1
1ξ≤0 + (I+ σL−)−1

1ξ≥0, (33)

8



with the upwinding matrices L+ and L− corresponging to

L+ =



−ξ ξ 0 . . . 0

0 −ξ
. . .

...
...

. . . . . . . . . 0
...

. . . . . . ξ
0 . . . 0 −ξ


, L− =



ξ 0 . . . 0

−ξ
. . . . . .

...

0
. . . . . . . . .

...
...

. . . . . . 0
0 . . . 0 −ξ ξ


.

Introducing J+ and J− the matrices of RP×P defined as

(J+)i,j =

{
1 if i = j − 1
0 otherwise , (J−)i,j =

{
1 if i = j + 1
0 otherwise ,

we can write 
(I+ σL−)−1 =

(
(1 + σξ)I− σξJ−)−1

=
1

1 + σξ

(
I− σξ

1 + σξ
J−
)−1

(I+ σL+)−1 =
(
(1− σξ)I+ σξJ+

)−1
=

1

1− σξ

(
I+

σξ

1− σξ
J+

)−1
.

The above inverses can be computed through geometric sums since J+
P and J−

P have a spectral radius
equal to zero. More specifically these two matrices are nilpotent, which implies that the geometric
sums in question contain a finite number of nonzero terms and are given below

(I+ σL−)−1 =

P∑
k=0

(σξ)k

(1 + σξ)k+1
(J−)k,

(I+ σL+)−1 =

P∑
k=0

(−σξ)k

(1− σξ)k+1
(J+)k.

To conclude we give the analytic expression of the inverse:

(I+ σL−)−1
i,j =


(σξ)i−j

(1 + σξ)i−j+1
if i ≥ j

0 else
, (34)

(I+ σL+)−1
i,j =


(−σξ)j−i

(1− σξ)j−i+1
if i ≤ j

0 else
. (35)

Especially we recover the properties enumerated in Lemma 3.1, since we see that all the coefficients of
the inverse (33) are comprised between zero and one respectively when ξ ≥ 0 and ξ ≤ 0.

3.3 Macroscopic implicit scheme
We now turn towards obtaining an explicit writing of the macroscopic update associated to (22). Since
the right hand side of (24) is made of Maxwellians, we will see that this amounts to compute the
integral of

1±ξ>0
(±σξ)k

(1± σξ)k+1
M(U, ξ)

against 1, ξ and ξ2 for 0 ≤ k ≤ P − 1. This hardly seems possible with the classical Maxwellian
proposed in (4). Instead in this section we will use the simpler equilibrium function given by

M(U, ξ) =
h

2
√
3c
1|ξ−u|≤

√
3c, c =

√
gh

2
, (36)
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and referred to as the index Maxwellian. This is the simplest choice we can make, and it will enable
us to obtain analytic expressions for the aforementionned integrals. Furthermore it satisfies all the
moment relations (5), and we make the following remark.

Remark 3.5 We recall that the half-disk Maxwellian M(U, ξ) defined by (4) has some optimal prop-
erties presented in Lemma 2.2, which allow to obtain the discrete entropy inequality (30) at the
macroscopic scale. Other choices of Maxwellian are possible such as (36), but the previous discrete
entropy inequality is not granted to hold anymore. A general possibility is to choose M(U, ξ) of the
form

M(U, ξ) =
h

c
χ
(ξ − u

c

)
.

To satisfy the moment relations (5), it is then sufficient for χ to be an even function verifying∫
R
χ(z)dz =

∫
R
z2χ(z)dz = 1.

Furthermore we ask χ to be nonnegative with compact support, and possible choices are for instance

χ1(z) =
1

2
√
3
1|z|≤

√
3, or χ2(z) =

3

20
√
5
z2 +

3

4
√
5
1|z|≤

√
5. (37)

The definition (36) of the index Maxwellian corresponds to the first shape function χ1 in (37), whereas
the definition (4) of the half-disk Maxwellian corresponds to the third choice below

χ3(z) =
1

π

√
1− z2

4
1|z|≤2.

We proceed in two steps to compute our scheme with boundary conditions. The strategy consists to
dissociate the contribution of the information coming from the interior of the computational domain,
and the one coming from the exterior as below

U int =

∫
R

(
1
ξ

)
(I+ σL)−1M dξ

U ext =

∫
R

(
1
ξ

)
(I+ σL)−1σBn+1 dξ

. (38)

The final update is then set as Un+1 = U int+U ext, which coincides with definition (21). We postpone
the details about the computation of Bn+1 to the next section, and assume that it is known for now.
First for U int, we have

U int =

∫
R
1ξ≤0

(
1
ξ

)
(I+ σL+)−1Mdξ +

∫
R
1ξ≥0

(
1
ξ

)
(I+ σL−)−1Mdξ.

Plugging the analytic expressions (34) and (35) in the above integrals, we can express the i-th compo-
nent of U int as

U int
i =

∫
ξ<0

P∑
j=1

(
1
ξ

)
(I+ σL+)−1

i,j Mjdξ +

∫
ξ>0

P∑
j=1

(
1
ξ

)
(I+ σL−)−1

i,j Mjdξ

=

∫
ξ<0

P∑
j=i

(
1
ξ

)
(−σξ)j−i

(1− σξ)j−i+1
Mjdξ +

∫
ξ>0

i∑
j=1

(
1
ξ

)
(σξ)i−j

(1 + σξ)i−j+1
Mjdξ. (39)

A detailed expression of the quantities appearing in relation (39) is given in Appendix A. Similarly for
the exterior contribution we have

U ext = σ

∫
ξ<0

(
1
ξ

)
(I+ σL+)−1Bn+1dξ + σ

∫
ξ>0

(
1
ξ

)
(I+ σL−)−1Bn+1dξ.

10



Using definition (25) and equalities (34)–(35), the i-th component of U ext is

U ext
i =

∫
ξ<0

(
1
ξ

)
(−σξ)P−i+1

(1− σξ)P−i+1
Mn+1

P+1dξ +

∫
ξ>0

(
1
ξ

)
(σξ)i

(1 + σξ)i
Mn+1

0 dξ. (40)

We can reuse the primitive obtained in Appendix A to express the water height hext
i . However for the

flux (hu)ext
i we need to write a primitive for∫

±ξ>0

ξ
(±σξ)k

(1± σξ)k
M(U, ξ)dξ,

which is given in Appendix B. In the end we obtain a fully explicit writing of the implicit update at
the macroscopic level.

3.4 Boundary conditions
In this paragraph we discuss how to enforce the boundary conditions. These are represented by the
exterior contribution U ext introduced in (38), and accordingly we need to specify the ghost values
Un+1
0 and Un+1

P+1 appearing in the definition (25) of Bn+1. The problem we are facing is that these
ghost quantities depend on the neighboring values in cells C1 and CP at time tn+1, and which are
themselves unknown. Hence we have an implicit problem where the relation between the ghost and
border terms can be nonlinear depending on the type of boundary conditions. In practice we will avoid
this issue by substituting Bn+1 with Bn in the definition of U ext. Doing so can be interpreted as a
first order approximation in time since we have

Un+1
0 = Un

0 +O(∆t), Un+1
P+1 = Un

P+1 +O(∆t).

The benefit is that we can more easily determine the ghost quantities Un
0 , U

n
P+1 at time tn based on

Un
1 , U

n
P following the procedure described hereafter and similar to that of Bristeau and Coussin in [10].

We will focus on fluvial flows where the material velocity of particles |u| is smaller than the celerity
of surface gravity waves

√
gh. In particular low Froude flows enter this regime. Since in this case the

eigenvalues u −
√
gh and u +

√
gh have opposite sign, at each boundary we have exactly one wave

entering the domain and one wave leaving it. Hence we dispose of a single degree of freedom to set
the ghost values, which generally consists in enforcing either a given water height or a discharge. The
ghost state is then fully determined by asking the outward-going Riemann invariant to remain constant
through the interface.

Given water height. First we treat the case where the water height is enforced at the boundary of
the domain. We denote by hg,l the value attributed to the left ghost cell, and hg,r the one attributed
to the right ghost cell. Together with the condition on the outgoing Riemann invariant, we get the
following nonlinear systems{

hn
0 = hg,l

un
0 − 2

√
ghn

0 = un
1 − 2

√
ghn

1

,

{
hn
P+1 = hg,r

un
P+1 + 2

√
ghn

P+1 = un
P + 2

√
ghn

P

.

They can be solved explicitly and we get

Un
0 = hg,l

(
1

un
1 − 2(

√
ghn

1 −
√

ghg,l)

)
,

Un
P+1 = hg,r

(
1

un
P + 2(

√
ghn

P −
√
ghg,r)

)
.

Given flux. Another possibility is to enforce the discharge at the boundary, and we denote by qg,l
and qg,r the left and right ghost values. This time around, the constraint on the Riemann invariant
will enable to determine the ghost water height. Indeed we have the systems{

qn0 = qg,l
un
0 − 2

√
ghn

0 = un
1 − 2

√
ghn

1

,

{
qnP+1 = qg,r
un
P+1 + 2

√
ghn

P+1 = un
P + 2

√
ghn

P

, (41)
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and the equalities satisfied by the Riemann invariants amount to finding the real roots of the third
order polynomials in

√
hn
0 and

√
hn
P+1 below

−2
√
g(hn

0 )
3/2 − (un

1 − 2
√
ghn

1 )h
n
0 + qg,l = 0,

2
√
g(hn

P+1)
3/2 − (un

P + 2
√

ghn
P )h

n
P+1 + qg,r = 0.

Note that in this case, our approach differs from that of Bristeau and Coussin in [10], where the ghost
value is chosen such that the resulting numerical flux at the interface coincides with the boundary
discharge. Instead we do not enforce any value at the interface but directly in the ghost cell, which
can be seen as a first order simplification in space. Obtaining the ghost water heights hn

0 and hn
P+1

requires to study the roots of a third degree polynomial, and we were able to ensure the existence of
at least one non-negative real root when the Froude number is less than one and under the respective
conditions

qg,l ≥
1

27g2
(un

1 − 2
√
ghn

1 )
3, qg,r ≤ 1

27g2
(un

P + 2
√
ghn

P )
3.

If the previous constraints do not hold, this means that the systems in (41) cannot be satisfied and
one can assume that the equations (41) can be replaced by hn

0 and/or hn
P+1 given. When more than

one non-negative real root exist, we choose the smaller one.

We comment on the fact that nothing prevents us from mixing the boundary conditions, for instance
we can enforce a water height on the left boundary, and a discharge on the right. A common practice
for chanel flows is to enforce the water height at the inlet and the flux at the outlet.

Remark 3.6 When substituting Bn+1 with Bn in the implicit kinetic scheme (24), the corresponding
update can be reformulated as (I+ σL)f

n+1
= M

n with

I+ σL =



1

−σξ1ξ>0

...
0 I+ σL 0
... σξ1ξ<0

1

 , f
n+1

=

fn+1
0

fn+1

fn+1
P+1

 , M
n
=

 Mn
0

Mn

Mn
P+1



As a consequence the maximum principle ‖fn+1
(ξ)‖∞ ≤ ‖Mn

(ξ)‖∞ holds for any ξ in R during the
transport step. In fact we can verify that matrix (I+ σL) is monotone, and following the argument
involved in Lemma 5.1 from [1] we can write

0 ≤ f
n+1

= (I+ σL)−1M
n ≤ (I+ σL)−1(‖Mn‖∞1),

with 1 the vector from RP+2 whose entries are all equal to one. Using equality (I+ σL)−11 = 1 allows
to conclude. Note however that there is no such principle at the macroscopic scale, similarly to the
continuous Saint-Venant system.

3.5 Implementation and computational costs
It is important to try and keep a reasonable algorithmic complexity so that the implicit method
presented in the previous lines remains usable in practice. We discuss here how to improve its com-
putational cost by a substantial margin. In Appendix A, we show that the i-th component of vectors
hint and (hu)int have the form

hint
i =

1

2σ
√
3

(
P∑
j=i

√
2hn

j

g
(Ah)i,j +

i∑
j=1

√
2hn

j

g
(Bh)i,j

)

(hu)int
i =

1

2σ2
√
3

(
−

P∑
j=i

√
2hn

j

g
(Ahu)i,j +

i∑
j=1

√
2hn

j

g
(Bhu)i,j

) , (42)
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where Ah,Ahu are dense upper triangular matrices, and Bh,Bhu are dense lower triangular matrices.
Therefore computing hint and (hu)int through (42) is analog to performing a matrix-vector product
which has a quadratic complexity O(P 2), and we cannot hope to do better than that. However the
coefficients (86)–(89) of the above matrices involve a summation, and at a first glance the cost to
assemble them is seemingly cubic. This is quite expensive and can render the method pretty much
inefficient. However this complexity can be reduced to a quadratic cost by computing the coefficients
in the correct order. More specifically we show that all the matrices above can be defined through
a recurrence relation allowing to compute each coefficient from a previous one in O(1) operation. In
fact, denoting y = x/(1 + x) and z = ln |1 + x|, the matrix Ah is given by

[
z
]−min(0,a1)σ

−min(0,b1)σ

[
z − y

]−min(0,a2)σ

−min(0,b2)σ
. . . . . .

[
z −

∑P−1
l=1 yl/l

]−min(0,aP )σ

−min(0,bP )σ

0
[
z
]−min(0,a2)σ

−min(0,b2)σ

...
...

. . .
...

...
. . .

[
z − y

]−min(0,aP )σ

−min(0,bP )σ

0 . . . . . . 0
[
z
]−min(0,aP )σ

−min(0,bP )σ


,

where anj = un
j −

√
3 cnj and bnj = un

j +
√
3 cnj . This corresponds to the recursive definition below

(Ah)i,j =


0 if j < i[
ln(|1 + x|)

]−min(0,aj)σ

−min(0,bj)σ
if i = j

(Ah)i+1,j − 1
j−i

[
yj−i

]−min(0,aj)σ

−min(0,bj)σ
if j > i

. (43)

Likewise, the lower triangular matrix Bh is given by

[
z
]max(0,bn1 )σ

max(0,an
1 )σ

0 . . . . . . 0[
z − y

]max(0,bn1 )σ

max(0,an
1 )σ

. . .
...

. . .
...

[
z
]max(0,bnP−1)σ

max(0,an
P−1)σ

0[
z −

∑P−1
l=1 yl/l

]max(0,bn1 )σ

max(0,an
1 )σ

. . . . . .
[
z − y

]max(0,bnP−1)σ

max(0,an
P−1)σ

[
z
]max(0,bnP )σ

max(0,an
P )σ


,

and can be defined by the following recurrence formula

(Bh)i,j =


0 if i < j[
ln(|1 + x|)

]max(0,bj)σ

max(0,aj)σ
if i = j

(Bh)i−1,j − 1
i−j

[
yi−j

]max(0,bj)σ

max(0,aj)σ
if i > j

. (44)

Hence it is more efficient to assemble matrices Ah and Bh column wise, starting from the diagonal
coefficient and moving towards the first or last row. This way we only have to substract one term to
the previous coefficient so as to get the next one, and the cost of this operation is in O(1). Since there
are P (P + 1)/2 coefficients to compute in total, the assembly of Ah and Bh following this strategy
requires O(P 2) steps.

A similar conclusion is achieved for Ahu and Bhu, although the recurrence relation is less straight-
forward to obtain. We first remark that, introducing (l)i,j = i − j + 1 the relations (88) and (89)
become

(Ahu)i,j = 1j≥i

[
− (l)j,i ln|1 + x|+ x+

j−i∑
k=1

k
y(l)j,i−k

(l)j,i − k

]−min(0,aj)σ

−min(0,bj)σ
,
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(Bhu)i,j = 1i≥j

[
− (l)i,j ln|1 + x|+ x+

i−j∑
k=1

k
y(l)i,j−k

(l)i,j − k

]max(0,bj)σ

max(0,aj)σ
.

Performing the change of index r = (l)j,i− k for matrix Ahu and s = (l)i,j − k for matrix Bhu we find

(Ahu)i,j =
[
− (l)i,j ln|1 + x|+ x+ (l)i,j

j−i∑
r=1

yr

r
−

j−i∑
r=1

yr
]−min(0,aj)σ

−min(0,bj)σ
,

(Bhu)i,j =
[
− (l)i,j ln|1 + x|+ x+ (l)i,j

i−j∑
s=1

ys

s
−

i−j∑
s=1

ys
]max(0,bj)σ

max(0,aj)σ
.

Next we introduce the matrices defined column wise in a recursive manner

(UA)i,j =

{
0 if j ≤ i

(UA)i+1,j +
[
yj−i

]−min(0,aj)σ

−min(0,bj)σ
if j > i

,

(V A)i,j =

 0 if j ≤ i

(V A)i+1,j +
[
yj−i

j−i

]−min(0,aj)σ

−min(0,bj)σ
if j > i

.

Then we can write that

(Ahu)i,j =


0 j < i[
x− ln|1 + x|

]−min(0,aj)σ

−min(0,bj)σ
j = i

(l)j,i(V A)i,j − (UA)i,j +
[
x− (l)j,i ln|1 + x|

]−min(0,aj)σ

−min(0,bj)σ
j > i

. (45)

Similarly we introduce

(UB)i,j =

{
0 if i ≤ j

(UB)i−1,j +
[
yi−j

]max(0,bj)σ

max(0,aj)σ
if i > j

,

(V B)i,j =

 0 if i ≤ j

(V B)i−1,j +
[
yi−j

i−j

]max(0,bj)σ

max(0,aj)σ
if i > j

,

so that we have

(Bhu)i,j =


0 i < j[
x− ln|1 + x|

]max(0,bj)σ

max(0,aj)σ
i = j

(l)i,j(V B)i,j − (UB)i,j +
[
x− (l)i,j ln|1 + x|

]max(0,bj)σ

max(0,aj)σ
i > j

. (46)

To conclude, through relations (45) and (46) we are also able to assemble matrices Ahu and Bhu with
a quadratic cost with respect to the number of cells, which means that the overall method has a O(P 2)
complexity.

We have considered here the specific case of a kinetic solver and one can imagine that an implicit
scheme for another finite volume solver can lead to reduced numerical costs. But it is worth noticing
that since the explicit expression of the inverse of the matrix I+σL is accessible in the kinetic context,
one can hardly find a more efficient implicit technique.

Obviously the proposed implicit scheme is not constrained by any CFL condition associated with
an explicit scheme, nevertheless it is important to compare the computational costs of the explicit and
implicit strategies in the context of a kinetic solver.

Explicit scheme. Let ∆tn be the time step allowing to satisfy the CFL constraint. In order to obtain
the expression of Un+1 from Un, approximately 4P numerical fluxes have to be computed (2 numerical
fluxes at each interface for each variable h and hu). The explicit kinetic scheme is fully detailed in [4, 3].
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Implicit scheme. The CFL constraint being relaxed, we can consider a time step ∆tnimp � ∆tn. The
results obtained in this paragraph shows that the update from Un+1 from Un requires approximately
P 2 numerical fluxes to compute.

We conclude that the implicit strategy is less expensive when

∆tnimp

∆tn
� P 2

P
= P. (47)

Note however that the computational cost is not the only factor to account for, and one should also
consider the efficiency of the scheme, that is to say the relation between the error and the computational
time. Generally, taking a very coarse resolution in time results in poorly accurate results, in which case
it is not desirable to have (47). Nevertheless there are some cases where the fast dynamics do not play
an important role such as in the low Froude regime. Then it might be advantageous to consider large
time steps. We will see through the upcoming numerical results from Section 6 that the interest of the
implicit kinetic scheme is rather limited when it comes to efficiency, at least for the considered test
cases. Hence the explicit strategy is preferable to the implicit one, unless we account for the greater
stability offered by the latter in terms of discrete entropy inequality.

4 The 2d case
With obvious notations, we consider the 2d Saint-Venant system written under the form

∂h

∂t
+∇x,y · (hu) = 0, (48)

∂(hu)

∂t
+∇x,y · (hu⊗ u) +∇x,y

(g
2
h2
)
= −gh∇x,yz2d, (49)

with u = (u, v)T . The kinetic interpretation of the 2d Saint-Venant system (48)-(49) is a straightfor-
ward extension of Lemma 2.1 and has been studied in [4, 1].

To build the 2d Gibbs equilibrium, we define the function

χ2d(z1, z2) =
1

4π
1z2

1+z2
2≤4. (50)

This choice corresponds to the 2d version of the kinetic Maxwellian used in 1d (see [1, Remark 4.2])
and we have

M2d = M(U2d, ξ, γ) =
h

c2
χ2d

(
ξ − u

c
,
γ − v

c

)
, (51)

with c =
√

g
2h, (ξ, γ) ∈ R2 and

U2d = (h, hu, hv)T . (52)

In other words, we have M2d = 1
2gπ1(ξ−u)2+(γ−v)2≤2gh and the following lemma holds.

Lemma 4.1 If the topography z2d(x, y) is Lipschitz continuous, the pair of functions (h, hu) is a weak
solution to the Saint-Venant system (48)-(49) if and only if M2d(U, ξ) satisfies the kinetic equation

∂tM2d +

(
ξ
γ

)
· ∇x,yM2d − g∇x,yz2d · ∇ξ,γM2d = Q2d, (53)

for some “collision term” Q2d(t, x, y, ξ, γ) that satisfies, for a.e. (t, x, y),∫
R2

Q2ddξdγ =

∫
R2

ξQ2ddξdγ =

∫
R2

γQ2ddξdγ = 0. (54)

Proof of Lemma 4.1. The proof relies on simple computations. Classically, the integral of Eq. (53)
over R2 gives Eq. (48) whereas the integral over R2 of Eq. (53) multiplied by (ξ, γ)T ives Eq. (49). �
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Let us consider a cartesian mesh of a 2d domain Ω = (0, Lx) × (O,Ly), the vertices are denoted
Pi,j for 0 ≤ i ≤ P + 1, 0 ≤ j ≤ L+ 1. The coordinates of Pi,j are (xi, yj)

T with

xi = i∆x, yj = j∆y,

and ∆x = Lx/(P + 1), ∆y = Ly/(L+ 1). Without loss of generality, we consider Lx = Ly and P = L
hence ∆x = ∆y. We use the following notations (see Fig. 1):

• Ki,j , set of subscripts of nodes Pk,l surrounding Pi,j ,

• |Ci,j |, area of Ci,j ,

• ∂Ci,j , boundary of Ci,j

We define the piecewise constant functions Un(x, y) and z2d(x, y) on cells Ci,j corresponding to time
tn as

Un(x, y) = Un
i,j , z2d(x, y) = z2d,i,j , for (x, y) ∈ Ci,j , (55)

with Un
2d,i,j = (hn

i,j , q
n
x,i,j , q

n
y,i,j)

T i.e.

Un
2d,i,j ≈

1

|Ci,j |

∫
Ci,j

U2d(t
n, x, y)dxdy, z2d,i,j ≈

1

|Ci,j |

∫
Ci,j

z2d(x, y)dxdy,

with U2d defined by (52).

Figure 1: The vertices {Pi,j} and the dual cell Ci,j .

Let Ci,j be a dual cell of the structured mesh defined by the vertices {Pi,j}, see Fig. 1. In the case
of a flat topography, the integral over Ci,j of the convective part of the kinetic equation (6) gives∫

Ci,j

(
∂M2d

∂t
+

(
ξ
γ

)
.∇x,yM2d

)
dxdy ≈ |Ci,j |

∂M2d,i,j

∂t
+

∑
(k,l)∈Ki,j

∫
∂Ci,j

Mi,j,k,ldl, (56)

with M2d,i,j = M(U2d,i,j , ξ, γ) and the upwinding formula

Mi,j,k,l = M2d,i,jζk,l1ζk,l≥0 +M2d,k,lζk,l1ζk,l≤0,
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where ζk,l = (ξ, γ)T · nk,l, nk,l for (k, l) ∈ Ki,j being the outward normal to the contour ∂Ci,j . The
implicit Euler scheme applied to the kinetic interpretation (56) gives the kinetic scheme

fn+1
2d,i,j = Mn

2d,i,j −
∆tn

|Ci,j |
∑

(k,l)∈Ki,j

(
fn+1
2d,i,jζk,l1ζk,l≥0 + fn+1

2d,k,lζk,l1ζk,l≤0

)
. (57)

Denoting
f2d = (f2d,1,1, f2d,2,1, . . . , f2d,P,1, f2d,2,1, . . .)

T ,

the kinetic scheme (57) also writes(
IP 2 +

∆tn

∆x
LP 2

)
fn+1
2d = M2d + σBn+1

2d , (58)

where we have used the particular geometry of the mesh and with IP 2 is the identity matrix of length
P 2, Bn+1

2d accounts for the boundary conditions and the block matrix LP 2 is defined by

LP 2 =



Dξ,γ N+
γ 0 . . . . . .

N−
γ Dξ,γ N+

γ

. . .
...

0
. . . . . . . . . 0

0
. . . N−

γ Dξ,γ N+
γ

. . . . . . 0 N−
γ Dξ,γ


,

where Dξ,γ , N
±
γ are P × P matrices defined by N+

γ = −γ1γ≥0IP , N−
γ = γ1γ≤0IP and

Dξ,γ =



|ξ|+ |γ| ξ1ξ≤0 0 . . . . . .

−ξ1ξ≥0 |ξ|+ |γ| ξ1ξ≤0
. . .

...

0
. . . . . . . . . 0

0
. . . −ξ1ξ≥0 |ξ|+ |γ| ξ1ξ≤0

. . . . . . 0 −ξ1ξ≥0 |ξ|+ |γ|


.

Since the matrix
IP 2 +

∆tn

∆x
LP 2 ,

has the same structure as the matrix I + σL studied in Lemma 3.1, the results of Prop. 3.2 and 3.3
are valid.

We do not give the explicit formula neither for the inverse of the matrix IP 2 + ∆tn

∆x LP 2 nor for the
numerical fluxes at the macroscopic level.

5 An iterative resolution scheme
The kinetic scheme (24) requires to solve a linear system and in the previous section, we have seen
that it was possible to have an analytic expression for the inverse of the matrix

I+ σL.

For the numerical approximation of PDEs e.g. in finite elements methods when the linear system to
solve is large an iterative strategy is singled out compared to a direct inversion of the matrix. We
propose to follow the same idea here, with mainly two benefits. First it will allow us to use the
half disk Maxwellian (4), for which we recall the integrals (38) could not be computed analytically
in the case of the fully implicit kinetic scheme. This is important as it will enable to prove some
discrete entropy inequality at the macroscopic scale thanks to (13), while having an explicit writting
of the update. The second advantage lies in the possibility to couple the iterative strategy with the
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hydrostatic reconstruction to obtain a well balanced treatment for varying bottoms, which we will
discuss in the next section.

More precisely using a Gauss-Jacobi type decomposition, let us rewrite

I+ σL = D−N,

where D and N are two matrices from RP×P with D is invertible. Then the scheme (24) also writes

fn+1 = D−1Nfn+1 +D−1(M + σBn+1),

and if it converges, the sequence {fn+1,k}k∈N defined by

Dfn+1,k+1 = Nfn+1,k +M + σBn+1,

converges towards the solution of (24).

5.1 Case without topography
In this section, we study this iterative strategy with the particular choice

D = (1 + α)I, and N = αI− σL,

when the bathymetry is flat and where α ∈ R+ is a relaxation parameter. When developped, this
iterative process reads:

fn+1,0 = M

(1 + α)fn+1,k+1 = (αI− σL)fn+1,k +M + σBn+1,k

∀1 ≤ i ≤ P, Un+1,k
i =

∫
R

(
1
ξ

)
fn+1,k
i (ξ) dξ

, (59)

with Bn+1,k the boundary condition associated with the macroscopic state Un+1,k as explained in
Section 3.4. The following Proposition highlights the main compromise linked with such an iterative
approach, which is the requirement for a CFL condition in order for the method to converge.

Proposition 5.1 Assume that Bn+1,k remains constant equal to Bn for any k in N. Then (59) defines
an arithmetico-geometric sequence which converges if the CFL condition σ|ξ| < 1 + 2α holds for all ξ
belonging to suppM ∪ suppBn.

Proof. By recurrence, we can show that for any k ∈ N the support of fn+1,k is included in suppM ∪
suppBn, which is why we restrict to velocities ξ belonging to this set. Consider f the solution of

f = D−1Nf +D−1(M + σBn) .

The sequence (gk)k defined by gk = fn+1,k − f satisfies gk+1 = D−1Ngk and converges to zero as
soon as the spectral radius of D−1N is strictly less than one. Since D−1N is a triangular matrix, its
eigenvalues are given by its diagonal coefficients, all equal to (1+α)−1(α−σ|ξ|). Under the assumption
σ|ξ| < 1 + 2α, this quantity is strictly less than one in absolute value, which concludes the proof. �

Remark 5.2 As we did in Section 3.4 for the fully implicit scheme, we can replace Bn+1,k by Bn in
the iterative process (59). In fact this constitutes a first order approximation in time since we have
fn+1,k = M + O(∆t). Under this simplification, one can drop the assumption Bn+1,k = Bn from
Proposition 5.1.

In practice, we wish to apply an iterative method directly at the macroscopic level. An issue
with (59) is that the distribution involved in the kinetic flux (i.e. the term in factor of σL) is not a
vector of Maxwellians, which prevents us to write the recurrence relation at the macroscopic level since
there is no general expression for the numerical flux. To bypass this issue, we propose the following
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modification of (59), where we replace all occurrences of fn+1,k on the right hand side by a vector of
Maxwellians Mn+1,k, which defines a new sequence (gn+1,k(ξ))k∈N as

gn+1,0(ξ) = M

(1 + α)gn+1,k+1(ξ) = (αI− σkL)Mn+1,k +M + σkBn+1,k

Mn+1,k+1 = gn+1,k+1 +∆tkQn+1,k+1

. (60)

This new iterative process is alternating two stages, the first one being the usual transport step, while
the second one is a projection step onto the set of Maxwellians yielding Mn+1,k+1. In this sense (60)
is an iterative BGK splitting approach where the projection step doesn’t modify the macroscopic
quantities of interest since the term Qn+1,k is a vector of collision operators each one satisfying the
conservation constraints (7). Note that the time stepping ∆tk is made dependent on k as the support of
Mn+1,k can now change from iteration to iteration. It is important to remark that this iterative scheme
differs from (59) and we cannot apply the result of Proposition 5.1. The practical implementation of
scheme (60) is based on its macroscopic version given for all 1 ≤ i ≤ P by

(1 + α)Un+1,k+1
i = αUn+1,k

i + Ui − σ

(
F(Un+1,k

i , Un+1,k
i+1 )−F(Un+1,k

i−1 , Un+1,k
i )

)
, (61)

where the numerical flux F is defined as

F(UL, UR) =

∫
R
ξ

(
1
ξ

)(
1ξ>0M(UL, ξ) + 1ξ<0M(UR, ξ)

)
dξ, (62)

and where the vectors Un+1,k
0 , Un+1,k

P+1 appearing for i ∈ {1, P} are respectively functions of Un+1,k
1

and Un+1,k
P since the boundary conditions are imposed though a ghost cell strategy fully described

in [10, 1]. Notice that if the sequence {Un+1,k}k∈N ⊂ (R2)P from (61) converges in (R2)P , its limit
Un+1 then satisfies

∀1 ≤ i ≤ P, Un+1
i = Un

i − σ
(
F(Un+1

i , Un+1
i+1 )−F(Un+1

i−1 , Un+1
i )

)
by continuity of the numerical flux (62). Besides we want to remark that the iterative method described
here could have been applied with any other numerical flux at the macroscopic level. However, using
a numerical flux different from the kinetic one would have made it very difficult (if possible at all) to
prove the forthcoming properties, whereas using (62) gives us a favorable setting to perform the proofs.
These properties include the preservation of the water height positivity under a CFL condition, and
the existence of a discrete entropy equality with dissipation.

Proposition 5.3 Assume that the water height vectors hn and hn+1,k are positive. Then the update
gn+1,k+1 defined in the iterative scheme (60) is positive if for all 1 ≤ i ≤ P the CFL condition
σk|ξ| ≤ α+Mi/M

n+1,k
i holds for any ξ belonging to suppMn+1,k. As a direct consequence, the water

height vector hn+1,k+1 from scheme (61) is positive under these assumptions.

We postpone the proof of Proposition 5.3 to the next section, where it is generalized to the case with
varying bottom in Proposition 5.6.

Proposition 5.4 Let us denote Ξ = suppMn+1,k. The kinetic entropy of the iterative scheme (60)
satisfies the following equality

H(Mn+1,k+1
i ) =

H(Mi) + αH(Mn+1,k
i )

1 + α
− σk|ξ|

1 + α

(
Hn+1,k

i+1/2 −Hn+1,k
i−1/2

)
(63)

+∆tk∂fH(Mn+1,k+1
i )Qn+1,k+1

i +Dn+1,k+1
i ,

with Qn+1,k+1
i = (gn+1,k+1

i − Mn+1,k+1
i )/∆tk a collision operator verifying the conservation con-

straints (7). The interfacial kinetic entropies Hn+1,k
i±1/2 are given by

Hn+1,k
i−1/2 = 1ξ>0H(Mn+1,k

i−1 , ξ) + 1ξ<0H(Mn+1,k
i , ξ),
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Hn+1,k
i+1/2 = 1ξ>0H(Mn+1,k

i , ξ) + 1ξ<0H(Mn+1,k
i+1 , ξ),

and the term Dn+1,k+1
i is given by

Dn+1,k+1
i = − 1

1 + α
Ψ(Mn+1,k+1

i ,Mi)−
α− σk|ξ|1Ξ

1 + α
Ψ(Mn+1,k+1

i ,Mn+1,k
i )

− σk|ξ|1Ξ

1 + α
Ψ(Mn+1,k+1

i ,Mn+1,k
i±1 ),

where we recall that the function Ψ defined in (29) is positive on R2
+ and where i± 1 = i− sgn ξ. As

a consequence, if for any integer k the CFL condition

∀ξ ∈ suppMn+1,k, σk|ξ| ≤ α (64)

holds, then Dn+1,k+1
i is a dissipation term with negative sign and at each iteration the kinetic entropy

is dissipated up to terms that are macroscopically zero, that is to say there exists a kinetic entropy flux
H̃n+1,k

i+1/2 , a negative dissipation D̃n+1,k+1
i and a term Z̃n+1,k+1

i (ξ) whose integral over ξ ∈ R is zero
such that

H(Mn+1,k+1
i , ξ) = H(Mi, ξ)− σk|ξ|

(
H̃n+1,k

i+1/2 − H̃n+1,k
i−1/2

)
+ D̃n+1,k+1

i + Z̃n+1,k+1
i . (65)

Before giving the proof we have the remark below.

Remark 5.5 Even when the CFL condition (64) is not satisfied, we can ensure that the scheme (60)
satisfies a discrete entropy inequality from some rank k assuming the convergence of the method. In
fact, multiplying equality (63) by 1 + α it is possible to write

H(Mn+1,k+1
i , ξ) = (66)

H(Mi, ξ)− σkξ
(
Hn+1,k

i+1/2 −Hn+1,k
i−1/2

)
+ (1 + α)∆tk ∂fH(Mn+1,k+1

i , ξ)Qn+1,k+1
i

−Ψ(Mn+1,k+1
i ,Mi)− σk|ξ|1ΞΨ(Mn+1,k+1

i ,Mn+1,k
i±1 )

+ α
(
H(Mn+1,k

i , ξ)−H(Mn+1,k+1
i , ξ)

)
− (α− σk|ξ|1Ξ)Ψ(Mn+1,k+1

i ,Mn+1,k
i ).

When Mn+1,k
i is a half-disk Maxwellian (4), the term

(1 + α)∆tk ∂fH(Mn+1,k
i , ξ)Qn+1,k+1

i ,

appearing on the right hand side of (66) does not cause any issue as it vanishes upon integration over
ξ ∈ R. This is intrinsically related to the form of the half-disk Maxwellian Mn+1,k+1

i which makes
∂fH(Mn+1,k+1

i , ξ) linear in ξ over the support of Mn+1,k
i , i.e. when Mn+1,k

i > 0 one has

∂fH(Mn+1,k+1
i , ξ) =

ξ2

2
+

g2π2

2

(
1

gπ

√
2ghn+1,k+1

i − (ξ − un+1,k+1
i )2

)2

= ghn+1,k+1
i + un+1,k+1

i ξ − (un+1,k+1
i )2

2
.

Furthermore we remind that Qn+1,k+1
i satisfies the conservation constraints (7), meaning that its

integral against (1, ξ)T vanishes. Therefore in (66) the only problematic terms are contained in the last
line, as their sign can be positive and they have no reason to cancel after integration. Nevertheless,
by regularity of H(·, ξ) and by definition (29) of Ψ, these terms write as a O(Mn+1,k+1

i − Mn+1,k
i )

and vanish as k → ∞ assuming the method converges. As a consequence, from some rank k these two
terms become negligible compared to −Ψ(Mn+1,k+1

i ,Mi) < 0 which remains bounded away from zero,
and we recover a dissipation with negative sign. (Note that if Mn+1,k was converging to M as k → ∞,
it would imply that M solves the fixed point problem and thus Mn+1,k = M for all k; putting aside
this trivial case, this is why Ψ(Mn+1,k+1

i ,Mi) remains bounded away from zero).
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Proof of prop. 5.4. We first prove equality (63). For this we write the subiteration (60) as

Mn+1,k+1
i =

1

1 + α

(
Mi + (α− σk|ξ|1Ξ)M

n+1,k
i + σk|ξ|1ΞM

n+1,k
i±1

)
+∆tkQn+1,k+1

i ,

with i± 1 = i− sgn ξ and Qn+1,k+1
i a collision operator. Applying Lemma 3.4 for a = Mn+1,k+1

i and
b = Mn+1,k

i±1 ,Mi,M
n+1,k
i , we respectively get:

H(Mn+1,k
i±1 ) = H(Mn+1,k+1

i ) + ∂fH(Mn+1,k+1
i )(Mn+1,k

i±1 −Mn+1,k+1
i )

+ Ψ(Mn+1,k+1
i ,Mn+1,k

i±1 )
(67)

H(Mn+1,k
i ) = H(Mn+1,k+1

i ) + ∂fH(Mn+1,k+1
i )(Mn+1,k

i −Mn+1,k+1
i )

+ Ψ(Mn+1,k+1
i ,Mn+1,k

i )
(68)

H(Mi) = H(Mn+1,k+1
i ) + ∂fH(Mn+1,k+1

i )(Mi −Mn+1,k+1
i )

+ Ψ(Mn+1,k+1
i ,Mi)

(69)

Performing the linear combination
1

1 + α

(
(69) + (α− σk|ξ|1Ξ)(68)) + σk|ξ|1Ξ(67)

)
we obtain

1

1 + α

(
H(Mi) + (α− σk|ξ|1Ξ)H(Mn+1,k

i ) + σk|ξ|1ΞH(Mn+1,k
i±1 )

)
=

H(Mn+1,k+1
i )−∆tk∂fH(Mn+1,k+1

i )Qn+1,k+1
i +

1

1 + α
Ψ(Mn+1,k+1

i ,Mi)

+
α− σk|ξ|1Ξ

1 + α
Ψ(Mn+1,k+1

i ,Mn+1,k
i ) +

σk|ξ|1Ξ

1 + α
Ψ(Mn+1,k+1

i ,Mn+1,k
i±1 )

which corresponds to equality (63) after rearranging the terms.
Next we proceed by induction to show that the kinetic entropy is dissipated at every iteration

assuming the CFL condition (64) holds for any integer k. The key argument is that under this CFL
condition, the term Dn+1,k+1

i defines a convex combination of negative quantities, and is thus negative.
The initialization is obvious since we have Mn+1,0

i = Mi, so we focus on the recurrence. We want
to show that (65) holds at some rank k ≥ 1 assuming that it is satisfied at rank k − 1. Under this
assumption we can recast (63) as

H(Mn+1,k+1
i ) =

1

1 + α

(
H(Mi) + α

(
H(Mi)− σk|ξ|

(
H̃n+1,k−1

i+1/2 − H̃n+1,k−1
i−1/2

)
+ D̃n+1,k

i + Z̃n+1,k
i

))
− σk|ξ|

1 + α

(
Hn+1,k

i+1/2 −Hn+1,k
i−1/2

)
+∆tk∂fH(Mn+1,k+1

i )Qn+1,k+1
i +Dn+1,k+1

i ,

with Z̃n+1,k
i and ∂fH(Mn+1,k+1

i )Qn+1,k+1
i macroscopically zero as per Remark 5.5. Therefore we have

H(Mn+1,k+1
i ) =

H(Mi)−
σk|ξ|
1 + α

(
Hn+1,k

i+1/2 + αH̃n+1,k−1
i+1/2 −Hn+1,k

i−1/2 − αH̃n+1,k−1
i−1/2

)
+

α

1 + α
Z̃n+1,k
i +∆tk∂fH(Mn+1,k+1

i )Qn+1,k+1
i +

α

1 + α
D̃n+1,k

i +Dn+1,k+1
i

and the proof is complete by setting

H̃n+1,k
i+1/2 =

1

1 + α

(
Hn+1,k

i+1/2 + αH̃n+1,k−1
i+1/2

)
, D̃n+1,k+1

i =
α

1 + α
D̃n+1,k

i +Dn+1,k+1
i ,

Z̃n+1,k+1
i =

α

1 + α
Z̃n+1,k
i +∆tk∂fH(Mn+1,k+1

i )Qn+1,k+1
i .

�
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5.2 Case with topography
To deal with varying bathymetries in a well balanced way, the hydrostatic reconstruction technique
introduced by Audusse et al. in [2] can be used. It is based on the reconstruction of the water
height according to a procedure that we briefly recall. Let Ui = (hi, hiui)

T ∈ R2 denote the vector
of quantities of interest over cell 1 ≤ i ≤ P , with P the number of interior cells and with ghost cells
corresponding to indices 0 and P +1. The reconstructed states are vectors from R2 defined on the left
and right neighborhood of each cell interface as follows:

∀1 ≤ i ≤ P, Ui+1/2− =

(
hi+1/2−
hi+1/2−ui

)
, Ui−1/2+ =

(
hi−1/2+

hi−1/2+ui

)
. (70)

The reconstructed interfacial water heights are given by

hi−1/2+ = (hi + zi − zi−1/2)+, hi+1/2− = (hi + zi − zi+1/2)+, (71)

with the interfacial bathymetry variation zi+1/2 = max(zi, zi+1). The truly implicit kinetic scheme we
are considering reads as below

Un+1
i = Un

i − σ
(
Fn+1
i+1/2− − Fn+1

i−1/2+

)
, (72)

with σ = ∆t/∆x and the numerical fluxes decomposed as:

Fn+1
i+1/2− = F(Un+1

i+1/2−, U
n+1
i+1/2+) +

g

2

(
0

(hn+1
i )2 − (hn+1

i+1/2−)
2

)
Fn+1
i−1/2+ = F(Un+1

i−1/2−, U
n+1
i−1/2+) +

g

2

(
0

(hn+1
i )2 − (hn+1

i−1/2+)
2

)
We recall that in our case the upwinding of the numerical flux F is induced at the kinetic level according
to definition (62).

Because the update (72) is nonlinear, it is not possible to solve it analytically. Instead we will
consider an iterative process with a relaxation parameter α > 0 similarly to section 5.1. At the kinetic
level, this process consists in introducing for any real ξ the sequence (fn+1,k(ξ))k∈N ⊂ RP

+ initialized
with fn+1,0(ξ) = M(Un, ξ) and defined recursively as:

(1 + α)fn+1,k+1
i = (73)

Mi + αMn+1,k
i − σkξ

(
1ξ<0(M

n+1,k
i+1/2+ −Mn+1,k

i−1/2+) + 1ξ>0(M
n+1,k
i+1/2− −Mn+1,k

i−1/2−)
)

+ σk(ξ − un+1,k
i )(Mn+1,k

i+1/2− −Mn+1,k
i )− σk(ξ − un+1,k

i )(Mn+1,k
i−1/2+ −Mn+1,k

i ),

where the last line of (73) corresponds to the kinetic interpretation of the topography source term,
see [3]. In the above we used the notation

Mn+1,k
� = M(Un+1,k

� , ξ), hn+1,k =

∫
R
fn+1,k(ξ) dξ, (hu)n+1,k =

∫
R
ξ fn+1,k(ξ) dξ,

where the square symbol ”�” in subscript can be replaced by i (centered value) or i ± 1/2∓ (recon-
structed interfacial value). Making use of the relations∫

R

(
1
ξ

)
(ξ − ui)(Mi −Mi+1/2−) dξ =

(
0

g
2 (h

2
i − h2

i+1/2−)

)
∫
R

(
1
ξ

)
(ξ − ui)(Mi −Mi−1/2+) dξ =

(
0

g
2 (h

2
i − h2

i−1/2+)

)
given in [3], the macroscopic version of scheme (73) obtained by integrating the update against the
vector (1, ξ)T reads

(1 + α)Un+1,k
i = Ui + αUn+1,k

i − σk(Fn+1,k
i+1/2− − Fn+1,k

i−1/2+). (74)
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If the iterative process (74) converges, we recover the implicit scheme (72) by setting the macroscopic
update as Un+1 = limk→∞ Un+1,k and σ = limk→∞ σk. In practice we will not be able to compute
this limit, hence we will set Un+1 = Un+1,k and σ = σk for k large enough, hoping that Un+1,k ≈
Un+1,∞. One should also notice that when the bathymetry is flat the hydrostatic reconstruction
becomes transparent, and the scheme (74) coincides with (61).

Finally we propose an estimate for the entropy associated with the scheme (73), as well as a CFL
condition to ensure its positivity.

Proposition 5.6 The following properties are satisfied by the scheme (73):

(i) Assume that the water height vectors hn and hn+1,k are positive. Then the update gn+1,k+1

defined in the iterative scheme (73) is positive if for all 1 ≤ i ≤ P the CFL condition σk|ξ| ≤
α + Mi/M

n+1,k
i holds for any ξ belonging to suppMn+1,k. As a direct consequence, the water

height vector hn+1,k+1 from scheme (74) is positive under these assumptions.

(ii) The kinetic entropy of the iterative process (73) verifies the following kinetic entropy inequality

H(Mn+1,k+1
i , zi) ≤ (75)

H(Mi, zi)− σk
(
G̃n+1,k

i+1/2− − G̃n+1,k
i−1/2+

)
+ (1 + α)∆tk∂fH(Mn+1,k

i , zi)Q
n+1,k+1
i

+ α
(
H(Mn+1,k

i , zi)−H(Mn+1,k+1
i , zi)

)
+ (1 + α)Ψ(Mn+1,k

i ,Mn+1,k+1
i )

−Ψ(Mn+1,k
i ,Mi),

with Qn+1,k+1
i = (Mn+1,k+1

i − fn+1,k+1
i )/∆tk a collision term satisfying the conservation con-

straints (7), and where

G̃n+1,k
i+1/2− = (76)

ξ1ξ<0H(Mn+1,k
i+1/2+, zi+1/2) + ξ1ξ>0H(Mn+1,k

i+1/2−, zi+1/2)

+ ξH(Mn+1,k
i , zi)− ξH(Mn+1,k

i+1/2−, zi+1/2)

+
(
∇η(Un+1,k

i )T
(
1
ξ

)
+ gzi

)
(ξMn+1,k

i+1/2− − ξMn+1,k
i + (ξ − un+1,k

i )(Mn+1,k
i −Mn+1,k

i+1/2−)) ,

G̃n+1,k
i−1/2+ = (77)

ξ1ξ<0H(Mn+1,k
i−1/2+, zi−1/2) + ξ1ξ>0H(Mn+1,k

i−1/2−, zi−1/2)

+ ξH(Mn+1,k
i , zi)− ξH(Mn+1,k

i−1/2+, zi−1/2)

+
(
∇η(Un+1,k

i )T
(
1
ξ

)
+ gzi

)
(ξMn+1,k

i−1/2+ − ξMn+1,k
i + (ξ − un+1,k

i )(Mn+1,k
i −Mn+1,k

i−1/2+)) .

We recall that the expression of the function Ψ was given in (29) and that the entropy is η(U) =
hu2

2 + g
2h

2.

Before giving the proof we make the following remark.

Remark 5.7 In inequality (75) the difference G̃n+1,k
i+1/2− − G̃n+1,k

i−1/2+ is non conservative at the kinetic
level, but becomes conservative when it is integrated over ξ ∈ R. This is due do the fact that the last
two lines of (76) and (77) are macroscopically zero, see [3] Proposition 3.1. Furthermore, we reiterate
the comments made in Remark 5.5 which are to say that in (75) the term

(1 + α)∆tk∂fH(Mn+1,k
i , zi)Q

n+1,k+1
i

is macroscopically zero for the half-disk Maxwellian (4). Besides, the quantity

α
(
H(Mn+1,k

i , zi)−H(Mn+1,k+1
i , zi)

)
−Ψ(Mn+1,k

i ,Mi) + (1 + α)Ψ(Mn+1,k
i ,Mn+1,k+1

i )
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will eventually become negative for k large enough similarly to the argument from Remark 5.5. Inte-
grating inequality (75) over ξ ∈ R, this implies that there exists K ∈ N such that for any k ≥ K the
fully discrete entropy inequality

η(Un+1,k+1
i ) ≤ η(Un

i )− σk

(∫
R
ξ Hn+1,k

i+1/2 (ξ) dξ −
∫
R
ξ Hn+1,k

i−1/2 (ξ) dξ

)
(78)

is satisfied at the macroscopic level. Summing inequality (78) over every cell 1 ≤ i ≤ P we obtain the
dissipation of the total energy up to boundary fluxes

1

∆tk

P∑
i=1

(
η(Un+1,k+1

i )− η(Un
i )
)
+

1

∆x

(∫
R
ξ Hn+1,k

P+1/2(ξ) dξ −
∫
R
ξ Hn+1,k

1/2 (ξ) dξ

)
≤ 0. (79)

In addition to the usual tolerance criterion where the iterations are stopped whenever two successive
iterates are sufficiently close to each other, we can use (79) as a complementary condition to ensure
the dissipation of total energy.

Proof. The proof makes use of the kinetic writing (73) of scheme (74).

(i) Remarking that the quantity σk(ξ − un+1,k
i )(Mn+1,k

i+1/2− − Mn+1,k
i−1/2+) appearing in the last line

of (73) defines an odd function of ξ−un+1,k
i , its integral over ξ ∈ R vanishes and we have at the

macroscopic level

(1 + α)hn+1,k+1
i =

∫
R

(
Mi + αMn+1,k

i − σkξ(Mn+1,k
i+1/2 −Mn+1,k

i−1/2 )
)
dξ .

Thus it is enough to prove the positivity of the integrand, whose developed form is

Mi + αMn+1,k
i − σkξ

(
1ξ>0M

n+1,k
i+1/2− − 1ξ<0M

n+1,k
i−1/2+

)
+ σkξ

(
1ξ>0M

n+1,k
i−1/2− − 1ξ<0M

n+1,k
i+1/2+

)
.

By definition of the water height reconstruction (71), we have the inequalities hn+1,k
i+1/2− ≤ hn+1,k

i

and hn+1,k
i−1/2+ ≤ hn+1,k

i . As a consequence Mn+1,k
i+1/2− ≤ Mn+1,k

i and Mn+1,k
i−1/2+ ≤ Mn+1,k

i , which
allows us to bound the integrand from below by

Mi + αMn+1,k
i − σk|ξ|Mn+1,k

i .

If ξ does not belong to suppMn+1,k this quantity equals Mi which is positive. Otherwise, it is
made positive under the condition σk|ξ| ≤ α+M0

i /M
n+1,k
i which gives the desired result.

(ii) We start to rewrite (73) as

(1 + α)(Mn+1,k+1
i −Mn+1,k

i ) = (80)

(Mi −Mn+1,k
i )− σkξ(Mn+1,k

i+1/2 −Mn+1,k
i−1/2 ) + σk(ξ − un+1,k

i )(Mn+1,k
i+1/2− −Mn+1,k

i−1/2+)

+ (1 + α)∆tkQn+1,k+1
i .

The strategy is to multiply (80) by ∂fH(Mn+1,k
i , zi) and to write

∂fH(Mn+1,k
i , zi)

[
(1 + α)(Mn+1,k+1

i −Mn+1,k
i )− (Mi −Mn+1,k

i )− (1 + α)∆tkQn+1,k+1
i

]
=

− σk∂fH(Mn+1,k
i , zi)

[
ξ(Mn+1,k

i+1/2 −Mn+1,k
i−1/2 ) + δMn+1,k

i+1/2− − δMn+1,k
i−1/2+

]
, (81)

where we defined

δMn+1,k
i+1/2− = (ξ − un+1,k

i )(Mn+1,k
i −Mn+1,k

i+1/2−)
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δMn+1,k
i−1/2+ = (ξ − un+1,k

i )(Mn+1,k
i −Mn+1,k

i−1/2+).

We use formula (31) in the left hand side of (81) to get

∂fH(Mn+1,k
i , zi)

[
(1 + α)(Mn+1,k+1

i −Mn+1,k
i )− (Mi −Mn+1,k

i )− (1 + α)∆tkQn+1,k+1
i

]
=

(1 + α)
(
H(Mn+1,k+1

i , zi)−H(Mn+1,k
i , zi)−Ψ(Mn+1,k

i ,Mn+1,k+1
i )

)
−
(
H(Mi, zi)−H(Mn+1,k

i , zi)−Ψ(Mn+1,k
i ,Mi)

)
− (1 + α)∆tk∂fH(Mn+1,k

i , z)Qn+1,k+1
i . (82)

Furthermore, an upper bound on the right hand side of (81) is obtained by applying Proposi-
tion 3.1 from [3] which directly yields

− ∂fH(Mn+1,k
i , zi)

[
ξ(Mn+1,k

i+1/2 −Mn+1,k
i−1/2 ) + δMn+1,k

i+1/2− − δMn+1,k
i−1/2+

]
≤ G̃n+1,k

i−1/2+ − G̃n+1,k
i+1/2− , (83)

with G̃n+1,k
i+1/2− and G̃n+1,k

i−1/2+ defined by (76) and (77). Injecting equality (82) and inequality (83)
into (81) we obtain the desired kinetic entropy inequality (75).

�

6 Numerical examples
6.1 The one dimensional case
We start by evaluating the qualitative properties and the efficiency related to the fully implicit and
iterative kinetic schemes in the one dimensional case.
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Figure 2: Slow moving shock approximated by various kinetic schemes, including explicit, implicit and
iterative strategies. The initial condition is given by a Riemann data with discontinuity at position
x = 0.

Slow moving shock. To assess the efficiency and interest of the implicit scheme (23), we perform
a numerical test involving a Riemann problem with a slowly moving shock over a flat bottom. This
configuration is achieved for a nearly transcritical flow where the material velocity u is positive and
satisfies u−

√
gh ≈ 0 and u+

√
gh � 1. Hence the maximum eigenvalue severely constrains the time
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step, however a small time step might not be necessary to accurately resolve the slow shock. In Figure 2
we compare several schemes with an explicit time step ∆texp given by the usual CFL condition, as
well as the implicit kinetic scheme using a time step ∆timp = 10∆texp. We set α = 1 for the iterative
scheme (61). We notice that in the discharge profile, an oscillation appears downwind of the shock,
which is quite pronounced for the explicit and iterative kinetic schemes, and less so for the fully implicit
ones. As expected the implicit scheme using ∆timp strongly diffuses the fast travelling rarefaction. On
the other hand the slow shock seems to be slightly less impacted by the large time steps, however it is
still less diffused when using ∆texp. Despite requiring ten times less iterations to reach the final time,
the use of large time increments for the implicit kinetic scheme only results in arround two percents
faster computations compared to the explicit strategy which is due to the high quadratic cost of the
implicit method. We believe that it is not possible to lower this cost when it comes to unconditionally
stable methods, because the associated stencil has to cover the entire computational domain.
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Figure 3: Comparing implicit, iterative and explicit kinetic solvers on a Riemann problem.

Riemann problem. We compare the fully implicit kinetic scheme and iterative kinetic scheme to
explicit methods. The testcase is given by the Riemann problem with initial data U0(x) = 1x<0UL +
1x>0UR where we define

UL =

(
2
1/2

)
, UR =

(
1
1/2

)
.

The solutions consists in a 1-rarefaction and a 2-shock. The iterative kinetic scheme uses the half-disk
Maxwellian, and we choose the parameters α = 1 and εtol = 10−9 for the stopping criterion. All the
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schemes use an explicit time step, and the results are given in Figure 3. Three aspects have to be
considered, namely the accuracy, the computational cost and the stability. In the plotted curves, we
see that in terms of efficiency both iterative and implicit kinetic schemes are at their disadvantage.
Especially, the quadratic complexity of the fully implicit version results in a steeper slope of the
efficiency curve. However this is only one part of the picture, and we know from Proposition 5.4
and Remark 5.5 that the iterative kinetic scheme (61) satisfies a discrete entropy inequality without
restriction on the time step, assuming enough iterations are performed. Concretely the greater stability
comes with a higher level of diffusion which is noticeable in the first two plots of Figure 3. This increased
diffusion remains within acceptable margin, and is the price to pay to have better stability properties.
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Figure 4: Parabolic bowl approximated by explicit and iterative kinetic schemes. First row: elevation
and discharge at time 0.75, second row: convergence and efficiency curves. The stopping criteria used
in the two kinetic iterative schemes combines the standard tolerance condition with tolerance ε = 10−9

and the entropy condition (79).

Parabolic bowl. Next we consider Thacker’s testcase, also known as the parabolic bowl testcase,
taken from [13]. We plot the numerical solution at time 0.75 in Figure 4. This testcase is relevant as it
provides us with a non trivial analytical solution enabling to plot convergence curves, and it is known
to be challenging numerically, as it presents a varying bottom together with an evolving wet/dry front
and a discontinuous velocity profile. It is interesting to note that the different choice of Maxwellian
used in the two iterative kinetic schemes has very little impact on the approximation. In both cases we
obtain a convergence with first order accuracy, and unsurprisingly the numerical cost is higher than
for fully explicit methods due to the number of subiterations required to update the solution. One
should also note that the use of the half-disk Maxwellian is slightly more expensive than the simpler
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index Maxwellian. Besides, in this testcase the iterative kinetic scheme with index Maxwellian was
always able to fulfill the entropy condition (79) after some iterations, which we only proved rigorously
for the half-disk Maxwellian. Hence despite using the wrong Maxwellian, it seems that the iterative
kinetic scheme in question still has better stability properties than fully explicit methods. This will be
further corroborated with the next testcase.
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Figure 5: Evolution of the relative total energy obtained for various explicit and iterative kinetic
schemes.

Total energy dissipation. Given the efficiency curves shown in Figures 3 and 4, the explicit strategy
seems preferable in terms of the computational cost at a prescribed accuracy. However we have to
stress that among all the considered methods, the iterative kinetic scheme with half-disk Maxwellian is
the only one for which we can prove existence of a fully discrete entropy inequality for a large enough
but finite number of iterations. We remind that on the opposite, the explicit kinetic scheme with
hydrostatic reconstruction does not satisfy a discrete entropy inequality without quadratic error term,
however restrictive the CFL condition is, which is the result from Proposition 3.8 in [3]. Therefore the
iterative scheme can be considered an improvement over this aspect, and we illustrate this through a
numerical test where the explicit strategy increases the total energy, unlike the iterative method.

More precisely we measure the variation of total energy in a configuration with a varying bottom,
and where the initial condition is given by a flat free surface and a constant nonzero velocity. Periodic
boundary conditions are used, and the results can be seen in Figure 5. Interestingly all the iterative
methods manage to dissipate the total energy, even the scheme using the index Maxwellian, for which
there is no proof of discrete entropy inequality. On the contrary, the explicit kinetic scheme with
half-disk Maxwellian increases the energy in the first few time steps, after what it decreases. The same
goes for the explicit HLL scheme, and as a result these two explicit methods might not converge to
the entropy solution. For comparison we also added in dark blue the iterative kinetic scheme with
α = 0 and whose subiterations stop as soon as the entropy condition (79) is verified. We can see that
after some time this scheme becomes less dissipative than iterative kinetic methods using the standard
tolerance condition.
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6.2 The two dimensional case
The iterative kinetic scheme (60) and its version with hydrostatic reconstruction (73) can be easily
extended to the two dimensional case. We believe that the results obtained in Section 5 the 1D
setting carry to the higher dimension. We leave this study for later work, and perform a numerical
experiment consisting of the 2D parabolic bowl [13] with a cartesian mesh. The results are displayed
in Figures 6 and 7. We see that when increasing the tolerance value to εtol = 10−5, the experimental
order of convergence of the iterative scheme decreases. On the other hand, the smaller εtol is, the more
iterations are needed to reach the stopping criteria which translates to an increase in computational
time. We also note that we needed to decrease the CFL constant form 1/2 to 1/10 to converge with a
tolerance of εtol = 10−9.
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Figure 6: Convergence and efficiency curves obtained with the 2D parabolic bowl testcase. Different
tolerances ε are compared for the iterative kinetic scheme. A CFL constant of 1/2 was used, except
for the case ε = 10−9 where we set it to 1/10.
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A Expression of the numerical fluxes
The optimal choice for the Maxwellian is given by (4). Unfortunately the explicit expression for the
numerical fluxes appearing in (39) is hardly possible with the choice (4) and the use of approximate
quadrature formula for the integrals in (4) will degrade the accuracy of the scheme and increase the
computational costs. Hence, we we choose M defined by the first expression in (37) and relation (39)
becomes

U int
i =

1

2
√
3

(∫ min(0,bnj )

min(0,an
j )

P∑
j=i

√
2hn

j

g

(
1
ξ

)
(−σξ)j−i

(1− σξ)j−i+1
dξ

+

∫ max(0,bnj )

max(0,an
j )

i∑
j=1

√
2hn

j

g

(
1
ξ

)
(σξ)i−j

(1 + σξ)i−j+1
dξ
)
,

with anj = un
j −

√
3 cnj and bnj = un

j +
√
3 cnj . The expressions of hint

i and (hu)int
i are given by

hint
i =

1

2
√
3

( P∑
j=i

√
2hn

j

g

∫ min(0,bnj )

min(0,an
j )

(−σξ)j−i

(1− σξ)j−i+1
dξ︸ ︷︷ ︸

(Ah)i,j

+

i∑
j=1

√
2hn

j

g

∫ max(0,bnj )

max(0,an
j )

(σξ)i−j

(1 + σξ)i−j+1
dξ︸ ︷︷ ︸

(Bh)i,j

)
(84)

(hu)int
i =

1

2
√
3

( P∑
j=i

− 1

σ

√
2hn

j

g

∫ min(0,bnj )

min(0,an
j )

(−σξ)j−i+1

(1− σξ)j−i+1
dξ︸ ︷︷ ︸

(Ahu)i,j

+

i∑
j=1

1

σ

√
2hn

j

g

∫ max(0,bnj )

max(0,an
j )

(σξ)i−j+1

(1 + σξ)i−j+1
dξ︸ ︷︷ ︸

(Bhu)i,j

)
(85)

Now we need to compute analytically the integrals of both expressions using the following lemmas.

Lemma A.1 If we denote y = 1− 1
1+x for all x ∈ R\{−1} and C ∈ R we have the following primitive:∫
xk

(1 + x)k+1
dx = ln(|1 + x|)−

k∑
l=1

yl

l
+ C.

Lemma A.2 Using the same notation as in the previous lemma, we have∫
xk

(1 + x)k
dx = −k ln(|1 + x|) + x+

k−1∑
l=1

l
yk−l

k − l
+ C ′.
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Proof of Lemma A.1. We have

I =

∫
xk

(1 + x)k+1
dx =

∫
xk

(1 + x)k
1

1 + x
dx =

∫
(1− x

1 + x
)k

1

1 + x

.
We pose y = 1− 1

1+x

I =

∫
yk(1− y)

dy

(1− y)2
=

∫
yk − 1

1− y
+

1

1− y
dy

Now we use the formula yk − 1 = (y − 1)(yk−1 + yk−2 + . . .+ y + 1). And we obtain

I = −
∫ k−1∑

l=0

yldy − ln(|1− y|) + C C ∈ R

= ln(|1 + x|)−
k∑

l=1

yl

l
+ C ′ C ′ ∈ R

�

Proof of Lemma A.2. We already have denoted y = x
1+x = 1− 1

1+x

I =

∫ ( x

1 + x

)k
dx =

∫
ykdy

(1− y)2
=

∫ ( yk − 1

(1− y)2
+

1

(1− y)2

)
dy

where the formula yk − 1 = (y − 1)(yk−1 + yk−2 + . . .+ y + 1) has been used. Hence

I =−
∫ k−1∑

l=0

yl

1− y
dy + x+ C = −

∫ k−1∑
l=0

yl − 1

1− y
dy −

∫
1

1− y

k−1∑
l=0

dy + x+ C

=

∫ k−1∑
l=1

yl − 1

y − 1
dy + k ln(|1− y|) + x+ C ′ =

∫ k−1∑
l=1

l−1∑
p=0

ypdy − k ln(|1 + x|) + x+ C ′

=

k−1∑
l=1

l

∫
yk−1−ldy − k ln(|1 + x|) + x+ C ′ =

k−1∑
l=1

l
yk−l

k − l
− k ln(|1 + x|) + x+ C ′′,

with (C,C ′, C ′′) ∈ R3. �

We are now able to compute the quantities Ahi,j , Bhi,j , Ahui,j , Bhui,j

Ahi,j =

∫ min(0,bnj )

min(0,an
j )

(−σξ)j−i

(1− σξ)j−i+1
dξ = − 1

σ

∫ −min(0,bnj )σ

−min(0,an
j )σ

(x)j−i

(1 + x)j−i+1
dx

=
1

σ

[
ln(|1 + x|)−

j−i∑
l=1

yl

l

]−min(0,an
j )σ

−min(0,bnj )σ
. (86)

Bhi,j =

∫ max(0,bnj )

max(0,an
j )

(σξ)i−j

(1 + σξ)i−j+1
dξ =

1

σ

∫ max(0,bnj )σ

max(0,an
j )σ

(x)i−j

(1 + x)i−j+1
dx

=
1

σ

[
ln(|1 + x|)−

i−j∑
l=1

yl

l

]max(0,bnj )σ

max(0,an
j )σ

(87)

And similarly we obtain the formulas for Ahu and Bhu under the form

Ahui,j =
1

σ

[
− (j − i+ 1) ln(|1 + x|) + x+

j−i∑
l=1

l
yj−i+1−l

j − i+ 1− l

]−min(0,an
j )σ

−min(0,bnj )σ
(88)
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Bhui,j =
1

σ

[
− (i− j + 1) ln(|1 + x|) + x+

i−j∑
l=1

l
yi−j+1−l

i− j + 1− l

]max(0,bnj )σ

max(0,an
j )σ

(89)

To conclude this paragraph, we give the final expression of U int
i

hint
i =

1

2σ
√
3

( P∑
j=i

√
2hn

j

g

[
ln(|1 + x|)−

j−i∑
l=1

yl

l

]−min(0,an
j )σ

−min(0,bnj )σ
(90)

+

i∑
j=1

√
2hn

j

g

[
ln(|1 + x|)−

i−j∑
l=1

yl

l

]max(0,bnj )σ

max(0,an
j )σ

)
(91)

(hu)int
i =

1

2σ2
√
3

(
−

P∑
j=i

√
2hn

j

g

[
− (j − i+ 1) ln(|1 + x|) + x+

j−i∑
k=1

(j − i+ 1− k)
yk

k

]−min(0,an
j )σ

−min(0,bnj )σ
(92)

+

i∑
j=1

√
2hn

j

g

[
− (i− j + 1) ln(|1 + x|) + x+

i−j∑
k=1

(i− j + 1− k)
yk

k

]max(0,bnj )σ

max(0,an
j )σ

)
(93)

B Computations of the fluxes involving the boundary condi-
tions

We assume the ghost quantities Un+1
0 and Un+1

P+1 at time tn+1 to be known. The exterior contribution
given in (38) also writes

U ext
i =

∫
R−

(
1
ξ

)
(−σξ)P−i+1

(1− σξ)P−i+1
Mn+1

P+1dξ +

∫
R+

(
1
ξ

)
(σξ)i

(1 + σξ)i
Mn+1

0 dξ.

Using computations similar to what has been proposed in Appendix A, we get

U ext
i =

1

2
√
3

[√
2hn+1

P+1

g

∫ min(0,bn+1
P+1)

min(0,an+1
P+1)

(
1
ξ

)
(−σξ)P−i+1

(1− σξ)P−i+1
dξ

+

√
2hn+1

0

g

∫ max(0,bn+1
0 )

max(0,an+1
0 )

(
1
ξ

)
(σξ)i

(1 + σξ)i
dξ

]
,

or equivalently

hext
i =

1

2
√
3

[√
2hn+1

P+1

g

∫ min(0,bn+1
P+1)

min(0,an+1
P+1)

(−σξ)P−i+1

(1− σξ)P−i+1
dξ

+

√
2hn+1

0

g

∫ max(0,bn+1
0 )

max(0,an+1
0 )

(σξ)i

(1 + σξ)i
dξ

]
,

(hu)ext
i =

1

2
√
3

[√
2hn+1

P+1

g

∫ min(0,bn+1
P+1)

min(0,an+1
P+1)

ξ
(−σξ)P−i+1

(1− σξ)P−i+1
dξ

+

√
2hn+1

0

g

∫ max(0,bn+1
0 )

max(0,an+1
0 )

ξ
(σξ)i

(1 + σξ)i
dξ

]
.

As explained in Section 3.4, in practice we will replace the unknown values of Un+1
0 , Un+1

P+1 with
that of Un

0 , U
n
P+1. The expression of hext

i can then be established by the mean of Lemma A.2. We have
now to find an analytic expression for the quantity

∫
xk+1

(1+x)k
dx in order to obtain the final expression

(hu)ext
i . The following lemma holds.
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Lemma B.1 Let k ∈ N∗. If we denote y = 1 − 1
1+x for all x ∈ R\{−1} and C ∈ R we have the

following expression∫
xk+1

(1 + x)k
dx =

(
−

k−2∑
r=1

(k − r − 1)
k − r

2

yr

r

)
1k≥3 −

(
k(k − 1)

2
ln|1− y|

)
1k≥2

− k + 1

(1− y)
+

1

2(1− y)2
−
( k−1∑

q=1

(k − q)
yq

q

)
1k≥2 − k ln|1− y|+ C

Proof. We begin by performing the change of variable y = 1− 1
1+x∫

xk+1

(1 + x)k
dx =

∫
yk
( 1

1− y
− 1
) dy

(1− y)2
=

∫
yk

(1− y)3
dy −

∫
yk

(1− y)2
dy .

Making use of yk − 1 = (y − 1)(yk−1 + yk−2 + · · ·+ 1) as before, we remark the following relation for
k ≥ 1

yk

1− y
=

yk − 1

1− y
+

1

1− y
= −

k−1∑
p=0

yp +
1

1− y

Dividing this by 1− y leads to

yk

(1− y)2
= −

k−1∑
p=0

yp

1− y
+

1

(1− y)2
= −

k−1∑
p=0

(yp − 1

1− y
+

1

1− y

)
+

1

(1− y)2

=

( k−1∑
p=1

p−1∑
q=0

yq
)
1k≥2 −

k

1− y
+

1

(1− y)2

Iterating this one more time we find

yk

(1− y)3
=

( k−1∑
p=1

p−1∑
q=0

yq

1− y

)
1k≥2 −

k

(1− y)2
+

1

(1− y)3

=

( k−1∑
p=1

p−1∑
q=0

yq − 1

1− y
+

1

1− y

)
1k≥2 −

k

(1− y)2
+

1

(1− y)3

=

(
−

k−1∑
p=2

p−1∑
q=1

q−1∑
r=0

yr
)
1k≥3 +

k(k − 1)

2(1− y)
1k≥2 −

k

(1− y)2
+

1

(1− y)3

As a consequence we get the following primitives up to a constant∫
yk

(1− y)2
dy =

( k−1∑
p=1

p∑
q=1

yq

q

)
1k≥2 + k ln|1− y|+ 1

(1− y)∫
yk

(1− y)3
dy =

(
−

k−1∑
p=2

p−1∑
q=1

q∑
r=1

yr

r

)
1k≥3 −

k(k − 1)

2
ln|1− y|1k≥2

− k

(1− y)
+

1

2(1− y)2

Finally, we simplify the double and triple sums

k−1∑
p=1

p∑
q=1

yq

q
=

k−1∑
q=1

k−1∑
p=q

yq

q
=

k−1∑
q=1

(k − q)
yq

q
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From this we deduce that

k−1∑
p=2

p−1∑
q=1

q∑
r=1

yr

r
=

k−1∑
p=2

p−1∑
r=1

(p− r)
yr

r

=

k−2∑
p=1

p∑
r=1

(p− r + 1)
yr

r
=

k−2∑
r=1

k−2∑
p=r

(p− r + 1)
yr

r

=

k−2∑
r=1

( (k − r − 1)(k + r − 2)

2
+ (k − r − 1)(1− r)

)yr
r

=

k−2∑
r=1

(k − r − 1)
k − r

2

yr

r

As a conclusion we have the expression∫
xk+1

(1 + x)k
dx =

(
−

k−2∑
r=1

(k − r − 1)
k − r

2

yr

r

)
1k≥3 −

(
k(k − 1)

2
ln|1− y|

)
1k≥2

− k + 1

(1− y)
+

1

2(1− y)2
−
( k−1∑

q=1

(k − q)
yq

q

)
1k≥2 − k ln|1− y|+ C

where C ∈ R and with y = x/(x+ 1). �
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