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Abstract

Mechanical characterization usually relies on standardized sample geometries where homogeneous state of strain and
stress are prescribed. Hence, many tests are required to capture the material response over various loading conditions.
Using complex geometry allows for exploring wider domain in a single test but would require to have access to local strains
and stresses to feed models. In that context, digital image correlation and clustering technique can be used to formulate
an inverse problem able to identify fields of stress tensors without a priori constitutive modelling. This study explores
the performances of a rate-dependent formulation of such a data-driven stress identification method, for capturing
using a single test, the monotonic high strain-rate dependent response of a mild steel alloy. After presenting the problem
formulation and resolution framework, a digital twin of a high speed tensile test performed on a notched sample geometry
is used to explore identification performances. It allows defining confidence intervals depending on multiple indicators
(stress magnitude, multiaxiality) and evaluate the range of strain-rate levels simultaneously captured. The method is
eventually applied to a real experiment instrumented with high spatial resolution ultra high speed camera. Stress tensor
fields are identified, within a 10 % confidence over the major part of the sample, and its material rate-dependence is
retrieved from 20 to 300 s−1 and found in very good agreement with literature. This is the first experimental application
of the DDI in a high strain-rate context. The proposed framework may substantially widen the sample design space for
mechanical characterization but also allow for probing local stresses during dynamic localization processes where in-situ
quantitative data are still missing.
License: CC-BY @TheAuthors
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1. Introduction

Statically determinate test configurations, usually rely-
ing on homogeneous states of strain and stress, have his-
torically been used to characterize the thermo-mechanical
response of materials using a limited set of standardized
sample geometries (e.g. dog-bone (1D), cruciform (2D)).
In this context, both strain and stress, required to sample
the material response, can be captured independently as
scalar values from sensors in a purely experimental way.
Such tests are usually thought as mono-parametric (e.g.
constant strain-rate and temperature, uniaxial or in pro-
portional loading) so a large number of test is required
to sample a large loading space. Introducing concentra-
tors seems to be a relevant solution to produce, at once,
a large range of solicitations. Nevertheless, while strains
can be captured using full-field measurements (like e.g.
digital image correlation (DIC)), local stresses can not be
measured in such a statistically indeterminate configura-
tion. Indeed, in the general case there is no explicit link
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between the stress distribution and the measured external
load. A related scientific bottleneck is the in-situ analysis
of complex transient localization processes, like Lüders-
band, twins or dynamic shear-bands. Similarly, the lo-
cal material response can not be properly analysed, with-
out strong geometrical or constitutive assumptions. Both
issues could, in principle, be tackled developing inverse
stress field identification methods able to probe stresses
within arbitrary sample geometries or heterogeneous ma-
terial. Here, using the stress field itself as an unknown
allows by-passing the use of an a priori constitutive equa-
tion to analyze such statistically indeterminate configu-
rations, contrary to more standard inverse method such
as virtual field method (VFM), finite-element model up-
dating (FEMU) which are parametric by nature. In that
context, several strategies have been recently adopted to
estimate heterogeneous stress fields without using a consti-
tutive equation. All these strategies rely on full-field mea-
surements and a regularization of the ill-posed mechanical
problem, but they differ on the chosen regularization.

In 2014, Pierron and his co-authors [1] devised a strategy
to estimate heterogeneous stress fields in dynamics (tran-
sient load) without using a constitutive equation. The
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strategy relies on a one dimensional purely inertial con-
figuration. Under the assumptions of plane stress, and
a homogeneous and constant density of the material, the
authors are able to estimate the mean stress field pro-
file in the specimen by a simple spatial integration of the
second Newton’s law of motion. Here, the acceleration
acquired experimentally acts as a 1D load cell, which re-
quires recording the kinematic fields at ultra-high speed
(≥ 1 Mfps). This work opened the way to a series of new
standards: the Image-Based Inertial Impact (IBII) [2], Re-
lease (IBIR) [3] and Ultrasonic Shaking (IBUS) [4] tests.
Among other things, the authors could eventually identify
the elastic or visco-elastic modulus and tensile strength of
brittle materials or hardening flow of elasto-plastic ones [5]
at high strain-rate. In these examples, the purely iner-
tial and uniaxial nature of the test regularizes the prob-
lem. Nevertheless, such a loading configuration tends to
limit the achievable strain level to only few percents (not
appropriate for ductile characterization) and part of the
stress tensor (transverse component) remains inaccessible.
In 2021, Liu et al. [6] and Cameron and his co-author [7]
devised another strategy to estimate stress fields without
postulating a constitutive equation. Assuming that the
material is isotropic, the methods developed by these au-
thors rely on the alignment of the principal directions of
stress with strain or strain-rate. This assumption then
allows obtaining a mathematically closed problem, and
thus the analytical estimation of stresses. These methods
have been tested on numerical example and experimen-
tally in [6]. In [7], the authors discuss the range of validity
of such an assumption: mainly in isotropic elasticity, plas-
ticity with associative flow rules and for associative flow
rules with an isotropic yield function. To the authors’
knowledge, at this stage, this method cannot address the
problem of elasto-plastic transition where stresses are not
aligned with strains anymore and not aligned with plastic
strain-rates yet. A third kind of strategy was developed
in the past 4 years: the so called Data-Driven approaches.
These methods can be used to either solve the direct me-
chanical problem [8] (i.e. determining the displacement
and stress distribution in a structure knowing the mate-
rial response and boundary conditions), or the inverse me-
chanical problem [9] (i.e. determining some unobservable
quantities or parameters from field measurements). The
Data-Driven method were first introduced in the context
of computational mechanics by Kirchdoerfer and Ortiz [8,
10] (DDCM). In their work, the authors replaced the con-
stitutive equation by a minimization process and a mate-
rial database. A solution to the direct problem is found
by minimizing a distance between computed mechanical
states (strains and stresses) and a set of admissible ma-
terial states belonging to the database. Such a (strains
and stresses) database can be built experimentally, using
the inverse Data-Driven Identification (DDI) framework
introduced in [9, 11]. This new problem aims to estimate
stress fields, from experimental full-field measurements of
displacement (and external load), without postulating any

constitutive equation (contrary to e.g. VFM or FEMU).
Using synthetic data, the authors demonstrated the abil-
ity of their algorithm to estimate stresses fields in homoge-
neous structures subjected to various loading cases (quasi-
static and dynamic) and made of different class of material
(hyper-elastic, elasto-plastic). It was recently extended
numerically to heterogeneous (two-phase materials) hyper-
elastic structures [12]. This Data-Driven method was then
deployed experimentally by Dalémat et al. in [13]. In
this study, perforated hyper-elastic membranes are sub-
mitted to uniaxial tensile tests. In a more recent paper [14]
the authors extensively discuss the proper way to handle
imperfect experimental data. They especially discussed
boundary conditions issues for imperfectly defined edges
and the way to tackle the issue of missing data. More re-
cently, the Data-Driven strategy was applied by Langlois
and his co-authors to address the topic of history depen-
dent materials [15]. The use of this method enabled them
to estimate stress fields during the formation of plastic in-
stabilities such as Piobert-Lüders bands. In these strate-
gies, the regularization comes from the assumption that
the material response lies on a manifold in a feature space
which is chosen a priori. The underlying hypothesis of
this method will be presented later-on in this paper. Fur-
thermore, one could imagine combining this method with
the IBI methods in order to estimate heterogeneous 2D
stress fields in transient dynamics without even needing
load measurements. It has partly been demonstrated, on
synthetic data, in [11].

These emergent strategies can potentially help: (1) to
experimentally probe the local mechanical response in
loading scenarios, impossible to trigger with homogeneous
stress-states, in order to better understand their complex
underlying physics but also reach higher strain and strain-
rate levels using standard loading devices and geometri-
cal concentrators. (2) To assess, without making any as-
sumption, the validity of the current library of material
constitutive equations outside their traditional calibration
domain (e.g. introducing strain and strain rate hetero-
geneities, localization, multiaxiality) and (3) drastically
reduce the number of tests required to characterize the
behaviour of a material, sampling more the loading space
with a limited number of samples. It is important to note
that DDI is not made to model the mechanical response
but to reconstruct / identify stress-tensor fields provid-
ing eventually high dimensional strain-stress database, in
actual complex loading situations. Such a rich database
could later be used for more traditional constitutive mod-
elling, model fitting [16] or sparse model identification [17],
machine-learning (e.g. Neural-Network [18, 19]) or direct
data-driven simulations (e.g DDCM [10]). In that sense,
it comes as a new object in the experimentalist toolbox
designed to address both scientific bottlenecks of mechan-
ical characterization: (1) geometrical and (2) constitu-
tive bottlenecks. Indeed, while regression techniques, like
FEMU, relax geometrical constraints they need an a priori
constitutive formulation. Machine-learning methods can
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learn the constitutive relation but only from statistically
determinate tests where both input (strain) and output
(stresses) can be measured. DIC and DDI reconstructs
strain-stress database by-passing both limitations. The
objective of this paper is to deploy a rate-dependent DDI
formulation to capture the yield stress and hardening rate-
dependence of a mild steel using a single dynamic test. In
that context, the DDI formulation and its resolution strat-
egy will first be recalled. Then, a digital twin is built to
investigate the ability of such a method and framework
to estimate stress fields during our particular monotonic
high strain-rate experiment, and to provide realistic error
bars. At last, the DDI is applied to experimental data and
the captured experimental rate-dependence is compared to
literature.

2. Theoretical Framework

The inverse Data-Driven Identification method requires
both, a rich database of displacement fields (obtained for
example with DIC on complex sample geometries), and net
external forces (usually obtained with a load cell). Com-
bined with conservation laws (balance of linear and angu-
lar momentum), valid whatever the material, it is possible
to build a minimization problem where the components of
stress fields are the sought field variables. The following
section guides the reader up to final formulation of the
global minimization problem. To make the implementa-
tion clearer, we use in the following only matrix notation
instead of tensorial one. By default, we use [•] for matrices
and {•} for vectors. When indices are explicitly required
they are emphasized as followed, Xj

i , where i and j are
matrix rows and columns respectively. While the main in-
gredients are recalled in details we refer interested readers
to [9] where the DDI problem was originally introduced.
This work is also inspired by the works of Eggersmann
and his co-authors [20] where a differential representation
framework for DDCM, i.e. conditioning the material data
set to short histories of stress and strain, was investigated.
Furthermore, the modified strategy, regarding the initial-
ization of the problem proposed in [11] is adopted. Some
notations that will be recalled and used in this work were
introduced by Langlois and his co-authors in [15]. The
problem is formulated here in small strain, however, it has
already been implemented and used in finite strain in [13,
21]. Moreover, for experimental concerns, we will focus
only on plane-stress formalism.

2.1. Static equilibrium problem

The general problem considers a 2D structure made of
a deformable continuum material (see Fig. 1). This struc-
ture is discretized using a Finite Element (FE) mesh with
Ne elements and Nn nodes and the time history is dis-
cretized through Nt time steps. Available data are the
following:

Figure 1: 2D deformable structure made of T3P1 elements
over a domain Ω. Blue bullets define the border ∂F where
loads and/or displacements are prescribed. Note that the
upper part of the boundary ∂F is named ∂Fup. Red ar-
rows show a distribution of reaction or applied forces. The
configuration is the one adopted for the digital twin (see
Sec. 4) and the experimental investigation (see Sec. 5).

• [u]: a 2Nn×Nt matrix collecting nodal displacements
obtained from DIC over the domain Ω. The dimension
2Nn means that displacement vectors are organized in
vector format such as {ut} = {U t

1, ...,U t
n,Vt

1, ...,Vt
n}

where U and V are transverse (in the direction 1) and
axial (in the direction 2) displacements respectively
(see Fig. 1),

• [B]: a 3Ne × 2Nn matrix obtained from the assem-
bly of elementary FE gradient operators. The dimen-
sion 3Ne encloses the 3 components of the symmet-
ric displacement gradient. It is computed using the
mesh connectivity and relies on triangular elements
and classical linear Lagrange shape functions. It al-
lows for computing strain tensors at every quadrature
points, here element centroids noted e. They are col-
lected in a 3Ne ×Nt matrix:

[ε] = [B] [u] . (1)

• [w]: a 3Ne × 3Ne diagonal matrix collecting the ele-
mentary integration weights times Jacobian determi-
nants of the transformation of each element from its
reference coordinates frame to its actual shape in the
global undeformed coordinate system,

• {F}: a Nt vector collecting the net force, along the
axial direction 2 (see Fig. 1), of the nodal forces on
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the upper boundary ∂Fup:

{F} = b
∑

k∈∂Fup

f t
Nn+k ∀t ∈ [1, Nt], (2)

with b the thickness of the structure, supposed to be
constant, and [f ] a 2Nn × Nt matrix collecting the
nodal internal forces. Nn + k refers to axial displace-
ments only, inline with displacement vector organiza-
tion.

The discretized balance of momentum can therefore be
expressed through a set of Nt systems of 2Nn linear equa-
tions:

[B]
T
[w]

T {
σt

}
=

{
f t
}
, ∀t ∈ [1, Nt], (3)

with
∑

k∈∂Fup

f t
Nn+k =

F t

e
and f t

k = 0, ∀k ∈ Ω\∂F.

Considering boundary conditions, especially the fact
that only the net force along the axial direction 2 on ∂Fup

(see Fig. 1) is usually known in practice, and that displace-
ments are prescribed everywhere else on ∂F , the set of 2Nn

equations can be reduced to N̂ = 2(Nn − card(∂F )) + 1
equations. It is implemented by discarding from the sys-
tem of equations (3) the degrees of freedom (DOF) associ-
ated to boundary nodes (∂F ) and by adding the constraint
introduced in Eq. 2. It leads to the definition of new con-

densed operators
[
B̂
]
and

[
f̂
]
summarizing mechanical

equilibrium into a compact form:[
B̂
]T

[w]
T {

σt
}
=

{
f̂ t
}
, ∀t ∈ [1, Nt] (4)

2.2. Data-Driven Identification problem formulation

The main idea behind the DDI method consists in as-
suming that a constitutive equation exists, hence there is
a feature space (still to be defined) where the whole set of
mechanical states lies on a manifold (possibly with multi-
ple branches for heterogeneous materials [12]). In short,
among the infinity of solution of the static problem (see
Eq. 4), one seeks for the one that minimizes the spread
around an unknown manifold within a well defined feature
space. Notice that in the following, such a manifold will be
approximated by discrete points named material states, in
the sense that they literally sample the material response
in this space. Mechanical states are piece-wisely clustered
around these material states which allows for regularizing
the ill-posed problem of stress identification as we will see
later-on. As a consequence 3 main ingredients have to be
defined: (1) such a ”well defined” feature space, (2) a norm
for estimating distances between states in this potentially
high dimensional feature space, and (3) the sampling of
the manifold (number of clusters). The main assumptions
of the method are enclosed in these three ingredients.

The feature space has to be chosen wisely regarding the
various dependencies of the material response to observ-
able and sought quantities. In the case of DDI, such a

feature space is necessary for clustering / regularisation
purposes (see 2.3). The choice of features and dimensions
of this space for analyzing a specific dataset (i.e a particu-
lar geometry, loading condition and material behavior) de-
pends on the bijective nature of the relationship between
the local stress, strain and macroscopic force. If the re-
lationship is not bijective, the deformation / stress space
is not sufficient and additional relevant features must be
added to ensure that the solver does not cluster material
points that may give different stresses for the same local
deformation and macroscopic force. For example, consider
a material whose behaviour depends on strain-rate. If the
test produces only homogeneous strain and stress states,
then all points with the same strain will have the same
strain-rate. It is therefore not necessary to add strain-
rate as a feature to group states: strain and stress are
sufficient information to differentiate them. On the other
hand, if the test shows a localization of the deformation,
while macroscopically presenting an almost perfect plastic
response, then the strain-rate must be added as a feature.
Indeed, due to the difference in the local strain-rate in-
duced by the localisation, different points of the material
may, at some point, undergo the same strain while hav-
ing a different stress for the same external load. In this
sense, the feature space does not necessarily have to match
the formal representation of the material behaviour (it is
not a constitutive modelling space), but it must give the
solver sufficient freedom not to group together material
points, encountered at various location or time, behaving
differently. Momentum balance and strain definition en-
sure then compatibility and stress admissibility. To the
authors’ knowledge, a proper theoretical investigation of
the feature space representation in DDI has not been pro-
posed yet and it goes way beyond the scope of the present
paper. In the following, since we will focus on a monotonic
and proportional loading applied to a rate-dependent ma-
terial we will use in the following a first order differential
approach as proposed in [20] for non-linear visco-elastic
material. The validity of this framework for our particu-
lar experimental case will be checked later-on numerically,
using a digital twin in Section 4 and then experimentally
in Section 5 by comparing the identified material response
with uniaxial test data from the literature. In that frame-
work, the material response is only described using four
tensorial features, strains, stresses and their first order
time derivatives. In practice, and similarly to what is done
in [15], an incremental approach will be used, leading to a
dependence of the current stress to the current strain and
the former strain and stress:

σt = σ̃t
(
εt, εt−1, σ̃t−1

)
. (5)

σ̃ will be further used as the DDI estimation of the ac-
tual stress in this particular feature space. Then, let us
define a distance in this strain and stress tensor related
feature space. Following [8] we choose a norm built from a
symmetric positive definite fourth-order tensor Co. Noting
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for example {Pt} and {Qt}, two vectors related to some
strain and stress tensorial quantities at time t respectively
in Mandel-Voigt notation, an energetic ∥∥2Co

norm can be
introduced as follows:

∥Pt,Qt∥2Co
=

{
Pt

}T
[Co]

{
Pt

}
+
{
Qt

}T
[Co]

-1 {Qt
}
. (6)

Normalizing data, such as:{
Pt

}
=

[√
Co

] {
Pt

}
,{

Qt
}
=

[√
Co

]-1 {
Qt

}
,

(7)

the norm simply becomes:

∥Pt,Qt∥2Co
=

{
Pt

}T {
Pt

}
+
{
Qt

}T {
Qt

}
. (8)

Notice that the square root of the tensor [Co] is com-
puted using an eigen value decomposition,

[√
Co

]
=

[V ]
[√

D
]
[V ]

T
, where [V ] and [D] are matrices containing

eigen vectors and eigen values respectively. Such a nor-
malization will help being more generic, especially avoid-
ing being intrusive for the clustering part of the problem
(see Sec. 2.3). As introduced above, to address the issue of
ill-posedness of the stress field identification problem, the
material response is discretized with a finite set of N∗ un-
known material states ({ε∗} , {ε∗∗} , {σ∗} , {σ∗∗}), where
•∗ are related to the current state and •∗∗ to the former
state. We will see that these N∗ states are in practice de-
fined as barycenters of mechanical state clusters. These
clusters regroup the set of strains and sought stresses(
{εt} ,

{
εt−1

}
,
{
σ̃t

}
,
{
σ̃t−1

})
that are close in the ∥∥2Co

norm.

Considering the feature space introduced in Eq. 5, the
norm introduced in Eq. 8 and the sampling of the material
response into N∗ current and former states, the problem
can be formulated as a global minimization:

min
ε∗ε∗∗σ̂
σ∗σ∗∗S

Ψ(ε, ε∗, ε∗∗, σ̃,σ∗,σ∗∗,S) , (9)

where

Ψ =
1

2

Nt∑
t=2

(
∥Pt,Qt∥2Co

+ ∥Pt−1,Qt−1∥2Co

)
, (10)

with

Pt =
[√

pt
] ({

εt
}
−
[
St

]
{ε∗}

)
,

Pt−1 =
[√

pt−1
] ({

εt−1
}
−
[
St

]
{ε∗∗}

)
,

Qt =
[√

pt
] ({

σ̃t
}
−
[
St

]
{σ∗}

)
,

Qt−1 =
[√

pt−1
] ({

σ̃t−1
}
−
[
St

]
{σ∗∗}

)
,

(11)

under the constraint that the equilibrium equations (Eq. 4)
are satisfied. [p] is a 3Ne × 3Ne × Nt matrix weight-

ing mechanical states contributions for every time-steps
within the functional Ψ. Details regarding the role of these
weights are provided in Section 2.3. [S] is a 3Ne×3N∗×Nt

selection matrix that maps the N∗ material states to the
mechanical states for every time-steps. Eq. 9 must be un-
derstood as the global minimization (time and space) of
the scattering of mechanical states around their associ-
ated N∗ material states (barycenters) in the particular fea-
ture space (εt, εt−1, σ̃t, σ̃t−1). If equilibrium constraints
are enforced using Lagrange multipliers, the following cost
function can be obtained:

Φ = Ψ+

Nt∑
t=1

([
B̂
]T

[w]
T {

σ̃t
}
−

{
f̂ t
}){

λt
}

∀t ∈ [1, Nt].

(12)

Notice that the introduction of normalized quantities “•”
also requires the normalization of B̂ with [Co]. It is sim-
ply done by assembling normalized gradient operators. Fi-
nally, two problems can be formulated: (1) the mechanical
problem and (2) the material one. The stationarity of Φ
with respect to {λt} and

{
σ̃t
}

leads to the mechanical

problem and the following set of Nt systems of 3Ne × N̂
equations:[B̂]T

[w]
T

0

αt [pt]
-1
[w]

[
B̂
]
{

σ̃t

λt

}
=

{
f̂ t

Dt

}
, (13)

with

αt =

{
1 ∀t ∈ [1, Nt],

2 ∀t ∈ [2 : Nt−1],

{
Dt

}
=


[
St+1

]
{σ∗∗} t = 1,[

St+1
]
{σ∗∗}+ [St] {σ∗} ∀t ∈ [2 : Nt−1],

[St] {σ∗} t = Nt.

(14)

Then, the stationarity with respect to the material states
leads to the material problem resulting in 4 sets of 3N∗

equations:
Nt∑
t=2

[St]
T
[pt] [St] {ε∗} =

Nt∑
t=2

[St]
T
[pt] {εt} ,

Nt−1∑
t=1

[
St+1

]T
[pt]

[
St+1

]
{ε∗∗} =

Nt−1∑
t=1

[
St+1

]T
[pt] {εt} .

(15)
Similar equations are used for {σ∗} and {σ∗∗} respectively.
Stationarity with respect to [St], to update the state map-
ping, is difficult to explicit. Indeed, contrary to other vari-
ables, which are continuous numbers of R, [S] is made of
integers in N. As a consequence, an alternative method
is employed. Details are given in Section 2.3. The resolu-
tion of such a problem has already been discussed in [11,
22]. It relies on a staggered algorithm that computes al-
ternatively the Lagrange multipliers and the correction of
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the stress fields for a given material state set and selection
matrix (called the mechanical problem), then the update
of the material states set and selection matrix for given
stresses (called the material problem). These two steps
are discussed in the next sections.

2.3. Problem Resolution

Let us consider a given set of material states:
({ε∗} , {ε∗∗} , {σ∗} , {σ∗∗}) and a given mapping through
the selection matrix [S]. The mechanical problem can be
solved by substitution, leading first to the computation of
the Lagrange multipliers:[
B̂
]T

[w]
T [

pt
]-1

[w]
[
B̂
]

︸ ︷︷ ︸
[Mt]

{
λt
}
=
[
B̂
]T

[w]
T {

Dt
}
− αt

{
f̂ t
}

︸ ︷︷ ︸
{bt}

∀t ∈ [1, Nt].

(16)

It consists in a set of Nt systems of N̂ independent linear
equations to solve. Finally, stresses are updated using the
second line of the system of equations 13:{

σ̃t
}
=

1

αt

({
Dt

}
−
[
pt
]-1

[w]
[
B̂
] {

λt
})

,∀t ∈ [1, Nt].

(17)
The resolution of the material problem consists then

in updating the mapping operator, i.e. [S] for a given
stress field and the actual set of material states. Find-
ing for each element e the material state N∗

i that is the
closest with respect to ∥∥2Co

is done using the k-d tree
method. Indeed, since for each iteration of the material
problem the database of material state is fixed, efficient
space-partitioning data structure strategy can be used to
strongly accelerate this operation which remains the bot-
tleneck of the method. Once this matrix is obtained, the
set of material states ({ε∗} , {ε∗∗} , {σ∗} , {σ∗∗}) is up-
dated using Eq. 15. The complexity of the resolution
mainly depends on the form of [pt]. If [pt] is diagonal,
as it has always been the considered case in the literature
according the authors’ knowledge, the resolution of Eq. 15
simply consists in computing 5×3N∗ independent averages
or weighted averages of the mechanical states in elements
assigned to each material states through [S]. For example
current and former material strains are found such as:

ε∗i =

Nt∑
t=2

3Ne∑
j=1

(Si
j)

t
(pk

j )
t
εt
k

Nt∑
t=2

3Ne∑
k=1

3Ne∑
j=1

(Si
j)

t
(pk

j )
t
(Sl

k)
t

ε∗∗i =

Nt−1∑
t=1

3Ne∑
j=1

(Si
j)

t+1
(pk

j )
t
εt
k

Nt−1∑
t=1

3Ne∑
k=1

3Ne∑
j=1

(Si
j)

t+1
(pk

j )
t
(Sl

k)
t+1

∀i ∈ [1 : 3N∗].

(18)

The weighing matrix [p] of the elementary distance be-
tween one mechanical state and its corresponding mate-
rial state, introduced in the DDI norm (see Eq. 8), can

be wisely used as a natural filter for noisy experimen-
tal inputs. Inputs of the DDI being itself an output of
the DIC inverse problem, it is necessarily biased and cor-
rupted by noise. Finding a way to mitigate this issue could
be valuable for the application of the DDI method to real
experimental data. Some solutions have already been pro-
posed in the literature for such a weighting matrix. Even
if it has not been explicitly written as such in literature,
two cases can be found: [pt] = I2, the identity matrix,
or [pt] = [w] (see e.g. [15]). The first solution gives an
equal weight to each element, each tensor component and
each time-step. The authors found it useful when the ob-
jective is to identify stresses in vicinity of a localization
band using a strongly refined mesh. Indeed, the second
option, classical for FE integrals, gives more weight to
large and undistorted elements then reducing the contri-
bution of data in the refined mesh areas where strain lo-
calization is expected/observed. Alternative routes could
be used, designing a weighting matrix enabling the min-
imization, for example, of the stress identification noise
but this is out-of-the scope of this work. In the following,
only the two above mentioned cases will be compared. To
summarize, the resolution of the problem, i.e. comput-
ing ({ε∗} , {ε∗∗} , {σ∗} , {σ∗∗}), [σ̃] and [S], is performed
using the following staggered algorithm [15]:

1. initialize [σ̃] using a FE simulation with an arbitrary
model,

2. normalize input dataset to get ([σ̃] , [ε]),

3. initialize ({ε∗} , {ε∗∗} , {σ∗} , {σ∗∗}) and
[S] using a k-means algorithm [23] on(
{εt} ,

{
εt−1

}
,
{
σ̃t

}
,
{
σ̃t−1

})
∀t ∈ [1, Nt],

4. solve the mechanical problem,

5. solve the material problem, eventually using k-d tree.
This step is iterated until convergence of [S]. It usu-
ally takes less than 3 iterations to converge,

6. iterate steps 4 through 5 until convergence of [S] and
[σ̃].

At first (Step 1) the scattering of the database is maximum
in the chosen feature space since the initiation is made
with an arbitrary model. Step 4 updates stresses (me-
chanical states) minimizing the spread within each clus-
ter, then step 5 updates the clustering and barycenters
(material states) if required, until stress stagnation. The
whole database converges to a multidimensional manifold
(see for example Fig. 8b).

2.4. Choice of the algorithmic parameters

Once the framework of the DDI method is set, meaning
that a particular feature space (see Eq. 5) and a partic-
ular norm (see Eq. 8) are selected, 5 parameters remain
to be adjusted by the user and will affect performances
of the algorithm. (1) the number of material states N∗

sampling the material response, (2) the amplitude and the
exact form of Co, (3) the two convergence criteria and
(4) the weighing matrix [p]. The first one and part of
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the second has already been investigated by Dalémat and
her co-authors in [14] using FE reference solutions and
varying the number of DDI material states. They con-
cluded that a small number of material states leads to an
insufficient sampling of the strain-stress manifolds while
a high number of material states allows outliers to de-
velop and increases the sensitivity to noise (similarly to
the overfitting phenomenon for regressions). The authors
proposed the following rule of thumb for choosing N∗:

20 ≤ (Nt−1)·Ne

N∗ ≤ 100, where the numerator is the exper-
imental database size. The influence of the magnitude of
Co was found to be straightforward as it only intervenes for
the clustering step. Eq. 7 shows that by choosing a tensor
with high values, the normalization will give more weight
to strains compared to stresses. So, for the robustness
of the clustering, it may be relevant to use a Co of high
amplitude in order to give more weight to strains which
are obtained experimentally, compared to stresses which
are unknown and which are continuously changing during
the minimization process. To the authors’ knowledge, the
question of the influence of the symmetry of Co has not
been investigated yet and it is not the objective of the
present work. In the following, a pseudo Hooke tensor for
an isotropic material is used. Its definition only depends on
a pseudo-Young modulus Eo (the magnitude) and pseudo-
Poisson ratio νo. Regarding the two convergence criteria,
one uses for the material problem the convergence rate of
the data-driven distance Ψ (see Eq. 9) at each iteration i.
That is to say:

|Ψi −Ψi−1|
Ψ0

≥ ϵmat, (19)

where Ψ0 is its initial value and ϵmat the user criterion. For
the mechanical problem, we use the convergence rate of the
sum (space/time) of the norm of internal force vectors (See
Eq. 4). That is to say:

|Fi −Fi−1|
|F0|

≥ ϵmech, with F =

Nt∑
t=1

∑
e∈Ω

| [B]
T
[w]

T {
σ̃t

}
|2.

(20)
Notice that it is not necessarily equal to zero due to the
slight difference between Eq. 12 (where we impose equi-
librium through Lagrangian multipliers) and Eq. 4 where

[B] is used instead of
[
B̂
]
. Indeed, the equilibrium of

the structure is imposed using B̂, i.e. only in an integral
manner over ∂Fup. So the convergence of Eq. 20 reflects
the convergence of the load profile. Regarding the weigh-
ing matrix two options will be compared in this paper:
[pt] = I2 and [pt] = [w] ∀t ∈ [1, Nt].

Table 1 summarizes the inputs, outputs, parameters and
assumptions needed for the proposed Data-Driven Identi-
fication method. It emphasizes the fact that, even if DDI
presents itself as a model-free technique for fields of stress
tensors estimation, part of the modelling framework is hid-
den in the choice of the feature space. Nevertheless, while

Inputs Outputs Parameters Assumptions
[udic] , {F} [S] Co Plane stress

[B] [σ̃] N∗ Small strain
[σfe] {ε∗} , {ε∗∗} ϵmat, ϵmech Feature space

{σ∗} , {σ∗∗} [p]
Ψ

Table 1: Summary of the inputs, outputs, parameters and
the assumptions of DDI. Ψ is the converged DDI distance
giving the compactness of the mechanical states around a
manifold.

the framework is constrained, the exact form of the con-
stitutive equation remains free. Moreover, the role of user
parameters remains significant and many aspects still have
to be investigated.

3. Experimental method

3.1. Material

The chosen material, for the experimental validation,
is the rate-dependent mild steel DC04 (XES French stan-
dards). Its chemical composition is presented in Tab. 2.
The quasi-static and dynamic responses of this material
are relatively well-known [24, 25] making it a good candi-
date for method validation. In 2016, Markiewicz et al. [26]
used the empirical modified Krupkowski model to cap-
ture its complex rate-dependent stress flow. The model is
inspired from Swift hardening (or Krupkowski) and Hol-
lomon (or Ludwig) models (recovered at the limit of zero
strain-rate). It takes the following form:

σKR = KXa
(
ε0X

b + εp
)nXc

,withX =
ε̇p
ε̇0

, (21)

where εp and ε̇p are the plastic strain and strain-rate re-
spectively. K is the strength coefficient, n is the strain-
hardening exponent, ε0 and ε̇0 are reference strain and
strain-rate and a,b, c are some additional fitting constants.
Best fit parameters for K, a, b, c, n, ε0 and ε̇0 are pro-
vided in Table 3 while Figure 2 presents some results re-
garding the material tensile response extracted from liter-
ature for loading rates ranging from 10−3 to 102 s−1. The
model captures very well the rate-dependent increase of
the yield stress as well as the transition from non-linear,
steep hardening flow to almost linear perfectly plastic flow
at high rate. Notice that presented Krupkowski responses
are computed using mean strain-rates (given in legend).
The latter do not reflect instantaneous strain-rates experi-
enced by the material from 10 s−1 which explains part of
the discrepancy, the other part being induced by inertial
effects (from 200 s−1).

3.2. Specimen geometry and loading apparatus

The question of sample design for inverse methods char-
acterization is extremely vast. It can be based on a heuris-
tics approach starting from standardized geometries (see
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C S N Mn P Si Al Ni Cr
0.0268 0.0175 0.006 0.202 0.007 0.007 0.07 0.018 0.036
Cu Mo Sn Nb V Ti B Ca
0.014 0.002 0.004 0.001 0.002 0.002 ≤ 0.0003 ≤ 0.0003

Table 2: XES chemical composition (in wt%) [26].

K ε0 n ε̇0 a b c
(MPa) (s−1)
526.6 0.024 0.221 0.085 0.002 0.385 0.002

Table 3: Literature-based parameters for the modified
Krupkowski model from [26].

Figure 2: Modified Krupkowski model predictions (see
Tab. 3) and tensile reference data reproduced, from [26]
(from 0.006 to 70 s−1 using hydraulic test machines)
and [24] (from 200 to 440 s−1 using dedicated non direct
tensile loading on split Hopkinson bar apparatus).

e.g. [27, 28]) or using proper optimization approaches, such
as e.g. constrained topology optimization [29, 30]. In this
work, the first approach is used considering flat dog-bone
geometry. The main additional features are two symmet-
rical notches (to avoid introducing torque leading to load
measurement biases) and a central hole (see Fig. 3a). Such
features are expected to lead to strain concentration bands
between the notches and the central hole as well as 45°
secondary bands pointing down from the central hole to
the sample lateral edges. The specimens were cut from
a 0.8mm-thick metal sheet in the rolling direction. The
high speed tensile tests is conducted using a hydraulic ten-
sile test machine (MTS-819, 20 kN). The upper grip is
mounted on a 2.5m long 42CD4 steel bar instrumented
with strain gauges (see Fig. 3b) a) to reduce inertia with
respect to traditional fixtures used for hydraulic machines

and b) to extend the duration of the valid load measure-
ments avoiding the effect of wave reflections. The lower
grip is mounted on a sliding bar and an enclosing case
linked to the actuator allowing to reach the imposed dis-
placement speed after a period of “free fall”. The selected
loading velocity is 5m s−1 and the associated “free fall”
distance was accordingly set to 25mm.

(a) (b)

Figure 3: (a) Sample geometry and (b) Close-up view of
the loading apparatus.

3.3. Imaging setup and DIC parameters

We use the High spatial Resolution Ultra High Speed
camera Cordin-580. It is a multi-sensor, rotating mirror
camera that captures 78 independent images of 8 megapix-
els (2472 x 3296 pixels) up to 4 million fps. The partic-
ularities of the camera (78 different optical paths, slight
misalignment of each sensor with respect to each other,
image distortions due to internal lenses quality or cen-
trifugal effects on the rotating mirror), and the numerical
developments required to perform quantitative DIC with
such a technology have been studied in depth in [31] and
will not be recalled in detail here for the sake of concise-
ness. Nevertheless we strongly recommend, for having a
full picture of the metrological consequences coming with
this technology to read [31]. Tab. 4 summarizes the main
characteristics of the imaging setup. In the present cam-
paign, images are captured at 68 kfps corresponding to
a film duration of about 1.18ms. The scene is lighted
by two Pro-10 Xenon flashes from Profoto (2400 J each ≈
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50 Millions of lumens in normal mode at 10 f-stop). In this
configuration, the illumination typically lasts 2.4ms with
a stable and optimal plateau of 1.1ms. The flashes and
the camera are triggered separately. Flashes are triggered
using an infrared light-gate system (SPX1189 series Hon-
eywell). It is placed in such manner that it sends a 5V
TTL signal when the enclosing case is at a given distance
to the contact with the sliding bar. This distance has to
take into account the speed of the actuator as well as the
rising time of the flashes (150µs). It has been empirically
determined and set to 3.7mm from the contact point. The
Cordin-580 is triggered using the load cell. When the load
reaches 6231.5N, ≈ 3

4 of the plastic yield, a trigger is sent
to the camera. Upon receiving the trigger, the camera will
record the following images, as well as the ones taken up
to 100 µs before (this is named custom triggering). These
parameters were determined empirically through prelimi-
nary tests. Note that a high speed infrared camera (Telops
M3K) is also used to record the other face of the sample
during the experiment (see Fig. 4). The infrared results
fall out of the scope of the presented work nevertheless,
thermal information confirmed that no massive thermo-
mechanical couplings are induced by the strain. Indeed,
mean sample temperature rises up to 5 °C while the tem-
perature within localization band does not locally exceed
50 °C at fracture onset. It confirms that the feature space
used to identify stresses does not have to explicitly take
into account temperature (see Sec. 2). Note that using
an instrumented wave guide implies some adjustments for
a perfect time synchronization of the load with images.
Indeed, the delay for waves to travel from strain-gauge to
image boundary has to be taken into account (see Fig. 3b).
Considering, the bar’s properties (E = 205GPa and ρ =
7850 kg/m3) and a distance of L ≈ 155mm, the delay is
computed as follows: τ = L

√
ρ
E = 30 µs. This is in the

order of magnitude of two interframes for this experiment.
Finally, since rotating mirror cameras produce distorted

Figure 4: Experimental setup for a high speed tensile test,
recorded using a visible-light camera and an infrared one.

Camera Cordin-580
Image resolution 2472 pixels × 3296 pixels
Detector Dynamic Range 12 bits
CDS gain

-3 dB
Correlated Double Sampling
CCD gain

+15 %
analog-to-digital conversion
Acquisition Rate 68 kfps, 15µs interframe
Lens Tamron 90mm Macro
Aperture f/2.8
Field of view 35.8mm × 47.8mm
Image scale 1 pixel = 14.49 µm
Stand-off distance 31 cm
Patterning Technique Black and White paint
Mean speckle size 13 pixels

Table 4: DIC hardware parameters.

images, an external absolute image reference is needed for
performing DIC and for deconvoluting distortions. In this
work, this image is obtained by recording, prior to the test,
images of the sample at rest with a high definition camera
(29 Mpix, Prosilica GT from Stemmer) combined with the
same objective lens. The image is eventually down-scaled
to the Cordin camera resolution. In addition a series of
calibration shots are taken, prior to the test, to create
a representative model of the distortions induced by the
camera in experimental conditions (lens, working distance,
magnification, frame-rate). We use in the following a regu-
larized FE-based DIC strategy [32]. An unstructured mesh
refined along expected localization bands and in the vicin-
ity of the notches and the hole is used to parameterize the
displacement (see Fig. 1). Tab. 5 summarizes selected DIC
parameters for the entire study.

DIC Software Ufreckles [33]
Type FE-based
Parametrization linear FE triangular elements

Metric
Zero-Normalized
Sum of Squared Differences

Pitch 32 pix (refined down to 26 pix)
Regularization Tikhonov type [34] over 4 × pitches
Pre-filtering image flattening (vignetting)

Post-filtering
Savitzky–Golay time filter
order = 2, window = 23 frames

Table 5: DIC analysis parameters. See [31] for uncertainty
evaluation.

4. Metrological assessment using a digital twin

The following section has 3 objectives: (1) numerically
find good set of DDI parameters for our case, (2) vali-
date the chosen framework on rate-dependent simulations
mimicking experimental loading conditions, (3) produce
error bars to better interpret experimental results. Note
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that, contrary to classical 1D loading cases, the exper-
imental dataset (strain, stress and strain-rate) is multi-
dimensional. Hence, for the sake of simplicity the major-
ity of the results will be presented using invariants (I1,√
3J2 or von Mises). This is not a requirement but just a

representation choice, any other norms or invariants could
have been chosen. The digital twin of the experiment re-
lies on both, FE simulations, to produce displacements
from a specific structure, boundary conditions, constitu-
tive equation and parameters, and Virtual Image Defor-
mation (VID), to produce realistic images encoding the
physics and the experimental biases. They are eventu-
ally analysed using DIC, then DDI, as we would do for a
real experiment. To be efficient, VID has to take into ac-
count: spatial/temporal resolution of the imaging system
and the DIC sampling, biases induced by the lens and sen-
sor noise. Obviously such procedure is never perfect, for
instance, it is difficult to take into account strong speckle-
like pattern transformation or even degradation in highly
deformed regions during large strains [35], light variation,
out-of-plane motions. . . Since the procedure has become
more and more standard in the validation of an experi-
mental procedure or of inverse identification methods [36,
27, 4, 2, 5], only the main methodological features will be
recalled in the following.

4.1. Finite Element reference solution and DDI initializa-
tion

All the thermomechanical simulations are performed us-
ing the implicit solver of Abaqus. We use CPS3T ele-
ments and the phenomenological, multiplicative, isotropic
and strain-rate dependent uncoupled Johnson-Cook model
(JC). The yield stress takes the following form:

σ =
[
A+Bεnp

] [
1 + C ln

(
ε̇p
ε̇0

)][
1−

(
T − T0

Tm − T0

)m]
,

(22)
where A, B, n and m are base material parameters mea-
sured below the transition temperature T0. Tm is the
melting temperature, C and ε̇0 define the rate depen-
dence and εp is the equivalent plastic strain defined by

εp =
∫ t

0

√(
2
3 ε̇p : ε̇p

)
dt. Note that the digital twin is made

to check the performance of the whole identification chain
with respect to experimental biases and not to predict the
actual response of our material. Hence any rate-dependent
constitutive model could be used. In the present case JC
model is used since it is available by default in Abaqus
contrary to the modified Krupkowski model introduced in
Section 3.1. In the following, two sets of material param-
eters will be used: the set A to produce a reference rate-
dependent solution (input of the digital twin) and the set
B which will be use for initializing the DDI procedure. Ini-
tializing the DDI can be done with any arbitrary solution
but, for the sake of simplicity, we use here the same model
but with different parameters. To demonstrate the abil-
ity of the introduced DDI framework to capture unknown

rate-dependent material responses, the set B is, on pur-
pose, chosen having a very weak rate dependence via the
parameter C and with base parameters A, B and n sig-
nificantly far (up to 50% difference) from the reference
solution obtained with the set A . Thermal parameters
(useless for the discussion) are kept identical. Tab. 6 sum-
marizes both parameter sets. Set A has been identified
using data from [26] using quasi-static and 70 s−1 loading
rates.

A B n C ε̇0 m T0 Tm

set (MPa) ×10−4 (s−1) (K)
A 394 136 0.47 256

70 1.1 300 1350
B 315 272 0.61 2.56

Table 6: Johnson-Cook model parameters: set A is for
reference solution and set B for DDI method initialization.

From Table 6, we see that the stress solution built from
set B parameters (i.e. for initializing DDI) has a lower
yield stress, a stronger non-linear hardening and almost
no strain-rate dependence. The question addressed in this
part is the ability of the proposed DDI framework to re-
cover the reference solution (set A) starting from an ar-
bitrary one which does not encode the right constitutive
features. To facilitate field comparison, simulations are
performed using the actual experimental DIC mesh (see
Fig. 1). The same mesh will be used throughout the whole
procedure. Also, the analysed simulation time steps are
chosen to match the experimental frame-rate. With re-
spect to boundary conditions and simulation outputs, two
cases must be distinguished:

• the reference solution is produced (using set A pa-
rameters, see Tab. 6) imposing, at the lower boundary
(see Fig. 1), an axial displacement corresponding to
a constant velocity of 5m s−1 while maintaining the
upper boundary clamped. The outputs of this simula-
tion – namely the displacement fields U ref , the stress
fields σref and the vertical net force on the upper
boundary F ref

y – will serve as references for virtually
deforming images (and perform DIC) then evaluating
performances of the DDI method.

• the DDI initialization is produced (using set B pa-
rameters, see Tab. 6) in two steps: first, a simulation
is run with DIC displacements (obtained from VID
using the reference solution) imposed at the mesh
boundaries. The resulting load distribution on the
upper boundary is rescaled to match the net force
of the reference simulation (F ref

y ) and stored. Then,
another simulation is run with mixed boundary condi-
tions, replacing the upper axial displacement by the
saved axial load distribution. This rather complex
strategy allows imposing a realistic load distribution
in the simulation knowing only displacement and net
force like in a real experiment. The main output of
this simulation is the stress field, σfalse balancing the
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reference net force F ref
y , used then for initializing DDI.

The upper script false underlines that it is far from
the sought target σref even if it balances the external
net force.

4.2. Virtual Image Deformation

This part gives the main ingredients of the VID. While
the global procedure is standard some extra steps come
when trying to mimic our particular camera. A real image
of a speckle-like pattern is synthetically deformed using
U ref . To account for Cordin-580 optical distortions [31],
U ref is composed with distortion fields Ud1 , calibrated ex-
perimentally. The composition equation takes the follow-
ing form:

Uvirtual(X) = U ref(X) + Ud1(X + U ref(X)). (23)

Where Uvirtual is the displacement imposed to the images
and X are the coordinates. In practice, filling the de-
formed image with the right grey level values at integer
pixel positions requires to get the inverse mapping of the
transformation and a grey level interpolation scheme. We
use in the following a bi-cubic spline interpolation. Finally,
a realistic noise is added to the deformed and distorted
synthetic images. An estimation of the temporal image
noise is obtained by computing, over a real image sequence
of a sample at rest, the temporal standard deviation of
material point grey level values (it implies correcting dis-
tortions first, see [31]). Figure 5 shows the Cordin-580 es-
timated noise (normalized by the dynamic) as a function
of the grey level intensity and pixel density. We see that
it is signal-dependent (or heteroscedastic) which follows a
non-linear trend from 30% in dark areas down to 5 % in
bright ones. Hence, we corrupt synthetic images adding
a zero-mean random noise whose the standard deviation
depends on the grey level according to the polynomial fit
shown on Figure 5. As a side comment, note that data pre-
sented in Figure 5 is not strictly speaking a sensor noise.
Indeed, it also results from the offset and gain mismatch
from one sensor to another (multi-sensor technology), the
focus mismatch, as well as the uncertainty on distortion
estimation which does not allow for perfectly stabilizing
images (± 0.1 pixel). It will, nevertheless, play a similar
detrimental role on grey-level conservation. In addition, it
explains why values are high compared to best performing
mono-sensor ultra-high speed camera (in the order of 1%
of 16 bits for the Shimadzu HPV-X [37]). It is the price
to pay for having 8 Mpix images (up to 4 Mfps) compared
to 0.1 Mpix for a Shimadzu HPV-X at same frame-rate.

Eventually, the DIC procedure proposed in [31] is ap-
plied on these synthetic images and displacement fields can
be used as an input for DDI. Notice that a small trick is re-
quired here to accurately mimic the experimental variabil-
ity of optical distortions from one shot to another, hence
the fact that optical distortions are only known (from cal-
ibration) with a certain level of confidence. It consists
in using an other set of optical distortion field Ud2 when

Figure 5: Normalized apparent camera noise (in %) versus
the mean grey level. The colour denotes the pixel counts
(in %), while the black line denotes the polynomials used
to model the camera noise.

deconvoluting, within the DIC, actual displacement from
distortions. In practice, variability of optical distortion
modes from one shot to another is statistically evaluated
experimentally, hence Ud2 is defined as Ud1 plus or mi-
nus such a variability. The whole digital twin procedure is
summarized in the Figure 6. Later-on, the exact same pro-
cedure will be used for analysing the experiment without
the upper left brick creation of a numerical twin for which
only UDIC and F ref will be known. With all these ingre-
dients, the experimental process is mimicked with a high
degree of confidence. Displacements coming from DIC en-
code the response of a known rate-dependent model and
are corrupted by main experimental biases (sensor reso-
lutions, noise, variability of optical distortion, speckle-like
pattern quality, DIC algorithm convergence). The initial-
ization of the DDI balances actual external forces but is
selected far enough from the sought solution. Identified
stresses, σDDI , can be quantitatively compared with σref

on the same mesh.

4.3. Numerical results and discussion

The stress identification is performed on 50 simulation
time steps (leading to ≈ 40% local peak strain). First
the influence of the different parameters (see Tab. 1) of
the DDI will be investigated. Then, once the parameters
chosen, the DDI method performance will be discussed.

Influence of the DDI user parameters. To inves-
tigate the influence of the different parameters of the
method, several Data-Driven Identifications were per-
formed on the same simulation. Different numbers of ma-
terial states N∗ are tested such that: 30 ≤ (Nt−1)·Ne

N∗ ≤
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Figure 6: Schematic of the numerical test case procedure. In red are the inputs of the DDI algorithm.

200. The ratio between the pseudo elastic modulus and
the actual material Young Modulus, Eo

E , is swept from 0.1
to 10. Finally two forms of the weighting matrix [p] are
tested, either I2 or [w] (see Sec. 2.3). In addition a median
filter ranging from 0 to 5 neighbouring elements (noted lc)
is applied to DIC strains before the DDI to see if any
pre-filtering of the noisy experimental strains is required
for optimizing performances of the identification. In order
to assess which quadruplet leads to the best identification
results, the following equivalent standard deviation ξeq is
considered:{

ξeq(σDDI
) =

(
1
3

∑
i Var

(
∆σi

)) 1
2 ,

∆σi(e, t) = σi
DDI(e, t)− σi

ref(e, t)
(24)

where e is the element (single quadrature point), t is
the time, Var is the variance, and i is the in-plane tensor
component xx, yy and xy respectively. Thus, the error is
the square root of the variance of the difference between
the identified stresses and the reference ones for all the ele-
ments and time steps, averaged over the three components.

N∗ Eo lc [p]
1
30 (Nt − 1) ·Ne 10 × E 2 [w]

Table 7: Optimized DDI user parameters.

The best parameters among those tested are given in
Table 7. Figure 7 depicts the evolution of ξeq when 3
out of 4 parameters are fixed and one varies. This fig-
ure shows that the error increases when the number of
material states decreases (or the ratio between database
size and number of material states increases - see Fig. 7
(a)). Furthermore, the error decreases when Eo increases
(see Fig. 7 (b)). These trends are in line with the obser-
vations from [14]. In addition, this figure highlights that
there is an optimal filtering length for DIC strains: lc = 2
(see Fig. 7 (c)). At last, the choice of the weighting ma-

trix do not have a significant influence on the error (see
Fig. 7 (d)). Nevertheless, the use of [w] leads to a small
reduction of the error (from 24.8MPa to 23.7MPa). As a
summary, a stress identification error of about 20 MPa is
expected on average over the test, when considering our
particular camera, geometry, loading case scenario and a
Johnson-Cook rate-dependent based material. In the rest
of document, DDI user parameters presented in Table 7
will be used.

DDI Post-processing. Let us now visualize the identi-
fied material response, looking at the identified mechan-
ical states distribution in a von Mises {||ε||VM , ||σ||VM}
space. Figure 8a shows all identified mechanical states
for all time steps during the simulation in this von Mises
space. The count shows how the test samples (densely or
not) the feature space. Firstly, it is logical that the me-
chanical response appears “thick” in this space. Indeed,
simulations are rate-dependent and strain-rate fields are
heterogeneous due to notches and hole. So part of the
spread is due strain-rate dependence whose the dimension
is not represented. This is one of the asset of heteroge-
neous tests; testing various strain-rates at a time. Nev-
ertheless, the spread in Figure 8a is clearly dominated by
the experimental biases introduced in the VID procedure.
Indeed, when using noise-free inputs, DDI results does not
present such a spread (not presented here for the sake of
conciseness). Here, a main response is clearly observed
(characterized by mechanical states with high occurrence
numbers) surrounded by a massive spread. This spread
is especially significant for strains beyond 0.4mm−1 as it
reaches more than 150MPa. Nevertheless, the occurrence
of the mechanical states in the spread are several orders
of magnitude below the occurrence in the main response.
Since the DDI method is based on clustering, it stands
for a reason that the most recurrent mechanical states will
lead to more robust identification. Hence robustness is
strongly dependent on the density distribution of the me-
chanical states in the feature space: database outliers, e.g.
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(a) (b) (c) (d)

Figure 7: Evolution of ξeq with respect to the DDI parameters P = {[p], lc, Eo

E , (Nt−1)Ne

N∗ }. 3 over 4 parameters are fixed:
(a) P = {1, 2, 10,−}, (b) {1, 2,−, 30}, (c) {1,−, 10, 30} and (d) {−, 2, 10, 30}. Note that the y-scale differs from one
figure to another.

extreme localization (in space or time) can not be properly
handled. Hence, to get the best from such heterogeneous
tests, proper sample optimization should be used and in-
clude measurability and identifiability criteria like for ex-
ample in [27]. In the present work, a simpler approach
is used, based on the definition of a DDI post-processing
procedure, filtering states according to their occurrence.
In what follows, a mechanical states is considered relevant
if its occurrence is higher than the 95th quantile. This em-
pirical value has been found as a good compromise between
reduction of the mean error and the number of discarded
mechanical states. Figure 8b shows the mechanical states
remaining after the proposed filtering. As expected, only
the main response is kept and the mechanical states spread
is significantly reduced. Notice, that when using this filter-
ing, only 9% of the whole set of mechanical states (space
and time) is discarded. This supports the use of this simple
(not case dependent) filter since it improves significantly
the interpretability of the DDI results while discarding a
minimal amount of data. Figure 8c spatially spots for how
many time-steps the local states have been discarded, ex-
pressed in percentage. Indeed, the robustness of an identi-
fied state can vary over time since a spatial area can shift
from a densely sampled region, in the feature space, to a
weakly dense or the other way around. This figure shows
that most of the elements are kept for all time steps. Also,
the elements discarded are located near the notches and
the central hole probably at the end of the test when they
are subjected to extreme and rare (in the database) load-
ing conditions. In the rest of this document, all the results
will be presented post-processed as such, i.e. discarding
outliers.

Local stress assessment. Considering optimized DDI
user parameters and its post-processing, expected error-
bars on local stress measurement can be established. It
seems irrelevant to only provide a global scalar value for
an heterogeneous test, hence we propose a more thorough
investigation looking at the systematic link between, stress
identification error, local stress level and stress occurrence
in the database. Figure 9 presents the stress identifica-

tion uncertainty (that is to say the standard deviation of
∆σi(e, t)) achieved for a given local stress magnitude. The
figure shows the absolute uncertainty in red and relative
to the local stress magnitude in blue. On top the distri-
bution presents how much each class of stress magnitude
is sampled by the test. The distribution indicates that a
significant amount of material points (space and time) are
subjected to stress magnitudes below 100MPa. This cor-
responds to the very first part of the elastic domain of the
considered material (see Fig. 8b). Relative uncertainty is
the highest in this region, from 100% for low strains down
to 11% at 100MPa. It evidences that the signal to noise
ratio is there not favorable for identification. This is the di-
rect consequence of the strain uncertainty (2 mε, see [31])
induced by our camera and not the DDI method itself.
Then we observe that few data are available during the
elasto-plastic transition, i.e. in the 200MPa – 400MPa
range. The consequence of such a data scarcity is visible
on the absolute stress uncertainty. Indeed, as the data
availability in this range decreases, the absolute stress un-
certainty increases from 9MPa at the beginning to 27MPa
for a stress level of 315MPa. Nevertheless, since the signal
to noise ratio becomes favorable, the relative stress error
remains below 10% beyond stress magnitudes of 200MPa.
At last, more data is available beyond 400MPa i.e. during
plasticity. The figure shows that beyond this stress magni-
tude, the error remains below 16MPa i.e. a relative error
below 4%. Notice that such results are camera, geometry
and loading dependent and should be checked for every
new configuration.

Range of local loading scenarios. DDI allows for
probing local mechanical response giving the unique op-
portunity to analyze richer tests without assuming a con-
stitutive equation. Let us check if the loading configu-
ration and geometry, presented here, allow for probing
various multiaxial responses in a single test, and how
DDI performs in each of them. Figures 10a and 10b re-
spectively depict the distribution of the mechanical states
and their associated identification errors, this time, in the
{I1,

√
3J2} space. Indeed this space can be used to as-
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(a) Raw mechanical states,

(b) Post-processed mechanical states,

(c) Spatial localization of discarded
states,

Figure 8: Mechanical states distribution in the
{||ε||VM , ||σ||VM} space before and after DDI post-
processing. In Fig. 8c, 0 % means that the local data
are kept whatever the loading stage while a higher value
means that they are discarded for some. 100 % means
fully discarded.

sess the triaxiality level reached by each material point
at every time during the experiment. The distribution
shows that despite the introduction of a central hole and
notches, most of the reached mechanical states are close
to uniaxial tension with a slight tendency to spread to-
ward pure-shear or equi-biaxial tension in plastic regime

Figure 9: Stress uncertainty with respect to the stress
magnitude. The stress magnitude occurrence in the test
is given by the histogram while the blue and red lines
are respectively the relative and absolute values of the
stress uncertainty. The values are obtained after DDI post-
treatment

(beyond 394MPa). Some uniaxial compression states are
reached, but in elastic regime where the signal to noise ra-
tio is not favorable. It is confirmed looking at 10b where we
observe again that below 200MPa the identification error
is massive whatever the triaxiality level and remain higher
than 20% for all points undergoing uniaxial compression.
Furthermore, this figure shows that the identification error
is lower for higher stress magnitudes (as already evidenced
Fig. 9) but more importantly that these states are mainly
under uniaxial tension. These observations are important
since they evidence that whatever the complexity of the
geometry, at least with such a heuristic design, multiaxi-
ality and non-proportional loading would only be densely
introduced within the sample using additional actuators.
In the present case, it could be shown that local principal
stress directions significantly varies, i.e. useful for char-
acterizing anisotropy, nevertheless multiaxiality is mainly
reached either by some outliers, close to boundaries, or for
very small strains, close to noise floor. Sample design opti-
mization for DDI achievement should take all these points
into consideration.

At last, let us check the ability of the DDI method to re-
trieve the strain-rate dependence of the reference solution.
For this purpose averaged stress-strain curves, for mechan-
ical points undergoing similar mean strain-rates during the
loading are computed. Firstly, the average strain-rate over
time for each element is computed. Then, they are clus-
tered in 20 mean strain-rate groups (using K-means algo-
rithm). Finally, independent stress-strain curves are com-
puted by averaging stresses and strains for each group.
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(a) Mechanical states distribution,

(b) Relative stress identification error,

Figure 10: Mechanical states and errors in the
{I1, ||σ||VM} space.

Figure 11 shows the relative errors, between identification
and reference solution, as a function of the strain-rates.
The dashed lines depict the initialization error (simula-
tion using parameter set B), while the stars depict the
DDI converged solution. This figure confirms that dur-
ing the convergence of the DDI, stress fields shift from
about 10% error (initialization) down to 5%. Further-
more, this figure evidences that the framework is able to
retrieve the underlying strain-rate dependence even if if
the initial stress solution did not include it. This is sup-
ported by the fact that the relative error remains nearly
constant below 6% while it was linearly increasing ini-
tially. In short, even if the initialization does not truly

capture the physics, DDI makes the features of the consti-
tutive model, hidden within strain fields and load through
equilibrium, naturally appear.

Figure 11: Relative stress identification error evolution
with respect to the strain-rate. The stars represent the
converged DDI solution while the dashed lines refer to the
DDI initialization using set B parameters.

To summarize, considering optimized DDI user param-
eters given in Table 7, a DDI post-processing consisting
in discarded the 5 % least occurring mechanical states,
our sample geometry, loading conditions and camera, the
conclusions are: (1) Below 100MPa the signal to ratio
is not favourable, due to the noise on the strain mea-
surements. The related mechanical states are undergoing
elastic strains and are mainly located above and below
the hole and notches. (2) Since the proposed method is
based on clustering, the abundance of similar data leads
to lower stress identification errors. Indeed, when data
is sufficiently abundant errors remain below 5%. This is
mainly the case here in plastic and uniaxial loading regime.
(3) From a general point-of-view stress identification er-
ror lower than 10% are expected for stresses higher than
200MPa, i.e. beyond half of the elastic regime. (4) In
the considered experiment most of the mechanical points
are subjected to uniaxial tension, despite the holed and
notched geometry. (5) At last, the differential DDI frame-
work is able to retrieve the global strain-rate dependence of
the material within 6% of error. It proves that the chosen
DDI framework can capture, at least for monotonic load-
ing, such a material hidden feature. As a side comment,
notice that the DDI converges, for this problem, in less
than an hour, on a 16 Gb Core i7@1.3 GHz laptop (about
10 minutes for the initial FE simulations plus 35 minutes
for stress identification). Moreover, its cost does not scale
with the complexity of the mechanical response contrary,
for example, to FEMU which requires N × (P + 1) simu-
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lations to be run, where N is the number of iterations at
convergence and P the number of constitutive parameters.

5. Experimental application

This section finally analyses the tensorial database
(ε, ε̇, σ) produced during the heterogeneous, dynamic and
uniaxial test discussed in previous sections. First, vari-
ation of macroscopic quantities are discussed, then kine-
matic fields. Eventually, identified stress fields are anal-
ysed and the rate-dependence of the material discussed
in relation with predictions of the modified Krupkowski
model. To clarify the deformation scenario, Figure 12
shows firstly the last image (distortion-free) obtained dur-
ing the high speed tensile test. In this image two cracks
can be seen. On the left hand side, there is a crack going
from the central hole to the notch. On the right hand side,
the crack only started to initiate from the central hole. In
what follows, the analysis is performed on the images prior
to the apparition of these cracks.

Figure 12: Last image (distortion-free) of the sample ob-
tained during the test.

5.1. Mean trends

Figure 13 depicts the evolution of different quantities of
interest during the experiment. The three vertical dashed
lines are the time steps for which associated fields will be
discussed later-on. Note that the zero in the timeline cor-
responds to the time when the Cordin-580 is triggered by
the load cell. Figure 13a plots the evolution of the von
Mises norm of both the strain (in blue) and strain-rates
(in red) on average in the left localization band during the
experiment (see Fig. 12). This figure shows that during
the first 100µs of the experiment, the material is mainly
in an elastic regime (||ε||VM ≤ 0.5%). The strain in the lo-
calization band is higher than 1% after about 150 µs, then
increases following a ramp up to 22% at the fracture onset.
Two stages are observed in the strain-rate evolution. First,
it ramps up to 375 s−1 in about 300 µs. Then, it reaches
a plateau and oscillates between 350 s−1 and 400 s−1. At

last, Figure 13b shows the evolution of the load during
the experiment (in blue). It also depicts – for information
purpose only – the average temperature increase (in red)
in the considered band. It is 15oC on average and reaches
about 50oC near the hole at fracture onset (not presented
here). Two stages can be evidenced for the load. Dur-
ing the first 150 µs the load ramps up until 8 kN. Then
it reaches a plateau and oscillates around 8.5 kN. Consid-
ering an initial cross section S0 equal to 1.68 × 10−5 m2

(subtracting the holes), the engineering stress can be es-
timated at 500MPa. This value is in line with the ones
obtained in [24].

5.2. Kinematic fields

Figure 14 shows distortion-free sample images, axial dis-
placement and von Mises strain fields (both from DIC) and
identified von Mises stress fields (from DDI) for the three
time steps introduced previously. The displacement fields
obtained are consistent with a tensile test. The first two
images underline the fact that the tensile test is not per-
fectly uniaxial. Indeed, the axial displacements are higher
on the left-hand side of the sample. In turn, crack initiates
on the left-hand side of the sample before the right-hand
side. It as been systematically observed for multiple ex-
periments. It may be due to a slight misalignment / de-
formation of the holding rods. The sample geometry in-
duces primary (pointing up from the hole) and secondary
(pointing down) localization bands as predicted by the FE
simulations with little strain everywhere else. While it is
40% on average within the localization bands it reaches
more than 40% at the hole borders where cracks eventu-
ally start. Regarding strain-rates, not presented here (sim-
ilar to strain fields), it varies between 10 and 400 s−1 with
the majority of the values below 200 s−1. Nevertheless it
is important to notice that strain and strain-rates are not
independent, high strain-rates values are only reached by
heavily strained regions and the other way around.

5.3. Mechanical response

Stress fields (shown in Fig. 14j) are obtained using a
procedure similar to the one presented in Fig. 6, but in
this case the reference solution and the underlying model
are unknown. F ref

y is measured by the load cell, UDIC is
computed using the experimental images and DIC, and the
DDI initialization σfalse is computed using the two steps
procedure and a JC model with set A parameters (see
Tab. 6). The DDI parameters are the one presented in
Tab. 7 and the DDI post-processing strategy introduced
in Sec. 4.3 is used.

Stress fields. Von Mises stresses fields (Fig. 14j), as ex-
pected, show that the notches and the central hole create
plastic strains concentration bands. In these bands the
von Mises stresses reach eventually about 500MPa. In ad-
dition, in the secondary bands (pointing down from the
hole), the stress is about 400MPa. Above and below the
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(a) Mean von Mises strains and strain-rates,

(b) Load and mean temperature,

Figure 13: Evolution of different quantities of interest dur-
ing the test. Except for the load, all quantity are averaged
within the left localization band (see Fig. 12) to underline
peak values.

central hole and the notches the stress magnitudes remain
below 200MPa. These observations are consistent with the
numerical study performed. In line with the macroscopic
load curve (see Fig. 13b) the material exhibits an almost
perfectly plastic behavior. Indeed, while strains signifi-
cantly increase between 246 and 615 µs, stress levels and
distribution are globally unchanged. Let us remind that
a large part of the field is expected to be identified with
high confidence (5% error beyond 350MPa), intermediate
stresses are expected to come with 10% error (from 200
to 350MPa) while lower stress values come with a higher

level of uncertainty, especially dark blue regions (below
100MPa) (see Fig. 9). A puzzling results is the slight de-
crease of the stress amplitude, in the localization bands.
Indeed, we observe about 50 MPa drop from 246 to 468 µs
then a stabilization although the three analyzed states are
located in the macroscopic plastic plateau (see Fig. 13b).
This point is discussed later-on, in the Rate-dependence
characterization section. Figure 15 presents stress, strain
and strain-rate distributions in (I1,

√
3J2) and (∥ε∥VM ,

∥ε̇∥VM ) spaces respectively, during the experiment. The
loading paths of a few selected elements, spotted in 15c,
are superimposed on these distributions. Notice that me-
chanical states are shaded according to the local density of
datapoints (see colorbar) and additional colors and mark-
ers are used to point the selected 5 different loading his-
tories. Figure 15a shows, as expected, that the sample
is mainly under uniaxial tension but with slight variation
of triaxiality depending on the spatial region of interest
(e.g. primary or secondary localization band). Some com-
pression and shear states are reached within the specimen
mainly on top or below the hole. Looking at a particular
loading path (the orange one, in secondary band, for ex-
ample) we also see that the loading history is proportional,
having in mind that all states start at zero. In addition,
Figure 15b shows that the strain and strain-rate main spec-
tra underwent by the specimen are [0 – 0.2] and [0 s−1 –
450 s−1]. The figure highlights that the primary localiza-
tion band undergoes quasi-constant strain-rates, at least
during plastic regime, while strain-rate tends to decrease
in secondary band, after reaching a maximum, or to signif-
icantly increase near the hole, where the crack eventually
starts. It is the result of a complex strain redistribution
process when the primary band localization becomes more
and more predominant. More generally, this figure em-
phasizes a complexity inherent to all dynamic tests (even
statistically determinate ones): material points in the elas-
tic regime, in the elasto-plastic transition, then in stabi-
lized plastic regime do not necessarily undergo same strain-
rates. Analysing a dynamic test from a mono-parametric
point of view, i.e. considering a mean strain-rate may
be inaccurate since Young-modulus, yield-stress and flow
hardening are actually not submitted to similar rate con-
ditions. Notice that we will nevertheless group together
material responses showing similar mean strain-rates over
the test to discuss the global rate-dependent response of
the material. This is not a requirement of the DDI method,
but a simple post-treatment of the built database for vi-
sualization / interpretation purpose.

Rate-dependence characterization. As introduced in
Sec. 4.3, the strains, strain-rates and stresses data can be
used to discover the rate-dependence of the material. Sev-
eral mean responses are computed from the dataset by
averaging strain, strain-rate and stress values of mechan-
ical points undergoing similar mean strain-rates over the
test. It allows reducing noise through an averaging process
but also presenting strain-rate dependence of the material
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(a) Image, t = 246.79 µs (b) t = 468.22 µs (c) t = 615.83 µs

(d) Uy (mm) (e) (f)

(g) von Mises strain (mm−1) (h) (i)

(j) von Mises stress (MPa) (k) (l)

Figure 14: Distortion-free images (from a to c), axial displacement fields (from d to f), von Mises strain fields (from g
to i) and von Mises stress fields (from j to l), extracted at 246.79, 468.22 and 615.83 µs during the dynamic tensile test.
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(a) Stress states distribution,

(b) Strain and strain-rate
distributions,

(c) Location of spotted elements,

Figure 15: Stress, strain and strain-rate distributions in
(I1,

√
3J2) and (∥ε∥VM , ∥ε̇∥VM ) spaces respectively, dur-

ing the experiment. The loading paths of a few selected
elements, presented in (c), are superimposed on these dis-
tributions (see colors).

in a simple 2D (∥ε∥VM , ∥σ∥VM ) space. Ten mean XES
responses have been a posteriori reconstructed and are
plotted on Figure 16a. Selected mean strain-rates range
from 20 s−1 to 317 s−1 with steps of approximately 20 s−1.
While the test reaches higher strain-rates, high strain-rates
regions are only sampled by few points, as a consequence,
they disappear in the following clustering. In short, data

at 317 s−1 includes in its average, few points undergo-
ing higher strain-rates. Moreover it is important to keep
in mind that the legend values are the mean strain-rates
over the test (used to aggregate data) but strain-rates
may actually vary during the test for some of them (see
Fig. 15b). Hence they are not iso-strain-rate curves but
average responses of material points undergoing similar
mean strain-rates during the test. It allows for producing
full elasto-plastic curves whilst only parts of the responses
could be build aggregating data based on instantaneous
strain-rates since high strain-rates levels are only reached
for large strains and the other way around.

Strains, strain-rates and stresses dataset have also been
used, prior averaging, to identified modified Krupkowski
model parameters. The strain-rate dependent responses
(using the strain and strain-rate variation of each experi-
mental mean curve) are superimposed on Figure 16a. As
previously discussed, strain and strain-rate amplitudes are
related. Hence the higher is the strain-rate, the higher
is the strain amplitude. It explains why high strain-rate
curves show more of the plastic regime compared to low
strain-rate curves. In the present case, below 40 s−1 the
plastic yield is not even reached. In this context, the end-
ing of each curve should not be interpreted as a fracture
limit but only as the maximum strain undergone by each
strain-rate set of mechanical points within the test. Only
the higher strain-rate curve (see localization band response
in Fig. 16a) reaches the fracture onset. Some points can be
underlined. (1) The emerging material response is clearly
rate-dependent whilst it has not been enforced. Appar-
ent yield stress ranges from 280MPa to 480MPa when the
strain-rate varies from 20 to 317 s−1. Comparing with
Figure 2 we observe that main trends are recovered. For
example, the response at 64 s−1 yields at 400 MPa like the
70 s−1 reference, the response at 317 s−1 plastically flows
at about 500 MPa like the 360 s−1 reference. Finally we
observe a drop of the yield stress at about 250 MPa for
20 s−1 strain-rate which is reasonably close to the lower
strain-rate reference response at 0.7 s−1. Looking at fit-
ting parameters (see Fig. 16 legend), the strength coeffi-
cient and the strain-hardening exponent are fairly consis-
tent with literature (see Tab. 3) while the reference strain-
rate and b deviate by a factor of 2 and the reference strain,
a and c exponents by a factor of 10. Notice that the identi-
fication of these parameters is not really robust against os-
cillations / overshoot observed for example at high strain-
rate in reference data (see Fig. 2). This may explain part
of the discrepancy. Up to 180 s−1, the material response
is almost perfectly plastic with a slight tendency to soften
(the stress is decreasing) when increasing strain. In that
strain-rate range, the model perfectly fits the data set and
also presents a tendency to soften whilst its only inputs are
experimental strains and strain-rates. It evidences that
the apparent softening is induced by the decrease of the
strain-rate in secondary localization bands when the de-
formation starts to mainly localize in primary bands (see
Fig. 15c and 15b e.g. orange points). It confirms that us-
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(a) Mean experimental stress-strain responses
and model predictions,

(b) Discrepancy between DDI stresses and model
prediction,

Figure 16: Strain-rate dependence of the XES steel and de-
viation from modified Krupkowski model prediction using
updated parameters fitted on the DDI results. Parameters
are K = 500.1 MPa, ε0 = 0.003, n = 0.199, ε̇0 = 0.162
s−1, a = 0.0002, b = 0.723 and c = 0.0002 (to compare
with Tab. 3)

ing averaged strain-rates curves to approximate iso-strain-
rate curves can be misleading and interpretation should
be done with caution. Beyond 200 s−1 the model and the
DDI responses differ from 10 % of strain. Especially the
material response soften while the model harden which is
in line with the experimental increase of the strain-rate
observed near the central hole (see Fig. 15b). It reveals

that strain-rate variation does not explain softening in this
case. For theses points the temperature reaches no more
than 50oC (not presented) which is not sufficient to be a
justification for thermal softening. Nevertheless 2 points
must be underlined: (1) the material is submitted to strain
up to 20% and is locally approaching necking which may
conflict with our Cauchy and small-strain framework and
produce fictitious stress softening; (2) in parallel, strain
localization can be considered as an instability induced
by local softening, potentially due to damage. The DDI
framework is expected to be able to capture such phe-
nomenon while the model is not. At this stage, we miss
objective evidences to rule on this point and the tendency
these 3 high strain-rate curves should be taken with cau-
tion above 10% of strain. Finally, contrary to Figure 2 at
200, 360 and 440 s−1, no overshoot is observed in the early
plastic regime. Thanks to a modified loading setup (see
Sec. 3.2), inertial waves come back into the sample only
after 1.1ms (i.e. about the fracture onset), while in the
presented literature, data are obtained using split Hopkin-
son bar apparatus probably in the inertial regime, where
data can be more corrupted. Identified high strain-rate
responses still show few oscillations (possibly due to the
slack-rod) but significantly less oscillations compared to
high-strain rate literature (see Fig. 2) where the overshoot
does not seem physical. In that context, DDI offers the op-
portunity to use hydraulic tensile test machines with holed
samples which has two mains advantages: (1) to decrease
the loading rate hence inertial effects but also (2) being
able to span a large strain-rate range on a single setup
which strongly facilitate aggregating data whilst using dif-
ferent setups may reveal discrepancies [24]. To make the
comparison more quantitative, Figure 16b presents the dis-
crepancy between DDI results and modified Krupkowski
model predictions. This figure shows that there is a good
agreement between the DDI results and the model predic-
tions for strains beyond a percent. As predicted by the
digital twin, the discrepancies remain mainly between ±
5% in the plastic regime. Only the 3 highest strain rate
responses tend to deviate from the model beyond 10 % as
already discussed. Notice that discrepancies for low strains
(< 1%) are mainly due to the fact that the Krupkowski
model does not fit well the sharp elasto-plastic transition
and is not supposed to capture the elastic response.

6. Conclusions and perspectives

In this paper, an emerging full-field inverse stress iden-
tification framework, named Data-Driven Identification, is
presented. Its recently developed rate-dependent formula-
tion is deployed for the first time to experimentally char-
acterize strain-rate dependence of an elasto-visco-plastic
material. Its accuracy, within the framework of a mono-
tonic heterogeneous dynamic test, has been assessed using
a digital twin. Then, a pre-notched sample with a central
hole has been subjected to a high speed tensile test. Full-
field kinematic data have been retrieved using high spatial
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resolution ultra high speed imaging and digital image cor-
relation. At last, these kinematic fields combined with load
measurements have been used as input for the DDI method
to estimate stress fields during the experiment and to cap-
ture the material rate-dependence. The main conclusions
are as follows. (1) The user parameters of the DDI method
play an important role in the stress reconstruction. It has
been shown that a digital twin can be used to rational-
ize their choice and that DDI performances increase when
significantly more weight is given to the strains compared
to stresses in the norm and noisy strains are filtered prior
to DDI. Best performances are also found for a number of
cluster in the order of a fifth of the strain database size
but tends to saturate beyond. (2) Using the results from
virtual image deformation, the impact of imaging setup
noise on the stress estimation can be assessed. A mean
accuracy of 10% is obtained on the stress estimation (be-
yond 50MPa). It falls below 5% in plastic regime. At
last, averaging data to build mean strain-rate curves al-
lows for identifying the strain-rate dependence within 5%
of error. Such results are strongly dependent on the sam-
ple geometry, DIC parameters, camera and optics used. In
this work, a multi-sensor Cordin-580 is considered leading
to high spatial image resolution at a cost of strong image
distortions and sensor noise. In that context, presented
experimental uncertainties must be seen as upper bounds
and may be significantly reduced if new technologies for
high spatial resolution ultra high speed imaging are devel-
oped in the market. Nevertheless, it is also demonstrated
that weakly sampled mechanical states (space and/or time
e.g. extreme localization) can not be properly handled
by the method which uses data clustering for regulariza-
tion. This limitation should be addressed using sample de-
sign optimization based on measurability and identifiabil-
ity constraints. (3) When feeding with real experimental
data, the complex non-linear rate-dependence of the yield
stress and hardening flow can be captured, from a single
test, without having to write a priori the exact form of
the constitutive equation contrary to standard parametric
inverse methods. The identified material response, from
20 to 300 s−1, is consistent with literature data collected
using different sample and loading setup. DDI comes as
a new brick within the experimentalist toolbox for both,
local stress probing in the case of non-homogeneous load-
ing case scenarios (e.g. local critical stress at fracture
onset, flow stress during plastic instabilities, mechanical
response of inclusions), and for material characterization.
In the latter, as for more standard inverse methods, such
as VFM or FEMU, DDI allows to make use of non statis-
tically determinate configurations to characterize material
behavior in a more efficient way but also over wider load-
ing conditions domain. Its singularity relies on the fact
that no a priori knowledge regarding the material con-
stitutive equation is required which allows for, not only
identifying parameters, but eventually the form of the con-
stitutive equation itself in situations, especially dynam-
ics, where strong couplings, instabilities, microstructural

transformations make the constitutive equation unknown.
The method relies on standard DIC and load measure-
ments and needs only choosing 5 user parameters whose
selection guidelines have been given in the present work.
However, since it seeks for stresses exclusively from ex-
perimental heterogeneous data and clustering strategy, it
comes at a price of dense full-field information (here at
high-speed), high local signal-to-noise ratios (sometimes
difficult to get in early elastic regime) and strong mechan-
ical states redundancy (requiring sample optimization).
We do believe, in a near future, that coupling topolog-
ical optimization, DIC, DDI and deep-learning methods
would allow for developing complex models, covering real
case loading scenarios, in a record time.
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tion bands”. In: Strain (2022), e12410.

[16] F. Pierron. “Material Testing 2.0: A brief review”. In: Strain
59.3 (2023), e12434.

[17] M. Flaschel, S. Kumar, and L. De Lorenzis. “Automated
discovery of generalized standard material models with EU-
CLID”. In: Computer Methods in Applied Mechanics and En-
gineering 405 (2023), p. 115867.

[18] X. Li, C. C. Roth, and D. Mohr. “Machine-learning based
temperature-and rate-dependent plasticity model: Application
to analysis of fracture experiments on DP steel”. In: Interna-
tional Journal of Plasticity 118 (2019), pp. 320–344.

[19] B. Tasdemir, V. L. Tagarielli, and A. Pellegrino. “A data-
driven rate and temperature dependent constitutive model of
the compression response of a syntactic foam”. In: Materials
Today Communications 39 (2024), p. 108790.

[20] R. Eggersmann et al. “Model-Free Data-Driven inelasticity”.
In: Computer Methods in Applied Mechanics and Engineering
350 (2019), pp. 81–99.

[21] A. Platzer et al. “Finite element solver for data-driven finite
strain elasticity”. In: Computer Methods in Applied Mechanics
and Engineering 379 (2021), p. 113756.

[22] L. Stainier, A. Leygue, and M. Ortiz. “Model-free data-
driven methods in mechanics: material data identification and
solvers”. In: Compututational Mechanics 64.2 (2019), pp. 381–
393.

[23] J. MacQueen et al. “Some methods for classification and anal-
ysis of multivariate observations”. In: Proceedings of the fifth
Berkeley symposium on mathematical statistics and probabil-
ity. Vol. 1. 14. Oakland, CA, USA. 1967, pp. 281–297.

[24] G. Haugou, E. Markiewicz, and J. Fabis. “On the use of
the non direct tensile loading on a classical split Hopkinson
bar apparatus dedicated to sheet metal specimen characteri-
sation”. en. In: International Journal of Impact Engineering
32.5 (2006), pp. 778–798.

[25] B. Langrand and E. Markiewicz. “Strain-rate dependence in
spot welds: Non-linear behaviour and failure in pure and com-
bined modes I/II”. en. In: International Journal of Impact
Engineering 37.7 (2010), pp. 792–805.
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