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o A Rate-dependent formulation of DDI is numerically
and experimentally assessed

e Stress fields are identified within 11 % error beyond
100 MPa

e The monotonic high strain-rate dependent response
of a mild steel is captured

e The yield stress and stress flow rate-dependence is
identified up to 300 s—!
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Abstract

This study experimentally explores the performances of a rate-dependent formulation of the Data-Driven stress Identifi-
cation method for characterizing, using a single test, the monotonic high strain-rate dependent response of a mild steel
alloy. First the Data-Driven Identification (DDI) method is presented in its rate-dependent form. A digital twin of a
high speed tensile test performed on a notched sample geometry is then used to assess the performances of the DDI. It
allows defining confidence intervals depending on multiple indicators (stress magnitude, multiaxiality...) and evaluate
the range of strain-rate levels simultaneously captured. At last, the method is applied to a real experiment instrumented
with High spatial Resolution Ultra High Speed camera (HR-UHS). The kinematic data are retrieved using Digital Image
Correlation (DIC) then used as input for the DDI. Stress tensor fields are identified then the material rate-dependence

retrieved and compared to the literature.
License: CC-BY @TheAuthors
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1. Introduction

Statically determinate test configurations, usually rely-
ing on homogeneous states of strain and stress, have histor-
ically been used to characterize the (thermo-) mechanical
response of materials using a limited set of standardized
sample geometries (e.g. dog-bone (1D), cruciform (2D)).
In this context, both strain and stress, required to sample
the material response, can be captured independently as
scalar values from sensors in a purely experimental way.
Such tests are usually thought as mono-parametric (e.g.
constant strain-rate and temperature, uniaxial or in pro-
portional loading) so a large number of test is required to
sample a large loading space. In particular, some load-
ing cases can not be properly analyzed or analyzed at all,
including e.g. localization or dynamic transient processes
where there is no more direct relationship between the
measured external load and the stress distribution. Such
limitations could be tackled using more complex geome-
tries and /or loading conditions, i.e. carrying gradients (in
space and/or time) and developing original inverse stress
field identification methods relying on full-field imaging
techniques such as Digital Image Correlation (DIC). Us-
ing the stress field itself as an unknown allows by-passing
the use of an a priori constitutive equation to analyse such
statistically indeterminate experiments, contrary to more
standard inverse method such as Virtual Field Method

*Rian Seghir
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(VFM), Finite-Element Model Updating (FEMU) which
are parametric by nature. In that context, several strate-
gies have been recently adopted to estimate heterogeneous
stress fields without using a constitutive equation. All
these strategies rely on full-field measurements and a reg-
ularization of the ill-posed mechanical problem, but they
differ on the chosen regularization.

In 2014, Pierron and his co-authors [28] devised a strat-
egy to estimate heterogeneous stress fields in dynamics
(transient load) without using a constitutive law. The
strategy relies on a one dimensional purely inertial con-
figuration. Under the assumptions of plane stress, and a
homogeneous and constant density of the material, the au-
thors are able to estimate the mean stress field profile in
the specimen. Here, the acceleration acquired experimen-
tally acts as a 1D load cell, which requires recording the
kinematic fields at ultra-high speed (> 1 Mfps). This work
opened the way to a series of new standards: the Image-
Based Inertial Impact (IBII) |11], Release (IBIR) [10] and
Ultrasonic Shaking (IBUS) [34] tests. Among other things,
the authors could eventually identify the elastic or visco-
elastic modulus and tensile strength of brittle materials at
high strain-rate. In these examples, the purely inertial and
uniaxial nature of the test regularizes the problem.

In 2021, Liu et al. [24] and Cameron and his co-author [5]
devised another strategy to estimate stress fields without
postulating a constitutive equation. Assuming that the
material is isotropic, the methods developed by these au-
thors rely on the alignment of the principal directions of
stress with strain or strain-rate. This assumption then



allows obtaining a mathematically closed problem, and
thus the analytical estimation of stresses. These meth-
ods have been tested on numerical example and experi-
mentally in [24]. In [5], the authors discuss the range of
validity of such an assumption: mainly in isotropic elastic-
ity, plasticity with associative flow rules and for associative
flow rules with an isotropic yield function. To the authors’
knowledge, at this stage, this method cannot address the
problem of elasto-plastic transition where stresses are not
aligned with strains anymore and not aligned with plastic
strain-rates yet.

A third kind of strategy was developed in the past
4 years: the so called Data-Driven approaches. These
methods can be used to either solve the direct mechanical
problem [18] (i.e. determining the displacement and stress
distribution in a structure knowing the material response
and boundary conditions), or the inverse mechanical prob-
lem [22] (i.e. determining some unobservable quantities or
parameters from field measurements). The Data-Driven
method were first introduced in the context of Compu-
tational Mechanics by Kirchdoerfer and Ortiz [18| |17]
(DDCM). In their work, the authors replaced the consti-
tutive equation by a minimization process and a material
database. A solution to the direct problem is found by
minimizing a distance between computed mechanical
states (strains and stresses) and a set of admissible
material states belonging to the database. Such a (strains
and stresses) database can be built experimentally, using
the inverse Data-Driven Identification (DDI) framework
introduced in 22} |23]. This new problem aims to estimate
stress fields, from experimental full-field measurements
of displacement (and external load), without postulating
any constitutive equation (contrary to e.g. VFM or
FEMU). Using synthetic data, the authors demonstrated
the ability of their algorithm to estimate stresses fields
in homogeneous structures subjected to various loading
cases (quasi-static and dynamic) and made of different
class of material (hyper-elastic, elasto-plastic). It was re-
cently extended numerically to heterogeneous (two-phase
materials) hyper-elastic structures [37]. This Data-Driven
method was then deployed experimentally by Dalémat
et al. in [7]. In this study, perforated hyper-elastic
membranes are submitted to uniaxial tensile tests. In
a more recent paper [8] the authors extensively discuss
the proper way to handle imperfect experimental data.
They especially discussed boundary conditions issues for
imperfectly defined edges and the way to tackle the issue
of missing data. More recently, the Data-Driven strategy
was applied by Langlois and his co-authors to address the
topic of history dependent materials |19]. The use of this
method enabled them to estimate stress fields during the
formation of plastic instabilities such as Piobert-Liiders
bands. In these strategies, the regularization comes
from the assumption that the material response lies on
a manifold in a constitutive space which is chosen a
priori. The underlying hypothesis of this method will be
presented later-on in this paper. Furthermore, one could

imagine combining this method with the IBI methods in
order to estimate heterogeneous 2D stress fields in tran-
sient dynamics without even needing load measurements.
It has partly been demonstrated, on synthetic data, in [23].

These emergent strategies can potentially help to assess,
without making any assumption, the validity of the cur-
rent library of material constitutive equations outside their
traditional calibration domain (e.g. introducing strain and
strain rate heterogeneities, localization, multiaxiality) and
to drastically reduce the number of tests required to char-
acterize the behaviour of a material. The objective of
this paper is to deploy a rate-dependent DDI formula-
tion to characterize the yield stress and hardening rate-
dependence of a mild steel using a single dynamic test.
In that context, the DDI formulation and its resolution
strategy will first be recalled. Then, a digital twin is built
to investigate the ability of such a method and framework
to estimate stress fields during our particular monotonic
high strain-rate experiment, and to provide realistic error
bars. At last, the DDI is applied to experimental data and
the captured experimental rate-dependence is compared to
literature.

2. Theoretical Framework

The inverse Data-Driven Identification method requires
both, a rich database of displacement fields (obtained for
example with DIC on complex sample geometries), and net
external forces (usually obtained with a load cell). Com-
bined with conservation laws (balance of linear and angu-
lar momentum), valid whatever the material, it is possible
to build a minimization problem where the components of
stress fields are the sought field variables. The following
section guides the reader up to final formulation of the
global minimization problem. To make the implementa-
tion clearer, we use in the following only matrix notation
instead of tensorial one. By default, we use [e] for matrices
and {e} for vectors. When indices are explicitly required
they are emphasized as followed, X/, where ¢ and j are
matrix rows and columns respectively. While the main in-
gredients are recalled in details we refer interested readers
to [22] where the DDI problem was originally introduced.
This work is also inspired by the works of Eggersmann
and his co-authors [9] where a differential representation
framework for DDCM, i.e. conditioning the material data
set to short histories of stress and strain, was investigated.
Furthermore, the modified strategy, regarding the initial-
ization of the problem proposed in 23] is adopted. Some
notations that will be recalled and used in this work were
introduced by Langlois and his co-authors in [19]. The
problem is formulated here in small strain, however, it has
already been implemented and used in finite strain in |7}
29]. Moreover, for experimental concerns, we will focus
only on plane-stress formalism.
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Figure 1: 2D deformable structure made of T3P1 elements
over a domain (2. Blue bullets define the border OF where
loads and/or displacements are prescribed. Note that the
upper part of the boundary OF is named JF“P. Red ar-
rows show a distribution of reaction or applied forces. The
configuration is the one adopted for the digital twin (see
Sec. [4) and the experimental investigation (see Sec. 5)).

2.1. Static equilibrium problem

The general problem considers a 2D structure made of
a deformable continuum material (see Fig. [1). This struc-
ture is discretized using a Finite Element (FE) mesh with
N, elements and N, nodes and the time history is dis-
cretized through N; time steps. Available data are the
following:

e [u]: a 2N, x N; matrix collecting nodal displacements
obtained from DIC over the domain 2. The dimension
2N,, means that displacement vectors are organized in
vector format such as {u'} = {Uf,..., U, Vi ...V}
where U and V are transverse (in the direction 1) and
axial (in the direction 2) displacements respectively
(see Fig. [1)),

e [B]: a 3N, x 2N,, matrix obtained from the assem-
bly of elementary FE gradient operators. The dimen-
sion 3N, encloses the 3 components of the symmet-
ric displacement gradient. It is computed using the
mesh connectivity and relies on triangular elements
and classical linear Lagrange shape functions. It al-
lows for computing strain tensors at every quadrature
points, here element centroids noted e. They are col-
lected in a 3N, x Ny matrix:

[e] = [B][4]. (1)

e [w]: a 3N, x 3N, diagonal matrix collecting the ele-
mentary integration weights times Jacobian determi-

nants of the transformation of each element from its
reference coordinates frame to its actual shape in the
global undeformed coordinate system,

e {F}: a N vector collecting the net force, along the
axial direction 2 (see Fig. , of the nodal forces on
the upper boundary 9F“P:

{(Fy=b Y fhoon VEE[L N, (2)

keoFur

with b the thickness of the structure, supposed to be
constant, and [f] a 2N,, x N; matrix collecting the
nodal internal forces. N, + k refers to axial displace-
ments only, inline with displacement vector organiza-
tion.

The discretized balance of momentum can therefore be
expressed through a set of N; systems of 2N,, linear equa-
tions:

B [w]" {at} = {ft}, vte[1,Ny], (3)
with Y fhox = B o ft =0, Vk € Q\0F.
keoFup €

Considering boundary conditions, especially the fact
that only the net force along the axial direction 2 on QF“?P
(see Fig. [1)) is usually known in practice, and that displace-
ments are prescribed everywhere else on OF, the set of 2N,
equations can be reduced to N = 2(N,, — card(dF)) + 1
equations. It is implemented by discarding from the sys-
tem of equations (3 the degrees of freedom (DOF) associ-
ated to boundary nodes (0F) and by adding the constraint
introduced in Eq. [2| It leads to the definition of new con-

densed operators E} and [ﬂ summarizing mechanical

equilibrium into a compact form:
1T .
B] W™ {o'} = {7}, ven N (4)

2.2. Data-Driven Identification problem

The main idea behind the DDI method consists in
assuming that a constitutive equation exists, hence
there is a constitutive space (still to be defined) where
the whole set of mechanical states lies on a manifold.
In short, among the infinity of solution of the static
problem (see Eq. , one seeks for the one that minimizes
the spread around an unknown manifold within a well
defined constitutive space. Notice that in the follow-
ing, such a manifold will be approximated by discrete
points named material states, in the sense that they
literally sample the material response in the constitutive
space. Such a discretization allows for regularizing the
ill-posed problem of stress identification as we will see
later-on. As a consequence 3 main ingredients have to
be defined: (1) such a ”well defined” constitutive space,
(2) a norm for estimating distances between states in



this potentially high dimensional constitutive space, and
(3) the sampling of the manifold. The main assump-
tions of the method are enclosed in these three ingredients.

The constitutive space has to be chosen wisely regard-
ing the various dependencies of the material response to
observables and sought quantities. However, it does not
necessarily have to match the ”canonical” representation
of the tested material class. Indeed, for example consid-
ering a purely mechanical response (stress vs strain evo-
lution), a non-linear visco-elastic material cannot be dis-
tinguished from a visco-plastic one when submitted to a
monotonic loading. An other example is proportional load-
ing (monotonic or not). While history variable may be
necessary for modelling purposes, in practice all material
points with the same current strain state have experienced
the same loading history and therefore, regardless of it,
they respond similarly. In short, the constitutive space
could be built only from strain and constitutive variables
which are not colinear to strain in the particular tested
loading scenario. To the authors’ knowledge, a proper
theoretical investigation of the constitutive space repre-
sentation in DDI has not been proposed yet and it goes
way beyond the scope of the present paper. Since we will
focus on monotonic and proportional loading applied to a
rate-dependent material we will use in the following a first
order differential approach as proposed in [9] for non-linear
visco-elastic material. The validity of this framework for
our particular experimental case will be checked later-on
numerically, using a digital twin in Sec. |4 and then exper-
imentally in Sec. |5 by comparing the identified material
response with uniaxial test data from the literature. In
that framework, the material response is only described
using strain, stress and their first order time derivatives.
In practice, and similarly to what is done in [19], an in-
cremental approach will be used, leading to a dependence
of the current stress to the current strain and the former
strain and stress:

ot — &t (st’st—l,&t—l) ) (5)

& will be further used as the DDI estimation of the ac-
tual stress in this particular space. Then, let us define
a distance in a strain and stress tensor related constitu-
tive space. Following [18] we choose a norm built from a
symmetric positive definite fourth-order tensor C,. Noting
for example {P'} and {Q'}, two vectors related to some
strain and stress tensorial quantities at time t respectively
in Voigt notation, an energetic ||[|2 norm can be intro-
duced as follows:

1P, QIR = {P T [C,l {P! ) +{Q'} [Tl {Q'}. (6)

Normalizing data, such as:
{p'} = [VC.] {7},
{2y=[V&] {27
the norm simply becomes:

1Pt QY 2, = (P} (P!} + {2} {Q'}. (8)

Notice that the square root of the tensor [C,] is com-
puted using an eigen value decomposition, [vC,| =
V] [\/5} [V]T, where [V] and [D] are matrices containing
eigen vectors and eigen values respectively. Such a nor-
malization will help being more generic, especially avoid-
ing being intrusive for the clustering part of the problem
(see Sec. 2.4).

As introduced above, to address the issue of ill-
posedness of the stress field identification problem, the
material response is discretized with a finite set of N* un-
known material states ({e*},{e**},{o*},{o**}), where
o* are related to the current state and ** to the former
state. We will see that these N* states are in practice de-
fined as barycenters of mechanical state clusters. These
clusters regroup the set of strains and sought stresses
({e'}.{e!'},{6"},{6""}) that are close in the ||||%
norm.

Considering the constitutive space introduced in Eq.
the norm introduced in Eq. [§ and the sampling of the
material response into N* current and former states, the
problem can be formulated as a global minimization:

min ¥ (e, e*,e™, 7,0%,0™,S), (9)

eels
o o™*S

where

N

= (IPL QR PR, ), (10)

t=2

N —

with
Vi ({1} - [ 1),

pH] ({1} - [s]{e™)),
V] ('} - (87 e,
o = [V ({81} - [SHe ™).

under the constraint that the equilibrium equations (Eq.
are satisfied. [p] is a 3N, X 3N, x N; matrix weighting me-
chanical states contributions for every time-steps within
the functional ¥. A specific section (see Sec. is dedi-
cated later-on to address the role of these weights. [S] is a
3N, x3N*x N, selection matrix that maps the N* material
states to the mechanical states for every time-steps. Eq.[J]
must be understood as the global minimization (time and

(11)
Q' =

|
|



space) of the scattering of mechanical states around their
associated N* material states (barycenters) in the partic-
ular constitutive space (ef,et=1, &%, 6'1). If equilibrium
constraints are enforced using Lagrange multipliers, the
following cost function can be obtained:

O =1 +§; ([B’r [w]" {&'} ~ {ft}> (S
- Vt € [1, V).

[1P%

Notice that the introduction of normalized quantities “e
also requires the normalization of B with [C,]. It is sim-
ply done by assembling normalized gradient operators. Fi-
nally, two problems can be formulated: (1) the mechanical
problem and (2) the material one. The stationarity of ®
with respect to {A\'} and {G'} leads to the mechanical
problem and the following set of V; systems of 3N, X N

equations:

with
[T Ve,
2 Vte[2: Ny,
[St+1] {Q**} t = 17

[STH1] {a**} + [S!] {c*} VYt e [2: Ney),
[S*]{a*} t=N;.

{D'}

(14)

Then, the stationarity with respect to the material states
leads to the material problem resulting in 4 sets of 3N*
equations:

Ny

2

13

28T p1ISHe) =2 157" WHe'}
ti;: [St+1]T [pt] [St+1] {é**} _ t:: [St+1]T [pt] {gt}.

(15)
Similar equations are used for {o*} and {g**} respectively.
Stationarity with respect to [S], to update the state map-
ping, is difficult to explicit. Indeed, contrary to other vari-
ables, which are continuous numbers of R, [S] is made of
integers in N. As a consequence, an alternative method
is employed. Details are given in Sec. 2.4 The resolu-
tion of such a problem has already been discussed in [23|
35]. It relies on a staggered algorithm that computes al-
ternatively the Lagrange multipliers and the correction of
the stress fields for a given material state set and selection
matrix (called the mechanical problem), then the update
of the material states set and selection matrix for given
stresses (called the material problem). These two steps
are discussed in the next sections.

2.8. Resolution of the mechanical problem

Let us consider a given set of material states:
({e*},{e™*},{a*},{a**}) and a given mapping through
the selection matrix [S]. The mechanical problem can be
solved by substitution, leading first to the computation of
the Lagrange multipliers:

8] " )™l [B] {3} = [B] i (01} -t { 1)
[(M?] {b*}
Yt € [1, Ny

(16)

It consists in a set of N; systems of N independent linear
equations to solve. Finally, stresses are updated using the
second line of the system of equations

{6y = = ({0}~ )" [l [B] {0}) ve e 1, M
(17)

2.4. Resolution of the material problem

First, the mapping operator, i.e. [S], must be computed
for given stress fields and the actual set of material states.
Finding for each element e the material state N; that is
the closest with respect to ||[|2 is done using the k-d tree
method. Indeed, since for each iteration of the material
problem the database of material state is fixed, efficient
space-partitioning data structure strategy can be used to
strongly accelerate this operation which remains the bot-
tleneck of the method. Once this matrix is obtained, the
set of material states ({e*},{e**},{a*},{c**}) is up-
dated using Eq. [[5] The complexity of the resolution
mainly depends on the form of [p']. If [pt] is diagonal,
as it has always been the case in the literature according
the authors’ knowledge, the resolution of Eq. simply
consists in computing 5 X 3N* independent averages or
weighted averages of the mechanical states in elements as-
signed to each material states through [S]. For example
current and former material strains are found such as:
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The next section discusses the choice of such a weighing
matrix [p'].

2.5. Choice of a weighing matriz

The weighing matrix [p] of the elementary distance be-
tween one mechanical state and its corresponding mate-
rial state, introduced in the DDI norm (see Eq. 7 can



be wisely used as a natural filter for noisy experimen-
tal inputs. Inputs of the DDI being itself an output of
the DIC inverse problem, it is necessarily biased and cor-
rupted by noise. Finding a way to mitigate this issue could
be valuable for the application of the DDI method to real
experimental data. Some solutions have already been pro-
posed in the literature for such a weighting matrix. Even
if it has not been explicitly written as such in literature,
two cases can be found: [p'] = I, the identity matrix,
or [p'] = [w] (see e.g. [19]). The first solution gives an
equal weight to each element, each tensor component and
each time-step. The authors found it useful when the ob-
jective is to identify stresses in vicinity of a localization
band using a strongly refined mesh. Indeed, the second op-
tion, classical for FE integrals, gives more weight to large
and undistorted elements then reducing the contribution
of data in the refined mesh areas where strain localization
is expected/observed. Alternative routes could be used,
designing a weighting matrix enabling the minimization,
for example, of the stress identification noise but this is
out-of-the scope of this work. In the following, only the
two above mentioned cases will be compared.

2.6. Schematic of the global minimization problem

The resolution of the problem, i.e. computing
({e*},{e**},{o*},{o**}), [@] and [S], is performed us-
ing the following staggered algorithm [19):

1. initialize [¢] using a FE simulation with an arbitrary

model,

2. normalize input dataset to get ([g], [g]),

3. initialize {e*} , {e**} ,{a*}, {™*}) and
[S] wusing a k-means algorithm [25] on

({e} {1} {e'} {g""}) vt e [1, N,

4. solve the mechanical problem (see Sec. ,

5. solve the material problem (see Sec. , eventually
using k-d tree. This step is iterated until convergence
of [S]. Tt usually takes less than 3 iterations to con-
verge,

6. iterate steps 4 through 5 until convergence of [S] and

o]

2.7. Algorithmic parameters

Once the framework of the DDI method is set, mean-
ing that a particular constitutive space (see Eq. and
a particular norm (see Eq. are selected, 5 parameters
remain to be adjusted by the user and will affect per-
formances of the algorithm. (1) the number of material
states N* sampling the material response, (2) the ampli-
tude and the exact form of C,, (3) the two convergence
criteria and (4) the weighing matrix [p]. The first one
and part of the second has already been investigated by
Dalémat and her co-authors in [8] using FE reference so-
lutions and varying the number of DDI material states.
They concluded that a small number of material states
leads to an insufficient sampling of the strain-stress mani-
folds while a high number of material states allows outliers

to develop and increases the sensitivity to noise (similarly
to the overfitting phenomenon for regressions). The au-
thors proposed the following rule of thumb for choosing
N*: 20 < M < 100, where the numerator is the ex-
perimental database size. The influence of the magnitude
of C, was found to be straightforward as it only intervenes
for the clustering step. Eq. [7] shows that by choosing a
tensor with high values, the normalization will give more
weight to strains compared to stresses. So, for the ro-
bustness of the clustering, it may be relevant to use a C,
of high amplitude in order to give more weight to strains
which are obtained experimentally, compared to stresses
which are unknown and which are continuously changing
during the minimization process. To the authors’ knowl-
edge, the question of the influence of the symmetry of C,
has not been investigated yet and it is not the objective of
the present work. In the following, a pseudo Hooke ten-
sor for an isotropic material is used. Its definition only
depends on a pseudo-Young modulus F, (the magnitude)
and pseudo-Poisson ratio v,. Regarding the two conver-
gence criteria, one uses for the material problem the con-
vergence rate of the data-driven distance ¥ (see Eq. E[) at
each iteration ¢. That is to say:

|V — W4

T, (19)

2 €mat,
where ¥y is its initial value and €,,,; the user criterion. For
the mechanical problem, we use the convergence rate of the

sum (space/time) of the norm of internal force vectors (See
Eq. . That is to say:

Fi—Fi
| |.F |z 1| > €mech with F = Z Z ‘
0 t=1ecQ

wl {&} P

(20)
Notice that it is not necessarily equal to zero due to the
slight difference between Eq. (where we impose equi-
librium through Lagrangian multipliers) and Eq. [4 where

[B] is used instead of [B} Indeed, the equilibrium of the

structure is imposed using B, i.e. only in an integral man-
ner over 0F"P. So the convergence of Eq. reflects the
convergence of the load profile. Regarding the weighing
matrix two options will be compared in this paper:

Ho: [pt] = Lo, ¥t € [1, NJ],
Hi: [p'] = [w].

Table [ summarizes the inputs, outputs, parameters and
assumptions needed for the proposed Data-Driven Identi-
fication method. It emphasizes the fact that, evenif DDI
presents itself as a model-free technique for fields of stress
tensors estimation, part of the modelling framework is hid-
den in the choice of the constitutive space. Nevertheless,
while the framework is constrained, the exact form of the
constitutive equation remains free. Moreover, the role of
user parameters remains significant and many aspects still
have to be investigated.



Inputs Outputs [Parameters Assumptions
[waic] , {F} [S] C, Plane stress
[B] (6] N* Small strain
[ore] ™}, {e™ Hemats €meen| Constitutive space
{o"}, {o™}  [p]
)

Table 1: Summary of the inputs, outputs, parameters and
the assumptions needed for the Data-Driven Identification
method proposed in this work. In this table, ¥ gives the
DDI distance at convergence providing information about
the compactness of the identified mechanical states around
a manifold.

3. Experimental method

3.1. Material

The chosen material, for the experimental validation,
is the rate-dependent mild steel DC04 (XES French stan-
dards). Its chemical composition is presented in Tab.
The quasi-static and dynamic responses of this material
are relatively well-known [13] (14} |20} [21] making it a good
candidate for method validation. In 2016, Markiewicz et
al. [26] used a modified Krupkowski model [30] to capture
its complex rate-dependent stress flow. The model is in-
spired from Swift hardening model (or Krupkowski) [30]
and from the Hollomon (or Ludwig) model [15| (recovered
at the limit of zero strain-rate). It takes the following
form:

orn =KX (c0X"+¢,)"" withX =2, (21)
0

where ¢, and €, are the plastic strain and strain-rate re-
spectively. Best fit parameters for K, a, b, ¢, n, g9 and
€p are provided in Table |3| while Figure |2| presents some
results regarding the material tensile response extracted
from literature for loading rates ranging from 1073 to 102
s~1. The model captures very well the rate-dependent in-
crease of the yield stress as well as the transition from
non-linear, steep hardening flow to almost linear perfectly
plastic flow at high rate. Notice that presented Krup-
kowski responses are computed using mean strain-rates
(given in legend). The later do not reflects instantaneous
strain-rates experienced by the material from 10 s~! which
explains part of the discrepancy, the other part being in-
duced by inertial effects (from 200 s~1).

3.2. Specimen geometry and loading apparatus

The question of sample design for inverse methods char-
acterization is extremely vast. It can be based on an
heuristics approach starting from standardized geometries
(see e.g. |4, ]16]) or using proper optimization approaches,
such as e.g. constrained topology optimization |2, |6]. In
this work, the first approach is used considering flat dog-
bone geometry. The main additional features are two sym-
metrical notches (to avoid loading measurement biases)
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Figure 2: Modified Krupkowski model predictions (see
Tab. [3) and tensile reference data reproduced, from [26]
(from 0.006 to 70 s~! using hydraulic test machines)
and [14] (from 200 to 440 s~! using dedicated non direct
tensile loading on split Hopkinson bar apparatus).

and a central hole (see Fig. . Such features are ex-
pected to lead to strain concentration bands between the
notches and the central hole as well as 45° secondary bands
pointing down from the central hole to the sample lateral
edges. The specimens were cut from a 0.8 mm-thick metal
sheet in the rolling direction. The high speed tensile tests
is conducted using a hydraulic tensile test machine (MTS-
819, 20kN). The upper grip is mounted on a 2.5m long
42CD4 steel bar instrumented with strain gauges acting
as a Hopkinson bar load cell (see Fig. to delay iner-
tial biases and to enhance test duration. The lower grip is
mounted on a sliding bar and an enclosing case linked to
the actuator allowing to reach the imposed displacement
speed after a period of “free fall”. The selected loading
velocity is 5ms™! and the associated “free fall” distance
was accordingly set to 25 mm.

8.8. Imaging setup and DIC parameters

We use the High spatial Resolution Ultra High Speed
(HR-UHS) camera Cordin-580. It is a multi-sensor,
rotating mirror camera that captures 78 independent
images of 8 megapixels (2472 x 3296 pixels) up to 4
million fps. The singularities of the camera, and the
numerical developments required to perform quantitative
DIC with such a technology have been studied in depth
in [39] and will not be recalled in detail here for the sake
of conciseness. Nevertheless we strongly recommend, for
having a full picture of the metrological consequences
coming with this technology to read [39]. Tab. 4| sum-
marizes the main characteristics of the imaging setup.
In the present campaign, images are captured at “only”



C S N Mn P
0.0268 | 0.0175 | 0.006 | 0.202 | 0.007
Cu Mo Sn Nb A%
0.014 | 0.002 | 0.004 | 0.001 | 0.002

Si Al Ni Cr
0.007 0.07 0.018 0.036
Ti B Ca
0.002 | < 0.0003 | < 0.0003

Table 2: XES chemical composition (in wt%) [26].

K €0 n o) a b c
(MPa) (s71) | x107t
526.6 | 0.024 | 0.221 | 0.085 | 0.002 | 0.385 | 0.002

Table 3: Parameters for the modified Krupkowski model
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Figure 3: (a) Sample geometry and (b) Close-up view of
the loading apparatus.

68 kfps corresponding to a film duration of about 1.18 ms.
The scene is lighted by two Pro-10 Xenon flashes from
Profoto (2400J each in normal mode, at 10 f-stop). In
this configuration, the illumination typically lasts 2.4 ms
with a stable and optimal plateau of 1.1 ms. The flashes
and the camera are triggered separately. Flashes are
triggered using an infrared light-gate system (SPX1189
series Honeywell). It is placed in such manner that it
sends a 5V TTL signal when the enclosing case is at
a given distance to the contact with the sliding bar.
This distance has to take into account the speed of the
actuator as well as the rising time of the flashes (150 ps).
It has been empirically determined and set to 3.7mm
from the contact point. The Cordin-580 is triggered using
the load cell. When the load reaches 6231.5N, =~ % of
the plastic yield, a trigger is sent to the camera. Upon
receiving the trigger, the camera will record the following
images, as well as the ones taken up to 100ps before
(this is named post-triggering). These parameters were
determined empirically through preliminary tests. Note
that a high speed infrared camera (Telops M3K) is also
used to record the other face of the sample during the

experiment (see Fig. E[) The infrared results fall out of
the scope of the presented work nevertheless, thermal
information confirmed that no massive thermomechanical
couplings are induced by the strain. Indeed, mean sample
temperature rises up to 5 °C while the temperature within
localization band does not locally exceed 50 °C at fracture
onset. It confirms that the constitutive space used to
identify stresses does not have to explicitly take into
account temperature (see Sec. .

Note that the Hopkinson bar-like load cell implies some
adjustments for a perfect time synchronization of the load
with images. Indeed, the delay for waves to travel from
strain-gauge to image boundary has to be taken into ac-
count (see Fig.. Considering, the bar’s properties (E =
205 GPa and p = 7850 kg/m?) and a distance of ~ 155 mm,
the delay is computed as follows: 7 = \/% = 30ps. This
is in the order of magnitude of two interframes for this
experiment.

Figure 4: Experimental setup for a high speed tensile test,
recorded using a visible-light camera and an infrared one.

Finally, since rotating mirror cameras produce distorted
images, an external absolute image reference is needed for
performing DIC and for deconvoluting distortions. In this
work, this image is obtained by recording, prior to the
test, images of the sample at rest with a high definition
camera (29 Mpix, Prosilica GT from Stemmer) combined
with the same objective lens. The image is eventually
down-scaled to the Cordin camera resolution. In addition
a series of calibration shots are taken, prior to the test, to
create a representative model of the distortions induced by



Camera Cordin-580

Image resolution 2472 pixels x 3296 pixels
Detector Dynamic Range 12 bits

CDS gain . 3dB

Correlated Double Sampling

CCD gain 115 %

analog-to-digital conversion
Acquisition Rate

Lens

Aperture

Field of view

Image scale

Stand-off distance
Patterning Technique

68 kfps, 15 s interframe
Tamron 90 mm Macro
/2.8

35.8mm x 47.8 mm

1 pixel = 14.49 pm
3lcm

Black and White paint

Table 4: DIC hardware parameters.

the camera in experimental conditions (lens, working dis-
tance, magnification, frame-rate). We use in the following
a regularized FE-based DIC strategy [3]. An unstructured
mesh refined along expected localization bands and in the
vicinity of the notches and the hole is used to parameterize
the displacement (see Fig. [1)). Tab. |5| summarizes selected
DIC parameters for the entire study.

DIC Software Utreckles [31]

Type FE-based
Parametrization | linear FE triangular elements
Metric Zero-Normalized

Sum of Squared Differences
Pitch 32 pix (refined down to 26 pix)
Regularization Tikhonov type [41] over 4 x pitch

Pre-filtering image flattening (vignetting)
Savitzky—Golay time filter

Post-filtering order = 2, window = 23 frames

Table 5: DIC analysis parameters. See [39] for uncertainty
characterization.

4. Metrological assessment using a digital twin

The following section has 3 objectives: (1) numer-
ically find good set of DDI parameters for our case,
(2) validate the chosen framework on rate-dependent
simulations mimicking experimental loading conditions,
(3) produce error bars to better interpret experimental
results. Note that, contrary to classical 1D loading cases,
the experimental dataset (strain, stress and strain-rate)
is multi-dimensional. Hence, for the sake of simplicity the
majority of the results will be presented using invariants
(I, v/3J5 or Von-Mises). This is not a requirement but
just a representation choice, any other norms or invariants
could have been chosen.

The digital twin of the experiment relies on both, FE
simulations, to produce displacements from a specific

structure, boundary conditions, constitutive equation and
parameters, and Virtual Image Deformation (VID), to pro-
duce realistic images encoding the physics and the exper-
imental biases. They are eventually analysed using DIC,
then DDI, as we would do for a real experiment. To be
efficient, VID has to take into account: spatial/temporal
resolution of the imaging system and the DIC sampling,
biases induced by the lens and sensor noise. Obviously
such procedure is never perfect, for instance, it is diffi-
cult to take into account strong speckle-like pattern trans-
formation or even degradation in highly deformed regions
during large strains [40], light variation, out-of-plane mo-
tions... Since the procedure has become more and more
standard in the validation of an experimental procedure
or of inverse identification methods |32} |1} [33} (16} |4} [34]
11} 127, /12], only the main methodological features will be
recalled in the following.

4.1. Finite Element reference solution and DDI intializa-
tion

All the thermomechanical simulations are performed us-

ing the implicit solver of Abaqus. We use CPS3T ele-

ments and the phenomenological, multiplicative, isotropic

and strain-rate dependent coupled Johnson-Cook model
(JC). The yield stress takes the following form:

o= [A+ Be}] [1+czn (zz)] [1 <H>m} ;
(22)

where A, B, n and m are base material parameters mea-
sured below the transition temperature Ty. T, is the
melting temperature, C' and €, define the rate depen-
dence and g, is the equivalent plastic strain defined by

g =I
P 0
rial parameters will be used: the set A to produce a ref-
erence rate-dependent solution (input of the digital twin)
and the set B which will be use for initializing the DDI
procedure. Initializing the DDI can be done with any ar-
bitrary solution but, for the sake of simplicity, we use here
the same model but with different parameters. To demon-
strate the ability of the introduced DDI framework to cap-
ture unknown rate-dependent material responses, the set
B is, on purpose, chosen having a very weak rate depen-
dence via the parameter C' and with base parameters A, B
and n significantly far (up to 50 % difference) from the ref-
erence solution obtained with the set A . Thermal param-
eters (useless for the discussion) are kept identical. Tab. |§|
summarizes both parameter sets. Set A has been iden-
tified using data from [26] using quasi-static and 70s~!
loading rates.

From Table [f] we see that the stress solution built from
set B parameters (i.e. for initializing DDI) has a lower
yield stress, a stronger non-linear hardening and almost
no strain-rate dependence. The question addressed in this
part is the ability of the proposed DDI framework to re-
cover the reference solution (set A) starting from an ar-

(2¢, : €,)dt. In the following, two sets of mate-



A B n c éo m TO Tm
set (MPa) x107%  (s71) (K)
A | 394 136 047 256
B | 315 272 0.61 2.56 w0 L1300 1350

Table 6: Johnson-Cook model parameters: set A is for
reference solution and set B for DDI method initialization.

bitrary one which does not encode the right constitutive
features. To facilitate field comparison, simulations are
performed using the actual experimental DIC mesh (see
Fig. . The same mesh will be used throughout the whole
procedure. Also, the analysed simulation time steps are
chosen to match the experimental frame-rate. With re-
spect to boundary conditions and simulation outputs, two
cases must be distinguished:

e the reference solution is produced (using set A pa-
rameters, see Tab. @ imposing, at the lower boundary
(see Fig. , an axial displacement corresponding to
a constant velocity of 5ms™! while maintaining the
upper boundary clamped. The outputs of this simula-
tion — namely the displacement fields U™, the stress
fields o™f and the vertical net force on the upper
boundary F;ff — will serve as references for virtually
deforming images (and perform DIC) then evaluating
performances of the DDI method.

e the DDI initialization is produced (using set B pa-
rameters, see Tab. @ in two steps: first, a simulation
is ran with DIC displacements (obtained from VID
using the reference solution) imposed at the mesh
boundaries. The resulting load distribution on the
upper boundary is rescaled to match the net force
of the reference simulation (Fymf) and stored. Then,
another simulation is ran with mixed boundary condi-
tions, replacing the upper axial displacement by the
saved axial load distribution. This rather complex
strategy allows imposing a realistic load distribution
in the simulation knowing only displacement and net
force like in a real experiment. The main output of
this simulation is the stress field, o5 balancing the
reference net force Fyref7 used then for initializing DDI.
The upper script false underlines that it is far from
the sought target o™f evenif it balances the external
net force.

4.2. Focus on Virtual Image Deformation

This part gives the main ingredients of the VID. While
the global procedure is standard some extra steps come
when trying to mimic our particular camera. A real im-
age of a speckle-like pattern is synthetically deformed us-
ing U*f. To account for Cordin-580 optical distortions
(see [39]), Ut is composed with distortion fields U%, cal-
ibrated experimentally. The composition equation takes
the following form:

Uvirtual(x) _ Uref (K) + []d1 (K + Uref (K)) (23)

10

Where UVirtual ig the displacement imposed to the images
and X are the coordinates. In practice, filling the de-
formed image with the right grey level values at integer
pixel positions requires to get the inverse mapping of the
transformation and a grey level interpolation scheme. We
use in the following a bi-cubic spline interpolation. Fi-
nally, a realistic noise is added to the deformed and dis-
torted synthetic images. Apparent sensors noise is ob-
tained by computing, over a real image sequence of a sam-
ple at rest, the temporal standard deviation of material
point grey level values (it implies correcting distortions
first, see [39]). Figure [5| shows the Cordin-580 apparent
noise (normalized by the dynamic) as a function of the
grey level intensity and pixel density. We see that it is
signal-dependent (or heteroscedastic) which follows a non-
linear trend from 30 % in dark areas down to 5 % in bright
ones. Hence, we corrupt synthetic images adding a zero-
mean random noise whose the standard deviation depends
on the grey level according to the polynomial fit shown on
Figure 5] As a side comment, note that data presented in
Figure [p] is not strictly speaking a sensor noise. Indeed,
it also results from the offset and gain mismatch from one
sensor to another (multi-sensor technology), the focus mis-
match, as well as the uncertainty on distortion estimation
which does not allow for perfectly stabilizing images (+
0.1 pixel). This is why we name it apparent noise. In ad-
dition, it explains why values are very high compared to
mono-sensor ultra-high speed camera (e.g. in the order of
1% of 16 bits for the Shimadzu HPV-X). It is the price to
pay for having 8 Mpix images (up to 4 Mfps) compared to
0.1 Mpix for a Shimadzu HPV-X at same frame-rate.

[42]
o
¥

A
(5]

N
(=]

w
(5]

[
o

N
w

N
o

Normalized camera noise (%)
o

=
o

v

2000 4000 6000 8000 10000 12000 14000
Gray levels

Figure 5: Normalized apparent camera noise (in %) versus
the mean grey level. The colour denotes the pixel counts
(in %), while the black line denotes the polynomials used
to model the camera noise.

Eventually, the DIC procedure proposed in [39] is



applied on these synthetic images and displacement fields
can be used as an input for DDI. Notice that a small trick
is required here to accurately mimic the experimental
variability of optical distortions from one shot to another,
hence the fact that optical distortions are only known
(from calibration) with a certain level of confidence.
It consists in using an other set of optical distortion
field U% when deconvoluting, within the DIC, actual
displacement from distortions. In practice, variability
of optical distortion modes from one shot to another
is statistically evaluated experimentally, hence U® is
defined as U% plus or minus such a variability.

The whole digital twin procedure is summarized in the
Figure[6] Later-on, the exact same procedure will be used
for analysing the experiment without the upper left brick
creation of a numerical twin for which only UP'C and Fef
will be known. With all these ingredients, the experimen-
tal process is mimicked with a high degree of confidence.
Displacements coming from DIC encode the response of a
known rate-dependent model and are corrupted by main
experimental biases (sensor resolutions, noise, variability
of optical distortion, speckle-like pattern quality, DIC algo-
rithm convergence). The initialization of the DDI balances
actual external forces but is selected far enough from the
sought solution. Identified stresses, P!, can be quanti-
tatively compared with ¢! on the same mesh.

4.3. Numerical results and discussion

The stress identification is performed on 50 simulation
time steps (leading to = 40% local peak strain). First
the influence of the different parameters (see Tab. [1]) of
the DDI will be investigated. Then, once the parameters
chosen, the DDI method performance will be discussed.

Influence of the DDI user parameters. To inves-
tigate the influence of the different parameters of the
method, several Data-Driven Identifications were per-
formed on the same simulation. Different numbers of ma-
terial states N* are tested such that: 30 < M <
200. The ratio between the pseudo elastic modulus and
the actual material Young Modulus, %, is swept from 0.1
to 10. Finally two forms of the weighting matrix [p] are
tested, either Iy or [w] (see Sec.[2.5)). In addition a median
filter ranging from 0 to 5 neighbouring elements (noted [..)
is applied to DIC strains before the DDI to see if any
pre-filtering of the noisy experimental strains is required
for optimizing performances of the identification. In order
to assess which quadruplet leads to the best identification
results, the following equivalent standard deviation & is
considered:

{seqwmp = (A5var (a0h)?,

. _ (24)
Ao’ (67 t) = J]ZDDI(ea t) - O—l’fef(ev t)

where e is the element (single quadrature point), ¢ is
the time, Var is the variance, and ¢ is the in-plane tensor
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component xx, yy and xy respectively. Thus, the error is
the square root of the variance of the difference between
the identified stresses and the reference ones for all the ele-
ments and time steps, averaged over the three components.

N*
3710(Nt — 1) 'Ne

10 x B 2

Table 7: Optimized DDI user parameters.

The best parameters among those tested are given in
Table [7} Figure [7] depicts the evolution of &g when 3
out of 4 parameters are fixed and one varies. This figure
shows that the error increases when the number of ma-
terial states decreases. Furthermore, the error decreases
when F, increases. These trends are in line with the ob-
servations from [8]. In addition, this figure highlights that
there is an optimal filtering length for DIC strains: . = 2.
At last, the choice of the weighting matrix do not have a
significant influence on the error. Nevertheless, the use of
[w] leads to a small reduction of the error (from 24.8 MPa
to 23.7MPa). As a summary, a stress identification er-
ror of about 20 MPa is expected on average over the test,
when considering our particular camera, geometry, loading
case scenario and a Johnson-Cook rate-dependent based
material. In the rest of document, DDI user parameters
presented in Table [7] will be used.

DDI Post-processing. Let us now visualize the identi-
fied material response, looking at the identified mechan-
ical states distribution in a Von-Mises {||e||v s, ||o||lvar}
space. Figure [8a] shows all identified mechanical states
for all time steps during the simulation in this Von-Mises
space. The count shows how the test samples (densely
or not) the constitutive space. Firstly, it is logical that
the mechanical response appears “thick” in this space. In-
deed, simulations are rate-dependent and strain-rate fields
are heterogeneous due to notches and hole. So part of the
spread is due strain-rate dependence whose the dimension
is not represented. This is one of the asset of heteroge-
neous tests; testing various strain-rates at a time. Nev-
ertheless, the spread in Figure [8a]is clearly dominated by
the experimental biases introduced in the VID procedure.
Indeed, a main response is clearly observed (characterized
by mechanical states with high occurrence numbers) sur-
rounded by a massive spread. This spread is especially
significant for strains beyond 0.4mm™! as it reaches more
than 150 MPa. Nevertheless, the occurrence of the me-
chanical states in the spread are several order of magni-
tude below the occurrence in the main response. Since the
DDI method is based on clustering, it stands for a reason
that the most recurrent mechanical states will lead to more
robust identification. Hence robustness is strongly depen-
dent on the density distribution of the mechanical states in
the constitutive space: database outliers, e.g. extreme lo-
calization (in space or time) can not be properly handled.
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Figure 6: Schematic of the numerical test case procedure. In red are the inputs of the DDI algorithm.
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Figure 7: Evolution of £, with respect to the DDI pa-
rameters. Note that the y-scale differs from one graph to
another.

In that context, the definition of a DDI post-processing,
filtering states according to their occurrence seems rele-
vant. In what follows, a mechanical states is considered
relevant if its occurrence is higher than the 95" quantile.
Figure 8B shows the mechanical states remaining after the
proposed filtering. As expected, only the main response
is kept and the mechanical states spread is significantly
reduced. Notice, that when using this filtering, only 9%
of the whole set of mechanical states (space and time) is
discarded. This supports the use of this simple (not case
dependent) filter since it improves significantly the inter-
pretability of the DDI results while discarding a minimal
amount of data. Figure [8c spatially spots for how many
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time-steps the local states have been discarded, expressed
in percentage. Indeed, the robustness of an identified state
can vary over time since a spatial area can shift from a
densely sampled region, in the constitutive space, to a
weakly dense or the other way around. This figure shows
that most of the elements are kept for all time steps. Also,
the elements discarded are located near the notches and
the central hole probably at the end of the test when they
are subjected to extreme and rare (in the database) load-
ing conditions. In the rest of this document, all the results
will be presented post-processed as such, i.e. discarding
outliers.

Local stress assessment. Considering optimized DDI
user parameters and its post-processing, expected error-
bars on local stress measurement can be established. It
seems irrelevant to only provide a global scalar value for
an heterogeneous test, hence we propose a more thorough
investigation looking at the systematic link between,
stress identification error, local stress level and stress
occurrence in the database.

Figure [0 presents the stress identification uncertainty
(that is to say the standard deviation of Ao (e, t)) achieved
for a given local stress magnitude. The figure shows the
absolute uncertainty in red and relative to the local stress
magnitude in blue. On top the distribution presents how
much each class of stress magnitude is sampled by the
test. The distribution indicates that a significant amount
of material points (space and time) are subjected to stress
magnitudes below 100 MPa. This corresponds to the very
first part of the elastic domain of the considered material
(see Fig. . Relative uncertainty is the highest in this re-
gion, from 100 % for low strains down to 11 % at 100 MPa.
It evidences that the signal to noise ratio is there not fa-
vorable for identification. This is the direct consequence
of the strain uncertainty (2 me, see [39]) induced by our
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Figure 8: Mechanical states distribution in the
{llellvar, |lollvar} space before and after DDI post-
processing. In Fig. 0 % means that the local data
are kept whatever the loading stage while a higher value
means that they are discarded for some. 100 % means
fully discarded.

camera and not the DDI method itself. Then we observe
that few data are available during the elasto-plastic tran-
sition, i.e. in the 200 MPa — 400 MPa range. The conse-
quence of such a data scarcity is visible on the absolute
stress uncertainty. Indeed, as the data availability in this
range decreases, the absolute stress uncertainty increases
from 9 MPa at the beginning to 27 MPa for a stress level
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of 315 MPa. Nevertheless, since the signal to noise ratio
becomes favorable, the relative stress error remains below
10 % beyong stress magnitudes of 200 MPa. At last, more
data is available beyond 400 MPa i.e. during plasticity.
The figure shows that beyond this stress magnitude, the
error remains below 16 MPa i.e. a relative error below
4%. Notice that such results are camera, geometry and
loading dependent and should be checked for every new
configuration.
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Figure 9: Stress uncertainty with respect to the stress
magnitude. The stress magnitude occurrence in the test
is given by the histogram while the blue and red lines
are respectively the relative and absolute values of the
stress uncertainty. The values are obtained after DDI post-
treatment

Range of local loading scenarios. DDI allows for
probing local mechanical response giving the unique op-
portunity to analyze richer tests without assuming a con-
stitutive equation. Let us check if the loading configu-
ration and geometry, presented here, allow for probing
various multiaxial responses in a single test, and how
DDI performs in each of them. Figures and re-
spectively depict the distribution of the mechanical states
and their associated identification errors, this time, in the
{I,v/3J3} space. Indeed this space can be used to as-
sess the triaxiality level reached by each material point
at every time during the experiment. The distribution
shows that despite the introduction of a central hole and
notches, most of the reached mechanical states are close
to uniaxial tension with a slight tendency to spread to-
ward pure-shear or equi-biaxial tension in plastic regime
(beyond 394 MPa). Some uniaxial compression states are
reached, but in elastic regime where the signal to noise ra-
tio is not favorable. It is confirmed looking at[I0b| where we
observe again that below 200 MPa the identification error



is massive whatever the triaxiality level and remain higher
than 20 % for all points undergoing uniaxial compression.
Furthermore, this figure shows that the identification error
is lower for higher stress magnitudes (as already evidenced
Fig. E[) but more importantly that these states are mainly
under uniaxial tension. These observations are important
since they evidence that whatever the complexity of the
geometry, at least with such an heuristic design, multiaxi-
ality and non-proportional loading would only be densely
introduced within the sample using additional actuators.
In the present case, it could be shown that local principal
stress directions significantly varies, i.e. useful for char-
acterizing anisotropy, nevertheless multiaxiality is mainly
reached either by some outliers, close to boundaries, or for
very small strains, close to noise floor. Sample design opti-
mization for DDI achievement should take all these points
into consideration.

At last, let us check the ability of the DDI method to re-
trieve the strain-rate dependence of the reference solution.
For this purpose averaged stress-strain curves, for mechan-
ical points undergoing similar mean strain-rates during the
loading are computed. Firstly, the average strain-rate over
time for each element is computed. Then, they are clus-
tered in 20 mean strain-rate groups (using K-means algo-
rithm). Finally, independent stress-strain curves are com-
puted by averaging stresses and strains for each group.
Figure [11| shows the relative errors, between identification
and reference solution, as a function of the strain-rates.
The dashed lines depict the initialization error (simulation
using parameter set B), while the stars depict the DDI
converged solution. This figure confirms that during the
convergence of the DDI, stress fields shift from about 10 %
error (initialization) down to 5 %. Furthermore, this figure
evidences that the framework is able to retrieve the under-
lying strain-rate dependence evenif if the initial stress so-
lution did not include it. This is supported by the fact that
the relative error remains nearly constant below 6 % while
it was linearly increasing initially. In short, evenif the ini-
tialization does not truly capture the physics, DDI makes
the features of the constitutive model, hidden within strain
fields and load through equilibrium, naturally appear.

To summarize, considering optimized DDI user param-
eters given in Table 7] a DDI post-processing consisting
in discarded the 5 % lessest occurring mechanical states,
our sample geometry, loading conditions and camera, the
conclusions are:

e Below 100 MPa the signal to ratio is not favourable,
due to the noise on the strain measurements. The re-
lated mechanical states are undergoing elastic strains
and are mainly located above and below the hole and
notches.

e Since the propose method is based on clustering, the
abundance of similar data leads to lower stress identi-
fication errors. Indeed, when data is sufficiently abun-
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Figure 10: Mechanical states and errors in the

{I,|lo]lva} space.

dant errors remain below 5 %. This is mainly the case
here in plastic and uniaxial loading regime.

e From a general point-of-view stress identification error
lower than 10 % are expected for stresses higher than
200 MPa, i.e. half of the elastic regime.

e In the considered experiment most of the mechanical
points are subjected to uniaxial tension, despite the
holed and notched geometry.

e At last, the differential DDI framework is able to re-
trieve the global strain-rate dependence of the ma-
terial within 6 % of error. It proves that the chosen
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DDI framework can capture, at least for monotonic
loading, such a material hidden feature.

5. Experimental application

This section finally analyses the tensorial database
(e,€,0) produced during the heterogeneous, dynamic and
uniaxial test discussed in previous sections. First, vari-
ation of macroscopic quantities are discussed, then kine-
matic fields. Eventually, identified stress fields are anal-
ysed and the rate-dependence of the material discussed
in relation with predictions of the modified Krupkowski
model. To clarify the deformation scenario, figure[I2)shows
firstly the last image (distortion-free) obtained during the
high speed tensile test. In this image two cracks can be
seen. On the left hand side, there is a crack going from the
central hole to the notch. On the right hand side, the crack
only started to initiate from the central hole. In what fol-
lows, the analysis is performed on the images prior to the
apparition of these cracks.

5.1. Mean trends

Figure [13] depicts the evolution of different quantities of
interest during the experiment. The three vertical dashed
lines are the time steps for which associated fields will be
discussed later-on. Note that the zero in the timeline cor-
responds to the time when the Cordin-580 is triggered by
the load cell. Figure plots the evolution of the Von-
Mises norm of both the strain (in blue) and strain-rates
(in red) on average in the left localization band during the
experiment (see Fig. . This figure shows that during
the first 100 ps of the experiment, the material is mainly
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Figure 12: Last image (distortion-free) of the sample ob-
tained during the test.

in an elastic regime (||e||lyar < 0.005). The strain in the
localization band is higher than 0.01 after about 150 ps,
then increases following a ramp up to 0.22 at the fracture
onset. Two stages are observed in the strain-rate evolu-
tion. First, it ramps up to 375s~! in about 300 ps. Then,
it reaches a plateau and oscillates between 350s~! and
400s~!. At last, Figure shows the evolution of the
load during the experiment (in blue). It also depicts —
for information purpose only — the average temperature
increase (in red) in the considered band. Two stages can
be evidenced for the load. During the first 150 ps the load
ramps up until 8 kN. Then it reaches a plateau and oscil-
lates around 8.5kN. Considering an initial cross section
So equal to 1.68 x 107° m? (subtracting the holes), the en-
gineering stress can be estimated at 500 MPa. This value
is in line with the ones obtained in [14].

5.2. Kinematic fields

Figure[I4]shows distortion-free sample images, axial dis-
placement and Von-Mises strain fields (both from DIC)
and identified Von-Mises stress fields (from DDI) for the
three time steps introduced previously. The displacement
fields obtained are consistent with a tensile test. The
first two images underline the fact that the tensile test
is not perfectly uniaxial. Indeed, the axial displacements
are higher on the left-hand side of the sample. In turn,
crack initiates on the left-hand side of the sample before
the right-hand side. It as been systematically observed
for multiple experiments. It may be due to a slight mis-
alignment / deformation of the holding rods. The sam-
ple geometry induces primary and secondary localization
bands as predicted by the FE simulations with little strain
everywhere else. While it is 0.2 on average within the lo-
calization bands it reaches more than 40% at the hole
borders where cracks eventually start. Regarding strain-
rates, not presented here (similar to strain fields), it varies
between 10 and 400 s~! with the majority of the values
below 200 s~!. Nevertheless it is important to notice that
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Figure 13: Evolution of different quantities of interest dur-
ing the test. Except for the load, all quantity are averaged
within the left localization band (see Fig. to underline
peak values.

strain and strain-rates are not independent, high strain-
rates values are only reached by heavily strained regions
and the other way around.

5.83. Mechanical response

Stress fields (shown in Fig. are obtained using a
procedure similar to the one presented in Fig. [6] but in
this case the reference solution and the underlying model
are unknown. Fff is measured by the load cell, UP'C is
computed using the experimental images and DIC, and
the DDI initialization o™ is computed using the two
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steps procedure and a JC model with set A parameters
(see Tab. @ Let us recall that a classical multiplicative
Johnson-Cook model, even with set A parameters (com-
ing from ), cannot capture the complex strain-rate de-
pendence of the XES material contrary to the Krupkowski
model, specifically designed for it. In particular, JC model
fails to describe the uncoupled dependencies of the initial
yield stress and the hardening modulus (see for para-
metric study). In that sense, like in the numerical section,
the DDI initialization is significantly far from the sought
solution. The DDI parameters are the one presented in
Tab. [7] and the DDI post-processing strategy introduced
in Sec. 3] is used.

Stress fields. Von-Mises stresses fields (Fig. , as
expected, show that the notches and the central hole
create plastic strains concentration bands. In these bands
the Von-Mises stresses reach eventually about 500 MPa.
In addition, in the secondary bands (i.e. pointing down),
the stress is about 400 MPa. Above and below the central
hole and the notches the stress magnitudes remain below
200 MPa. These observations are consistent with the
numerical study performed. Let us remind that a large
part of the field is expected to be identified with high
confidence (5% error beyond 350MPa), intermediate
stresses are expected to come with 10% error (from 200
to 350 MPa) while lower stress values come with a higher
level of uncertainty, especially dark blue regions (below
100 MPa) (see Fig. E[) A puzzling results is the decrease
of the stress amplitude, in the localization bands. Indeed,
at 247ps the stress goes beyond 500 MPa, while it falls
down to 450 MPa at 616 ps, although the three analyzed
states are located in the macroscopic plastic plateau (see
Fig. . It may be resulting from a softening behavior
beyond a certain level of strain-rate. Again, temperature
is not expected to play any role here since it does increase
by more than 15°C on average in the bands.

Figure presents stress, strain and strain-rate distri-
butions in (11, v/3J2) and (||e||vas, ||€]lvar) spaces respec-
tively, during the experiment. The loading paths of a
few selected elements, spotted in [I5d, are superimposed
on these distributions. Notice that mechanical states are
colored according the local density of datapoints (see col-
orbar) and additional colors are used to point the selected
5 different loading histories. Figure shows, as ex-
pected, that the sample is mainly under uniaxial tension
but with slight variation of triaxiality depending on the
spatial region of interest (e.g. primary or secondary lo-
calization band). Some compression and shear states are
reached within the specimen mainly on top or below the
hole. Looking at a particular loading path (the yellow one
for example) we also see that the loading history is pro-
portional, having in mind that all states start at zero. In
addition, Figure shows that the strain and strain-rate
mean spectra underwent by the specimen are [0 — 0.18]
and [0s~! — 450s71]. The figure clearly highlights that
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the different regions of the bands are under different but
quasi-constant strain-rates, at least during plastic regime.
Nevertheless, this figure emphasizes a complexity inherent
to all dynamic tests (even statistically determinate ones):
material points in the elastic regime, in the elasto-plastic
transition, then in stabilized plastic regime do not nec-
essarily undergo same strain-rates. Analysing a dynamic
test from a mono-parametric point of view, i.e. consider-
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ing an average strain-rate may be inaccurate since Young-
modulus, yield-stress and flow hardening are actually not
submitted to similar rate conditions. Notice that we will
nevertheless consider in the next part averaged strain-rates
over the test to observe the global rate-dependent response
of the material. Again, this is not a requirement of the
DDI method, but a simple post-treatment of the built
database for visualization / interpretation purpose. We



also observe a singular response at the fracture initiation
location (green path on the figure). Instead of stabilizing,
strain-rate level significantly drops after reaching a peak
at 600 s~!. The reason of such a behavior is not clear
especially considering that the crack did not start yet, at
least visually.

uniaxial uniaxipl|

pure shear

600

500

' 104
S 4 _
& 400 .
= ~
= e
E 300 109 2
S &)

200 oo ;:f‘n’f;il’x‘i’:.x.;n

106

100

oL . : .
-500 0 500

I, (M Pa)

(a) Stress states distribution,

1072
800
~— 600t
= 1045
f— s O
(70
200 |
/ 10
0

0"‘ 011 012
[lellvar (m/m)

(b) Strain and strain-rate
distributions,

(c) Location of spotted elements,

Figure 15: Stress, strain and strain-rate distributions in
(I1, V/3J2) and (||e|lvar, ||€llvar) spaces respectively, dur-
ing the experiment. The loading paths of a few selected
elements, presented in ¢, are superimposed on these distri-
butions (see colors).

Rate-dependence characterization. As introduced in
Sec. the strains, strain-rates and stresses data can
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be used to discover the rate-dependence of the material.
Several iso-strain-rate responses are computed from the
dataset by averaging strain and stress values of mechan-
ical points undergoing similar mean strain-rates over
the test. It allows reducing noise through an averaging
process but also presenting strain-rate dependence of the
material in a simple 2D (||e||vas, ||o|lvar) space. Again,
such representation may be questionable since accord-
ing to figure material points does not necessarily
undergo constant strain-rates over the test duration (as
for any dynamic test), especially beyond 200 s—t. It is
nevertheless the only way to produce full elasto-plastic
iso-strain-rate curves. Indeed, high strain-rates levels are
only reached for large strains and the other way around,
hence considering instantaneous strain-rate instead of test
average would only allow to represent small portions of
the response for a given strain-rate.

Ten iso-strain-rate XES responses have been a posteri-
ori reconstructed and are plotted on Figure Selected
mean strain-rates range from 17 s~! to 266 s~* with steps
of approximately 25 s~!. While the test reaches higher
strain-rates, high strain-rates regions are only sampled by
few points, as a consequence, they disappear in the fol-
lowing clustering. In short, data at 266 s~' includes in
its average, few points undergoing higher strain-rates. As
previously discussed, strain and strain-rate amplitudes are
related. Hence the higher is the strain-rate, the higher is
the strain amplitude. It explains why high iso-strain-rate
curves show more of the plastic regime compared to low
iso-strain-rate curves. In the present case, below 50 s~!
the plastic yield is not even reached. In this context,
the ending of each curve should not be interpreted as a
fracture limit but only as the maximum strain undergone
by each iso-strain-rate set of mechanical points within the
test. Only the higher strain-rate curve (localization band
response in orange in Fig. reaches the fracture onset.
Some points can be underlined. The material is rate-
dependent. Apparent yield stress range from 380 MPa to
450 MPa, when the strain-rate varies from 50 to 188 s™1.
A non-linearity appears about the same stress value for
higher strain-rates but peak stresses continue to increase.
This rate-dependence seems to fade-off beyond 200 s~!.
This is in line with literature results presented in Fig.
Up to 188 s~ !, the material response is almost perfectly
plastic with a slight tendency for the hardening modulus
to decrease when increasing the strain-rate. Contrary to
Fig. 2| at 200, 360 and 440 s~—*, no overshoot is observed
in the early plastic regime. While in the literature data
are obtained using a modified split Hopkinson bar appa-
ratus, probably in the inertial regime, where data can be
corrupted, this is not the case for our experiment where,
thanks to a modified loading setup (see Sec. , iner-
tial waves come back into the sample only after 1.1ms
(i.e. about the fracture onset). High strain-rate responses
do not oscillate compared to literature (see Fig. [2)) which
completes our previous argument. We use here an hy-
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Figure 16: Strain-rate dependence of the XES steel and
deviation from model prediction.

draulic tensile test machine with holed sample to capture
strain-rates usually reached with impact tests, where iner-
tial effects can have huge consequences on measurements
robustness. Finally, the softening behavior observed on
the stress fields, especially in the localization band, is not
really visible anymore after such an iso-strain-rate aver-
aging process. Averaging the local stress-strain curves for
mechanical points which undergo same mean strain-rate
during the test clearly chopped-off some large stress val-
ues. The curves reveals nevertheless, especially at 266 s~1,
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a slight decrease of stress.

To make the comparison more quantitative, Figure
presents the discrepancy between DDI results and modi-
fied Krupkowski model predictions. As already presented,
modified Krupkowski model has been calibrated on litera-
ture data and best fit parameters are provided in Table [3]
This figure shows that there is a good agreement between
the DDI results and the model predictions for strains be-
yond a percent. As predicted by the digital twin, the dis-
crepancies remain between £+ 5% in the plastic regime.
Notice that discrepancies for low strains (< 1%) are also
partly due to the fact that the Krupkowski model is not
made for describing the elastic regime but only the plastic
flow. Finally, this figure demonstrates the ability of the
DDI to capture and characterize the rate-dependency of
the considered materials from about 10 to 250 s~! using a
single test.

6. Conclusions and perspectives

In this paper, an emerging full-field inverse stress iden-
tification framework, named Data-Driven Identification, is
presented. Its recently developed rate-dependent formula-
tion is deployed for the first time to experimentally char-
acterize strain-rate dependence of an elasto-visco-plastic
material. Its accuracy, within the framework of a mono-
tonic heterogeneous dynamic test, has been assessed using
a digital twin. Then, a pre-notched sample with a central
hole has been subjected to a high speed tensile test. Full-
field kinematic data have been retrieved using High spatial
Resolution Ultra High Speed imaging and Digital Image
Correlation. At last, these kinematic fields combined with
load measurements have been used as input for the DDI
method to estimate stress fields during the experiment and
to characterize the material rate-dependence. The main
conclusions are as follows:

e The user parameters of the DDI method play an im-
portant role in the stress reconstruction. A proper
analysis performed on a digital twin can rationalize
the selection of these parameters.

e The digital twin evidences the ability of the proposed
methodology to retrieve the material response and its
rate-dependence despite the use of an arbitrary ini-
tialization. Initializing the DDI at zero is also possi-
ble (not presented in the document) but affects the
convergence especially for highly non-linear behaviors
like elasto-visco-plastic responses.

e Using the results from Virtual Image Deformation,
the impact of imaging setup noise on the stress es-
timation can be assessed. An accuracy of 10 %*° is
obtained on the stress estimation (beyond 50 MPa).
It falls below 5% in plastic regime. At last, aver-
aging data to build iso-strain-rate curves allows for
identifying the strain-rate dependence within 5% of



error. Such results are strongly dependent on the
sample geometry, DIC parameters, camera and op-
tics used. In this work, a multi-sensor Cordin-580 is
considered. Such technology allows high spatial im-
age resolution at ultra high speed at a cost of strong
image distortions and sensor noise. In that context,
presented experimental uncertainties must be seen as
upper bounds and may be significantly reduced if
new technologies for high spatial resolution ultra high
speed imaging are developed in the market.

The application of the proposed method to experi-
mental data allows estimating stress fields during non
statistically determinate experiments.

Eventually, the complex non-linear, rate-dependence
of the yield stress and hardening flow naturally ap-
pears from the data without having to write a priori
the exact form of the constitutive equation contrary
to standard parametric inverse methods. The identi-
fied material response, from 10 to 250 s~! in a single
test, is consistent with literature data.

DDI comes as a new brick within the experimentalist
toolbox for both, local stress probing in the case of non-
homogeneous loading case scenarios (e.g. local critical
stress at fracture onset, flow stress during plastic insta-
bilities, mechanical response of inclusions), and for ma-
terial characterization. In the latter, as for more stan-
dard inverse methods, such as VFM or FEMU, DDI al-
lows to make use of non statistically determinate config-
urations to characterize material behavior in a more effi-
cient way but also over wider loading conditions domain.
Its singularity relies in the fact that no a priori knowl-
edge regarding the material constitutive equation is re-
quired which allows for, not only identifying parameters,
but eventually the form of the constitutive equation it-
self in situations, especially dynamics, where strong cou-
plings, instabilities, microstructural transformations make
the constitutive equation unknown. We do believe, in a
near future, that coupling topological optimization, DIC,
DDI and deep-learning methods would allow for develop-
ing complex models, covering real case loading scenarios,
in a record time.
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