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1 | INTRODUCTION

Iso-static test configurations, usually relying on homogeneous
states of strain and stress, have classically been used to char-
acterize (thermo-) mechanical response of materials using
various normalized sample geometries (e.g. dog-bone (1D),
Cruciform (2D)). Indeed, it allows for estimating, in an explicit
way, both strain and stress, required to sample the material
response, from independent sensors in a purely experimental
way. Such tests are historically mono-parametric so a large
number of test is required to sample the loading space and par-
ticular loading cases can not be properly analysed or analysed
at all, including e.g. localization processes, strong thermo-
micro-mechanical couplings or transient phenomena. Such
limitations could be tackled using more complex geometries
and/or loading conditions, i.e. carrying gradients of all sorts
(space and time) and developing original inverse stress field
identification methods. Indeed, using the stress field itself as
an unknown allows by-passing the use of an a priori con-
stitutive equation to analyse such non-isostatic experiments,

The present work proposes an experimental validation of a rate-dependent for-
mulation of theData-Driven stress Identification method. First the Data-Driven
Identification (DDI) method is recalled, in its rate-dependent form. A numerical twin
of a high speed tensile test applied on non-standard sample geometry is then used
to assess the performances of the DDI. Theses performances allow to define confi-
dence intervals depending on multiple indicators (stress magnitude, multi-axiality...).
At last , the method is applied to an experiment performed on an XES steel. The
kinematic data are retrieved using DIC and then used with the DDI. Thus, an exper-
imental estimation of stress tensor fields is achieved. The estimated stresses are then
compared with stress predictions using a constitutive equation developed at ONERA.

DIC ; DDI ; Numerical twin ; High strain-rate ; Rate-dependent

contrary to more standard inverse method strategies (e.g. Vir-
tual Field Method, Finite-Element Model Updating) which are
parametric by nature. In that context, several strategies have
been recently adopted to estimate stress fields in non-standard
experiments without using a constitutive law. These strate-
gies all rely on full-field measurements and a regularization
of the ill-posed mechanical problem, but differ on the chosen
regularization.

In 2014, Pierron and his co-authors [31] devised a strategy
to estimate stress fields in dynamics (transient load) with-
out using a constitutive law. To this effect, the strategy relies
on the use of a statically determined configuration (an iner-
tial impact test for instance). Under the assumptions of plane
stress, and a homogeneous and constant density of the mate-
rial, the authors are able to estimate the mean stress field profile
in the specimen. For this strategy, the acceleration acquired
experimentally acts as a 1D load cell, which requires record-
ing kinematic fields at ultra-high speed (> IM fps). This work
opened the way to the so called Image-Based Inertial Impact
Tests (IBII). Among other, it allowed the authors to identify
the elastic modulus and tensile strength of brittle materials,
such as tungsten carbide cermets [[L0] and composites [[12], at
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high strain-rate. More recently, the strategy was also applied
in a new experimental configuration: the Image-Based Inertial
Release (IBIR) test [[11]]. This new configuration was used to
identify both quasi-static and high strain-rate elastic modulus
and Poisson’s ratio of PMMA samples. In these examples, the
boundary conditions (purely inertial test and uniaxial) regular-
ize the problem. If the test is not uniaxial any more, the authors
proposed an elegant solution in the case of elastic orthotropic
material [30].

Even more recently, in 2021, Liu et al. [27] and Cameron
and his co-author [4] devised another strategy to estimate stress
fields without postulating a constitutive equation. Assuming
that the material is isotropic, the methods developed by these
authors rely on the alignment of the principal directions of
stress with strain or strain-rate. This assumption then allows
obtaining a mathematically closed problem, and thus the ana-
lytical estimation of stresses. These methods have been tested
on numerical example and experimentally in [27]]. In [4]], the
authors discuss the range of validity of such an assumption:
mainly in isotropic elasticity, plasticity with associative flow
rules and for associative flow rules with an isotropic yield func-
tion. Furthermore, this method cannot address the problem
of elasto-plastic transition where stresses are not aligned with
strains anymore and not aligned with plastic strain-rates yet.

The recent developments in computer science and in par-
ticular in the data science field, has lead to the emergence of
a third kind of strategy relying on data in the past 4 years:
the so called Data-Driven approaches. These methods can
be used to either solve the direct problem [17] or the inverse
mechanical problem [25]]. The so called Data-Driven methods
were first introduced in the context of computational mechan-
ics by Kirchdoerfer and Ortiz [17, [18]. In their work, the
authors replaced the constitutive equation by a minimization
process and a material database. A solution is found by min-
imizing a distance (which they defined) between computed
mechanical states (strains and stresses) and a set of admissible
material states. The authors then extended their methods to
dynamics [19]. These methods called Data-Driven Compu-
tational Mechanics are used to solve the direct problem: find
the response of structure (strains and stresses) using a set of
admissible material states, which has to be found experimen-
tally. This framework was then derived in order to formulate
inverse Data-Driven approaches. Hence, in their work Leygue
and his co-authors [25| 26] formulated the inverse problem
associated to the Data-Driven Computational Mechanics. This
new problem aims to estimate stress fields from heteroge-
neous experiments without having to explicit any constitutive
equation. Using synthetic data, the authors demonstrated the
ability of their algorithm to estimate admissible stresses in a
structure for various loading cases (quasi-static and dynamic

problems) as well as different material behaviours (hyper-
elasticity, elasto-plasticity). This Data-Driven method was
then applied to experimental data by Dalémat et al. in [7]]. In
this study, perforated hyperelastic membranes are submitted
to uniaxial tensile tests. In addition, in a recent paper [6] the
authors extensively discuss the proper way to handle imperfect
experimental data. The authors especially discuss the bound-
ary conditions for imperfectly defined edges and the way to
tackle the issue of missing data. More recently, the Data-
Driven strategy was applied by Langlois and his co-authors
to experiments on history dependent materials [21]]. The use
of this method enabled them to estimate stress fields during
the formation of plastic instabilities such as Piobert-Liiders
bands. In these strategies, the regularization comes from the
assumption that the material response lies on a manifold in
a constitutive space which is chosen a priori. The underly-
ing hypothesis of this method will be presented later-on in
this paper. Furthermore, one could imagine combining this
method with the IBII method in order to estimate heteroge-
neous 2D stress fields in transient dynamics without needing
load measurements. It has partly been demonstrated, on syn-
thetic data, in [26]]

These emergent strategies can potentially help to assess,
without making any assumptions, the validity of material
constitutive equations outside their calibration domain (e.g.
heterogeneous tests, localization, with multi-axiality, cou-
plings...). The objective of this paper is to deploy a rate-
dependent DDI formulation to characterize the yield stress and
hardening rate-sensitivity of a mild-steel using a single test.
In that context, the Data-Driven Identification formulation and
resolution strategy for rate-dependent elasto-plastic materials
will first be recalled. Then, a digital twin is built to investigate
the ability of such a method to estimate stress fields, and espe-
cially its accuracy. At last but not least, the DDI is then applied
to data obtained during a high speed tensile test performed on
a heterogeneous sample made in steel.

2 | DATA-DRIVEN IDENTIFICATION
METHOD

The inverse Data-Driven Identification method requires both,
a rich database of displacement fields (obtained for example
with DIC on complex sample geometries), and net external
forces (usually obtained with a load cell). Combined with con-
servation laws (balance of linear and angular momentum),
valid whatever the material, it is possible to build a minimiza-
tion problem where the components of stress fields are the
sought field variables. The following section guides the reader
up to final formulation of the global minimization problem.
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To make the implementation clearer, we use in the follow-
ing only matrix notation instead of tensorial one. By default,
we use [¢] for matrices and {e} for vectors. When indices are
explicitly required they are emphasized as followed, X ,’ , where
i and j are matrix rows and columns respectively.

While the main ingredients are recalled in details we refer
interested readers to [25] where the DDI problem was origi-
nally introduced. This work is also inspired by the works of
Eggersmann and his co-authors [§] where the framework of
DDCM was extended for history dependent materials. Fur-
thermore, the modified strategy, regarding the initialization of
the problem, proposed in [26] is adopted. Some notations that
will be recalled and used in this work was introduced by Lan-
glois and his co-authors in [21]]. The problem is formulated
here in small strain, however it has already been implemented
and used in finite strain in [7,[32]]. Moreover, for experimental
concerns, we will focus only on plane-stress formalism.

2.1 | Static equilibrium problem

The general problem considers a 2D structure made of a

deformable material (see Fig.[I). This structure is discretized

using a Finite Element mesh with N, elements and N, nodes

and the loading is discretized through N, time steps.
Available data are the following:

e [u]: a2N, X N, matrix collecting nodal displacements
obtained from DIC over the domaine Q. The dimension
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FIGURE 1 2D deformable structure made of T3P1 elements
over adomain Q. Blue bullets define the border d F where loads
and / or displacements are prescribed. Red arrows show a dis-
tribution of reaction or applied forces. The configuration is the
one adopted for experimental investigation (see Sec. EI)

2N, means that displacement vectors are organized in
vector format such as {u’} = {‘l/", ...,U'n’,Vi, ...,v;}
where U and V are transverse (in the direction 1) and
axial (in the direction 2) displacements respectively (see

Fig.[I),

e [B]: a 3N, X 2N, matrix obtained from the assembly
of elementary FEM gradient operators. The dimension
3N, encloses the 3 components of the displacement
gradient. It is computed using the mesh connectivity
and relies on triangular elements and classical linear
Lagrange shape functions. It allows for computing strain
tensors at every quadrature points, here element centroid
noted e. They are collected in a 3N, X N, matrix:

[e] = [B][ul, ey

e [w]:a3N,x3N, diagonal matrix collecting the elemen-
tary integration weights times Jacobian determinants
of the transformation of each element from its refer-
ence coordinates frame to its actual shape in the global
coordinate system,

e {F}:a N, vector collecting the net force, along the axial
direction 2 (see Fig.[I) of the nodal forces on the upper
boundary dF:

{Fy=e ) [ VIEILN] 2)
keof
with e the thickness of the structure, supposed to be con-
stant, and [f] a 2N, X N, matrix collecting the nodal
internal forces. N, +k refers to axial displacements only,
inline with displacement vector organization.

Static equilibrium can therefore be expressed through a set
of N, systems of 2N, linear equations:

[BI" [w]" {a'} = {f'}, Vi€ [l,N,] 3)
with ) o

keof

t
I and £ =0, Yk € Q\0F.
e

Considering boundary conditions, especially the fact that
only the net force along the axial direction 2 (see Fig. (1)) is
usually known in practice, and that displacements are pre-
scribed everywhere else on dF, the set of 2N, equations can
be reduced to N = 2N,—4card(0F)+ 1. Itis implemented by
discarding from the system of equation [3] constrained bound-
ary nodes and by adding the linear combination introduced in
Eq.|2} It leads to the definition of new condensed operators [ﬁ]
and [/ ] summarizing mechanical equilibrium into a compact
form:

[B] [w™ {6’} = {/'}, vVt € [1,N,]. @)
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2.2 | Data-Driven Identification problem

The main idea behind the DDI method consists in assuming
that a constitutive equation exists, hence there is a constitutive
space (still to be defined) where the whole set of mechani-
cal states lies on a manifold. In short, among the infinity of
solution of the static problem (see Eq. ), one seeks for the
one that minimizes the spread around an unknown manifold
within a well defined constitutive space. Notice that in the
following, such a manifold will be approximated by discrete
points named material states, in the sense that they literally
sample the material response in the constitutive space. Such a
discretization allows for regularizing the ill-posed problem of
stress identification as we will see later-on.

As a consequence 3 main ingredients have to be defined:
(1) such a "well defined" constitutive space, (2) a norm for
estimating distances between states in this potentially high
dimensional constitutive space, and (3) the sampling of the
manifold. The main assumptions of the method are enclosed
in these three ingredients.

Constitutive space has to be chosen wisely regarding the
various dependencies of the material response to observable
and sought quantities. Following Eggersman et al. recommen-
dations [8]], the history and time-dependent behaviour of the
material will be described using strain, stress and their first
order time derivatives. To this effect, similarly to what is done
in [21]], an incremental approach will be used, leading to a
dependence of the current stress to the current strain as well as
the former strain and stress:

o' =6"(e, e 6. )

6" will be further used as the DDI estimation of the actual
stress in this particular space. As a result, and to have same
order of magnitude terms within the DDI norm (see Eq. [g),
the constitutive space that will be considered in this work is
(¢',€71, 6", 6'"). From a modelling point-of-view, such a dif-
ferential constitutive space approaches the material response
similarly to rate-dependent plasticity models, classically used
in high-strain rate simulation like Johnson-Cook models,
which has to be distinguished from visco-plastic models where
relaxation time can properly be taken into account.

Then, let us define a distance in a generic strain and stress
related constitutive space. Following [[17] we choose a norm
built from a symmetric positive definite fourth-order tensor
C,. Noting for example {P'} and {Q'}, two vectors related to
some strain and stress quantities at time ¢ respectively in Voigt
notation, an energetic || ||ég norm can be introduced as follows:

P, QU2 = (P} [C){P}+{e} [e] (e} ©

Normalizing data, such as:
{7} = [Ve] {7}
{e}=[ve] (o1,

the norm simply becomes:

Pl = () 2+ {e) {2} ®
Notice that the square root of the tensor [Co is computed using
an Eigen decomposition, [\/C_D] = [V] \/B] V1", where
[V] and [D] are matrices containing eigen vectors and val-
ues respectively. Such a normalization will help being more
generic, especially avoiding being intrusive for the clustering
part of the problem (see Sec. [2.4).

As introduced above, to address the issue of ill-posness of
the stress-field identification problem the material response is
discretized with a finite N* set of unknown material states
({e*},{€"},{o"},{0*}), where «* are related to the cur-
rent state and «** to the former state. We will see that these
N* states are in practice defined as barycenters of mechani-
cal states clusters. These clusters regroup the set of strains and
sought stresses ({&'}, {e""'},{c"},{c"™"}) thatare close in
the || ||2 norm sense. The following form of the DDI method
can therefore be seen as a zero-order approach in the sense
that the regularization introduced by the material states is
piece-wise constant.

Considering the constitutive space introduced in Eq. [3] the
norm introduced in Eq. [§] and the sampling of the material
response into N* current and former states, the problem can
be formulated as a global minimization:

I*IIHIAT(EE £, 6,06%,06™,5), ®
A
where
|
v=2Y (IPQIE + 1P e ). o)
=2
with
P = Vo] (e} - [sT{e D)
P = [V (e} - [sTHe))
(n

o = [V7| ({g} - Is1ie).
o~ = [V | ({&™} - [s] {e™}).

under the constraint that the equilibrium conditions (Eq. ) are
satisfied. [p] is a 3N, X 3N, X N, matrix weighing mechanical
states contributions for every time-steps within the functional
Y. A specific section (see Sec. is dedicated later-on to
address the specific role of these weights in the time and
space integral. [S]isa 3N, X 3N* X N, selection matrix that
maps the N* material states to the mechanical states for every
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time-steps. Eq. [0 must be understood as the global minimiza-
tion (time and space) of the scattering of mechanical states
around their associated N * material states (barycenters) in the
particular constitutive space (¢', !, 67, 6'71).

If equilibrium constraints are enforced using Lagrange mul-
tipliers, the following cost function can be obtained:

D= Zl (B (&} = (7)),

vt e[1,N,].

"non

Notice that the introduction of normalized quantities "¢" also
requires the normalization of B with [C,]. Itis simply done by
assembling normalized gradient operators. Finally, two prob-
lems can be formulated: (1) the mechanical and (2) the material
one. The stationarity of @ with respect to {/1’} and { Q’} leads
to the mechanical problem and the following set of N, systems
of 3N, x N equations:

l@]sz »" [Ow] [3]] {%’t} B {ﬁ’,}

(13)

with,

,_J1 wre[LN),
‘= {2 Vie[2: N,
(5] o™} =1,
[S*1] {e™} +[S']{e*} Vrel2:N_],
57 {e'} (=N,

(0} -

(14)

Then, the stationarity with respect to the material states
leads to the material problem and 4 sets of 3N * equations:

ST Ise) =X T e}

1 1

[s1]" [] {€} -

15)
Similar equations are used for {g*} and {g**} respectively.
Stationary with respect to [S ’] , to update the state mapping, is
difficult to explicit. Indeed, contrary to other variables, which
are continuous numbers of R, [S] is made of discrete numbers
of N. As a consequence an alternative method is employed.
Details are given in Sec.

(s ) s e} = 3

-
Il
-
1l

The resolution of such a problem has already been discussed
in [26, [38]. It relies on a staggered algorithm that computes
alternatively the Lagrange multipliers and the correction of the
stress fields for a given material state set and selection matrices

(called the mechanical problem), then the update of the mate-
rial states set and selection matrices for given stresses (called
the material problem). These two steps are discussed in the
next sections.

2.3 | Resolution of the mechanical problem

Let us consider a given set of material states :
({g*} , {g**} , {g*} , {g**}) and a given mapping through
the selection matrix [S].

The mechanical problem can be solved by substitution,
leading first to the computation of the Lagrange multipliers:

18"l (] 1 8] {4} = (8] ol {9}~ {7

/

-~ -~

[M'] {6}
vt e[1,N,].
(16)

It consists in a set of N, systems of N independent lin-
ear equations to solve. Finally, stresses are updated using the
second line of the system of equations[I3]

{6} =~ ({0} = [p]" w0 [B] {#}) Ve e 11 N,L
(17)

2.4 | Resolution of the material problem

First, the mapping operator, i.e. [S], must be computed for
given stress fields and the actual set of material states. Find-
ing for each element e the material state N that is the closest
with respect to ||||%0 is done using k-d tree method. Indeed,
since for each iteration of the material problem the database of
material state is fixed, efficient space-partitioning data struc-
ture strategy can be used to strongly accelerate this operation
which remains the bottleneck of the method.

Once this matrix obtained, the set of material states
({g*} , {g**} , {g*} , {g**}) is actualized using Eq.|15| The
complexity of the resolution mainly depends on the form of
[p’]. If [p’] is diagonal, as it has always been the case in
the literature according the author knowledge, the resolution
of Eq. [13] simply consists in computing 5 x 3N* indepen-
dent averages or weighted averages of the mechanical states
in elements assigned to each material states through [S]. For
example current and former material strains are found such as:
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Nr 3Ne t t
S’:) <p’f> £
. t=2j=1< / 1) =k
£ = N, 3N, 3N, : ) t
i k I
T 3(s) () (D)
N,—13N,
2 (Sl:>t+1 <pk)t61 (18)
o =1 j=1 N 1) =k
=1 k=1 1<SJI> <pj> (Sk)
=1 k=1 j=

Vie[l : 3N7¥]

The next section discusses the choice of such diagonal [p’] .

2.5 | Choice of a Weighing matrix

The weighing matrix [p] of the elementary distance between
one mechanical state to its corresponding material state, intro-
duced in the DDI norm (see Eq.[8)), can be wisely used as a
natural filter for noisy experimental inputs. Inputs of the DDI
being itself an output of the DIC inverse problem, it is neces-
sarily biased and corrupted by noise. Finding a way to mitigate
this issue could be valuable for the application of the DDI
method to real experimental data. Some solutions have already
been proposed in the literature for such a weighting matrix.

Evenif it has not been explicitly written as such in literature,
two cases can be found: (1) [p'| = I,, the identity matrix, and
2) [p’ ] = [w] (see e.g. [21]). The first solution gives an equal
weight to every elements, strain components and time-steps.
The authors found it useful when the objective is to iden-
tify stresses in vicinity of a localization band using a refined
mesh hence where the sought information is localized in space
and time. Indeed, the second option, classical for FE integrals,
gives more weight to large and undistorted elements discard-
ing data arising from spatial localization. Alternative routes
could be used, designing weighting matrix enabling the mini-
mization, for example, of the stress identification noise but this
is out-of-the scope of this work. In the following only cases 1
and 2 will be compared.

2.6 | Schematic of the global minimization
problem

To summarize, the resolution of the global minimization

problem, i.e. computing ({g“} e}, {g*} , {g**}), [Q]
and [S], is performed using the following staggered algorithm
[21]:

1. initialize [6] using a FE simulation with a arbitrary
model

2. normalize input dataset to get ([Q] , [g])

and
[28] on

3. initialize ({e}. {e*}. {a*} . {c**})

[S] wusing a k-means algorithm
({e} A7} {e'} {g ) wel N,

4. solve the mechanical problem (see Sec.[2.3),

5. solve the material problem (see Sec. [2.4), eventually
using k-d tree. This step is iterated until convergence of
[S]. It usually takes less than 3 iterations to converge,

6. iterate steps 4 through 5 until convergence of [S] and
[Q] . One iteration from step 4 to 5 will be called a cycle.

2.7 | Algorithmic parameters

Once the framework of the DDI method fixed, meaning that a
particular constitutive space (see Eq.[5)) and a particular norm
(see Eq.[) are selected, 5 parameters remain to be adjusted by
the user and will affect performances of the algorithm.

e the number of material states N* sampling the material
response

o the amplitude and the exact form of C, within the norm
e the two convergence criteria

o and the weighing matrix [p]

The first one and part of the second one has already been inves-
tigated by Dalémat and her co-authors in [6]]. They compared
the stresses obtained using the DDI, considered as the refer-
ence, to the ones of FE simulations with different number of
material states values. They concluded that a small number of
material states leads to an insufficient sampling of the strain-
stress manifolds, and thus, to significant error. A high number
of material states also leads to significant error, since it will
allow outliers to develop and increase the sensitivity to noise
(similarly to the overfitting phenomenon for regressions). In
their work, the authors recommend a number of material states
so that 20 < M < 100. The influence of the magni-
tude of C, was found to be straightforward as it only intervenes
for the clustering step. Eq. [/| shows that by choosing a ten-
sor with high values, the normalization will give more weight
to strains compared to stresses. So it may be relevant for the
robustness of the clustering to use high amplitude to give more
weight to strains which are obtained experimentally, compared
to stresses which are unknowns and change during the method.

While the influence of the magnitude of C, is straightfor-
ward, the influence of the symmetry class of the tensor remains
unknown. In the present work, the fourth-order tensor that will
be used is a Hooke tensor for an isotropic material, hence its
definition will only be dependent of the choice of a pseudo-
Young modulus E, (the magnitude) and a pseudo-Poisson ratio
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v,. Nevertheless, it seems reasonable to assume that the use of
a pseudo isotropic elastic tensor would not necessarily lead to a
satisfying clustering, for instance, of an anisotropic behaviour.
However, to the author knowledge, the question of the influ-
ence of the symmetry class of C, has not yet be investigated
and it is not the objective of the present work.

Regarding the two convergence criteria needed for resolu-
tion, the following expressions will be considered:

e for the material problem criterion, we use the conver-
gence rate of the data-driven distance ¥ (see Eq. [9) at
each iteration i. That is to say:

Y, -Y¥,
I i 1—l| > €t
o

where W, is its initial value and €

19)

mat (€ USET criterion

o for the mechanical problem criterion, we use the con-
vergence rate of the sum (space/time) of the norm of
internal force vectors (See Eq.[d). That is to say:

|Fi - Fi—ll > ¢
|PO| = “mech
N, (20)
with, 7= Y Y [ [B]" [w]" {8}
t=1 e€Q

Regarding the weighing matrix two options will be com-
pared in this paper.

H,: [p’] =L,Vte[l,N,],

Hy: [p] = [w]
Inputs Outputs [Parameters]  Assumptions
luge] . {F}|  [S] C, Plane stress
[B] (6] N* Small strain

[O'fe] {€*}, (€} €nars Emecn | Constitutive space

{o*}. {e™} [p]
b g

TABLE 1 Summary of the inputs, outputs, parameters and the
assumptions needed for the Data-Driven Identification method
proposed in this work. In this table, ¥ gives the DDI distance
at convergence.

Table [I] summarizes the inputs, outputs, parameters and
assumptions needed for the proposed Data-Driven Identifica-
tion method. It emphasizes the fact that, evenif DDI presents
itself as a model-free technique for fields of stress tensors
estimation, part of the modelling framework is hidden in the
choice of the constitutive space. Nevertheless, while the frame-
work is constrained, the exact form of the constitutive equation

remains free. Moreover, the role of user parameters remains
significant and many aspects has still to be investigated. The
three main outputs of the method are useful in different ways:

1. The value of the converged DDI distance ¥ gives infor-
mation about the quality of the stress solution. Indeed,
if the scattering remains high the distance will be high
emphasizing either issues with input noise, user param-
eters or the dimensionality of the constitutive space. A
proper analysis of this distance may help to improve the
constitutive space. Indeed, if relevant dimensions are not
taken into account, e.g. temperature in a test where an
external heat source imposes very high thermal gradi-
ents, it will lead to a significant scattering of the data
within the chosen sub-space.

2. Mechanical points allows for probing locally (time
and space) the mechanical response allowing to access
mechanical response in never-seen loading conditions
but remain as for DIC, potentially noisy.

3. Material states average the mechanical response and
sample, within the constitutive space, an underlying con-
stitutive equation. This quantity could eventually be used
to identify a parametric form of the material’s behaviour.

3 | EXPERIMENTAL METHOD

The DDI method has been presented and detailed previously.
In this section, the experiment investigated will be presented.
It consists in a high-speed tensile test performed on a metal
sheet with a specific geometry.

3.1 |

The material chosen for this experimental campaign is the rate-
dependent, low-carbon mild-steel XES (French standards). Its
chemical composition is presented in Tab. [2] The quasi-static
and dynamic behaviour of this material are relatively well-
known. Indeed, for example in the mid 90s, methodologies
were developed allowing to perform double-shear experiments
on thin metal sheet in both quasi-static and high strain-rate con-
ditions with highly homogeneous stress and strain states [[13]].
These methodologies were used to study the shear behaviour
of the XES steel — in particular the evolution of the rate sen-
sitivity, for strain-rates ranging from 10=% to 10 s=! [20].
The tensile behaviour of this steel has also been investigated.
For this purpose, Haugou and his collaborators [14] devel-
oped a tensile testing device for split Hopkinson bars. This
device allows for non-direct tensile tests to be performed on
metal sheets. The configuration was used to characterize the
mild-steel for strain-rates between 180 s~! and 440s~!. At last,

Material
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more recently, some researchers focused on the modelling of
spot weld for this material. For instance, using experiments
based on Arcan principle, Langrand et al. were able
to model and characterize the joint when submitted to pure
and mixed tensile/shear loads in both quasi-static and dynamic
conditions. In 2016, Markiewicz et al. [29] went one step fur-
ther and investigated the behaviour of the material when heat
affected by spot welding. Furthermore, the authors studied
the strain-rate dependency of the heat affected material and
identified parameters (see Tab. [3) for a modified Krupkowsky
model [33]], which is a rate-dependent hardening flow model
describing the complex rate-sensitivity of the material. This
model is written as:

oxr = KX (60X’ + ep)nxc ,
: @1
o

where K, a, b, ¢, n, €, and £, are the model parameters to be
identified. It is inspired from the the Krupkowski hardening
flow model (also named Swift hardening model) [39], widely
used in FEM softwares, itself inspired from the Hollomon (or
Ludwig) hardening flow model [13]], both used to model quasi-
static mechanical responses in plastic regime. Notice that, at
the limit of zero strain-rate, modified Krupkowsky model tends
to its peer. It translates the complex relationship between plas-
tic yield, hardening and strain-rate that a more simple model,
e.g. Johnson-Cook, can not capture. Fig. [2] shows the uniaxial
mechanical response of XES for various strain-rates with the
fitted model.

3.2 | Specimen geometry

Inverse methods for mechanical characterization allow for
using complex sample geometries which will no longer lead
to homogeneous fields and cover for example large spectra of
strain and strain-rates in a single experiment. The question of
their design is extremely vast. It can be based on an heuristics
approach starting from standard geometries (see e.g. [3L[16]) or
using proper optimization approaches, such as e.g. constrained
topology optimization [2, [3]. In this work, the first approach
is considered and the chosen specimen geometry is simply
derived from the one classically used when using a hydraulic
tensile test machine (see the next section for more details).
Indeed, the use of such a device limits the specimen length
and width. In addition, since the DDI method needs the load
recorded by the load cell, the sample needs to admit the load-
ing axis as a symmetry axis in order to avoid the introduction
of any bias in the load measurement (e.g. transverse loading).

The main features of the geometry are two symmetrical
notches and a central hole (see Fig. B). Such features are
expected to lead to strain concentration bands between the
notches and the central hole as well as secondary bands from

500
450 -
=
a,
2400
w2
3]
=
U) |-
2 350
-4
o5}
E
é 300t
v ——0.006 (s~ 1)
< Model, 0.006 (s~L)
250+ —0.7 (s7)
———Model, 0.7 (s71)
—70 (s7)
200 | | —— Model, 70 (3*1)
0 005 01 015 02  0.25

Equivalent plastic strain (m/m)

FIGURE 2 Reference data and modified Krupkowsky model
previsions from [29] obtained during high strain-rate tensile
tests.

the central hole to the edge of the sample with an angle of
approximately 45°. The specimens were cut from a 0.8 mm-
thick metal sheet in the rolling direction.

FIGURE 3 Photography of a sample, its principal features are
two symmetrical notches and a central hole.
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C S N Mn P
0.0268 | 0.0175 | 0.006 | 0.202 | 0.007
Cu Mo Sn Nb \"
0.014 0.002 | 0.004 | 0.001 | 0.002

Si Al Ni Cr
0.007 0.07 0.018 0.036
Ti B Ca
0.002 | <0.0003 | <0.0003

TABLE 2 XES chemical composition (in wt%), data from [29].

Parameters | K (MPa) £ n
[29] 526.6 0.024 | 0.221

£ ) a b c
0.085 | 0.0002 | 0.385 | 0.002

TABLE 3 Parameters for the modified Krupkowsky model from [29].

3.3 | Experimental setup

The tests conducted in this work are high speed tensile tests.
They are conducted using a hydraulic tensile test machine
(MTS-819, 20kN). On this machine, the upper grip is mounted
on a modified Hopkinson bar, similarly to the device from [24].
This bar is made of steel (42CD4 rectified) and is instrumented
with strain gauges in order to act like a load cell (see Figured).
In addition, the lower grip is mounted on a sliding bar. The
sliding bar is in an enclosing case linked to the actuator. The
sliding bar, through the control of the “free fall” length, allows
the actuator to reach the imposed displacement speed before
loading the sample. The maximum actuator velocity allow-
ing an accurate load measurement, i.e. S m s~!, is used for this
experiment. The “free fall” distance was accordingly set to
25 mm.

3.4 | Imaging setup

The visible wavelength camera used in this work is the high-
spatial resolution ultra-high speed (HR-UHS) Cordin-580. It is
arotating mirror camera that captures 78 images of 8 megapix-
els (2472 x 3296 pixels) up to 4 million fps. This camera and its
specificities have been studied in depth in [41] (see appendix
[Alfor more details). For the experiment presented in this work,
the camera is equipped with a 90 mm Tamron objective, and
records at 68 kfps with a CDS gain of -3 dB (Correlated double
sampling) and a CCD gain of 15 % (amplification factor in the
analog-to-digital converter). At such speed, the film duration is
about 1.18 ms. Such a "low" frame-rate has been selected with
regards to the infrared camera capabilities used to capture tem-
perature fields (see below). In order to provide enough light,
two Pro-10 (240017 each at 10-stops) Xenon flashes from Pro-
foto are used. They are set in normal mode, at 10 f-stops. In
that configuration, the illumination typically lasts 2.4 ms with a
stable and optimal plateau of 1.1 ms. The flashes and the cam-
era are triggered separately in this experiment. The flashes are
triggered using an infrared light-gate system (SPX1189 series

Strain gauges

Modified Hopkinson Bar 120 mm

Upper grip 35 mm

Sample

Lower grip

Sliding Bar

Free fall length

Actuator

FIGURE 4 Close-up view of the high speed tensile machine
setup.

Honeywell). It is placed in such manner that it is obscured
by the enclosing case. The optical gate will then send a 5V
TTL signal when the enclosing case is at a given distance to
the contact with the sliding bar. This distance has to take into
account the speed of the actuator as well as the rising time of
the flashes (150 ps). It has been empirically determined and set
at 3.7 mm from the contact point. The Cordin-580 is triggered
using the load cell. When the load reaches a chosen threshold
(in this study 6231.5 N, =~ half of the plastic yield), a trigger
is sent to the camera. Upon receiving the trigger, the camera
will record the following images, as well as the ones taken up
to 100 ps before (this is named post-triggering). These param-
eters were determined empirically through preliminary tests.
Furthermore, the working distance between the camera and
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the sample is about 31 cm, leading to a pixel size of 14.49 ym.
These information are summarized in Tab. 4l

An high-speed infrared camera (a Telops M3K) is also used
to record the other face of the sample during the experiment
(see Fig. ). The infrared results fall out of the scope of the
presented work. Nevertheless, thermal information confirmed
that no strong thermomechanical couplings are induced by the
strain. Indeed, mean sample temperature rises up to 5 °C while
the temperature within localization band does not exceed 50 °C
before fracture onset. It confirms that the constitutive space
used to identify stresses does not have to take into account
explicitly temperature (see Sec.[2).

FIGURE 5 Experimental setup for a high speed tensile test,
recorded using a visible-light camera and an infrared one.

Camera

Image resolution
Dynamic Range, Detector
Dynamic Range, Image
Acquisition Rate

Lens

Aperture

Field of view

Image scale

Stand-off distance
Patterning Technique

Cordin-580

2472 pixels x 3296 pixels
12 bits

16 bits

68 kfps

Tamron SP 90 mm Di Macro
/2.8

35.8 mm X 47.8 mm

1 pixel = 14.49 pm

31cm

Black and White paint

3.5 | DIC setup and parameters

In order to be able to perform DIC on the images recorded by
the camera an undistorted reference image is needed. Indeed,
rotating mirror cameras produce distorted images and requires
an absolute reference for DIC (see appendix [A] for more
details). In this work, this image is obtained by recording, prior
to the test, images of the sample at rest with its black and
white paint speckle-like pattern using a high definition cam-
era (29M pix, Prosilica GT from Stemmer) combined with
the same objective lens. The image is eventually down-scaled
to the Cordin camera resolution. Furthermore, following this
methodology, 12 calibration shots were taken with the Cordin
camera when the first sample was mounted, prior to the test.
These calibration shots are used in order to create a repre-
sentative model of the distortions induced by the camera in
experimental conditions (lens, working distance, magnifica-
tion, frame rate). Then, in order to correct the eventual rigid
body motion between one experiment and the other, a single
calibration shot is performed before each of the other experi-
ments. See for more details regarding the entire recently
developed dedicated DIC framework.

In this work, a finite element description of the displacement
field is used. Since it is known that strain localization appears
in 2 principal bands, the mesh is refined along these bands and
in the vicinity of the notches and the hole as well. The element
size is 32 pixels on average, but finer along the crack (about
26 pixels). A Tikhonov regularization of the DIC problem of
4x32 pixels is used to filter-out spatial noise. The displace-
ments are firstly pointwise convolved with a moving temporal
Savitzky-Golay filtering window of second order with a win-
dow size equal to 23 frames (see Tab. [5). Then strain-rates
are obtained from strains using a simple 1 order finite differ-
ence scheme. Such data filtering marginally affects strain, but
significantly decreases the level of noise on strain-rates.

DIC Software
Shape Function
Matching Criterion
Image Filtering
Data Processing

Ufreckles

linear FE triangular elements
ZNSSD

sensor flattening (vignetting)

U : Tikhonov regularization
over 4x32 pixels

€ : Savitzky—Golay filter of order
2 applied onto U (win = 23 fr)

Data Post-Processing

TABLE 4 DIC hardware parameters.

TABLE 5 DIC analysis parameters.
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3.6 |

Due to the complexity of the experiments conducted, some
technical issues have to be tackled. This is the aim of this
section.

Technical issues and solutions

Load measurement

The load is captured by the load cell during the experiment.
However, it has to be adjusted time-wise: indeed, the load is
measured by strain gauges while the information is needed
on the mesh boundary, in particular for the DDI (see Sec. [2).
Hence, due to the distance between the mesh boundary and the
strain gauges, a delay has to be taken into account. Figure [
presents the experimental apparatus, with in particular the dis-
tances of interest: the distance between the strain gage and
the grip (120 mm using the constructor’s data) as well as the
distance between the grip and the ROI (~ 35 mm measured
manually). Then, using the modified bar’s properties (E =
205 GPa and p = 7850kg/m?), the delay is computed as fol-

lows: 7 = %, which yields a delay of 30 ps. This is in the
order of magnitude of two Cordin interframes for this exper-
iment. Furthermore, note that even an error of 1cm in the
distance between the grip and the ROI leads to an error of 2 pis

for 7, which is negligible regarding our time resolutions.

Pre-stressed sample

The experimental setup is hyper-static, and as a result, the
sample when fixed is already pre-constrained. Indeed, the
griping device relies on two metallic rods on each side of the
sample to maintain it. However, due to its use, the rods are
slightly deformed. As a result, the sample may be already
slightly stretched when put in place before the experiment.
Thus, the loading is slightly non symmetrical, which will
explain why the crack systematically starts always on the left-
hand side. Nevertheless, this phenomenon is not significant.
Moreover, since the reference image is obtained before the
test outside of the setup, contrary to standard procedure for
DIC where the first image is usually the first frame of the test
shot, any pre-stretch is measured.

Influence of the flashes

The requirements for ultra-high speed DIC imaging and
infrared measurements around room temperature are antago-
nistic. Indeed, a large amount of light is required for the UHS
imaging, which usually covers a large spectrum of wavelength,
while the IR measurements require no disturbances within its
wavelength bandwidth of recording.

Tests were conducted in order to investigate the flashes
influence on the temperature measurement. To this effect, a
blackbody was placed at the sample’s location and was set at
25 °C while the other experimental conditions remained the

same (IT, fps, windows size and the aluminium foil was also
used) in order to be as representative as possible. Then, the
flashes were activated manually and the thermal scene was
recorded. This procedure has been performed twice. It has
been observed that the flashes, due to their light being emit-
ted partially in the infrared range recorded by the IR camera,
induce an apparent rise of temperature captured by the cam-
era. Since this phenomenon is very reproducible, a correction
is applied to the experimental temperatures in order to retrieve
the effective sample’s temperature. The systematic and random
errors obtained after the correction are 0 °C + 0.230 °C. This
may compromise the proper measure of thermo-elastic effects
which are in the same order of magnitude in the case of metals.

4 | METROLOGICAL ASSESSMENT
USING A NUMERICAL TWIN

In order to investigate the DDI method introduced in Section[2]
and the influence of the user parameters, a numerical valida-
tion is conducted and is presented in this Section. Note that,
contrary to classical 1D loading cases, the presented work
relies on data existing in a 12-dimension space (3 for €, 3
for &, 3 for o, 3 for ). Such high dimensionality requires
developing new ways to display results. Nevertheless, such
developments go beyond the scope of this work. Hence, for the
sake of simplicity the majority of the results will be presented
in sub-spaces using invariant based norms (e.g. I, \/ﬁ
or Von-Mises). Note that this is not a requirement but just a
choice. Any other norms or invariants could have been chosen.

4.1 |

The construction of a numerical twin of the experiment, allows
to have access to a realistic estimation of the data that will be
measured during the real experiment. Furthermore, it allows
to qualify an experiment in terms of measurability of the fields
of interest (in the present case the stress tensors), and their
uncertainties. It can also validate an identification procedure
and its robustness with respect to realistic experimental condi-
tions. In order for this procedure to be relevant, VID must take
into account, as much as possible and as accurately as possible,
experimental errors and uncertainties such as:

Creation of a Numerical twin

o The spatial resolution of the imaging system and the
DIC sampling, which affects the ability to capture strain
gradients,

e The temporal resolution of the imaging system, which
affects the temporal derivatives (speed, acceleration),
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e The bias induced by the camera (in our particular case,
when using the Cordin, the bias induced by the camera’s
distortions which lead to low but still non-negligible
displacement errors),

e Sensor noise, which affects the optical flow in DIC and
thus displacement errors as well as time derivatives.

Obviously such procedure is never perfect, for instance, it is
difficult to take into account strong speckle-like pattern trans-
formation or even degradation in highly deformed regions dur-
ing large strains [42]], light variation, out-of-plane motions...
However the use of VID is becoming more and more sys-
tematic in the validation of an experimental procedure and of
inverse identification methods [36, 1, 135} 116, {3,137, [10. 30, [9]].

Thus, in the following paragraphs, this construction is
described. Several Finite-Element simulations will be per-
formed using Abaqus with the implicit solver using CPS3T
elements. In all the FE simulations the thermomechanical
Johnson-Cook model will be used as it is implemented by
default in FE solvers.

It is important to note that the VID has to take into account
the specificities of the chain of measurement in order to be
as close as possible to the experimental conditions. Thus in
our case, the specificities of the Cordin-580 (which are briefly
recalled in Appendix [A) will be taken into account since it
introduces low but non-negligible displacement errors. Nev-
ertheless, the methodology can be used with all the different
existing technologies.

Creation of a reference solution (U, 6", Fy”f)

A FE simulation is first performed in order to create a reference
solution, which will serve 2 purposes : (1) the construction of
Virtual images, (2) the comparison of the results after using the
whole chain leading to the estimation of stress tensors (DIC +
DDI). This simulation is conducted using the model parame-
ters given in in Tab. [7] (this will be called Model A in the rest
of this work). They have been identified using a tensile test
at an average strain-rate of 70s~! from a previous study [29].
To mimic the experiments, the simulation is performed under
imposed displacements on the upper and lower boundaries.
On the upper boundary a 0 displacement fields is imposed in
both the axial and transverse directions as it is gripped. On the
lower boundary, a displacement corresponding to a velocity of
! is imposed in the axial direction. For simplicity pur-
poses, this simulation is performed using an experimental DIC
mesh that is used for the actual experiment. The same mesh
will be used throughout the whole procedure.

The outputs of this simulation — namely the displacement
fields U™, the stress fields 6™ and the vertical net force on
the upper boundary Fyref — will be used as references for what
follows.

Sms™

Virtual Image Deformation

In order to be able to perform DIC on the synthetic images,
a texture needs to be applied. For this study an experimental
image of a spray paint speckle-like pattern covering the entire
camera field of view is considered. This reference image is
obtained using a high resolution camera then binned down to
the Cordin image size. Then, using the same mesh as FE simu-
lation, the pixels out of the sample are disregarded resulting in
the image in Figure[6a] The field of view (see Table[6) matches
the aspect ratio of the camera for a pixel size of 14.49 um (i.e.
a magnification of 0.38).

(a) Reference image created synthetically,

(b) Deformed and distorted image,

FIGURE 6 Example of the reference image and a deformed
and distorted image created synthetically.

Once the reference image created, using the mesh and the
displacement fields from the reference simulation, the image
is deformed (see Fig. [6b] for an example). This is done by per-
forming a loop on the elements of the deformed mesh. For
each element, the pixels contained in it are known. Using shape
functions and inverse mapping, their position in the unde-
formed picture is obtained. Their associated grey values can
then be retrieved by performing a spatial bi-cubic spline inter-
polation of the grey value of the reference image. This process
is summarized in Figure[7]
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Reference configuration

inverse mapping
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FIGURE 7 Schematic of the deformation procedure of a syn-
thetic image for one triangular element. The black squares
depict the pixels positions in the deformed configuration, while
the grey squares depict the pixels positions in the reference one.
The red crosses denote the pixels from the deformed config-
uration projected by an inverse mapping in the reference one.
The deformed image for the element is obtained by interpolat-
ing (bi-cubic spline) the grey levels from the grey squares onto
the crosses.

Furthermore, in order to be as representative of a real exper-
iment as possible, measurement bias introduced by the distor-
tion variability from one shot to another has to be taken into
account. In practice, two sets of distortion parameters obtained
experimentally are used. The first one is used to deform the
images and the second one is used to perform DIC. As a result,
this allows to introduce the right order of magnitude of error in
displacement measurement inherent to the method. Using the
composition relationship between the effective displacement
and the first distortion field u,, the imposed displacement
, used to deform the images is computed as follows:

Ugimu

Uyirtua

uvirlual(z) = usimu(x) + ud(X + usimu(K))' (22)

Finally, a realistic noise is added to the deformed and dis-
torted synthetic images. The estimation of grey level noise,
meaning apparent grey level variation of one material points
from one image to another over time, has been estimated as
follows:

e Images of a static reference shot of the sample are
deformed back to the undistorted configuration using
identified distortion parameters.

e The grey level standard deviation over time of every
pixel is computed and its normalized value (by the
pixel’s grey level) plotted as a function of the mean grey
level value of the considered pixel. The plot is presented
in Figure [§] This evolution can be fitted with a power
law P to get the trend of the apparent noise of the cam-
era over its dynamic. The power law used is depicted in
the figure by the black line.

e This result is used to add random noise to images pro-
portional to pixel grey levels following this equation:

noise(F, p) = F(p) - P(F(p)) - randn(p), (23)
where noise(F, p) is the noise that will be added to the
pixel p of image F, P(F(p)) is the noise magnitude fit-
ted by the polynomial for the considered grey value F(p)
and randn is a normally distributed random numbers
matrix of the size of F.

At the first order, the polynomial fit shows that the apparent
noise converges toward 5 % in the whites, reaches 10 % at about
12 bits (4000) then ramps up to 30 % in the blacks. Notice that,
in practice, data presented in Figure [§]is not strictly speaking
a noise. Indeed, pixel time variations are in our case not only
due to CCD dark noise but to the offset and gain mismatch
from one sensor to another, the focus mismatch, as well as
the uncertainty on distortion estimation which does not allow
for perfectly stabilizing images (+ 0.1 pixel). This is why we
name it apparent noise. In addition, it explains why values are
very high compared to mono-sensor ultra-high speed camera
(e.g. in the order of 1 % of 16 bits for the Shimadzu HPV-X).
Nevertheless, apparent noise will affects the optical flow in a
similar way to real noise and will have a strong impact on time
derivatives.
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FIGURE 8 Normalized apparent camera noise (in %) versus
the mean grey level. The colour denotes the pixel counts (in
%), while the black line denotes the polynomials used to model
the camera noise.

As a summary, at this stage we have produced, references
kinematic fields as well as images that mimic the response of
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our imaging system. Applying the dedicated DIC procedure for
the Cordin camera allows for capturing realistic displacement
fields UPC. In the next section, the DDI method will be used
using these fields in order to assess its accuracy as well as the
influence of user parameters.

DIC Software Ufreckles [34]]

Image size 2472 x 3296 pixels

Field of view 35.8 mm X 47.8 mm

Cordin pixel size | 5.5 pm

Image scale 1 pixel = 14.49 pm
(Magnification of 0.38)

Mesh size

Data Processing

~ 21 pixels
U: Tikhonov regularization
over 128 pixels

TABLE 6 Virtual DIC parameters.

4.2 | Creation of a statically admissible initial
solution using a “wrong” model

The creation of an initial guess for the stress field that will
be used as an input for the DDI algorithm requires two
consecutive Finite-Element simulations. To validate the DDI
procedure, an initialization reasonably far from the solution
is chosen. To this effect, the same model as the reference
one is chosen but the constitutive parameters are significantly
modified. Hence, the initial yield is decreased, whereas the
hardening modulus is increased. In addition, to investigate the
ability of the DDI to accurately retrieve the strain-rate depen-
dency, the strain-rate dependency is set close to zero. The exact
parameters are given in Tab. [/| (it will be called Model B).

e The first simulation is conducted under imposed dis-
placements, using UP'C. The load profile on the upper
boundary is extracted from this simulation. This profile
is then rescaled in such a manner that, in the end, the net
force on the upper boundary is equal to the reference net
force Fyref for all the time steps. The role of this first sim-
ulation is to get a nice estimation of the load distribution
at the upper bounds of the sample.

e The second simulation is then performed under mixed
boundary conditions: imposed displacements on the
lower boundary, imposed displacements in the X direc-
tion and imposed rescaled vertical distribution of forces
on the upper bound. This simulation allows to obtain
statically admissible stresses o,

The whole procedure is summarized in Figure [9] In what fol-
lows the DDI will be given the total strains &' (computed

from UP'C) and 6™ as inputs. This case allows to assess the
influence of the measurement errors on the estimation of the
stress fields. Hence, the final errors are representative of the
ones expected during real experiments.

43 |

The DDI is performed on 50 time steps using simulation results
as described previously. First the influence of the different
parameters (see Tab.[I)) of the DDI will be investigated. Then,
once the parameters chosen, the DDI results will be presented
and discussed.

Results and discussion

Influence of the parameters

To investigate the influence of the different parameters of the
method, several computations were performed. The number of
material states N* is chosen so that 30 < W < 200,

the ratio %, with E the actual material Young Modulus, varies
from 0.1 to 10 and finally the weighting matrices [p] are either
I, or [w]. In addition a median filter with O to 5 neighbours
(noted /,) is applied to DIC strains before the DDI. In order to
assess which quadruplet leads to the best results, the following
equivalent standard deviation &, is considered:

1

1 A\
bule ) = (gZVar(AU)> i€ {1,2,6), (24)

Ac'(e,1) = ol (e,) — o' ((e,1) (25)

Thus, the error is the square root of the variance of the differ-
ence between the identified stresses and the reference ones for
all the elements and time steps, averaged over the three com-
ponents. This error allows in one scalar to take into account
each component of the stress tensors for all the elements and
all the time steps.

The best parameters among those tested are the following
:N* = (N, = 1)- N, , E, =100 - E where E is the
steel’s Young modulus, /. =2 and [p] = [w]. Figure@]depicts
the evolution of &, when 3 out of 4 parameters are fixed and
one varies. This figure shows that the error increases when the
number of material states decreases. Furthermore, the error
decreases when E, increases. These trends are in line with the
observations from [6]]. In addition, this figure highlights that
there is an optimal filtering length for DIC strains: [, = 2. At
last but not least, the choice of the weighting matrices do not
have a significant influence on the error. Nevertheless, the use
of [w] leads to a small reduction of the error (from 24.8 MPa
to 23.7 MPa).

A posteriori filtering operator

Let us consider the identified mechanical points distribution in
the {||€|lyar. llolly-ar } space. This space is of interest since it
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FIGURE 9 Schematic of the numerical test case procedure. In red are the inputs of the DDI algorithm.

A(MPa) | B(MPa) | n c d D | m | T,(K) | Ty (K)
Model A | 394MPa | 136MPa | 0.471 00259 | 69.86s | 1.11 | 300 1350
Model B | 315MPa | 272MPa | 0.6123 | 2.56 x 10~* | 69.86s= | 1.11 | 300 1350

TABLE 7 Parameters of the two Johnson-Cook model used for the FE simulations to assess the performances of the DDI.

is the most commonly used for the characterization of elasto-
plastic behaviors. Figure [ITa] depicts the distribution of the
identified mechanical points in this space. This figure shows
the influence of the noise introduced in the VID procedure on
the DDI results. Indeed, a main response is observed (charac-
terized by mechanical states with high occurrence numbers)
with a spread around it. This spread is especially important
for strains beyond 0.4 mm~" as it reaches more than 150 MPa.
Nevertheless, the occurrences of the mechanical states in the
spread are several order of magnitude below the occurrences
in the main response. Since the DDI method is data-based, it
stands for a reason that the most recurrent mechanical states
will lead to more robust identification. Indeed DDI relies on
clustering method, hence robustness is strongly dependent on
the density distribution of mechanical states in the consti-
tutive space: database outliers, e.g. extreme localization (in
space or time) can not be properly handled. In that context,
the definition of a posteriori stress filtering method relying on
mechanical state density seems relevant for eventually char-
acterize the material. In what follows, a mechanical states is
considered as relevant if its occurrence is higher than the 95"
quantile. Figure [ITb] depicts the mechanical points distribu-
tion obtained after the proposed filtering. As expected, only
the main response remains and the mechanical states spread is
significantly reduced. Note that when using this filtering, only

9 % of the mechanical points are disregarded. This supports the
use of this filter since it improves significantly the DDI results
while disregarding a minimal amount of data. In the rest of this
document, all the results will be presented after the use of the
introduced filter. Figure[TTc|shows for each spatial element the
number of time it is selected in percentage. This figure shows
that most of the elements are selected for all the time steps.
Furthermore, it can be observed that the elements disregarded
are located near the notches and the central hole.

Accuracy assessment

In order to assess the accuracy of the method and its ability to
retrieve the reference stresses, the DDI stresses will be com-
pared to them. To be as thorough as possible, the stress errors
will be analyzed using different representations.

First, let us consider the stress uncertainty (that is to say the
standard deviation of Ac'(e,?)) achieved with respect to the
stress magnitude. To this effect, Figure [I2] depicts the stress
magnitude distribution as well as the stress uncertainty (rel-
ative in blue and absolute in red) with respect to the stress
magnitude. The distribution indicates that a significant amount
of material points (space and time) are subjected to stress mag-
nitudes below 200 MPa. This corresponds to the elastic domain
of the considered material (see Fig. [[Tb). The higher stress
identification errors in these regions, 100 % for low strains
down to 12 % at 200 MPa, evidence that signal to noise ratio
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FIGURE 10 Evolution of £, with respect to the DDI parameters. Note that the y-scale differs from one graph to another.

is here not favorable for identification. In addition, less data
is available during elasticity, i.e. in the 200 MPa — 400 MPa
range. The impact of the data scarcity in this range can be
observed with the absolute stress uncertainty. Indeed, as the
data availability in this range decreases, the absolute stress
uncertainty increases from 9 MPa at the beginning to 27 MPa at
315 MPa. Nevertheless, since the signal to noise ratio becomes
favorable, the relative stress error remains below 10 % after a
stress magnitude of 200 MPa. At last, more data is available
beyond 400 MPa i.e. during plasticity. The figure shows that
beyond this stress magnitude, the error remains below 16 MPa
that is to say a relative error of 4 %. Notice that such results
are camera, geometry and loading dependent and should be
checked for every new configuration.

Let us now investigate the accuracy of the method in the
physical space. Figure[I3|depicts for each element of the mesh
their relative systematic (i.e bias) and random stress (i.e uncer-
tainty) errors over time. Relative systematic errors tell what
is the average systematic identification bias for any locations

while the random errors inform by how much the errors vary
from the mean over time. It can be observed that the elements
above and below the central hole and the notches present the
highest errors (both systematic and random). This is to be
expected since these elements are nearly always in the elas-
tic domain (with a stress magnitude lower than 200 MPa), thus
the signal to noise ratio is not favourable. Moreover, this figure
shows that the errors near the localization bands are lower
than 10 %*>%. This is to be expected since in these regions,
plasticity occurs and high stress magnitudes are obtained.
Another space of interest is the {||ellyallollyarl-
Figures [I4a] and [T4D] respectively depict the distribution of
the filtered mechanical points in the considered space and the
associated stress errors. These figures support the observations
made when analyzing Figure[T2] Indeed, the errors are lower
for mechanical states that are highly redundant and when plas-
ticity occurs. Under these circumstances, the errors are below
5 %. In addition, despite the amount of data available during
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elasticity, due to the unfavourable signal to noise ratio, high
relative errors are obtained.

It is also of interest to consider the DDI relative error distri-
bution in the {1, \/ﬁ or ||o]|y ) space. Indeed this space
can be used to assess the triaxiality level reached by each mate-
rial point at every time during the experiment. Figures [I53]
and [T3D] respectively depict the distribution of the filtered
mechanical points in the considered space and the stress errors
associated. The distribution shows that despite the introduc-
tion of a central hole and notches, most of the mechanical
points are in a state close to uniaxial tension. Some uniax-
ial compression states are reached, but the stress amplitudes
reached are not high enough to ensure a favorable signal to
noise ratio. Thus, the stress errors remain higher than 20 %
for the points under uniaxial compression. Furthermore, this

figure shows that the mechanical points leading to the low-
est error are obtained for the higher stress magnitudes (as
already evidenced with the previous figures) and that these
points are under mainly uniaxial tension. These observations
are important since they evidence that whatever the complexity
of the geometry, at least with such an heuristic design, multi-
axiality and non-proportional loading would only be densely
introduced within the sample using additional actuators. In
the present case, it could be shown that local principal stress
directions significantly varies, i.e. useful for characterization
of material anisotropy, nevertheless multiaxiality are only
reached either by some outliers, close to boundaries, or for
very small strains, close to noise floor. Sample design opti-
mization for DDI achievement should take all these points into
consideration.



18

Adrien Vinel et al

iy (%)

densiti

_.
<
=

-
t

S o &
OT/ 10 110 =3
E Z
z i
o 0] J10Y t
§ 10 10 ;
- =
107! ‘ ' 1071
0 200 400 600

stress magnitude (MPa)
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histogram while the blue and red lines are respectively the rel-
ative and absolute values of the stress uncertainty. The values
are obtained after the a posteriori filtering.

At last but not least, let us consider the DDI method ability
to retrieve the strain-rate dependency of the reference stress
fields. Indeed, let us recall that the stress fields used to initial-
ize the method have a different strain-rate dependency than the
sought ones. For this purpose averaged stress-strain curves,
for material points undergoing similar mean strain-rates, can
be plotted. To plot such a figure, the average strain-rate over
time for each element is computed. Then, using a cluster-
ing algorithm (here k-means), these average strain-rates are
regrouped in 20 clusters. The stress-strain curves are then
obtained by averaging the stresses and strains for each cluster.
Figure then shows the relative errors at ||g||;», = 0.05,
0.10 and 0.15 mm~! for the 20 average strain-rates. The
dashed lines depict the FE solution using model B (wrong
initialization), while the stars depict the DDI converged solu-
tion. This figure confirms as expected that model A and the
model B have different strain-rate dependencies. Indeed, the
relative error of the initialization stress fields increases with
the strain-rate for all the strain levels considered. Furthermore,
this figure evidences that the DDI method is able to retrieve
the sought strain-rate dependency evenif if the initial stress
solution did not include it. This is supported by the fact that
the relative error remains nearly constant below 6 %, for all
the strain levels considered. In short, evenif the initialization
does not truly capture the physics, DDI makes features of

the constitutive model, hidden within strain fields and load
through equilibrium, naturally appear.

To summarize, by using kinematic fields from VID, one can
assess the accuracy that can be obtained experimentally using
the DDI method for the considered sample geometry, loading
conditions and camera. The conclusions are as follows:

« Below 200 MPa the signal to ratio is not favourable, due
to the noise on the strain measurements. The related
mechanical points are mainly undergoing elastic strains.
Furthermore these points are mainly located above and
below the hole and notches.

« Since the method proposed is data-based, the abundance
of data leads to low stress identification errors. Indeed,
when data is sufficiently abundant errors remain below
5%.

 In the considered experiment most of the mechanical
points are under a uniaxial tension state, despite the
geometry considered. These points are located in the
vicinity of the localization bands developping between
the hole and the notches.

o At last, the DDI method is able to retrieve the correct
strain-rate dependency of the reference within 6 % of rel-
ative error. This illustrates the robustness of the method
to its initialization and its ability to retrieve the features
of the constitutive model.

S | EXPERIMENTAL RESULTS AND
DISCUSSIONS

This section finally discusses the database (ei, £, 0, T) with
i € {1,2,6} produced during the dynamic, uniaxial but
heterogeneous test previously introduced. First, variation of
macroscopic quantities are discussed, then kinematic fields.
Eventually, identified stress fields are analysed and rate-
dependencies of the material discussed in comparison with the
parametric constitutive equation used at ONERA to classically
model such a material, and are confronted to the data found in
the literature.

5.1 | Evolution of macroscopic quantities
during the test

The deconvolution between the distortions and the effective
displacements is made following method presented in [41]]).
This allows the displacement, strain and strain-rate fields to be
extracted. This allows the displacement, strain and strainrate
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fields to be extracted.

Figure [T7] depicts the evolution of different quantities of
interest during the experiment. First, let us look at the tempo-
ral evolution of the averaged axial displacement and velocity
of the nodes located at the bottom of the mesh, i.e. close to the
sample head where the loading is applied. Figure [I7a shows
displacement in blue and velocity in red. The three vertical
dashed lines are the time steps for which associated fields will
be discussed later-on. Note that the zero in the timeline corre-
sponds to the time when the Cordin-580 is triggered by the load
cell, hence for the first images, negative times are obtained. The
loading of the specimen induces immediately on the loaded

edge a displacement ramp, reaching about 2.8 mm before the
initiation of sample failure. The velocities in the whole sam-
ple or for the nodes at the bottom of the mesh have the same
trend. The velocities evidence two stages: from the beginning
to approximately t = 370 s the velocities increase in the ten-
sion direction, then from t = 370 ps to t = 620 ps they decrease.
The second stage can be explained by considering the possi-
bility that the contact between the sliding bar and its enclosing
case is not permanent. Indeed, if the sample goes faster than
the actuator, then when there is no more contact its speed will
naturally decrease until there is contact again. One way to ver-
ify this hypothesis would have been to record accurately the
speed of the actuator (using DIC with a high speed camera for
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Figure [I7b] plots the evolution of the Von-Mises norm of
14 : : both the total strain (in blue) and total strain-rates (in red) in a
o 8(1)8 m/m localization band during the experiment. This figure shows that
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%3 6l m | lates between 350s~! and 400s~!. At last, Figure shows
~ the evolution of the load during the experiment (in blue). It
also depicts — for information purpose only — the average tem-
4t il perature increase (in red) in the considered band. Two stages
can be evidenced for the load. During the first 150 ps the load
9 | , , | ramps up until 8 kKN. Then it reaches a plateau and oscillates
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FIGURE 16 Relative stress error evolution with respect to the
strain-rate, computed for different strain levels. The stars rep-
resent the results obtained with the DDI while the dashed lines
are those obtained with the FE initialization using model B.

instance). However, this was not done for these experiments.
During the experiment, the maximum speed reached on the
loaded edge is about 4.8 m s~! in about 476 s which represents
an acceleration on the order of 10* s~

1.68 x 10~ m? (subtracting the holes), the engineering stress
can be estimated at 500 MPa. This value is in line with the ones
obtained in [[14].

A slight increase of temperature of about 0.3 °C is observed
while the sample should slightly cool down by the same
amount due to thermoelasticity. This observation is explained
by the uncertainty of approximately 300 mK achieved with the
dedicated calibration procedure applied to retrieve tempera-
ture fields. This is already in the same order of magnitude as
thermoelastic effects. Nevertheless, after 100 ps, the tempera-
ture increases following the same trend as the normalized total
strains, as expected. The sample temperature increase reaches
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FIGURE 17 Evolution of different quantities of interest during the test (either the loaded edge or in the localization band).

15 °C on average in the localization band before crack initiation
with a rate on the order of 25 K /ms.

5.2 | Displacement and strain fields

Figure [T8] shows the last raw image obtained during the high
speed tensile test. In this image two cracks can be seen. On
the left hand side there is a crack going from the central hole
to the notch. On the right hand side, the crack only started to
initiate from the central hole. In what follows, the analysis is
performed on the images prior to the apparition of these cracks.

Figure[T9|shows sample images, displacement fields in both
directions, and the axial strain fields for the three time steps

FIGURE 18 Last raw image of the sample obtained during the
test.

introduced previously. The displacement fields obtained are
consistent with a tensile test. The first two images underline
the fact that the tensile test is not perfectly axial. Indeed, the
axial displacements are higher on the left-hand side of the sam-
ple. This phenomenon was observed for all the experiments
performed as well as on the preliminary tests. In turn, crack
initiation systematically begins on the left-hand side of the
sample before the right-hand side. No clear explanations have
been found for this observation. It may be partly due to the fact
that the sample is already pre-constrained, and a non-planar
contact between the sliding bar and its enclosing case may also
come into play. However, no clear evidences have been found
to confirm these hypotheses. The strain fields at 246.79 ps fur-
ther confirm the fact that the load imposed on the sample is not
symmetrical since strains are higher in the left band. The sam-
ple geometry induces localization bands as predicted by the FE
simulations with little strain everywhere else.

In addition, strain and strain-rate ranges experienced by the
sample during the test is investigated. To this effect, Figure [20]
depicts the strain versus strain-rate (in Von-Mises norm) occur-
rences that are observed through the chosen ROI during the
whole test. White areas represent states that the sample never
reached. This figure shows that most of the sample dur-
ing the experiment undergoes relatively small strains (below
0.05mm™'), while a reasonable amount reaches 0.20mm™"!,
as well as strain-rates varying mainly between 10 and 400 s~
with a huge predominance of strain-rates lower than 200s~.
This is consistent with the strain fields obtained. Furthermore,
let us note that before cracking, only a few points reach a total
strain higher than 0.25 m m~'. Strain and strain-rates ranges of
respectively [0mm™' —0.20mm~'] and [0s™' — 400s7!] are
in line with the one involved in the numerical twin.
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FIGURE 19 Undistorted images, displacement fields, strain fields obtained during a dynamic tensile test, for different time steps.

5.3 | DDI experimental application to the XES
characterization campaign
Stress fields

The DDI algorithm has been presented and then applied to
a numerical test case in the previous section. Now the pro-
posed method is applied to the data obtained during the XES
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of the strain-rates distribution obtained during the experiment,
prior to crack initiation. The colour corresponds to a 2D his-
togram plot. The count per bin is normalized by the number
of elements in the ROI times by the number of time steps. The
strain states that were never experienced by the sample remain
white.

characterization campaign. The performance of the proposed
methodology will be discussed as well as its intrinsic limita-
tions, of the material as well as the geometry chosen.

The experimental procedure for the DDI is very similar to
the one presented in Fig.[9] In this case, the experimental data
replace the ones obtained from the reference simulation of the
numerical test case. As the DDI requires two FE simulations to
be performed, the material model chosen for the initialization
is the Johnson-Cook model and the parameters used are the one
identified on the raw data from ONERA [29]] (i.e. the model A
from the numerical test case). Furthermore, the load that will
be used to rescale the load profile is the one captured by the
load cell during the dynamic tensile test adjusted following the
method presented in Section [3] At last, the method’s parame-
ters are the ones considered optimal from the numerical twin
study, i.e. N* =30, E, =10.0- E, [, =2 and [p] = [w]. Addi-
tionally, the same a posteriori filtering operator will be applied
on the results. Hence, all the results presented in what follows
are obtained using these parameters and the a posteriori filter
defined in Section @l Notice that the mild-steel XES used in
this study exhibits a complex strain-rate dependency that the
classical multiplicative Johnson-Cook model can not capture.

In particular, this model fails to describe the uncoupled depen-
dencies of the initial yield stress and the hardening modulus
(see [40] for parametric study). In this context, the initializa-
tion is quite far from the expected measurements, probably
even farther in the example considered in the numerical val-
idation where same Johnson-Cook model were used but with
different parameters.

Once the DDI algorithm applied, the mechanical and mate-
rial states are available. From these states the Von-Mises norm
of the stresses can be computed. Figure 2] depicts the spa-
tial cartographies of respectively the total strains (pre-filtered
with /. = 2) and the Von-Mises stresses for three differ-
ent time steps. The cartography of the Von-Mises stresses
(Fig. @) shows that, as expected, the notches and the central
hole create stress concentration bands. In these bands the Von-
Mises stresses reach eventually about 500 MPa. In addition, in
the secondary bands (i.e. pointing down), the stress is about
400 MPa. Above and below the central hole and the notches the
stress magnitudes remain below 200 MPa. These observations
are consistent with the numerical study performed. Figure2Ta]
also confirms that the test is sightly non-symmetrical since the
left localization (where the crack eventually forms) arises first.

Let us recall that the experiment was designed to provide dif-
ferent loading paths of the material and wide spectra of strain
and strain-rates during a single test. Hence, Figure 22]enables
the verification of these specifications. Figure 22a] depicts the
stress distribution in the space (I, \/E or [|o]ly ) for the
selected mechanical states. It follows that this figure is an indi-
cator of the stress triaxiality that occurs during the experiment.
This figure shows that the sample is mainly under an uniaxial
tensile state. However, some compression and shear states are
reached within the specimen. In addition, Figure 22b] shows
that the strain and strain-rate spectra mainly seen by the spec-
imen are [0 — 0.18] and [0s~! — 450 s~!]. Nevertheless, some
regions of the sample reach higher strain and higher strain rate
values. In order to associate these states to a region in the sam-
ple, several elements located at different regions of interest
of the sample are selected (see Fig. 22¢). The loading paths
of these elements are depicted in Fig. [22a] and 22b] superim-
posing markers with same color code. As it can be expected,
the region above and below the hole (and by extension the
notches) are under a compression state. Moreover, as expected,
the elements in the band are mainly in a uniaxial tensile state.
Figure 22b] clearly highlights that the different regions of the
bands are under different but quasi-constant strain-rates, at
least during plastic regime. This further justifies the speci-
men geometry since it clearly demonstrates that at least the
results of uniaxial tensile tests performed at different strain-
rates can be retrieved. Nevertheless, this figure emphasizes
a complexity inherent to all dynamic tests (even iso-static):
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FIGURE 21 Cartographies of the Von-Mises norm of the total strains and stresses for three different time steps.

material points in the elastic regime, in the elasto-plastic tran-
sition, then in stabilized plastic regime do not necessarily
undergo similar strain-rates. Analysing this test in a mono-
parametric way, i.e. considering an average strain-rate may be
inaccurate since Young-modulus, yield-stress and flow hard-
ening are actually not characterized in similar rate conditions.
Grabbing high-dimension database from such tests may help
to get the right data at the right conditions. This question goes
way beyond the scope of this paper, nevertheless the question
of rate-dependency characterization will slightly be discussed
in the next section.

Material behaviour of the XES steel: comparison with
the reference data

As presented in Section [2} the material states average the
mechanical response of the material and sample an underly-
ing constitutive equation, within the chosen constitutive space.
Furthermore, in order to take into account the a posteri-
ori filtering introduced, only the material states associated
to the selected mechanical states will be considered. In this
paragraph, these material states will be compared to the two
different set of data available at ONERA:

1. Reference data from [29], which consist in three stress-
strain curves from tensile tests at 0.006s~!, 0.7 s~! and
70s~!. In their work the authors also identified parame-
ters for the modified Krupkowsky model.

2. Reference data from [14]], which consist in three stress-
strain curves obtained with modified Hopkinson bars at
200s~!,360s! and 440571,

Figure 23a]depicts a projection of the material states within
the Von-Mises stress-strain space. The black and red lines
are the raw data from previous characterization of the XES
steel performed at ONERA at different speeds. Notice that the
observed spread has two origins:

1. The uncertainty of the method. Indeed, even after the a
posteriori filtering (calibrated on numerical twin), some
material states with singular behaviours are remaining.

2. The second is rate-dependency which appears as a
spread in this projected sub-space.

As previously mentioned, temperature-dependence could
induce an additional spread nevertheless, temperature varia-
tion induced in this test only by plastic dissipation remains
too low to have any influence on the stress. Interestingly, the
behaviour of the material at 70s~! obtained from previous
characterization is well captured by the main trend of the DDI
cloud of points. This is in line with the fact that the material
considered in this study, known to be strain-rate dependent, has
a dependency which fades at about 100s~! as it was observed
in [14] where dedicated apparatus has been developed to probe
the material response in tension from 200 to 440s~".

To evidence that the spread observed in Fig. [23a] results in
first order from the rate-dependency of the material captured
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iment for the selected mechanical states (i.e. not discarded by the mechanical state density filter). The loading paths of a few
selected elements, presented in ¢, are superimposed on these distributions.

by the DDI approach, averaged stress-strain relations are also
presented. Figure 23b]shows 10 stress-strain curves computed
by averaging states whose mean strain-rate over time are close
as it was done for numerical twin (see Sec. #.3). In addition,
reference data from [29, [14] are. The grey area around the
dashed line represents an uncertainty of + 6 %, in reference
to the stress identification uncertainty found in the numerical
validation for stresses above 400 MPa. This figure shows that
the data obtained for an average strain-rate of 81 s~! are in line
with the reference data at 70 s~! when taking into account the
relative identification uncertainty. Data from 80s~! to 191 57!
are also in line with the 70 s~! reference data. In particular, the
initial yield stresses as well as the hardening modulus obtained
at these strain-rates seems well captured. The figure also con-
firms that the strain-rate dependency fades off around 100s™!,

and the softening of the material response for strains below
0.05. Furthermore, this figure can be compared to the stress-
strain curves obtained in the literature [14]], that are depicted
by dash-dotted lines. The DDI stress estimations are in line
with the reference data from [29]]. Indeed, we observe (using
DDI) a decrease of the stresses for strain-rates higher than
132s~! with a stress peak near 500 MPa, while data obtained
from [[14] at 200s~!, 360 s~ and 440s~! show an increase of
the peak stress up to 600 MPa followed by a softening. While
the question of the reproducibility of the data using different
experimental apparatus remains open, Figure [23b] shows that
DDI and a dedicated sample geometry allows to accurately
capture, with a single apparatus, consistent elasto-plastic data
from 30s~! to about 2507,



26

Adrien Vinel et al

800

700 -

e Material points
m Reference data at 70 s~!
== Reference data at 0.006 s

0 005 01 015 02 025 03
[lellvar (m/m)

—1

(a) Material states in (||€||} s> |61l 37)- The colour of the
markers denote the strain-rates, while the lines denote the
reference data from ONERA,

600 7 T T T

o=

|
400

—%—16 57!
~|——32s71
-7 —%—53 57!
-7 %73 571
- 95 5!
118 5!
149 574
181 s7!
212 571
%245 571
— — —Data at 0.006 s~! [29]
— — —Data at 70 s~ [29]
Data at 200s ! [14]
Data at 360s! [14]
————— Data at 440s~! [14]

0.15 0.2 0.25 0.3
lle]lvar (m/m)

(M Pa)

200

() L 1
0 0.05 0.1

(b) Stress-strain curves for different averaged strain-rates
extracted from the selected material states during one
experiment,

FIGURE 23 Material states in the space(||€|ly 5, l|o]l}-ar) as
well as stress-strain curves for different averaged strain-rates
obtained during one experiment.

To go further, a dialogue between the material states and the
modified Krupkowsky model can be made. One the one hand,
the material states can be used in a conventional way to iden-
tify the whole set of modified Krupkowsky model constitutive
parameters but from a single test. Then, the predicted stresses
can be compared to the available experimental data from [29].
On the other hand, the comparison between the material states
and the stresses predicted by the model using the parameters
obtained from literature [29]] can be performed. The idea is
here to check how a model that is expected to fit well the non-
linear strain-rate dependency of the XES steel compares itself
to non-parametric material response identification beyond its
experimental validity domain.

Hence, non-linear parameter identification is done using the
Von-Mises norm of the DDI material states obtained as well
as quasi-static data coming from [29]], in order to ensure that
the identified parameters characterize the material from quasi-
statics to high strain-rates. The identification is performed for
strains higher than 0.01. The parameters obtained are presented
in Tab. [8] which also recalls the parameters from [29] coming
from the compilation of multiple more standard tests. Strong
variations are observed in particular for exponent ¢ while ¢,
&y and b, which capture the strain-rate dependency, slightly
differ from the reference parameters (> 15 %). Finally, K and
n are recovered within 3 %. Despite these differences, pre-
dictions of the modified Krupkowsky model using updated
parameters from DDI stresses are very close to Onera reference
stress-strain curves [29]]. Indeed, Fig@) shows that the refer-
ence data are captured within 6 % for the quasi-static responses
(0.006 and 0.7 s~!) as well as for the intermediate strain-rate
one (69s~!). This especially indicates that the model has a
weak sensitivity to its parameters. Furthermore, its 7 parame-
ters can be recovered from only 2 tests: a quasi-static one, and
a high strain-rates heterogeneous one with DDI.

The material states obtained using this DDI method can
also be compared to the stresses predicted by the modified
Krupkowsky model, first with parameters obtained from lit-
erature [29]]. The idea is here to check how a model that
is expected to fit well the non-linear strain-rate dependency
of the XES steel compares itself to non-parametric mate-
rial response identification beyond its experimental validity
domain. Hence, Figure [24b] displays the cartography of the
stress mismatch predicted by Krupkowsky and the material
states in the stress invariant space. Since the modified Krup-
kowsky model describes the plastic flow, the data are compared
for stress higher than 200 MPa. The cartography of the miss-
match between the prediction using the modified Krupkowsky
model and the DDI results in the stress invariant space is
in quite good agreement with the one obtained in Section [
Indeed, this figure shows that the DDI method is able to match
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Parameters K (MPa) £ n £y (s7H a b c
Section 526.6 0.024 0.221 0.085 | 0.0002 | 0.385 0.002
This work + QS data 512.8 0.0281 0.2233 0.0705 | 0.0002 | 0.3361 | 0.0002
Relative variation (%) 2.62 % —-17.00% | —=1.04% | 17.04 % 0% 1271% | 90%

TABLE 8 Comparison of the modified Krupkowsky model parameters identified using data from [29] or from this work com-

bined with quasi-static data from ONERA.
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FIGURE 24 Dialogue between the modified Krupkowsky model used at ONERA and the material states from the DDI.

the predictions from the constitutive model when the mate-
rial is under uniaxial tension, within a relative discrepancy
of about 5 %. This comforts the fact that the modified Krup-
kowsky model, even calibrated over 3 uniaxial curves, is able
to extrapolate well at higher strain-rates and when slightly
deviated from its experimental validity domain. Nevertheless,
notice that in the present case we don’t know who is right, the
prediction of the Kupkowski model outside its experimental
calibration domain or the DDI using heterogeneous test. Hence
it is only possible to check where both agree or disagree and
use the numerical twin uncertainty error for the interpretation.

To summarize, the DDI method has been applied to the
experimental data obtained in Section [3] The stresses have
been reconstructed. The stress distribution confirms that the

sample is mainly under uniaxial tension during the experi-
ment, but some regions are under compression and shear (the
region above and below the hole and notches for instance).
The strain and strain-rate spectra that the sample is submit-
ted to are [0 — 0.18] and [0s~! — 500s~!]. Furthermore, the
DDI algorithm is able to retrieve the behaviour identified dur-
ing previous characterization campaigns. In particular, using
the material states obtained herein and data from a simple
quasi-static test, constitutive parameters can be identified for
the modified Krupkowsky model, which allows to retrieve the
behaviour with a relative error below 10 % for strain-rates from
0.01 s ! to a few hundreds of s~!. At last but not least, based on
the accuracy assessment performed in the previous section and
a comparison with the predictions of the modified Krupkowsky
model, this model’s stress predictions can be considered with
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confidence even when extrapolated for higher strain-rates than
the ones used to calibrate it.

6 | CONCLUSIONS AND PERSPECTIVES

In this paper, an emerging inverse stress identification frame-
work, named Data-Driven Identification, is presented and the
recently developed rate-dependent formulation of the norm
deployed for the first time to experimentally characterize mate-
rial strain-rate dependence. Its accuracy has been assessed
using a numerical twin. Then, a pre-notched sample with a
central hole has been subjected to a high speed tensile test.
Fullfield kinematic data have been obtained and quantitatively
captured the events during the test. At last, these kinematic
fields combined with load measurements have been used as
input for the DDI method to estimate stress fields during the
experiment. The main conclusions are as follows:

e The parameters of the DDI method play an important
role in the stress reconstruction. A proper analysis per-
formed on a numerical twin can rationalize the selection
of these parameters.

e The numerical twin illustrates the ability of the proposed
methodology to retrieve the material behaviour despite
the use of a wrong set of constitutive parameters as ini-
tialization. It showed in particular that the algorithm
is able to retrieve the material’s strain-rate dependency
accurately.

e Using the results from Virtual Image Deformation, the
impact of noise on the stress estimation can be assessed.
An accuracy of 10 %*> is obtained on the stress estima-
tion. At last, using the DDI Data to perform parametric
identification leads to relative errors lower than 5 %.
Such results are strongly dependent on the sample geom-
etry, DIC parameters, camera and optics used. In this
work, a multi-sensor Cordin-580 is considered. Such
technology allows high spatial image resolution at ultra-
high-speed at a cost of strong image distortions and
sensor noise. In that context, presented experimental
uncertainties much be seen as upper bounds and may be
significantly reduced if new technologies for high spa-
tial resolution ultra-high-speed imaging are developped
in the market.

e The application of the proposed method to the experi-
mental data allows estimating stress fields during non
iso-static experiments. The material behaviour captured
by the material states are consistent with the data
obtained at ONERA during previous experimental cam-
paigns compiling multiple uniaxial tensile tests at differ-
ent loading rates. In the presented study, the stress are

retrieved with confidence for strains and strain-rates in
the range of [0.01 —0.18] and [10s~! — 500s~!] from a
single test.

e Eventually, the complex non-linear, rate-dependence of
the yield stress and hardening flow naturally appears
from the data without having to write a priori the exact
form of the constitutive equation contrary to standard
parametric inverse methods. Only the framework, here
rate-dependent is assumed within the form of the DDI
norm.

e By combining the data from this work and data from
a simple quasi-static test, constitutive parameters can
be identified. These parameters are able to correctly
retrieve the behaviour of the material over several strain-
rates decades, with a relative mismatch that remains
below 5 % compared to the data from [29]].

DDI comes as a new brick within the experimental-
ist toolbox for both, local stress probing in the case of
non-homogeneous loading case scenarios (e.g. local critical
stress at fracture onset, flow stress during plastic instabilities,
mechanical response of inclusions), and for material character-
ization. In the latter, as for more standard inverse methods, such
as VFM or FEMU, DDI allows to make use of non iso-static
configurations to characterize material behavior in a more
efficient way but also over wider loading conditions domain.
Its singularity relies in the fact that no a priori knowledge
regarding the material constitutive equation is required which
allows for not only identifying parameters but eventually the
form of the constitutive equation itself in situations, especially
dynamics, where strong couplings, instabilities, microstruc-
tural transformations make the constitutive equation unknown.
We do believe, in a near future, that coupling topological opti-
mization, DIC, DDI and deep-learning methods would allow
for developing complex models, covering real case loading
scenarios, in a record time.
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In this Appendix a brief recall of the operation of the Cordin- ¢ 3 e g mier { ) bea>p‘;w . B e
580 will be given. The readers can find more details in [41]. S\ N F
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The camera used in this work is a Cordin-580. This camera is N ’ /

a rotating mirror camera that is able to capture 78 images with
a resolution of 2472 x 3296 pixels (i.e., 8 mega-pixels), up to
a speed of 4 millions fps. For speeds below 500k fps, an elec-
tric turbine is used for mirror rotation. Between 500k fps and
1 million fps, a dedicated gas turbine is fed with compressed
air. Finally, above 1 million fps, both the gas turbine and the
camera must be fed with helium to increase the rotation speed
and mitigate friction.

The optical apparatus used in the camera is depicted in
Fig. The light-beam, depicted by the black arrows, enters
the camera through the objective. It then encounters a cube
beam-splitter, that will either transmit the light or reflect it
with an angle of 45°. The light is then reflected on mirrors
until it reaches a lens. After this lens, another mirror reflects
the light beam onto a 3-faced rotating mirror. Finally, the
light goes through a lens, used to mitigate the bias induced by
the mirror rotation over individual sensor exposure time, and
eventually reaches the sensor. Additionally, some specificities
of the camera’s geometry are worth mentioning. First, in order
to let the light beams pass, Sensors 40 and 80 do not exist,
thus black images are given for these theoretical sensors. Fur-
thermore, due to their positioning, Sensors 21 to 60 are always
the ones hit by the beam reflected by the beam-splitter. For
the same geometrical reasons, Sensors 1, 39, 41 and 79 are
illuminated when the rotating mirror is nearly perpendicular
to the light beam. On the contrary, Sensors 20, 21, 60 and 61
are illuminated when the rotating mirror is hit by the beam
with a shallow angle. This is illustrated in Fig.[ATb]

This complex optical apparatus leads to strong distortions
on the raw images. Thus, in [41]] a dedicated strategy to capture
camera-induced distortions and then perform DIC has been
developed and can be summarized as follows:

e A known reference image is needed in the procedure.

e There is a composition between the DIC displacements
up,c» the effective displacements uand the distortions

Uy

Upc(X) =u (X)) +u, (K + Er(i))'

e The distortions are calibrated using a reduced basis of
the Zernike polynomials.

(a) Schematic diagram of the Cordin-580 and its components:
M, mirrors; L, lens; CCD, CCD sensors.
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&
Transmitted 79 4\\\ Reflected

—_— ) e

41
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21

(b) Schematic diagram of the sensor layout.

FIGURE A1 Schematic diagram of the Cordin-580.

e Several acquisitions are performed on a static sample in
the experimental setup in order to construct a statically
representative model of the camera-induced distortions.

e The experimental kinematic data are retrieved by using
the camera model to decompose the distortions of the
effective displacements.

e The accuracy of the method is:

- Displacements: 0.5%2 pixels.

- Strains: 0.1*2 mm/m.

Figure [AZ] summarizes the procedure:
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