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1 INTRODUCTION

Recently, several strategies have been adopted to estimate
stress fields in non-standard experiments without using a
constitutive law. These strategies all rely on full-field mea-
surements and a regularization of the ill-posed mechanical
problem, but differ on the chosen regularization.

In 2014, Pierron and his co-authors [28] devised a strategy
to estimate stress fields in dynamics without using a consti-
tutive law. To this effect, the strategy relies on the use of a
statically determined configuration (an inertial impact test for
instance). Under the assumptions of plane stress, and a homo-
geneous and constant density of the material, the authors are
able to estimate the mean stress field profile in the specimen.
For this strategy, the acceleration acquired experimentally acts
as a load cell, which requires recording kinematic fields at
ultra-high speed (≥ 1M fps). This work opened the way to
the so called Image-Based Inertial Impact Tests (IBII). Among
other, it allowed the authors to identify the elastic modulus
and tensile strength of tungsten carbide cermets [8] and a com-
posite [10] at high strain-rate. More recently, the strategy was
also applied in a new experimental configuration: the Image-
Based Inertial Release (IBIR) test [9]. This new configuration
allowed the identification of both quasi-static and high strain-
rate elastic modulus and Poisson’s ratio for PMMA. In these
examples, the boundary conditions (purely inertial test and uni-
axial) regularize the problem. If the test is not uniaxial any
more, the authors proposed an elegant solution in the case of
elastic orthotropic material [27].

Even more recently, in 2021, Liu et al. [24] and Cameron
and his co-author [3] devised another strategy to estimate stress
fields without postulating a constitutive equation. Assuming
that the material is isotropic, the methods developed by these
authors rely on the alignment of the principal directions of
stress with strain or strain-rate. This assumption then allows
obtaining a mathematically closed problem, and thus the ana-
lytical estimation of stresses. These methods have been tested
on numerical example and experimentally in [24]. In [3], the
authors discuss the range of validity of such an assumption:
mainly in isotropic elasticity, plasticity with associative flow
rules and for associative flow rules with an isotropic yield func-
tion. Furthermore, this method cannot address the problem
of elasto-plastic transition where stresses are not aligned with
strains anymore and not aligned with plastic strain-rates yet.

The recent developments in computer science and in par-
ticular in the data science field, has lead to the emergence of
a third kind of strategy relying on data in the past 4 years:
the so called Data-Driven approaches. These methods can
be used to either solve the direct problem [14] or the inverse
mechanical problem [22]. The so called Data-Driven methods
were first introduced in the context of computational mechan-
ics by Kirchdoerfer and Ortiz [14, 15]. In their work, the
authors replaced the constitutive equation by a minimization
process and a material database. A solution is found by min-
imizing a distance (which they defined) between computed
mechanical states (strains and stresses) and a set of admissible
material states. The authors then extended their methods to
dynamics [16]. These methods called Data-Driven Compu-
tational Mechanics are used to solve the direct problem: find
the response of structure (strains and stresses) using a set of
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admissible material states, which have to be found experimen-
tally. These works were then derived in order to formulate
inverse Data-Driven approaches. Hence, in their work Leygue
and his co-authors [22, 23] formulated the inverse problem
associated to the Data-Driven Computational Mechanics. This
new problem aims to estimate stress fields from heteroge-
neous experiments without having to explicit any constitutive
equation. Using synthetic data, the authors demonstrated the
ability of their algorithm to estimate admissible stresses in a
structure for various loading cases (quasi-static and dynamic
problems) as well as different material behaviours (hyperelas-
ticity, elasto-plastiticy). This Data-Driven method was then
applied to experimental data by Dalémat et al. in [5]. In this
study, perforated hyperelastic membranes are submitted to
uniaxial tensile tests. In addition, in a recent paper [4] exten-
sively discuss the proper way to handle imperfect experimental
data. The authors especially discuss the boundary conditions
for imperfectly defined edges and the way to tackle the issue
of missing data. More recently, the Data-Driven strategy was
applied by Langlois and his co-authors to experiments on his-
tory dependent materials [? ]. The use of this method enabled
them to estimate stress fields for an elasto-platic material that
is subjected to the formation of Piobert-Lüders bands. In these
strategies, the regularization comes from the assumption that
the material response lies on a manifold in a constitutive space
which remains to be determined. The underlying hypothesis
of this method will be presented later-on in this paper. Fur-
thermore, one could imagine combining this method with
the IBII method in order to estimate heterogeneous 2D stress
fields in dynamics without needing load measurements.

These emergent strategies can potentially help to assess,
without making any assumptions, the validity of material con-
stitutive equations outside their validity domain (e.g. hetero-
geneous tests, with multi-axiality, couplings...). In that con-
text, the Data-Driven Identification formulation and resolution
strategy for visco-elasto-plastic materials will first be recalled.
Then, a digital twin is built to investigate the ability of such
a method to estimate stress fields, and especially its accuracy.
At last but not least, the DDI is then applied to data obtained
during a high speed tensile test performed on a heterogeneous
sample made in steel.

2 DATA-DRIVEN IDENTIFICATION
METHOD

The inverse Data-Driven Identification method requires both,
a rich database of displacement fields (obtained for example
with DIC on complex sample geometries), and net external

forces (usually obtained with a load cell). Combined with con-
servation laws (balance of linear and angular momentum),
valid whatever the material, it is possible to build a minimiza-
tion problem where the components of stress fields are the
sought parameters. The following section guides the reader up
to final formulation of the global minimization problem.

To make the implementation clearer, we use in the follow-
ing only matrix notation instead of tensorial one. By default,
we use [∙] for matrices and {∙} for vectors. When indices are
explicitly required they are emphasized as followed, 𝑋𝑗

𝑖 , where
𝑖 and 𝑗 are matrix rows and columns respectively.

While the main ingredients are recalled in detail we refer
interested readers to [22] where the DDI problem was origi-
nally introduced. This work is also inspired by the works of
Eggersmann and his co-authors [6] where the framework was
extended for history dependent materials. Furthermore, the
modified strategy, regarding the initialization of the problem,
proposed in [23] is adopted. Some notations that will be
recalled and used in this work was introduced by Langlois and
his co-authors in [18]. The problem is formulated here in small
strain, however it has already been implemented and used in
finite strain in [5, 29]. Moreover, for experimental concerns,
we will focus only on plane-stress formalism.

2.1 Static equilibrium problem
The general problem considers a 2D structure made of a
deformable material (see Fig. 1). This structure is discretized

FIGURE 1 2D deformable structure made of T3P1 elements
over a domainΩ. Blue bullets define the border 𝜕𝐹 where loads
and / or displacements are prescribed. Red arrows show a dis-
tribution of reaction forces.
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using a Finite Element mesh with 𝑁𝑒 elements and 𝑁𝑛 nodes
and the loading is discretized through 𝑁𝑡 time steps.

Available data are the following:

• [𝑢]: a 2𝑁𝑛 × 𝑁𝑡 matrix collecting nodal displacements
obtained from DIC over the domaine Ω. The dimension
2𝑁𝑛 means that displacement vectors are organized in
vector format such as {𝑢𝑡} =

{

𝑢1𝑡1, ..., 𝑢1
𝑡
𝑛, 𝑢2

𝑡
1, ..., 𝑢2

𝑡
𝑛

}

where u1 and u2 are transverse and axial displacements
respectively (see Fig. 1),

• [𝐵]: a 3𝑁𝑒 × 2𝑁𝑛 matrix obtained from the assembly
of elementary FEM gradient operators. The dimension
3𝑁𝑒 encloses the 3 components of the displacement
gradient. It is computed using the geometry, mesh con-
nectivity and relies on triangular elements and classical
linear Lagrange shape functions. It allows for computing
strain tensors at every quadrature points, here element
centroid noted 𝑒. They are collected in a 3𝑁𝑒×𝑁𝑡 matrix:

[𝜺] = [𝐵] [𝑢] , (1)
• [𝑤]: a 3𝑁𝑒×3𝑁𝑒 diagonal matrix collecting the elemen-

tary integration weights times Jacobian determinants
of the transformation of each element from its refer-
ence coordinates frame to its actual shape in the global
coordinate system,

• {𝐹 }: a 𝑁𝑡 vector collecting the net force, along the
axial direction 2 (see Fig. 1) of the nodal forces on the
boundary 𝜕𝐹 :

{𝐹 } = ℎ
∑

𝑘∈𝜕𝑓
𝑓 𝑡
𝑁𝑛+𝑘

∀𝑡 ∈ [1, 𝑁𝑡] (2)

with ℎ the thickness of the structure, supposed to be con-
stant, and [𝑓 ] a 2𝑁𝑛 × 𝑁𝑡 matrix collecting the nodal
internal forces.𝑁𝑛+𝑘 refers to axial displacements only.

Static equilibrium can therefore be expressed through a set
of 𝑁𝑡 systems of 2𝑁𝑛 linear equations:

[𝐵]T [𝑤]T
{

𝝈𝑡} =
{

𝑓 𝑡} , ∀𝑡 ∈ [1, 𝑁𝑡] (3)
with ∑

𝑘∈𝜕𝑓
𝑓 𝑡
𝑁𝑛+𝑘

= 𝐹 𝑡

ℎ
and 𝑓 𝑡

𝑘 = 0, ∀𝑘 ∈ Ω∖𝜕𝐹 .

Considering boundary conditions, especially the fact that
only the net force along the axial direction 2 (see Fig. 1) is
usually known in practice, and that displacements are pre-
scribed everywhere else on 𝜕𝐹 , the set of 2𝑁𝑛 equations can
be reduced to �̂� = 2𝑁𝑛−4 card(𝜕𝐹 )+1. It is implemented by
discarding from the system of equation 3 constrained bound-
ary nodes and by adding the linear combination introduced in

Eq. 2. It leads to the definition of news operators [�̂�] and [

𝑓
]

summarizing mechanical equilibrium into a compact form:
[

�̂�
]T [𝑤]T

{

𝝈𝑡} =
{

𝑓 𝑡} , ∀𝑡 ∈ [1, 𝑁𝑡]. (4)

2.2 Data-Driven Identification problem
The main idea behind the DDI method consists in assuming
that a constitutive equation exists, hence there is a constitutive
space (still to be defined) where the whole set of mechani-
cal states lies on a manifold. In short, among the infinity of
solution of the static problem (see Eq. 4), one seeks for the
one that minimizes the spread around an unknown manifold
within a well defined constitutive space. Notice that in the
following, such a manifold will be approximated by discrete
points named material states, in the sense that they literally
sample the material response in the constitutive space. Such a
discretization allows for regularizing the ill-posed problem of
stress identification as we will see later-on.

As a consequence 3 main ingredients have to be defined: (1)
such a "well defined" constitutive space, (2) a norm for estimat-
ing distances between states in this constitutive space, and (3)
the sampling of the manifold. Main assumptions of the method
are enclosed in these three ingredients.

Constitutive space has to be chosen wisely regarding the
various dependencies of the material response to observable
and sought quantities. Following Eggersman et al. recommen-
dations [6], the history and time-dependent behaviour of the
material will be described using strain, stress and their first
order time derivatives. To this effect, similarly to what is done
in [18], an incremental approach will be used, leading to a
dependence of the current stress to the current strain as well as
the former strain and stress.

𝝈𝑡 = �̂�𝑡 (𝜺𝑡, 𝜺𝑡−1,𝝈𝑡−1) (5)
�̂�𝑡 will be further used as the DDI estimation of the actual

stress in this particular space. As a result, the constitutive
space that will be considered in this work is (𝜺𝑡, 𝜺𝑡−1,𝝈𝑡,𝝈𝑡−1).
From a modelling point-of-view, such a differential constitu-
tive space approaches the material response similarly to rate-
dependent plasticity models, classically used in high-strain rate
simulation like Johnson-Cook models [], which has to be dis-
tinguished from visco-plastic models where relaxation time,
meaning larger time non-locality, can properly be taken into
account.

Then, let us define a distance in a generic strain and stress
related constitutive space. Following [14] we choose a norm
built from a symmetric positive definite fourth-order tensor
ℂ𝑜. Noting for example { 𝑡} and {

𝑡}, two vectors related to
some strain and stress quantities at time 𝑡 respectively in Voigt



4 Adrien Vinel et al

notation, an energetic ‖‖2ℂ𝑜
norm can be introduced as follows:

‖ 𝑡,𝑡
‖

2
ℂ𝑜

=
{

 𝑡}T [ℂ𝑜
] {

 𝑡} +
{

𝑡}T [ℂ𝑜
] {

𝑡} . (6)
Normalizing data, such as:

{

 𝑡} =
[

√

ℂ𝑜

]

{

 𝑡} ,
{

𝑡
}

=
[

√

ℂ𝑜

]-1
{

𝑡} ,
(7)

the norm simply becomes:
‖ 𝑡,𝑡

‖

2
ℂ𝑜

=
{

 𝑡}T { 𝑡} +
{

𝑡
}T {

𝑡
}

. (8)
Notice that the square root of the tensor [ℂ𝑜

] is computed using
an Eigen decomposition,

[

√

ℂ𝑜

]

= [𝑉 ]
[
√

𝐷
]

[𝑉 ]T, where
[𝑉 ] and [𝐷] are matrices containing Eigen vectors and values
respectively. Such a normalization will help the clustering part
of the problem (see Sec. 2.4).

As introduced above, to address the issue of ill-
posness of the stress-field identification problem (infinite
dimension of the manifold) the material response is dis-
cretized with a finite 𝑁∗ set of unknown material states
({𝜺∗} , {𝜺∗∗} , {𝝈∗} , {𝝈∗∗}), where ∙∗ are related to the cur-
rent state and ∙∗∗ to the former state. We will see that these
𝑁∗ states are in practice defined as barycenters of mechan-
ical states clusters. These clusters regroup the set of strains
and sought stresses ({

𝜺𝑡
}

,
{

𝜺𝑡−1
}

,
{

𝝈𝑡} ,
{

𝝈𝑡−1}) that are
close in the ‖‖

2
ℂ𝑜

norm sense. The following form of the DDI
method can therefore be seen as a zero-order approach in the
sense that the regularization introduced by the material states
is piece-wise constant.

Using the constitutive space introduced in Eq. 5, the norm
introduced in Eq. 8 and the sampling of the material response
into 𝑁∗ current and former states, the problem can be formu-
lated as a global minimization:

min
𝜺∗𝜺∗∗�̂�
𝝈∗𝝈∗∗

Ψ (𝜺, 𝜺∗, 𝜺∗∗, �̂�,𝝈∗,𝝈∗∗,) , (9)
where

Ψ = 1
2

𝑁𝑡
∑

𝑡=2

(

‖ 𝑡,𝑡
‖

2
ℂ𝑜

+ ‖ 𝑡−1,𝑡−1
‖

2
ℂ𝑜

)

, (10)
with

 𝑡 =
[

√

𝑝𝑡
]

({

𝜺𝑡
}

−
[

 𝑡] {𝜺∗
})

,

 𝑡−1 =
[
√

𝑝𝑡−1
]

({

𝜺𝑡−1
}

−
[

 𝑡] {𝜺∗∗
})

,

𝑡 =
[

√

𝑝𝑡
]

({

�̂�𝑡} −
[

 𝑡] {𝝈∗}) ,

𝑡−1 =
[
√

𝑝𝑡−1
]

({

�̂�𝑡−1} −
[

 𝑡] {𝝈∗∗}) ,

(11)

under the constraint that the equilibrium conditions (Eq. 4) are
satisfied. [𝑝] is a 3𝑁𝑒 ×3𝑁𝑒 ×𝑁𝑡 matrix weighing mechanical
states contributions for every time-steps within the functional
Ψ. A specific section (see Sec. 2.5) is dedicated later-on to

address the specific role of these weights in the time and space
integral. [] is a 3𝑁𝑒 × 3𝑁∗ ×𝑁𝑡 selection matrix that maps
the 𝑁∗ material states to the mechanical states for every time-
steps. Eq. 9 must be understood as the global minimization
(time and space) of the scattering of mechanical states around
their associated 𝑁∗ material states (piece-wise barycenters) in
the particular constitutive space (𝜺𝑡, 𝜺𝑡−1,𝝈𝑡,𝝈𝑡−1).

If equilibrium constraints are enforced using Lagrange mul-
tipliers, the following cost function can be obtained:

Φ = Ψ +
𝑁𝑡
∑

𝑡=1

(

[

�̂�
]T [𝑤]T

{

�̂�𝑡} −
{

𝑓 𝑡}
)

{

𝜆𝑡
}

∀𝑡 ∈ [1, 𝑁𝑡].

(12)

Notice that the introduction of normalized quantities "∙" also
requires the normalization of �̂�. It is simply done by assem-
bling normalized gradient operators. Finally, two problems can
be formulated: (1) the mechanical and (2) the material one.
The stationarity of Φ with respect to {

𝜆𝑡
} and {

�̂�𝑡} leads to
the mechanical problem and the following set of 𝑁𝑡 systems of
3𝑁𝑒 × �̂� equations:

[

[

�̂�
]T [𝑤]T 0
𝛼𝑡 [

𝑝𝑡
]-1 [𝑤]

[

�̂�
]

]

{

�̂�𝑡

𝜆𝑡

}

=
{

𝑓 𝑡

𝐷𝑡

}

(13)

with,

𝛼𝑡 =

{

1 ∀𝑡 ∈ [1, 𝑁𝑡],
2 ∀𝑡 ∈ [2 ∶ 𝑁𝑡−1],

{

𝐷𝑡} =

⎧

⎪

⎨

⎪

⎩

[

 𝑡+1] {𝜎∗∗} 𝑡 = 1,
[

 𝑡+1] {𝜎∗∗} +
[

 𝑡] {𝜎∗} ∀𝑡 ∈ [2 ∶ 𝑁𝑡−1],
[

 𝑡] {𝜎∗} 𝑡 = 𝑁𝑡.
(14)

One key element to obtain such an expression is to observe the
following relations:

Then, the stationarity with respect to the material states
leads to the material problem and the following 4 sets of 3𝑁∗

equations:
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑁𝑡
∑

𝑡=2

[

∗𝑡] [ 𝑡] {𝜺∗
}

=
𝑁𝑡
∑

𝑡=2

[

∗𝑡] {𝜺𝑡
}

,
𝑁𝑡
∑

𝑡=2

[

∗𝑡] [ 𝑡] {𝜎∗} =
𝑁𝑡
∑

𝑡=2

[

∗𝑡] {�̂�𝑡} ,
𝑁𝑡−1
∑

𝑡=1

[

∗∗𝑡] [ 𝑡+1] {𝜺∗∗
}

=
𝑁𝑡−1
∑

𝑡=1

[

∗∗𝑡] {𝜺𝑡
}

,
𝑁𝑡−1
∑

𝑡=1

[

∗∗𝑡] [ 𝑡+1] {𝜎∗∗} =
𝑁𝑡−1
∑

𝑡=1

[

∗∗𝑡] {�̂�𝑡} ,

(15)

with,
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[

∗𝑡] =
[

 𝑡]T [𝑝𝑡
]

,
[

∗∗𝑡] =
[

 𝑡+1]T [𝑝𝑡
]

.
(16)

Stationary with respect to [

 𝑡], to update the state map-
ping, is difficult to explicit. Indeed, contrary to other
variables, which are continuous numbers of ℝ, [] is
made of discrete numbers of ℕ. As a consequence a
brute force method is employed. Detailes are given in
Section00000000000000000000000000 2.4.

The resolution of such a problem has already been discussed
in [23, 35]. It relies on a staggered algorithm that computes
alternatively the Lagrangian multipliers and the correction of
the stress fields for a given material state set and selection
matrices (called the mechanical problem), then the update of
the material states set and selection matrices for given stresses
(called the material problem). These two steps are discussed in
the next sections.

2.3 Resolution of the mechanical problem
Let us consider a given set of material states
({

𝜺∗
}

,
{

𝜺∗∗
}

,
{

𝝈∗} ,
{

𝝈∗∗}) and a given mapping through
the selection matrix [].

They can be initialized using experimental strains, a first
guess for the stress fields and basic K-means algorithm. In
the present case, an FE simulation with imposed experimental
loads is first performed using an arbitrary elasto-plastic model.
An elastic initialization could also be used but would necessar-
ily increase the number of iterations and potentially converge
to local minima. Initializing the problem with a model also
provide a route for improving it since it eventually allows
for emphasizing areas, in the constitutive space, where DDI
deviates from the model giving clues for its improvement.

The mechanical problem can be solved by substitution,
leading first to the computation of the Lagrangian multipliers:

[

�̂�
]T [𝑤]T

[

𝑝𝑡
]-1 [𝑤]

[

�̂�
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
[𝑡]

{

𝜆𝑡
}

=
[

�̂�
]T [𝑤]T

{

𝐷𝑡} − 𝛼𝑡 {𝑓 𝑡}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
{𝑏𝑡}

∀𝑡 ∈ [1, 𝑁𝑡].
(17)

It consists in a set of 𝑁𝑡 systems of �̂� independent linear
equations to solve. This is done using a Cholesky decomposi-
tion:

Finally, stresses are updated using the second line of the
system of equations 13.

{

�̂�𝑡} = 1
𝛼𝑡

(

{

𝐷𝑡} −
[

𝑝𝑡
]-1 [𝑤]

[

�̂�
] {

𝜆𝑡
}

)

,∀𝑡 ∈ [1, 𝑁𝑡].
(18)

2.4 Resolution of the material problem
First, the mapping operator, i.e. [], must be computed for
given stress fields and the actual set of material states. As men-
tioned above this is done in a brute force way, finding for each
element 𝑒 the material state 𝑁∗

𝑖 that is the closest with respect
to ‖‖

2
ℂ𝑜

. This is relatively expensive as it requires, for each
mechanical state, to compute its distance to all material states
in the material database. This operation is the bottleneck of the
method.

Once this matrix obtained, the set of material states
({

𝜺∗
}

,
{

𝜺∗∗
}

,
{

𝝈∗} ,
{

𝝈∗∗}) is actualized using Eq. 15. The
complexity of the resolution mainly depends on the form of
[

𝑝𝑡
]. If [

𝑝𝑡
] is diagonal, as it has always been the case in

the literature according the author knowledge, the resolution
of Eq. 15 simply consists in computing 5 × 3𝑁∗ indepen-
dent averages or weighted averages of the mechanical states
in elements assigned to each material states through []. For
example current and former material strains are found such as:

𝜺∗𝑖 =

𝑁𝑡
∑

𝑡=2

3𝑁𝑒
∑

𝑗=1

(

 𝑖
𝑗

)𝑡 (
𝑝𝑘𝑗
)𝑡

𝜺𝑡𝑘

𝑁𝑡
∑

𝑡=2

3𝑁𝑒
∑

𝑘=1

3𝑁𝑒
∑

𝑗=1

(

 𝑖
𝑗

)𝑡 (
𝑝𝑘𝑗
)𝑡

(

 𝑙
𝑘

)𝑡

𝜺∗∗𝑖 =

𝑁𝑡−1
∑

𝑡=1

3𝑁𝑒
∑

𝑗=1

(

 𝑖
𝑗

)𝑡+1 (
𝑝𝑘𝑗
)𝑡

𝜺𝑡𝑘

𝑁𝑡−1
∑

𝑡=1

3𝑁𝑒
∑

𝑘=1

3𝑁𝑒
∑

𝑗=1

(

 𝑖
𝑗

)𝑡+1 (
𝑝𝑘𝑗
)𝑡

(

 𝑙
𝑘

)𝑡+1

∀𝑖 ∈ [1 ∶ 3𝑁∗]

(19)

The next section discusses the choice of such diagonal [𝑝𝑡].

2.5 Choice of a Weighing matrix
The weighing matrix of the elementary distance between one
mechanical state to its corresponding material state [𝑝], intro-
duced in the DDI norm (see Eq. 8), can be wisely used as a
natural filter for noisy experimental inputs. Input of the DDI
being itself an output of the DIC inverse problem, it is neces-
sarily biased and corrupted by noise. Finding a way to mitigate
this issue is crucial for the application of the DDI method
in real life experiments. Some solutions have already been
proposed in the literature for such a weighting matrix.

Evenif it has not been explicitly written as such in literature,
two cases can be found: (1) [𝑝𝑡] = 𝐈2, the identity matrix [], and
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(2) [𝑝𝑡] = [𝑤]. The first solution gives an equal weight to every
elements, strain components and time-steps. The authors found
it useful when the objective is to identify stresses in vicinity
of a localization band using a refined mesh hence where the
sought information is localized in space and time. Indeed, the
second option, classical for FE integrals, gives more weight
to large and undistorted elements discarding data arising from
spatial localization.

2.6 Schematic of the global minimization
problem
To summarize, the resolution of the global minimization
problem, i.e. computing ({

𝜺∗
}

,
{

𝜺∗∗
}

,
{

𝝈∗} ,
{

𝝈∗∗}), [

�̂�
]

and [], is performed using the following staggered algorithm
[18]:

1. initialize [�̂�] using a FE simulation with a arbitrary
model

2. normalize input dataset to get ([�̂�] , [𝜺])

3. initialize ({

𝜺∗
}

,
{

𝜺∗∗
}

,
{

𝝈∗} ,
{

𝝈∗∗}) and
[] using a k-means algorithm [25] on
({

𝜺𝑡
}

,
{

𝜺𝑡−1
}

,
{

�̂�𝑡} ,
{

�̂�𝑡−1})∀𝑡 ∈ [1, 𝑁𝑡],
4. solve the mechanical problem (see Sec. 2.3),
5. solve the material problem (see Sec. 2.4),
6. iterate step 5 until convergence of []. It usually takes

less than 3 iterations to converge
7. iterate steps 4 through 5 until convergence of [] and

[

�̂�
]. One iteration from step 4 to 5 will be called a cycle.

2.7 Parameters of the method
Once the framework of the DDI method fixed, meaning that a
particular constitutive space (see Eq. 5) and a particular norm
(see Eq. 8) are selected, 5 parameters remain to be adjusted by
the user and will affect performances of the algorithm.

• the number of material states 𝑁∗ sampling the material
response

• the amplitude and the exact form of ℂ𝑜 within the norm
• the two convergence criteria
• and the Weighing matrix of mechanical states [𝑝]

The first one and part of the second one has already been inves-
tigated by Dalémat and her co-authors in [4]. They compared
the stresses of FE simulations, considered as the reference,

to the one obtained using the DDI with different number of
material states values. They concluded that a small number of
material states leads to an insufficient sampling of the strain-
stress manifolds, and thus, to significant error. A high number
of material states also leads to significant error, since it will
give more weight to outliers and increase the sensitivity to
noise (similarly to the overfitting phenomenon for regressions).
In their work, the authors recommend a number of material
states so that 20 ≤ (𝑁𝑡−1)⋅𝑁𝑒

𝑁∗ ≤ 100. The influence of the mag-
nitude of ℂ𝑜 was found to be straightforward. Indeed, Eq. 7
shows that by choosing a tensor with high values, the normal-
ization will give more weight to strains compared to stresses.
So it may be relevant to use high amplitude to give more
weight to strains which are obtained experimentally, compared
to stresses which are unknowns and change during the method.

While the influence of the magnitude of ℂ𝑜 is straightfor-
ward, the influence of the symmetry class of the tensor remains
unknown. In the present work, the fourth-order tensor that will
be used is a Hooke tensor for an isotropic material, hence its
definition will only be dependent of the choice of a pseudo-
Young modulus𝐸𝑜 (the magnitude) and a pseudo-Poisson ratio
𝜈𝑜. Nevertheless, it seems reasonable to assume that the use
of a pseudo isotropic elastic tensor would not necessarily lead
to a satisfying clustering, for instance, of anisotropic mechan-
ical states. However, to the author knowledge, the question
of the influence of the symmetry class of ℂ𝑜 has not yet be
investigated and it is not the objective of the present work.

Regarding the two convergence criteria needed for resolu-
tion, this work proposes the following expressions:

• for the material problem criterion, we use the conver-
gence rate of the data-driven distance Ψ (see Eq. 9) at
each each iteration 𝑖. That is to say:

|Ψ𝑖 − Ψ𝑖−1|

Ψ0
≥ 𝜖𝑚𝑎𝑡 (20)

where Ψ0 is its initial value and 𝜖𝑚𝑎𝑡 the user criterion
• for the mechanical problem criterion, we use the con-

vergence rate of the norm of internal forces (See Eq. 4).
That is to say:

|𝑖 − 𝑖−1|
2

|0|
2

≥ 𝜖𝑚𝑒𝑐ℎ

with,  =
𝑁𝑡
∑

𝑡=1

[

�̂�
]T [𝑤]T

{

�̂�𝑡}
(21)

Regarding the Weighing matrix two options will be com-
pared in this paper.
0:

[

𝑝𝑡
]

= 𝐈2, ∀𝑡 ∈ [1, 𝑁𝑡],

1:
[

𝑝𝑡
]

= [𝑤]
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Inputs Outputs Parameters Assumptions
[

𝑢dic
]

, {𝐹 } [] ℂ𝑜 Plane stress
[𝐵] [�̂�] 𝑁∗ Small strain
[

𝝈fe
]

{𝜺∗} , {𝜺∗∗} 𝜖𝑚𝑎𝑡, 𝜖𝑚𝑒𝑐ℎ Constitutive space
{𝜎∗} , {𝜎∗∗} [𝑝]

Ψ

TABLE 1 Summary of the inputs, outputs, parameters and the
assumptions needed for the Data-Driven Identification method
proposed in this work. In this table, Ψ gives the DDI distance
at convergence.

Table 1 summarizes the inputs, outputs, parameters and
assumptions needed for the proposed Data-Driven Identifica-
tion method. It emphasis the fact that, evenif DDI presents
itself as a model-free technique for fields of stress tensors iden-
tification, part of the modelling framework is hidden in the
choice of the constitutive space. Nevertheless, while the frame-
work is constrained the exact form of the constitutive equation
remains free. Moreover, the role of user parameters remains
significant and many aspects has still to be investigated. The
three main output of the method are useful in different ways:
(1) the value of the converged DDI distance Ψ gives infor-
mation about local and global quality of the stress solution.
Indeed, if the scattering remains high the distance will be high
emphasizing either issues with input noise, user parameters
or dimensionality of the constitutive space. A proper analysis
of this distance may help to improve the constitutive space.
Indeed, if relevant dimensions are not taken into account, e.g.
temperature in a test where an external heat source imposes
very high thermal gradients, it will lead to a significant scat-
tering of the data within the chosen sub-space. (2) Mechanical
points allows for probing locally (time and space) the mechan-
ical response, for instance in vicinity of crack tip, allowing to
access mechanical response in never-seen loading conditions
but remain as for DIC, potentially noisy. (3) Material states
average the mechanical response and sample, within the consti-
tutive space, an underlying constitutive equation. This quantity
could eventually be used to identify a parametric form of a
constitutive equations.

3 EXPERIMENTAL METHOD

The DDI method has been presented and detailed previously.
In this section, the experiment investigated will be presented.
It consists in a high-speed tensile test performed on a metal
sheet with a specific geometry.

3.1 Specimen material
The material chosen for this experimental campaign is the rate-
dependent, low-carbon mild-steel XES (French standards). Its
chemical composition is presented in Tab. 2. The quasi-static
and dynamic behaviour of this material are relatively well-
known. Indeed, for example in the mid 90s, methodologies
were developed allowing to perform double-shear experiments
on thin metal sheet in both quasi-static and high strain-rate con-
ditions with highly homogeneous stress and strain states [11].
These methodologies were used to study the shear behaviour of
the XES steel – in particular the evolution of the rate sensitiv-
ity, for strain-rates ranging from 1×10−3 s−1 to 1×103 s−1 [17].
The tensile behaviour of this steel has also been investigated.
For this purpose, Haugou and its collaborators [12] developed
a tensile testing device for split Hopkinson bars. This device
allows for non-direct tensile tests to be performed on metal
sheets. The configuration was used to characterize the mild-
steel for plastic strain-rates between 180 s−1 and 440 s−1. At
last, more recently, some researchers focused on the modelling
of spot weld for this material. For instance, using experiments
based on Arcan principle, Langrand et al. [19, 20] were able
to model and characterize the joint when submitted to pure
and mixed tensile/shear loads in both quasi-static and dynamic
conditions. In 2016, Markiewicz et al. [26] went one step fur-
ther and investigated the behaviour of the material when heat
affected by spot welding. Furthermore, the authors studied
the strain-rate dependency of the heat affected material and
identified parameters (see Tab. 3) for modified Krupkowsky
model [30], which is a visco-plastic model (rate-dependent
hardening flow model) describing the material. This model is
written as:

𝜎𝐾𝑅 = 𝐾𝑋𝑎 (𝜀0𝑋
𝑏 + 𝜀𝑝

)𝑛𝑋𝑐

,

with 𝑋 =
�̇�𝑝
�̇�0

,
(22)

where 𝐾 , 𝑎, 𝑏, 𝑐, 𝑛, 𝜀0 and �̇�0 are the model parameters to
be identified. It is inspired from the the Krupkowski harden-
ing flow model (also named Swift hardening model) [], widely
used in FEM software, itself inspired from the Hollomon (or
Ludwig) hardening flow model [], both used to model quasi-
static mechanical responses in plastic regime. Notice that, at
the limit of zero strain-rate, modified Krupkowsky model tends
to its peer. It translates the complex relationship between plas-
tic yield, hardening and strain-rate that a more simple model,
e.g. Johnson-Cook, can not capture. Fig. 2 shows the mechan-
ical response of XES for various strain-rates with the fitted
model.
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C S N Mn P Si Al Ni Cr
0.0268 0.0175 0.006 0.202 0.007 0.007 0.07 0.018 0.036

Cu Mo Sn Nb V Ti B Ca
0.014 0.002 0.004 0.001 0.002 0.002 ≤ 0.0003 ≤ 0.0003

TABLE 2 XES chemical composition (in wt%), data from [26].

Parameters 𝐾 (MPa) 𝜀0 𝑛 �̇�0 (s−1) 𝑎 𝑏 𝑐
[26] 526.6 0.024 0.221 0.085 0.0002 0.385 0.002

TABLE 3 Parameters for the modified Krupkowsky model from [26].

FIGURE 2 Reference data and modified Krupkowsky model
previsions from [26].

3.2 Specimen geometry
The chosen specimen geometry is derived from the one clas-
sically used when using a hydraulic tensile test machine (see
the next section for more details). Indeed, the use of such a
device limits the specimen length and width. In addition, since
the DDI method relies on the load recorded by the load cell,
the sample needs to be symmetrical in the tensile test direc-
tion in order to avoid the introduction of any bias in the load
measurement (e.g. transverse loading).

The main features of the geometry are two symmetrical
notches and a central hole (see Fig. 3). Such features are
expected to lead to strain concentration bands between the
notches and the central hole as well as secondary bands from
the central hole to the edge of the sample with an angle of

approximately 45°. Hence, the use of such a geometry dur-
ing one high speed tensile test allows to capture the material’s
response for wider ranges of strains and strain-rates compared
to the standard geometry as well as creates heterogeneous
stress-strain states within the specimen. The specimens were
were cut from a 0.8mm-thick metal sheet in the rolling direc-
tion.

FIGURE 3 Photography of an experimental sample, its prin-
cipal features are two symmetrical notches and a central hole.

3.3 Experimental setup
The tests conducted in this work are high speed tensile tests.
They are conducted using a hydraulic tensile test machine
(MTS-819, 20 kN). On this machine, the upper grip is mounted
on a modified Hopkinson bar, similarly to the device from [21].
This bar is made of steel (42CD4 rectified) and is instrumented
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with strain gauges in order to act like a load cell (see Figure 4).
In addition, the lower grip is mounted on a sliding bar. The
sliding bar is in an enclosing case linked to the actuator. The
sliding bar, through the control of the “free fall” length, allows
the actuator to reach the imposed displacement speed before
loading the sample. The maximum actuator velocity allow-
ing an accurate load measurement, i.e. 5m s−1, is used for this
experiment. The “free fall” distance was accordingly set to
25mm.

FIGURE 4 Close-up view of the high speed tensile machine
setup.

3.4 Imaging setup
The camera used in this work is a Cordin-580. It is a rotat-
ing mirror camera that captures 78 images of 8 megapixels
(2472 x 3296 pixels) up to 4 million fps. This camera and its
specificities have been studied in depth in [36]. For the exper-
iment presented in this work, the camera is equipped with a
90mm Tamron objective, and records at 68 kfps with a CDS
gain of -3 dB (Correlated double sampling) and a CCD gain of
15 % (amplification factor in the analog-to-digital converter).
At such speed, the film duration is about 1.18ms. In order
to provide enough light, two Pro-10 (2400 J each at 10-stops)
Xenon flashes from Profoto are used. They are set in normal
mode, at 10 f-stops. In that configuration, the illumination typ-
ically lasts 2.4ms with a stable and optimal plateau of 1.1ms.
The flashes and the camera are triggered separately in this

experiment. The flashes are triggered using an infrared light-
gate system (SPX1189 series Honeywell). It is placed in such
manner that it is obscured by the enclosing case. The opti-
cal gate will then send a 5V TTL signal when the enclosing
case is at a given distance to the contact with the sliding bar.
This distance has to take into account the speed of the actua-
tor as well as the rising time of the flashes (150 µs). It has been
empirically determined and set at 3.7mm from the contact
point. The Cordin-580 is triggered using the load cell. When
the load reaches a chosen threshold (in this study 6231.5N,
≈ half of the plastic yield), a trigger is sent to the camera.
Upon receiving the trigger, the camera will record the fol-
lowing images, as well as the ones taken up to 100 µs before
(this is named post-triggering). These parameters were deter-
mined empirically through preliminary tests. Furthermore, the
working distance between this camera and the sample is about
31 cm, leading to a pixel size of 14.49 µm. These information
are summarized in Tab. 4.

An infrared camera (a Telops M3K) is also used to record
the other face of the sample during the experiment (see Fig. 5).
The infrared results fall out of the scope of the presented work.
Nevertheless, thermal information confirmed that no strong
thermomechanical couplings are induced by the strain. Indeed,
mean sample temperature rises up to 5 °C while the temper-
ature within localization band does not exceed 50 °C before
fracture onset. It confirms that the constitutive space used to
identify stresses does not have to take into account explicitly
temperature (see Sec. 2).

FIGURE 5 Experimental setup for a high speed tensile test,
recorded using a visible-light camera and an infrared one.
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Camera Cordin-580
Image resolution 2472 pixels × 3296 pixels
Dynamic Range, Detector 12 bits
Dynamic Range, Image 16 bits
Acquisition Rate 68 kfps
Lens Tamron SP 90mm Di Macro
Aperture f/2.8
Field of view 35.8mm × 47.8mm
Image scale 1 pixel = 14.49 µm
Stand-off distance 31 cm
Patterning Technique Black and White paint

TABLE 4 DIC hardware parameters.

3.5 DIC setup and parameters
In order to be able to perform DIC on the images recorded
by the camera a reference image is needed [36]. In this work,
this image is obtained by recording the black and white paint
speckle pattern on the sample using a high definition cam-
era (50M pix, Prosilica GT from Stemmer) combined with the
same objective lens as the one used with the Cordin-580, prior
to the test. Furthermore, following this methodology, 12 cal-
ibration shots were taken with the Cordin camera when the
first sample was mounted, prior to the test. These calibration
shots are used in order to create a representative model of the
distortions induced by the camera in experimental conditions
(lens, working distance, magnification, frame rate). Then, in
order to correct the eventual rigid body motion between one
experiment and the other, a single calibration shot is performed
before each of the other experiments.

In this work, a continuous mesh is used. Since it is known
that strain localization appears in 2 principal bands, the mesh is
refined along these bands and in the vicinity of the notches and
the hole as well. The element size is 32 pixels on average, but
finer along the crack (about 26 pix). A Tikhonov regularization
of the DIC problem of 4 elements is used to filter-out spatial
noise. The displacements are firstly pointwise convolved with
a rolling temporal Savitzky-Golay filtering window of second
order with a window size equal to 23 frames (see Tab. 5).
Then strain-rates are obtained from strains using a simple 1𝑠𝑡
order finite difference scheme. Such data filtering marginally
affects strain, but significantly decreases the amount of noise
on strain-rates.

3.6 Technical issues and solutions
Due to the complexity of the experiments conducted, some
technical issues have to be tackled. This is the aim of this
section.

DIC Software Ufreckles [31]
Shape Function linear FE triangle elements
Matching Criterion element-wise ZNSSD
Image Filtering sensor flattening (vignetting)
Data Processing 𝑈 : Tikhonov regularization

over 4 elements
Data Post-Processing �̇� : Savitzky–Golay filter of order

2 applied onto 𝑈 (win = 23 fr)
TABLE 5 DIC analysis parameters.

Load measurement
The load is captured by the load cell during the experiment.
However, it has to be adjusted time-wise: indeed, the load is
measured by strain gauges while the information is needed
on the mesh boundary, in particular for the DDI (see Sec. 2).
Hence, due to the distance between the mesh boundary and the
strain gauges, a delay has to be taken into account. Figure 4
presents the experimental apparatus, with in particular the dis-
tances of interest: the distance between the strain gage and
the grip (120mm using the constructor’s data) as well as the
distance between the grip and the ROI (≈ 35mm measured
manually). Then, using the modified bar’s properties (𝐸 =
205GPa and 𝜌 = 7850 kg∕m3), the delay is computed as fol-
lows: 𝜏 =

√

𝜌
√

𝐸
, which yields a delay of 30 µs. This is in the

order of magnitude of two Cordin interframes for this exper-
iment. Furthermore, note that even an error of 1 cm in the
distance between the grip and the ROI leads to an error of 2 µs
for 𝜏, which is negligible regarding our time resolutions.

Pre-stressed sample
The experimental setup is hyper-static, and as a result, the
sample when fixed is already pre-constrained. Indeed, the
griping device relies on two metallic rods on each side of
the sample to maintain it. However, due to its use, the rods
are deformed. As a result the sample may be already slightly
deformed when placed, before the experiment. This can be
evidenced by looking at the displacement fields obtained
for the shot taken when the sample is in place and static. A
rigid-body motion identified on the first image is subtracted
to these fields in order to account for a possible small rotation
between the reference image (taken with another camera in a
different set-up) and the Cordin images. Figure 6 depicts the
averaged over time of the axial and transverse displacement
fields with the rigid-body motion subtracted as well as the
averaged over time Von-Mises norm of the total strain. This
figure shows that the sample is under vertical tension on the
right-hand side, as well as horizontal tension on the bottom.
Nevertheless, the amplitude of these tensions are about ± 1
pixels. Furthermore, the averaged over time Von-Mises norm
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of the total strain clearly shows that the sample is slightly
deformed (less than 3mmm−1), which is in the same order
of magnitude as the strain measurement uncertainty. Hence,
the sample may be pre-constrained by the experimental setup,
nevertheless this phenomenon is not significant.

4 NUMERICAL TWIN

In order to investigate the Data-Driven Identification method
introduced in Section 2 and the influence of the user parame-
ters, especially the weighing matrix [𝑝], a numerical validation
is conducted and is presented in this Section. Note that, con-
trary to classical 1D loading cases, the presented work relies
on data existing in a 13 dimension space (3 for 𝜺, 3 for �̇�, 3 for
𝝈, 3 for �̇�). Such high dimensionality requires developing new
ways to display results. Nevertheless, such developments go
beyond the scope of this work. Hence, for the sake of simplic-
ity the majority of the results will be presented in sub-spaces
using invariant based norms (e.g. 𝐼1, Von-Mises). Note that
this is not a requirement but just a graphic choice. Any other
mechanical norms could have been chosen.

4.1 Creation of a Numerical twin
The Virtual Image Deformation (VID) is a process that con-
sists in making a numerical twin of an experiment. The use
of such a numerical twin allows to have access to a realistic
estimation of the data that will be measured during the real
experiment. Furthermore, it allows to qualify an experiment in
terms of measurability of the fields of interest (in the present
case the stress tensors), and their uncertainties. It can also vali-
date an identification procedure and its robustness with respect
to realistic experimental conditions. In order for this proce-
dure to be relevant, VID must take into account, as much as
possible and as accurately as possible, experimental errors and
uncertainties such as:

• The spatial resolution of the imaging system and the
DIC sampling, which affects the ability to capture strain
gradients,

• The temporal resolution of the imaging system, which
affects the temporal derivatives (speed, acceleration),

• In our particular case, when using the Cordin, the bias
induced by the camera’s distortions which lead to low
but still non-negligible displacement uncertainties,

• Sensor noise, which affects the optical flow conservation
in DIC and thus displacement uncertainties as well as
time derivatives.

Obviously such procedure is never perfect, for instance, it is
difficult to take into account strong speckle transformation
or even degradation in highly deformed regions during large
strains [37], light variation, out-of-plane motions... For these
reasons, the use of VID is becoming more and more systematic
in the validation of an experimental procedure and of inverse
identification procedure [33, 1, 32, 13, 2, 34, 8, 27, 7].

Thus, in the following paragraphs, this construction is
described. Several Finite-Elements simulations will be per-
formed using Abaqus with the implicit solver using CPS3T
elements. In all the FE simulations the thermomechanical
Johnson-Cook model will be used as it is implemented by
default in FE solvers. Particular attention is given to the influ-
ence of the initial solution used in DDI, especially since the
Johnson-Cook model is not able to fully capture the complex
strain-rate dependency of the material that will be investigated.

Creation of a reference solution (𝑈 ref , 𝝈ref , 𝐹 ref
𝑦 )

A FE simulation is first performed in order to create a reference
solution, which will serve 2 purposes : (1) the construction
of Virtual images, (2) to compare the results after using the
whole chain leading to the estimation of stress tensors (DIC +
DDI). This simulation is conducted using the model parame-
ters given in in Tab. 7 (this will be called Model A in the rest of
this work). They are identified using a tensile test at an average
strain-rate of 70 s−1 from a previous study [26]. To mimic the
experiments, the simulation is performed under imposed dis-
placements on the upper and lower boundaries. On the upper
boundary a 0 displacement fields is imposed in both the axial
and transverse directions as it is gripped. On the lower bound-
ary, a displacement corresponding to a velocity of 5m s−1 is
imposed in the axial direction. For simplicity purposes, this
simulation is performed using an experimental DIC mesh that
was used for the actual experiment. The same mesh will be
used throughout the whole procedure.

The outputs of this simulation – namely the displacement
fields 𝑈 ref , the stress fields 𝝈ref and the vertical net force on
the upper boundary 𝐹 ref

𝑦 – will be used as references for what
follows.

Virtual image deformation
In order to be able to perform DIC on the synthetic images,
a texture needs to be applied. For this study a classical black
and white paints speckle pattern is considered. The undistorted
reference image is thus created using a high resolution camera
to record a speckle pattern made with black and white paints.
This reference image is then binned down to the Cordin image
size. Then, using the same mesh as FE simulation, this image
is cropped resulting in the image in Figure 7a. The field of view
(cm x cm, see Table 6) matches the aspect ratio of the camera
for a pixel size of µm (i.e. a magnification of ).
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(a) Time average 𝑈𝑥 (pix), (b) Time average 𝑈𝑦 (pix), (c) Time average ||𝜀𝑡||𝑉𝑀 (mm∕m),
FIGURE 6 Averaged over time displacement fields and Von-Mises norm of the total strain when the sample is placed in the
gripping device and static (1 pixel = 14.5 µm).

(a) Reference image created synthetically,

(b) Deformed and distorted image,
FIGURE 7 Example of the reference image and a deformed
and distorted image created synthetically.

Once the reference image created, using the mesh and the
displacement fields from the reference simulation, the image
is deformed (see Fig. 7b for an example). This is done by per-
forming a loop on the elements of the deformed mesh. For
each element, the pixels contained in it are known. Using shape

functions and inverse mapping, their position in the unde-
formed picture is obtained. Their associated grey values can
then be retrieved by performing a spatial bi-cubic spline inter-
polation of the grey value of the reference image. This process
is summarized in Figure 8.

FIGURE 8 Schematic of the deformation procedure of a syn-
thetic image for one triangular element. The black squares
depict the pixels positions in the deformed configuration, while
the grey squares depict the pixels positions in the reference one.
The red crosses denote the pixels from the deformed config-
uration projected by an inverse mapping in the reference one.
The deformed image for the element is obtained by interpolat-
ing the grey levels from the grey squares onto the crosses.

Furthermore, in order to be as representative of a real exper-
iment as possible, measurement bias introduced by the distor-
tion variability from one shot to another has to be taken into
account. For simplicity purpose, two sets of distortion param-
eters obtained experimentally are used. The first one (obtained
for a specific calibration shot) is used to deform the images and
the second one (which is from the statistical distortion model
associated to the first set of parameters) is used to perform DIC.
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As a result, this allows to introduce the right order of magni-
tude of uncertainty in displacement measurement inherent to
the method. Using the composition relationship between the
effective displacement 𝑢simu and the first distortion field 𝑢𝑑 ,
the imposed displacement 𝑢virtual used to deform the images is
computed as follows:

𝑢virtual(𝑋) = 𝑢simu(𝑋) + 𝑢𝑑(𝑋 + 𝑢simu(𝑋)). (23)
Finally, a realistic noise is added to the deformed and dis-

torted synthetic images. The estimation of grey level noise,
meaning apparent grey level variation of one material points
from one image to another over time, has been estimated as
follows:

• Images of a static reference shot of the sample are
deformed back to the undistorted configuration using
identified distortion parameters. At that stage, each pixel
sees the same material point over time.

• The grey level standard deviation over time of every
pixel is computed and its normalized value (by the
pixel’s grey level) plotted as a function of the mean grey
level value of the considered pixel. The plot is presented
in Figure 9. This database can be fit with a polynomial
𝑃 to get the trend of the apparent noise of the camera
over its dynamic. The polynomial used is depicted in the
figure by the black line.

• This result is used to add random noise to images pro-
portional to pixel grey levels following this equation:

noise(𝐹 , 𝑝) = 𝐹 (𝑝) ⋅ 𝑃 (𝐹 (𝑝)) ⋅ randn(𝑝), (24)
where noise(𝐹 , 𝑝) is the noise that will be added to the
pixel 𝑝 of image 𝐹 , 𝑃 (𝐹 (𝑝)) is the noise value fit by the
polynomial for the grey value 𝐹 (𝑝) and randn is a nor-
mally distributed random numbers matrix of the size of
𝐹 .

At the first order, the polynomial fit shows that the apparent
noise converges toward 5% in the whites, reaches 10% at about
12 bits (4000) then ramps up to 30% in the blacks. Notice that,
in practice, data presented in Figure 9 is not strictly speaking
a noise. Indeed, pixel time variations are in our case not only
due to CCD dark noise but to the offset and gain mismatch
from one sensor to another, the focus mismatch, as well as
the uncertainty on distortion estimation which does not allow
for perfectly stabilizing images (± 0.1 pixel). This is why we
name it apparent noise. In addition, it explains why values are
very high compared to mono-sensor ultra-high speed camera
(e.g. in the order of 1% of 16 bits for the Shimadzu HPV-X).
Nevertheless, apparent noise will affects the optical flow con-
servation in a similar way to real noise and will have a strong
impact on time derivatives.

FIGURE 9 Normalized apparent camera noise (in %) versus
the mean grey level. The colour denotes the counts (in %),
while the black line denotes the polynomials used to model the
camera noise.

As a summary, at this stage we have to produced, references
kinematic fields as well as images that mimic the response of
our imaging system. Applying the dedicated DIC procedure for
the Cordin camera allows for capturing realistic displacement
fields 𝑈DIC. In the next section, the DDI method will be inves-
tigated using these fields in order to assess its accuracy as well
as the influence of user parameters.

DIC Software Ufreckles [31]
Image size 2472 x 3296 pixels
Field of view cm x cm
Cordin pixel size 5.5 µm
Image scale 1 pixel = µm (Magnification of )
Mesh size ≈ 21 pixels
Data Processing 𝑈 : Tikhonov regularization over 4 elements

TABLE 6 Virtual DIC parameters.

4.2 Creation of a statically admissible initial
solution using a “wrong” model
The creation of an initial guess for the stress field that will
be used as an input for the DDI algorithm requires two
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consecutive Finite-Element simulations. To validate the DDI
procedure, an initialization reasonably far from the solution
is chosen. To this effect, the same model as the reference
one is chosen but the constitutive parameters are significantly
modified. Hence, the initial yield is decreased, whereas the
hardening modulus is increased. In addition, to investigate the
ability of the DDI to accurately retrieve the strain-rate depen-
dency, the strain-rate dependency is set close to zero. The exact
parameters are given in Tab. 7 (it will be called Model B).

• The first simulation is conducted under imposed dis-
placements, using 𝑈DIC. The load profile on the upper
boundary is extracted from this simulation. This profile
is then rescaled in such a manner that, in the end, the net
force on the upper boundary is equal to the reference net
force 𝐹 ref

𝑦 . The role of this first simulation is to get a nice
estimation of the load distribution at the upper bound of
the sample.

• The second simulation is then performed under mixed
boundary conditions: imposed displacements on the
lower boundary, imposed displacements in the 𝑋 direc-
tion and imposed rescaled vertical distribution of forces
on the upper bound. This simulation allows to obtain
statically admissible stresses 𝝈false.

The whole procedure is summarized in Figure 10. In what fol-
lows the DDI will be given the total strains 𝜺DIC𝑡 (computed
from 𝑈DIC) and 𝝈false as inputs. This case allows to assess the
influence of the measurement errors on the estimation of the
stress fields. Hence, the final errors are representative of the
ones performed during an experiment.

4.3 Results and discussions
The DDI is used using 50 time steps using simulation results as
described previously. First the influence of the different param-
eters (see Tab. 1) of the DDI will be investigated. Then, once
the parameters chosen, the DDI results will be presented and
discussed.

Influence of the parameters
To investigate the influence of the different parameters of the
method, several computation were performed. The ration 𝑁∗

varies from 30 to 200, the ratio 𝐸𝑜

𝐸
varies from 0.1 to 10, the

regularization length from 0 to 5 and finally the weighting
matrices are either 𝐈2 or [𝑤]. In order to assess which quadru-
plet leads to the best results, the following equivalent standard
deviation 𝜉eq is considered:
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Δ𝜎𝑖𝑗(𝑒, 𝑡) = 𝜎𝑖𝑗
DDI(𝑒, 𝑡) − 𝜎𝑖𝑗

ref (𝑒, 𝑡). (25)
Thus, the error is the square root of the averaged variance of
the difference between the estimated stresses and the reference
ones for all the spatio-temporal elements and all the stress com-
ponents. This error allows in one scalar to take into account
each component of the stress tensors for all the spatio-temporal
elements.

The best parameters among those tested are the following :
𝑁∗ = 30, 𝐸𝑜 = 10.0 ⋅ 𝐸 where 𝐸 is the steel’s Young modu-
lus, 𝑙𝑐 = 2 and [𝑝] = [𝑤]. Figure 11 depicts the evolution of
𝜉eq when 3 out of 4 parameters are fixed and one varies. This
figure shows that the error increases when the number of mate-
rial states decreases (i.e. when 𝑁∗ increases). Furthermore,
the error decreases when 𝐸𝑜 increases. These trends are in line
with the observations from [4]. In addition, this figure high-
lights that there is an optimal regularization length: 𝑙𝑐 = 2. At
last but not least, the choice of the weighting matrices do not
have a significant influence on the error. Nevertheless, the use
of [𝑤] leads to a small reduction of the error (from 24.8% to
23.7%).

A posteriori filtering operator
Let us consider the mechanical points distribution in the
{||𝜀||𝑉𝑀 , ||𝜎||𝑉𝑀} space. This space is of interest since it is
the most commonly used one for the characterization of mate-
rials. Figure 12a depicts the distribution of the mechanical
points in this space. This figure shows the influence of the noise
introduced in the VID procedure on the DDI results. Indeed, a
main response is observed (characterized by mechanical states
with high occurrence numbers) with a spread around it. This
spread is especially important for strains beyond 40% as it
reaches more than 150MPa. Nevertheless, the occurrences of
the mechanical states in the spread are several order of mag-
nitude below the occurrences in the main response. Since the
DDI method is data-based, it stands for a reason that the most
recurrent mechanical states are more relevant than the others.
Hence, this leads to the definition of an a posteriori filtering to
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FIGURE 10 Schematic of the numerical test case procedure. In red are the inputs of the DDI algorithm.

𝐴 (MPa) 𝐵 (MPa) 𝑛 𝐶 �̇�0 (s−1) 𝑚 𝑇𝑜 (K) 𝑇melt (K)
Model A 394MPa 136MPa 0.471 0.0259 69.86 s−1 1.11 300 1350
Model B 315MPa 272MPa 0.6123 2.56 × 10−4 69.86 s−1 1.11 300 1350

TABLE 7 Parameters of the two Johnson-Cook model used for the FE simulations to investigate the DDI algorithm.

select only theses states. In what follows, a mechanical states
is considered as relevant if its occurrence is higher than the
95th quantile. Figure 12b depicts the mechanical points distri-
bution obtained after the proposed filtering. As expected, only
the main response remains and the mechanical states spread is
significantly reduced. Note that when using this filtering, 9%
of the mechanical points are disregarded. This supports the
use of this filter since it improves significantly the DDI results
while disregarding a minimal amount of data. In the rest of this
document, all the results will be presented after the use of the
introduced filter.
Results
In order to assess the accuracy of the method and its ability
to retrieve the reference stresses despite the initialization, the
DDI stresses will be compared to the reference ones. To be
as thorough as possible, the stress errors will be presented in
several different spaces.

First, let us consider the stress uncertainty achieved with
respect to the stress magnitude. To this effect, Figure 13 depicts
the stress magnitude distribution. Furthermore, it also repre-
sents the stress uncertainty (relative in blue and absolute in
red) with respect to the stress magnitude. The distribution indi-
cates that a significant amount of data is for stress magnitudes
below 200MPa. This corresponds to the elastic behaviour of
the considered material (see Fig. 12b), that is to say where the

signal to ratio is not favorable due to the measurement noise
on the strains. This is illustrated by the fact that the relative
error is higher than 100% for low strains and decreases until it
reaches 12% at 200MPa. In addition, less data is available in
the 200MPa – 400MPa range, which is also during elasticity.
The impact of the data scarcity in this range can be observed
with the absolute stress uncertainty. Indeed, as the data avail-
able decreases, the absolute stress uncertainty increases from
9MPa at the beginning to 27MPa at 315MPa. Nevertheless,
since the signal to ratio becomes favorable, the relative stress
error remains below 10% after a stress magnitude of 200MPa.
At last, more data is available beyond 400MPa i.e. during plas-
ticity. The figure shows that beyond this stress magnitude, the
error remains below 16MPa that is to say a relative error of
4%.

Let us now investigate the accuracy of the method is the
physical space. Figure 14 depicts for each element of the mesh
their relative systematic and random stress errors. It can be
observed that the the elements above and below the central hole
and the notches present the highest errors (both systematic and
random). This is to be expected since these elements are nearly
always in the elastic domain (with a stress magnitude lower
than 200MPa), thus the signal to noise ratio is not favourable.
Moreover, this figures shows that the errors near the localiza-
tion bands are lower than 10%±5%. This is to be expected since
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FIGURE 11 Evolution of 𝜉eq with respect to the DDI parameters. Note that the y-scale differs from one figure to another.

in these regions plasticity occurs and thus where high stress
magnitudes are obtained.

Another space of interest is the {||𝜀||𝑉𝑀 , ||𝜎||𝑉𝑀} space
since it is the most commonly used one for the characteriza-
tion of materials. Figures 15a and 15b respectively depict the
distribution of the filtered mechanical points in the considered
space and the stress errors associated. These figures support
the observations made when analyzing Figure 13. Indeed, the
errors are lowest for mechanical states that are highly redun-
dant and when plasticity occurs. Under these circumstances,
the errors are below 5%. In addition, despite the amount of
data available during elasticity, due to the unfavourable signal
to noise ratio, high relative errors are obtained.

It is also of interest to consider the DDI relative error dis-
tribution in the {𝐼1, ||𝜎||𝑉𝑀} space. Indeed this space can be
used to assess the multiaxiality achieved wihtin the sample dur-
ing the experiment. Figures 16a and 16b respectively depict the
distribution of the filtered mechanical points in the considered
space and the stress errors associated. The distribution shows

that despite the introduction of a central hole and notches, most
of the mechanical points are in a state close to a uniaxial ten-
sion one. Some uniaxial compression states are reached, but
the stress amplitudes reached are not sufficiently high enough
to ensure a favorable signal to noise ration. Thus, the stress
errors remain higher than 20% for the points under uniaxial
compression. Furthermore, this figure shows that the mechan-
ical points leading to the lowest error are obtained for the
higher stress magnitudes (as already evidenced with the pre-
vious figures) and that these points are under mainly uniaxial
tension.

At last but not least, let us consider the DDI method ability
to retrieve the strain-rate dependency of the reference stress
fields. Indeed, let us recall that the stress fields used to initial-
ize the method have a different strain-rate dependency than
the sought ones. For this purpose stress-strain curves can be
plotted for different average strain-rates. To plot such a figure,
the average strain-rate over time for each element is computed.
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(a) Mechanical points distribution in the
{||𝜀||𝑉𝑀 , ||𝜎||𝑉𝑀} space.

(b) Mechanical points distribution in the
{||𝜀||𝑉𝑀 , ||𝜎||𝑉𝑀} space after the a posteriori

filtering.
FIGURE 12 Mechanical points distribution in the {||𝜀||𝑉𝑀 , ||𝜎||𝑉𝑀} space before and after the use of the filtering operator.

FIGURE 13 Stress uncertainty with respect to the stress mag-
nitude. The distribution of the stress magnitude is given by the
histogram while the blue and red lines are respectively the rel-
ative and absolute values of the stress uncertainty.

Then, using a clustering algorithm (here k-means), these aver-
age strain-rates are regrouped in 20 clusters. The stress-strain
curves are then obtained by averaging the stresses and strains

for each cluster. Figure 17 then shows the relative errors at
||𝜀||𝑉𝑀 = 0.05, 0.10 and 0.15 for the 20 average strain-rates.
The dashed lines depict the FE solution using model B, while
the stars depict the DDI solution. This figure confirms that
model A and the model B have different strain-rate depen-
dencies. Indeed, the relative error of the initialization stress
fields increases with the strain-rate for all the strain levels
considered. Furthermore, this figure evidences that the DDI
method is able to retrieve the sought strain-rate dependency
despite the initialization. This is supported by the fact that the
relative error remains nearly constant below 6%, for all the
strain levels considered.

To summarize, by using kinematic fields from VID, one can
assess the experimental accuracy that can be obtained using the
Data-Driven Identification method for our sample geometry,
loading conditions and camera. The conclusions are as follows:

∙ Below 200MPa the signal to ratio is not favourable, due
to the noise on the strain measurements. The related
mechanical points are mainly during elasticity. Further-
more these points are mainly located above and below
the hole and notches.

∙ Since the method proposed is data-based, the abundance
of data leads to low stress errors. Indeed, when data is
sufficiently abundant errors remains below 5%.

∙ In the considered experiment most of the mechanical
points are under a uniaxial tension state, despite the
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(a) Stress systematic error, (b) Stress random error,
FIGURE 14 Stress systematic and random error in the physical space.

(a) Mechanical points distribution in the
{||𝜀||𝑉𝑀 , ||𝜎||𝑉𝑀} space,

(b) Stress relative error in the
{||𝜀||𝑉𝑀 , ||𝜎||𝑉𝑀} space,

FIGURE 15 Mechanical points distribution and stress relative errors obtained in the {||𝜀||𝑉𝑀 , ||𝜎||𝑉𝑀} space.

geometry considered. These points are located in the
vicinity of the localization bands obtained.

∙ At last, the DDI method is able to retrieve the correct
strain-rate dependency of the reference within 6%. This
illustrates the robustness of the method to its initializa-
tion.

5 EXPERIMENTAL RESULTS AND
DISCUSSIONS

5.1 Evolution of macroscopic quantities
during the test
The deconvolution between the distortions and the effective
displacements is made using the camera model built using the
12 calibration shots. In addition, using the reference shot taken
prior to the test, the changes of the extrinsic parameters can
be taken into account. Finally, the correct pairing between the
sensors and the mirror faces is identified using optical con-
siderations ([36]). This allows the displacement, strain and
strain-rate fields to be extracted.
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(a) Mechanical points distribution in the
{𝐼1, ||𝜎||𝑉𝑀} space,

(b) Stress relative error in the {𝐼1, ||𝜎||𝑉𝑀}
space,

FIGURE 16 Mechanical points distribution and stress relative errors obtained in the {𝐼1, ||𝜎||𝑉𝑀} space.

FIGURE 17 Relative stress error evolution with respect to the
strain-rate, computed for different strain levels. The stars rep-
resent the results obtained with the DDI while the dashed lines
are those obtained with the FE initialization using model B.

Figure 18 depicts the evolution of different quantities of
interest during the experiment.

First, let us look at the temporal evolution of the averaged
axial displacement and velocity obtained in the whole sam-
ple (depicted by the simple lines) and of the nodes located
at the bottom of the mesh (depicted by the lines with mark-
ers), i.e. close to the sample head where the loading is applied.
Figure 18a shows displacement in blue and velocity in red. The
three vertical dashed lines are the time steps for which associ-
ated fields will be discussed later-on. Note that the zero in the
timeline correspond to the time when the Cordin-580 is trig-
gered by the load cell, hence the negative times for the first
images. The loading of the specimen induces immediately on
the loaded edge a displacement ramp, reaching about 2.8mm
before the initiation of the crack. The averaged axial displace-
ment in the whole sample has a similar behaviour, with a lower
slope, and reaches about 2mm. The velocities in the whole
sample or for the nodes at the bottom of the mesh have the same
trend. The velocities evidence two stages: from the beginning
to approximately t = 370 µs the velocities increase in the ten-
sion direction, then from t = 370 µs to t = 620 µs they decrease.
The second stage can be explained by considering the possi-
bility that the contact between the sliding bar and its enclosing
case is not permanent. Indeed, if the sample goes faster than
the actuator, then when there is no more contact its speed will
naturally decrease until there is contact again. One way to ver-
ify this hypothesis would have been to record accurately the
speed of the actuator (using DIC with a high speed camera for
instance). However, this was not done for these experiments.
During the experiment, the maximum speed reached on the
loaded edge is about 4.8m s−1 in about 476 µs which repre-
sent an acceleration on the order of 1 × 104 ms−2; while the
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(a) Average 𝑈𝑦 and 𝑉𝑦, (b) Average total strain and strain-rates, (c) Average temperature raise and load,
FIGURE 18 Evolution of different quantities of interest during an heterogeneous test. A simple line denotes the evolution of
the considered quantity averaged in the whole sample, while a line with marker denotes its evolution in a particular zone (either
the bottom of the mesh or the localization band).

maximum speed experienced by the whole sample is about
3.5m s−1.

Figure 18b plots the evolution of the Von-Mises norm of
both the total strain (in blue) and total strain-rates (in red)
either in the whole sample (depicted by the simple lines) or
in a localization band during the experiment (depicted by the
lines with markers). This figure shows that during the first
100 µs of the experiment, the sample is mainly in an elas-
tic regime (||𝜀𝑡||𝑉𝑀 ≤ 0.005). Furthermore, the total strain in
the localization band goes past 0.01 after about 150 µs, after
which it increases following a ramp until about 0.22 before
the crack initiation. On the other hand, the global total strain
reaches only 0.05 before the crack initiation, which shows that
deformation mainly occurs in the localization bands. In the
considered band, two stages of the normalized total strain-rate
can be observed. First, it ramps up to 375 s−1 in about 300 µs.
Then, the normalized total strain-rate reaches a plateau and
oscillates between 350 s−1 and 400 s−1. Similarly to the total
strain, the total strain-rate in the whole sample is lower than
the one observed in the bands as it reaches only 100 s−1.

At last, Figure 18c shows the evolution of the load during
the experiment (in blue). It also depicts – for information pur-
pose only – the average temperature increase (in red) either
in the whole sample (depicted by the simple line) or in the
considered band (depicted by the line with markers). Two
stages can be evidenced for the load. During the first 150 µs
the load ramps up until 8 kN. Then it reaches a plateau and
oscillates around 8.5 kN. Considering an initial cross section
𝑆0 equal to 1.68 × 10−5 m2 (subtracting the holes), the engi-
neering stress can be estimated at 500MPa. This value is in

line with the ones obtained in [12]. A slight increase of tem-
perature of about 0.3 °C is observed while the sample should
slightly cool down by the same amount due to thermoelastic-
ity. This observation is explained by the fact that the dedicated
calibration procedure applied to retrieve temperature fields is
not is not reproducible enough to entirely get ride of small
variations, and thus does not allow to capture thermoelasticity.
However, note that thermoelasticity would have been almost
impossible to capture anyway when considering the measure-
ment uncertainty achieved with the procedure used (300mK),
which is already in the same order of magnitude as ther-
moelastic effects. Nevertheless, after 100 µs, the temperature
increases follow the same trend as the normalized total strains,
as expected. The sample temperature increase reaches 15 °C
on average in the localization band before crack initiation with
a rate on the order of 25K∕ms. On the other hand, the temper-
ature increase in the whole sample reaches about 4 °C before
crack initiation.

5.2 Displacement and strain fields
Figure 19 shows sample images, displacement fields in both
directions, the axial strain fields for the three time steps intro-
duced previously. The displacement fields obtained are consis-
tent with a tensile test. The first two images underline the fact
that the tensile test is not perfectly axial. Indeed, the axial dis-
placements are higher on the left-hand side of the sample. This
phenomenon was observed for all the experiments performed
as well as on the preliminary tests. In turn, crack initiation sys-
tematically begins on the left-hand side of the sample before
the right-hand side. No clear explanations have been found for
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this observation. It may be partly due to the fact that the sample
is already pre-constrained, and a non-planar contact between
the sliding bar and its enclosing case may also come into play.
However, no clear evidences have been found to confirm these
hypotheses. The strain fields at 246.79 µs further confirm the
fact that the load imposed on the sample is not symmetrical
since strains are higher in the left band. The sample geometry
induces localization bands as predicted by the FE simulations
with little strain everywhere else.

In addition, strain and strain-rate ranges experienced by
the sample during the test is investigated. To this effect,
Figure 20 depicts the strain versus strain-rate occurrences that
are observed through the chosen ROI during the whole test.
White areas represent states that the sample never reached.
This figure shows that most of the sample during the experi-
ment undergoes small strain as well as plastic strain-rates. This
is consistent with the strain fields obtained. Furthermore, let
us note that before cracking, only a few points reach a total
strain higher than 0.25. The strain and strain-rates in the range
of respectively [0 – 0.25] and [0 s−1 – 500 s−1] predicted by the
numerical twin are recovered quite nicely.

5.3 DDI experimental application to the XES
characterization campaign
Stress fields
The DDI algorithm has been presented and then applied to a
numerical test case in the previous section. Now the proposed
method will be applied to the data obtained during the XES
characterization campaign. The performance of the proposed
methodology will be discussed as well as the intrinsic limita-
tions of the method, of the material as well as the geometry
chosen.

The experimental procedure for the DDI is very similar to
the one presented in Fig. 10. In this case, the experimental
data replace the ones obtained from the first simulation of
the numerical test case. The load that will be used to rescale
the load profile is the one captured by the load cell during
the dynamic tensile test adjusted following the method pre-
sented in Section 3. Furthermore, as the DDI requires two FE
simulations to be performed, the material model chosen for
the initialization is the Johnson-Cook model and the parame-
ters used are the one identified on the raw data from ONERA
(i.e. the model A from the numerical test case). At last, the
method’s parameters are the ones considered optimal from the
numerical twin study, i.e. 𝑁∗ = 30, 𝐸𝑜 = 10.0 ⋅ 𝐸, 𝑙𝑐 = 2
and [𝑝] = [𝑤]. Additionally, the same a posteriori filtering
operator will be applied on the results. Hence, all the results
presented in what follows are obtained using these parameters
and the filter defined in Section 4.

Once the DDI algorithm applied, the mechanical and mate-
rial states are available. From these states the Von-Mises norm
of the stresses can be obtained. Figure 21 depicts the spatial
cartographies of respectively the total strains and the Von-
Mises stresses for three different time steps. The cartography
of the Von-Mises stresses of the last image (Fig. 21f) shows
that, as expected, the notches and the central hole create stress
concentration bands. In these bands the Von-Mises stresses
reach about 500MPa. In addition, in the secondary bands, the
stress is about 400MPa. Above and below the central hole
and the notches the stress magnitudes remain below 200MPa.
These observations are consistent with the numerical study
performed.

Let us recall that the experiment was designed to provide dif-
ferent loading paths of the material and wide spectra of strain
and strain-rates during a single test. Hence, Figure 22 enables
the verification of these specifications. Figure 22a depicts the
stress distribution in the space (𝐼1, ‖𝝈‖𝑉𝑀 ) for the selected
mechanical states. It follows that this figure is an indicator of
the stress triaxiality that occurs during the experiment. This
figure shows that the sample is mainly under an uniaxial ten-
sile state. However, some compression and shear states are
reached within the specimen. In addition, Figure 22b shows
that the strain and strain-rate spectra mainly seen by the spec-
imen are [0 – 0.18] and [0 s−1 – 450 s−1]. Nevertheless, some
regions of the sample reach higher strain and higher strain rate
values. In order to associate these states to a region in the sam-
ple, several elements located at different regions of interest
of the sample are selected (see Fig. 22c). The loading paths
of these elements are depicted in the previous figures con-
sidered. As it can be expected, the region above and below
the hole (and by extension the notches) are under a compres-
sive state. Moreover, as expected the elements in the band are
mainly in a uniaxial tensile state. Figure 22b clearly highlights
that the different regions of the bands are under different but
quasi-constant strain-rates. This further justifies the specimen
geometry since it clearly demonstrates that at least the results
of uniaxial tensile tests performed at different strain-rates can
be retrieved.

Material behaviour of the XES steel: comparison with
the reference data
By construction, the material states best fit the behaviour of the
material. Figure 23a depicts a projection of the material states.
The black and red lines are the raw data from previous charac-
terization of the XES steel performed at ONERA. Let us also
note that even after the selection of the clusters, some material
states with singular behaviours are remaining. However, most
of the material states remaining are still representative of the
behaviour of the material. Indeed, the behaviour of the mate-
rial at 70 s−1 from previous characterization is for instance well
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(a) Undistorted image, (b) Undistorted image, (c) Undistorted image,

(d) U𝑥 (pix), t = 246.79 µs, (e) U𝑥 (pix), t = 468.22 µs, (f) U𝑥 (pix), t = 615.83 µs,

(g) U𝑦 (pix), t = 246.79 µs, (h) U𝑦 (pix), t = 468.22 µs, (i) U𝑦 (pix), t = 615.83 µs,

(j) Axial strain (m/m), t = 246.79 µs, (k) Axial strain (m/m), t = 468.22 µs, (l) Axial strain (m/m), t = 615.83 µs,
FIGURE 19 Undistorted images, displacement fields, strain fields obtained during a dynamic tensile test, for different time steps.

captured by the DDI method, in the same range of strain-rate
(see the colour). This also confirms the fact that the material
considered in this study, known to be strain-rate dependent, has
a dependency which fades at about 100 s−1. Indeed, the stress

response variation from 100 s−1 to 500 s−1 is more packed than
from 1 s−1 to 70 s−1.

Moreover, Figure 23b shows 10 stress-strain curves obtained
for different averaged strain-rates, and the reference data are
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FIGURE 20 Von-Mises norm of the strain vs Von-Mises norm
of the strain-rates distribution obtained during the experiment,
prior to crack initiation. The colour corresponds to a 2D his-
togram plot. The count per bin is normalized by the number of
element in the ROI multiplied by the number of time steps. The
strain states that were never experienced by the sample remain
white.

depicted by the dashed lines. The grey area around the dashed
line represent a relative error of ± 6%. This figure shows that
the data obtained for an average strain-rate of 81 s−1 is in line
with the reference data at 70 s−1 when taking into account the
relative error. Indeed, when taking into account the uncertainty
on the stress estimation from Section 4, the data from 80 s−1

to 191 s−1 are also in line with the reference data. In particu-
lar, the initial yield stresses as well as the hardening modulus
obtained at these strain-rates are in line with the reference
data. The figure also allows to confirm the fact that the strain-
rate dependency fades off around 100 s−1, and also confirms
a softening of the material response for strains below 0.05
(see Fig. 24a). Furthermore, this figure can be compared to
the stress-strain curves obtained in the literature [12], that are
recalled in Figure 24. While the DDI stress estimations are in
line with our reference data from [26], they differ slightly from
the ones in Fig. 24a. Indeed, while we observe (using DDI)
a saturation of the yield stress and hardening at about 191 s−1
with a stress peak near 500MPa, data obtained from [12] at
200 s−1, 360 s−1 and 440 s−1 show an increase of the peak
stress up to 600MPa followed by a massive softening. Nev-
ertheless, Fig. 24b highlights the difficulty to have consistent

results with different experimental apparatus at high strain-
rates. Indeed, by using different techniques, the stress obtained
at a plastic strain of 0.1 at a strain-rate of 500 s−1 has an uncer-
tainty of about 50MPawhich represent a relative error of about
10%. Regarding Figure 24b, one sees that our DDI results are
closer to data obtained on SHPB or using the special apparatus
designed by Haugou [12]. While the question of the repro-
ducibility of the data using different experimental apparatus
remains open, Figure 23b shows that DDI and a dedicated
sample geometry allows to accurately capture, with a single
apparatus, consistent elasto-plastic data from 30 s−1 to about
250 s−1.

The material states obtained using this DDI method can
also be compared to the stresses predicted by the modified
Krupkowsky model that better fits the non-linear strain-rate
dependency of the XES steel than the Johnson-Cook model.
Since neither the material states nor the direct estimation of
Krupkowsky stress from experimental strains and strain-rates
will verify the equilibrium, the comparison can be considered
as fair. Hence, Figure 25 displays three cartographies of the
difference between the stresses predicted by Krupkowsky and
the material states: the first one is in the (‖𝜺‖𝑉𝑀 , ‖�̇�‖𝑉𝑀 )
space. The second one depicts the discrepancy but in the stress
invariant space while the last one is in the (‖𝜺‖𝑉𝑀 , ‖𝝈‖𝑉𝑀 )
space. It can be observed on the first cartography that the stress
discrepancies are mainly higher than 10% for low values of
strain combined with high values of strain-rates. As it was
shown earlier with Figure 22, these states are mainly experi-
enced by the elements near the hole, and thus the strain-rates
and stress values have to be taken with precautions. In addi-
tion, these states are also associated with few clusters of data,
which also explains the significant discrepancy. Let us note that
apart from the these states, the discrepancies remain within
the accuracy interval observed for states subjected to uniax-
ial tension in Section 4 which further comforts the relevance
of the DDI stress estimations. Furthermore, the cartography
of the difference between the prediction using the modified
Krupkowsky model and the DDI results in the stress invari-
ant space is in quite good agreement with the one obtained
in Section 4. Indeed, this figure shows that the DDI method
is able to match the predictions from the constitutive model
when the material is under uniaxial tension, within a relative
discrepancy of about 5%. Moreover, since the modified Krup-
kowsky model describes the plastic flow, it is not able to predict
stresses in elasticity. This is why the errors obtained are higher
than 50% for values of stress lower than 200MPa. This is sup-
ported by the cartography of the relative error in the (‖𝜺‖𝑉𝑀 ,
‖𝝈‖𝑉𝑀 ) space. The errors are significant for elasticity. Nev-
ertheless, during plasticity, the errors remain under 10%. All
these results comfort the fact that the modified Krupkowsky
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(a) t = 192 µs, (b) t = 384 µs, (c) t = 635 µs,

(d) t = 192 µs, (e) t = 384 µs, (f) t = 635 µs,
FIGURE 21 Cartographies of the Von-Mises norm of the total strains and stresses for three different time steps.

model, even calibrated over 3 uniaxial curves, is able to extrap-
olate well at higher strain-rates and when we slightly deviate
from its validity loading configuration domain.

Furthermore, the material states obtained with the DDI
can be used in a more conventional way to identify constitu-
tive parameters. Parameters are identified using the selected
material states obtained in this work. Since these states do not
contain quasi-static data, the quasi-static data from ONERA is
also taken into account, in order to ensure that the parameters
identified characterize the material from quasi-statics to high
strain-rates. The identification is performed for strains higher
than 0.01. The parameters obtained are presented in Tab. 8,
which also recall the parameters from [12]. Strong variations
are observed in particular for exponent 𝑐. In addition, 𝜀0, �̇�0
and 𝑏, which capture the strain-rate dependency, also differ
significantly from the reference parameters (≥ 15%). Never-
theless, by checking the discrepancies between reference data
from ONERA and the modified Krupkowsky model based on
the updated parameters using DDI stresses (see Fig 26), one
observes that the reference data are captured within 6% of rel-
ative error for the quasi-static response and the one at 70 s−1.
In addition, the data are captured within 5% for the interme-
diate response (0.67 s−1). Since the data from the intermediate
response were not included in the parameters identification
process, this demonstrates the extrapolation ability of the

considered model. In addition, this indicates that the model
has a weak sensitivity to its parameters, and also that its 7
parameters can be recovered from only 2 tests: a quasi-static
one, and a heterogeneous and high strain-rates one.

To summarize, the DDI method has been applied to the
experimental data obtained in Section 3. The stresses have
been reconstructed. The stress distribution confirms that the
sample is mainly under uniaxial tension during the experiment,
but some regions are under compression and shear (the region
above and below the hole and notches for instance). The strain
and strain-rate spectra that the sample is submitted to are [0 –
0.18] and [0 s−1 – 500 s−1]. Furthermore, the DDI algorithm is
able to retrieve the behaviour identified during previous char-
acterization campaigns. In particular, using the material states
and data from a simple quasi-static test, constitutive param-
eters can be identified for the modified Krupkowsky model,
which allow to retrieve the behaviour with a relative error
below 10% for strain-rates from 0.01 s−1 to a few hundreds
of s−1. At last but not least, based on the accuracy assess-
ment performed in the previous section and a comparison
with the predictions of the modified Krupkowsky model, this
model’s stress predictions can be considered with confidence
even when extrapolated for higher strain-rates than the ones
used to calibrate it.
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(a) Stress distribution with the loading path of selected
elements,

(b) Strain and strain-rate distribution with the loading
path of selected elements,

(c) DDI mesh and localization of the selected elements,
FIGURE 22 Stress distribution, strain and strain-rate distributions during the experiment for the selected mechanical states.
The loading paths of a few selected elements are superimposed on these distributions.

Parameters 𝐾 (MPa) 𝜀0 𝑛 �̇�0 (s−1) 𝑎 𝑏 𝑐
Section 3 526.6 0.024 0.221 0.085 0.0002 0.385 0.002

This work + QS data 512.8 0.0281 0.2233 0.0705 0.0002 0.3361 0.0002

Relative variation (%) 2.62% −17.00% −1.04% 17.04% 90% 12.71% 90%

TABLE 8 Comparison of the modified Krupkowsky model parameters identified using data from [26] or from this work com-
bined with quasi-static data from ONERA.

6 CONCLUSIONS AND PERSPECTIVES

In this paper, the Data-Driven Identification method is pre-
sented. Its accuracy has been assessed using a numerical twin.

Then, a pre-notched sample with a central hole has been sub-
jected to a high speed tensile test. Fullfield kinematic data
have been obtained and quantitatively captured the events dur-
ing the test. At last, these fullfield kinematic fields have been
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(a) Material states in (‖𝜺‖𝑉𝑀 , ‖𝝈‖𝑉𝑀 ). The colour of the
markers denote the strain-rates, while the lines denote the

reference data from ONERA,

(b) Stress-strain curves for different averaged strain-rates
extracted from the selected material states during one

experiment,
FIGURE 23 Material states in the space(‖𝜺‖𝑉𝑀 , ‖𝝈‖𝑉𝑀 ) as
well as stress-strain curves for different averaged strain-rates
obtained during one experiment.

(a) Stress-strain curves obtained for the XES for different
strain-rates from [12],

(b) Evolution of the stress at a plastic strain of 0.1 in function
of the strain-rate using different techniques, from [12],

FIGURE 24 XES characterization data from [12] and com-
parison of the results obtained using different experimental
techniques.

used as input for the DDI to estimate stress fields during the
experiment. The main conclusions are as follows:

• The parameters of the DDI method play an important
role in the stress reconstruction. The analysis performed
on the numerical test case lead to the selection of these
parameters.

• The numerical test case illustrates the ability of the pro-
posed methodology to retrieve the material behaviour
despite the use of a wrong set of constitutive param-
eters as initialization. It showed in particular that the
algorithm is able to retrieve the material’s strain-rate
dependency accurately.

• Using the results from Virtual Image Deformation, the
impact of noise on the stress estimation can be assessed.
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(a) Cartography of the relative error in
(‖𝜺‖𝑉𝑀 , ‖�̇�‖𝑉𝑀 ),

(b) Cartography of the relative error in
the stress invariant space,

(c) Cartography of the relative error in
(‖𝜺‖𝑉𝑀 , ‖𝝈‖𝑉𝑀 ),

FIGURE 25 Comparison between the stress predictions using the modified Krupkowsky model and the material states from the
DDI.

FIGURE 26 Relative errors between the reference data and
the fit using the identified parameters.

An accuracy of 10%±5% is obtained on the stress esti-
mation. At last, using the DDI Data to perform identifi-
cation leads to relative errors lower than 5%.

• The application of the proposed method to the experi-
mental data allows estimating stress fields. The material

behaviour captured by the material states are consis-
tent with the data obtained at ONERA during previ-
ous experimental campaigns. In the presented study,
the stress are retrieved with confidence for strains and
strain-rates in the range of [0.01 – 0.18] and [10 s−1 –
500 s−1].

• By combining the data from this work and data from
a simple quasi-static test, constitutive parameters can
be identified. These parameters are able to correctly
retrieve the behaviour of the material over several strain-
rates decades, with a relative error that remains below
5%.
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