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Abstract
The problem of current estimation of switched power converters operating
in continuous and discontinuous conduction modes is considered. A method
is presented for the direct design of an estimator without exact knowledge
of the mathematical model of the system. The structure of the proposed
method is simpler than other approaches found in the literature, which use
hybrid or averaged models to represent the dynamics of the power converter
in each operating mode. An algorithm implementation using parallel com-
putation and dimensionality reduction techniques for improving the execu-
tion performance is described. The method is demonstrated in the case of
the pulse-width modulated SEPIC DC-DC converter, where simulation and
experimental results are discussed. The proposed method shows better esti-
mation results with respect to other well-known model-based and data-based
approaches.
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1. Introduction

In switched power converter applications, having accurate measurements
of currents and voltages is required to achieve high performance in control
and monitoring tasks. In particular, current measurement is critical in dif-
ferent feedback control strategies based on the design of separate current and
voltage control loops. In this setting, special sensing circuits are required.

The most common approach is to use current transformers to induce a
current for measurement. This method has good performance and is used in
several industrial applications. However, the coil inductors are susceptible to
saturation at high switching frequencies [1]. Another approach involves indi-
rect current measurement using the voltage drop on a resistor. This method
is simple but may have significant losses in high-power applications. For in-
stance, in [2], a current sensor is integrated into a current-mode controller for
a buck converter. Special CMOS circuitry is designed to measure the current
using a resistive element. This approach couples the sensing circuit with the
controller on the same chip, decreasing the flexibility of the design or its use
with other control schemes. Hall-effect sensors are a popular alternative for
current measurement, showing good performance with low power consump-
tion. However, these sensors have high sensitivity to temperature drift and
DC offset variation, requiring the implementation of additional compensation
mechanisms [1].

An alternative approach is to estimate the currents using observers in-
stead of measuring them directly. The basic observation approach relies
on the measurement of other signals and the availability of a mathematical
model for the system. With this information, the observer is able to make
predictions on the system behavior, providing estimates of the unmeasured
states. The classic asymptotic observer structure consists of a prediction
term using a simulation of the system model subject to the measured inputs,
and a correction term depending on the measured outputs. The observer
design problem consists of the assignment of the correction term gains to
guarantee stability in the estimation error [3]. Usually, an argument using
Lyapunov functions is established to prove the observer’s stability. For exam-
ple, in [4], a current observer is proposed for a boost power factor correction
(PFC) converter, where the nonlinear model is obtained using the averaging
principle.

Most of the observers described in the literature for current estimation are
based on average models for power converters operating in continuous con-
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duction mode (CCM). However, under certain conditions, these converters
may operate in discontinuous conduction modes (DCM). This may happen
autonomously by sudden load changes or may be forced by the designer for
efficiency reasons. Under DCM operation the system dynamics change, af-
fecting the performance of observers based on the average CCM model. In
the case where both CCM and DCM are present, hybrid observers [5] that
simultaneously estimate the continuous and discrete states can be designed.
However, these observers are hard to implement in a practical setting.

Existing works in the literature regarding the problem of observation in
power converters operating in CCM and DCM rely on the availability of a
mathematical model for the power converter and require using an estimator
to obtain the operation mode at each time instant. For example, in [6], the
design of a current observer for a PFC boost converter was presented based on
an average model representing CCM and DCM. [7] considers observer-based
control for a buck converter operating in CCM and DCM. The observer
was based on the discrete-time LC filter model in CCM, and an integral
compensation loop was included to correct the estimates when the system
enters DCM. In [8], Luenberger-type switched observers were presented, and
the observer gains for different operation modes were obtained by solving a
system of linear matrix inequalities.

We consider an alternative approach to the problem of current estima-
tion in PWM converters operating in CCM and DCM. A data-based method
is implemented for directly providing discrete-time estimates of the average
inductor current without requiring an estimator for the operating mode, and
without formulating a complex mathematical model for the system. The esti-
mates are computed from the history of recent measured inputs and outputs,
and from a dataset of measurements prepared from experiments performed
on the system under different operating conditions. The algorithm computes
optimal error bounds on the estimated variable, yielding information on the
estimation accuracy under different operating conditions. The problem struc-
ture is exploited to obtain a parallel algorithm implementation running on a
graphics processing unit (GPU), and a dimensionality reduction technique is
used to improve the execution performance. The resulting approach can be
extended to full state observation by implementing separate estimators for
each state variable.

The paper is organized as follows: Section 2 presents the problem state-
ment, Section 3 introduces the basic concepts of optimal filtering for state
estimation and Section 4 presents the main contributions. Section 5 intro-
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duces the case study of a SEPIC converter, where simulation and experimen-
tal results are presented. Finally, Section 6 includes a brief discussion of the
results and some perspectives for future work.

2. Problem Statement

A switched power converter can be modeled by considering all possible
circuit topologies obtained from the different conducting and blocking states
of the semiconductor devices. These configurations are represented by a
system of switched linear differential-algebraic equations.

Pσ(t)ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t) +Bxw(t) (1)
y(t) = Cσ(t)x(t) +Dσ(t)u(t) +Byw(t)

where x(t) ∈ Rnx is the state, u(t) ∈ Rnu the input and y(t) ∈ Rny is the out-
put. The terms Bxw(t) and Byw(t) correspond to process and measurement
noise, respectively. The system matrices Pσ, Aσ, Bσ, Cσ, Dσ are selected de-
pending on the system mode σ(t) ∈ I, where I is a finite index set. Only one
system mode is active at each time instant, and it depends on the controlled
s(t) and uncontrolled δ(t) switch states: σ(t) = g(s(t), δ(t)), s(t) ∈ {0, 1}ns ,
δ(s) ∈ {0, 1}nδ . The state of the uncontrolled switches depends on the sys-
tem states and inputs: δ(t) = h(x(t),u(t)). This interaction between the
continuous and discrete variables in system (1) produces a hybrid dynamical
system.

Assumption 1. The modes σ in system (1) are activated in sequence I =
{1, 2, . . . , 2ns+nδ}, each with a duration of dσT , where T is the total switching
period.

Under assumption 1, an average model approximation of system (1) can
be obtained:

P̄ẋ(t) = Āx(t) + B̄u(t) +Bxw(t) (2)
y(t) = C̄x(t) + D̄u(t) +Byw(t)

with M̄ =
∑

σ∈I dσMσ, M̄ ∈ {P̄, Ā, B̄, C̄, D̄}, Mσ ∈ {Pσ,Aσ,Bσ,Cσ,Dσ}.
dσ corresponds to the proportion of the total switching period duration T
that mode σ is active:

∑
σ∈I dσ = 1.

A difficulty in obtaining this model is that the mode transitions due to
uncontrolled switching events can not be measured directly, but need to
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be estimated indirectly. An example of this approach is presented in [9]
where an adaptive control law is designed for the boost converter operating
in DCM based on the computation of the switching times for the sequence
of modes, assuming exact knowledge of the system model. When no uncon-
trolled switching events are present, the model in Eq. (2) corresponds to the
classical average model commonly used in the context of power converters.
In the present approach, we have no knowledge of the system matrices of this
model but instead assume that a dataset of input and output measurements
is available.

Problem 1. Consider the system in Eq. (2). Assume matrices P̄, Ā, B̄, C̄,
D̄, Bx, By are unknown. Based on discrete-time measurements of u, y and
s, obtain discrete-time estimates x̂ of the unmeasured state x.

3. Optimal Filtering for State Estimation of Unknown Systems

The following approach is based on the Set Membership (SM) framework
for the identification of nonlinear systems [10], [11], [12]. While traditional
identification methods require some a priori assumptions on the system class
(linear, bilinear, polynomial, etc), this approach does require less restrictive
assumptions in the form of bounds on the function gradients. Consider the
discrete-time nonlinear system

xk+1 = F(xk,uk,dk, wk) (3)
yk = G(xk,uk,dk, wk)

where xk ∈ Rnx corresponds to the state, dk ∈ Rnd the controlled input,
uk ∈ Rnu the uncontrolled input, yk ∈ Rny the output and wk the noise. A
causal estimator for xk ∈ xk is a function f mapping the past m measured
values for {d̃, ỹ, ũ} into an estimate x̂k:

x̂k = f(d̃k, ỹk, ũk, . . . , d̃k−m+1, ỹk−m+1, ũk−m+1). (4)

This estimator exists if system (3) is observable. The objective is to obtain
a causal filter with a small estimation error xk − x̂k. The filter structure
in this case corresponds to a nonlinear finite impulse response (NFIR). This
method is optimal in the sense of approximating a filter function f such
that the worst-case estimation error is minimized. This provides a means
to compute not only the estimate but the tightest error bounds, allowing
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us to quantify the uncertainty associated with the estimation process. One
advantage of this method is that the considered NFIR estimator is guaranteed
to be bounded-input bounded-output (BIBO) stable.

Assumption 2.
1. Functions F, G are unknown.
2. The system is n-step observable [12].
3. The noise wk is unknown but known to be bounded in lp-norm.
4. A dataset D = {d̃k, ỹk, ũk, x̃k, k = 1, 2, . . . , N} is available, where x̃k =
xk + ξk is the noise corrupted measurement of xk, with ξk the unknown
but bounded measurement noise.

Consider the filter x̂k = f(φ̃k) where the regressor φ̃k = [d̃m
k ; ỹ

m
k ; ũ

m
k ]

corresponds to a column vector concatenation of the m most recent measured
values {d̃, ỹ, ũ}. The learning process allows us to find an approximation f̂
of the unknown optimal filter f 0 (see definition 2 in [11]) using the dataset
D. Let us assume that the filter function f belongs to the set:

F(γ) =
{
f ∈ C1 : ∥f ′(φ)∥ ≤ γ, ∀φ ∈ Φ

}
(5)

where f ′ is the gradient of f and Φ ⊆ R(nd+ny+nu)m is the regressor domain.
Given a set of N samples of x̃i, φ̃i, the feasible filter set (FFS) is defined as:

FFS
.
= {f ∈ F(γ) : |x̃i − f(φ̃i)| ≤ ε, i = 1, . . . , N} . (6)

This set corresponds to the smallest set containing f 0, or equivalently, the
set of all systems consistent with prior information and measured data. The
problem here consists of learning the values for parameters γ and ε such that
the set FFS is not empty. The worst-case bounds for the estimation are
given by:

f(φ̃k) = min
i=1,...,N

(x̃i + ε+ γ ∥φ̃k − φ̃i∥) , (7a)

f(φ̃k) = max
i=1,...,N

(x̃i − ε− γ ∥φ̃k − φ̃i∥) . (7b)

The following result is useful for checking the validity of a priori data:

Theorem 1.
1. A necessary condition for the FFS to be non-empty is f (φ̃i) ≥ x̃i − ε,
i = 1, . . . , N .
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2. A sufficient condition for the FFS to be non-empty is f (φ̃i) > x̃i − ε,
i = 1, . . . , N .

Proof. See [10].

Using these conditions, the values γ and ε can be learned from the training
dataset. A procedure for achieving this is presented in [10]. In summary, for
each ε value we can find a boundary value γ∗ separating the region where
FFS = ∅ from the region where FFS ̸= ∅. Therefore, if an estimate for
ε is available, it is reasonable to choose γ as a slightly higher value than
γ∗(ε). Using these parameters, the direct filter (DF) is defined in terms of
the optimal tightest bounds in Eqs. (7) as:

x̂k = fc (φ̃k)
.
=

1

2

[
f (φ̃k) + f (φ̃k)

]
. (8)

4. Main Result

4.1. Current Estimation for Power Converters Operating in CCM and DCM
The approach introduced in the previous section is used to design a

discrete-time estimator for average current in power converters operating
in CCM and DCM. This approach does not require knowledge of the op-
eration mode because the changes in dynamic behavior are encoded in the
dataset when transitions occur between CCM and DCM.

Let us assume that the averaged power converter model operating in CCM
and DCM is represented by the discrete-time unknown model in Eq. (3),
where xk is the state (inductor currents and capacitor voltages), dk the duty
cycle of the PWM signals controlling the switching devices, uk the uncon-
trolled measured input voltage, yk the measured output voltage and xk an
unmeasured unknown state variable. Also, let us assume that the nonlinear-
ities associated with CCM—DCM transitions are represented by the nonlin-
ear functions F, G in Eq. (3). Algorithm 1 specifies the offline procedure for
learning the parameters γ and ϵ required to design a direct filter for current
estimation in power converters operating in CCM and DCM.

A sufficient number of experiments must be performed to prepare the
dataset D. The design of these experiments requires special considerations to
obtain a sufficiently informative dataset [13]. Once a dataset D is available
and the parameters γ and ε have been obtained, the filter estimates are
computed online using algorithm 2.
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Algorithm 1: Direct filter design (offline)
Result: D, γ, ε
1. Design random test signals d̃(t), ũ(t) for driving the power
converter to operate under varied conditions (CCM and DCM)

2. Measure ỹ(t), x̃(t). The sampling time should be sufficiently high
to obtain detailed waveforms of the switching behavior

3. Compute ȳ(t) = average(ỹ(t)), x̄(t) = average(x̃(t)), with
average(·) a non-causal filter

4. Obtain ỹk = resample(ȳ(t), Ts), x̃k = resample(x̄(t), Ts),
d̃k = resample(d̃(t), Ts), ũk = resample(ũ(t), Ts), with Ts a
sample time sufficiently small to capture the low frequency
behavior of the system

5. Prepare dataset D = {φ̃i, x̃i, i = 1, 2, . . . , N} using d̃k, ỹk, ũk, x̃k
6. Take ε = ∥x̃(t)− x̄(t)∥∞
7. Take γ∗ = min γ, subject to f(φ̃i) > x̃i − ε, i = 1, . . . , N
(sufficient condition in Theorem 1 [11])

Algorithm 2: Current estimation for power converters (online)
Data: D, γ, ε
Result: x̂k
while true do

1. Measure d̃k, ỹk, ũk

2. Construct the regressor φ̃k

3. Compute the optimal tightest bounds f(φ̃k), f(φ̃k) using
Eqs. (7), with φ̃i, x̃i available in dataset D

4. Compute the DF estimate x̂k using Eq. (8);
end
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4.2. Parallel Implementation of the DF Estimator
In practice, obtaining the tightest upper and lower bounds in Eqs. (7)

requires computing at each sample time k the distance between the measured
regressor φ̃k with respect to each of the regressors φ̃i, i = 1, . . . , N in the
dataset. This computation can become prohibitively expensive as the number
of regressors in the dataset grows. To address this problem, [14] proposed an
approximation of the optimal filter fc by computing the DF estimates on a
grid defined over the regressor space. The estimates are stored in a look-up
table, reducing the computation speed at the cost of a decrease in estimation
accuracy. The problem with this approach is that increasing the regressor
length m exponentially increases the amount of memory required to store
the resulting look-up table.

In this work we propose an alternative approach: we exploit the direct
filter algorithm structure to obtain a parallel implementation that can be
efficiently executed using concurrent processing units, such as those available
on graphical processing units (GPUs).

Notice that the most expensive task in algorithm 2 is step 3: computing
the optimal tightest bounds f(φ̃k), f(φ̃k). This step can be broken up into
basic operations to be executed independently over large amounts of data,
allowing a parallel implementation. This implementation was achieved using
CUDA (Compute Unified Device Architecture), a framework for general-
purpose GPU programming [15] created by NVIDIA. In this framework, the
parallel tasks are known as kernels, which are executed simultaneously over
thousands of concurrent threads. Three kernels were implemented for each
iteration of algorithm 2:

1. ψj
i = (φ̃j

k − φ̃j
i )

2, i = 1, . . . , N , j = 1, . . . , 3m.
2. ∆i =

√∑3m
j=1 ψ

j
i , f i = ṽi + ε+ γ∆i, f

i
= ṽi − ε− γ∆i.

3. f = mini=1,...,N(f i), f = maxi=1,...,N(f i
).

The first kernel computes, at each sample time k, the squared difference
between the j-th element in the regressor φ̃k and the j-th element in each
regressor φ̃i in the dataset.This computation is performed independently by
3mN threads. The second kernel computes the sum of the squared differences
using a parallel reduction using N concurrent threads. The third kernel
computes the minimum and maximum values also as parallel reductions using
N concurrent threads. Notice that these kernels compute the 2-norm of the
regressor difference, but other norms can be similarly implemented.
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4.3. PCA dimensionality reduction in regressor datasets
Principal Component Analysis (PCA) [16] is a technique used in many

image processing and machine learning applications. It is used in the present
context to reduce the regressor lengths in the DF datasets. The method con-
siders the regressors as 3m-dimensional vectors and finds a change of basis
that maps them into a new space where the components are ranked according
to the amount of information they contain. This is achieved by constructing
the covariance matrix of the regressor dataset and computing its eigenvalues
and eigenvectors. The eigenvectors correspond to the independent directions
where the variability of the data is maximized. The associated eigenvalues
provide a measure of the information contents for each of these directions and
provide a way to rank them. The dimensionality reduction is achieved by
taking a subset of the eigenvectors associated with most of the information
content and using them to map the original regressors into a lower dimen-
sional space. This mapping is performed offline on the regressor dataset and
online on the measured regressor.

Consider the dataset D formed by 3m-dimensional column vectors φ̃i.
Organize the N vectors into a matrix Φ̃ ∈ R3m×N . The goal is to find a
linear transformation Ω̃ = Z⊺Φ̃ with Z ∈ R3m×l, such that the reduced-
dimension regressors in Ω̃ ∈ Rl×N describe the data with less variables: l <
3m. Algorithm 3 presents the general approach to obtain the reduced-size
dataset Ω̃ and the transformation matrix Z using the covariance method.
Notice that the parameter ζ refers to the relative information content of the
principal components compared to the complete dataset. A rule of thumb
to choose this value is ζ = 0.9. The columns in matrix Ω̃ represent reduced-
size vectors of the columns in Φ̃. The same transformation is used online to
map the regressor φ̃k measured at time k into the lower-dimensional space:
ω̃k = Z⊺φ̃k.

5. Application Example: SEPIC Converter

Consider the DC-DC single-ended primary inductor converter (SEPIC)
presented in Fig. 1. We used a PWM signal with a controlled duty cycle to
drive the converter in open loop. The state vector is x = [IL1 , VC1 , IL2 , VC2 ]

⊺.
The switched linear model of the SEPIC converter in Eq. (1) has the following
matrices:
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Algorithm 3: PCA Dataset Preparation
Data: D
Result: Z, O
1. Organize the regressors φ̃i in dataset D into matrix Φ̃ ∈ R3m×N .
2. Compute the empirical mean u ∈ R3m×1 with uj =

1
N

∑N
i=1 Φ̃ij.

3. Subtract the deviations from the mean: B = Φ̃− uh, where
h ∈ R1×N = [1, 1, . . . , 1].

4. Compute the covariance matrix C = 1
N−1

BB⊺.
5. Compute eigenvectors V ∈ R3m×3m and eigenvalues D ∈ R3m×1 of
covariance matrix C.

6. Sort the eigenvectors V in decreasing order of associated
eigenvalues and save them in matrix Vs.

7. Compute the cumulative eigenvalues gj =
∑j

i=1Di for
j = 1, . . . , 3m.

8. Choose l as the smallest integer such that gl/g3m >= ζ.
9. Select the first l columns of Vs and save them as matrix Z.
10. Compute the matrix of reduced-size regressors as Ω̃ = Z⊺Φ̃.
11. Save the columns of matrix Ω̃ = [ω̃1, ω̃2, . . . , ω̃N ] in the new
dataset O = {(ω̃i, ṽi), i = 1, 2, . . . , N}.

E(t)

Figure 1: Schematic diagram of the SEPIC converter.
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As(t),δ(t) =


−RL1 − βRL2 s− 1 0 sδ − δ

1− s sδ s− sδ sδ
β −s β −RL2(s+ δ − sδ) δ − sδ

δ − sδ 0 −δ −1/Ro

 ,

Bs(t),δ(t) =


1
0
0
0

 ,Ps(t),δ(t) =


L1 0 βL1 0
0 (1− sδ)C1 0 0
0 0 (s+ δ − sδ)L2 0
0 sδC1 0 C2

 ,
Cs(t),δ(t) =

[
0 0 0 1

]
,Ds(t),δ(t) = 0,

where s(t) ∈ {0, 1} is the binary signal that controls the switching of the
MOSFET, δ(t) ∈ {0, 1} is a binary variable that represents the uncontrolled
diode state and β = (1 − s)(1 − δ). RL1, RL2 are the equivalent internal
inductor resistances and Ro is the load resistance. Table 1 shows the pa-
rameters used for the SEPIC converter in the simulation and experimental
tests.

In CCM operation, the MOSFET and the diode are activated comple-
mentarily (i.e. s = 1, δ = 0 and s = 0, δ = 1)). In this case, the off-diagonal
elements in matrix Ps(t),δ(t) become zero, and the diagonal corresponds to
the storage element values. The resulting model in Eq. (1) corresponds to a
system of linear differential equations.

In DCM operation the MOSFET and diode simultaneously turn on or
off, depending on the type of discontinuity (i.e. s = 0, δ = 0 or s = 1, δ = 1).
In this case, the matrix Ps(t),δ(t) has nonzero elements in the off-diagonal,
and one of the differential equations becomes an algebraic equation. For
example, when the SEPIC converter is in discontinuous inductor current
mode (DICM), the MOSFET and diode are turned off (s = 0, δ = 0). In
this mode, both inductors are connected in series, forcing them to have the
same current value. The equivalent inductance determines the dynamics
throughout the discontinuous mode, and the system has three state variables:
ILeq , VC1 and VC2 . In discontinuous capacitor voltage mode (DCVM) the
MOSFET and diode are turned on at the same time (s = 1, δ = 1), forcing
both capacitors in a parallel configuration, yielding a system with three state
variables: VCeq , IL1 , IL2 . Using the averaging principle, s(t) and δ(t) can
be redefined as continuous variables in the interval [0, 1] representing the
duty cycle of PWM signals with a sufficiently high constant frequency fPWM.
These duty cycles will represent the period fraction that each switching device

12



Table 1: Parameters used in the simulation and experimental tests.
Converter Parameters
SEPIC E = 20 V, L1 = 2.3 mH, C1 = 190 µF,

L2 = 330 µH, C2 = 190 µF, RL1 = 2.134 Ω,
RL2 = 0.234 Ω, Ro = 22 Ω, fpwm = 20 kHz

is active. In this model, we assume there is a way to measure or estimate the
uncontrolled state of the diode.

The design of an observer for estimating the state variables in this hybrid
model is not an easy task. Therefore, we use the approach introduced in
section 4 to design direct filters for estimating the current IL1k from sampled
noisy measurements of the input voltage uk = Ek, the output voltage yk =
VC2k and from knowledge of the controlled PWM duty cycle dk. A dataset
D is obtained by applying an amplitude-modulated pseudo-random binary
signal (APRBS) to the duty cycle input of the SEPIC converter in open loop
and measuring the output voltage while maintaining a constant input voltage.
The APRB signal maintains a random constant value throughout a given
dwell time Td. We randomly generate the signals by defining minimum and
maximum dwell times Td,min, Td,max for both the training and test datasets.
Assuming a constant load resistance Ro, the duty cycle boundary value d̄
separating the CCM and DCM operating regions can be computed by static
analysis [17], using Eq. (9). The minimum and maximum levels of the duty
cycle signal applied to the converter are selected in a wide range to force
operation in both CCM and DCM regions.

d̄ = 1− 2fpwmL1L2

Ro(L1 + L2)
= 0.2756 (9)

To obtain the results presented in the following subsections, we first ac-
quired the detailed converter current and voltage waveforms for the designed
APRB signals. These signals are then averaged and resampled at a suffi-
ciently high rate frs to capture the low-frequency behavior of the converter.
We applied a scaling scheme to the regressor dataset as described in [10] to
improve the estimation performance. Additionally, we used principal com-
ponent analysis (PCA) to map the regressors to a lower dimensional space,
reducing the computational cost.
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5.1. Simulation Results
A detailed noiseless simulation of the SEPIC converter is run and all the

variables are sampled at fs = 1 MSa/s, and then averaged and resampled
at frs = 5 kSa/s. Multiple direct filters are designed and tested for different
regressor lengths m and dataset sizes N .

We developed two different direct filter implementations. The base case
direct filter estimator described by Eq. (8) is DF. The direct filter with
PCA-reduced dataset (DFPCA) implements the same estimator, but uses
a dataset formed by regressors with reduced dimension, obtained using the
procedure described in Section 4.3. We compared the performance of DF and
DFPCA to other estimation approaches: extended Kalman filter (EKF), par-
ticle filter (PF), and neural networks (NN). For the model-based approaches
(EKF, PF), we used the nonlinear average model of the SEPIC converter.
The PF computes the evolution of 50 particles using Euler’s method for 10
subintervals on each sample step. For the data-based approaches (DF, DF-
PCA, NN) a dataset with N = 10000 regressors and total regressor length
3m = 60 was obtained from simulation. We used this dataset to learn the
parameters (ε, γ) for the DF and to train a feed-forward neural network with
3m inputs and 1 output. After some tests, we achieved the best performance
with 30 neurons in the hidden layer.

We prepared four different datasets (DS1, DS2, DS3, DS4) using several
minimum and maximum dwell times for the APRB signal, specified in Ta-
ble 2. For each dataset, we prepared 20 different test runs. Fig. 2 shows
the performance of the estimators for these datasets, using as error measures
the relative absolute error (RAE), root relative square error (RRSE), and
relative worst-case error defined as:

RAE = 100 ∥x− x̂∥1 / ∥x− x̄∥1 ,
RRSE = 100 ∥x− x̂∥2 / ∥x− x̄∥2 ,

RWCE = 100 ∥x− x̂∥∞ / ∥x− x̄∥∞ ,

where x corresponds to the measured signal, x̄ the average, and x̂ the es-
timate. These error measures quantify several properties of each estimator:
RAE indicates the mean deviation, RRSE penalizes the outliers, and RWCE
indicates the maximum deviation.

For all datasets, the model-based estimators have worse performance than
the data-based ones. The cause is their dependence on the nonlinear aver-
age model that doesn’t provide a good approximation of the switched linear
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Table 2: Constant duty cycle periods in the training and test APRB signals for different
datasets.

Training Test
Dataset Td,min Td,max Td,min Td,max

DS1 5 ms 5 ms 10 ms 10 ms
DS2 10 ms 10 ms 20 ms 20 ms
DS3 5 ms 10 ms 10 ms 20 ms
DS4 5 ms 10 ms 10 ms 30 ms

system, particularly during transients and DCM operation. In the case of
the data-based estimators, NN has better performance than DF and DF-
PCA in all datasets because the parameter γ in the DF represents global
worst-case bounds on partial derivatives of the approximated function, while
the NN locally approximates them. Notice that in most cases, the DFPCA
estimate is slightly worse than the DF because the regressor mapping into a
lower-dimensional space implies a certain amount of information is lost.

Fig. 3 shows a small section of a particular test run, comparing the es-
timates for all the implemented methods with the switching input current
IL1 and its average, shown in light and dark gray, respectively. Notice that
the model-based approaches (EKF, PF) exhibit noticeable oscillations during
transitions from CCM to DCM. These oscillations cause the high 2-norm and
∞-norm errors for these estimators. Estimates from EKF and PF also have
an offset during steady-state operation. Fig. 3(a) shows the upper and lower
bounds (f , f) for DF and DFPCA estimates, using dashed lines. Notice that
the distance between these bounds grows during transients, which indicates
an increase in estimation uncertainty under these conditions. Fig. 3(b) shows
the detail of a CCM to DCM transition, where the switched current IL1 ex-
hibits the typical discontinuous waveform. The DF and DFPCA estimators
correctly track the change in the average current during the transition from
the symmetric to the asymmetric waveform.

5.2. Experimental Results
We used the experimental SEPIC converter test bench shown in Fig. 4

for testing the proposed estimation approach. We executed multiple runs
by applying different APRB duty cycle signals in open loop and measuring
all the variables with an oscilloscope at fs = 2 MSa/s. Then we resampled
the acquired signals at frs = 4 KSa/s. We used algorithm 1 to prepare four
different regressor datasets with the Td,min, Td,max values presented in Table 2.
For each dataset, we prepared N = 10000 training regressors with a total
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Figure 2: Simulation results: estimation error (mean ± stdev, 20 test runs of 1.5 s each)
for direct filter (DF), direct filter with PCA dataset (DFPCA), neural networks (NN),
extended Kalman filter (EKF) and particle filter (PF) with 4 different datasets (m = 20,
N = 10000, ε = 0.1292).
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(a)

(b)

IL1 Aver

Figure 3: Simulation results (top to bottom): Duty cycle d and DCM boundary d̄. Output
voltage y = VC2. Input voltage u = 20 V. Input current IL1 estimate with direct filter
(DF), direct filter with PCA dataset (DFPCA), neural networks (NN), extended Kalman
filter (EKF), and particle filter (PF).
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Figure 4: SEPIC converter test bench.

length of 3m = 60 using five 500 ms captures. We also prepared 20 test
signals using three 500 ms captures for each. We designed all the estimators
using the same criteria discussed in the previous subsection.

Fig. 5 shows the performance comparison for all the implemented estima-
tors. Notice that the data-based estimators (DF, DFPCA, NN) perform bet-
ter than the model-based ones (EKF, PF). However, the performance of the
NN estimator is worse than the DF and DFPCA estimators. In particular,
the RWCE measure for NN is considerably worse than the others, indicating
the presence of high amplitude outliers. Fig. 6 shows large amounts of noise
for the NN estimate. The DF and DFPCA estimators show better noise
rejection than all the other estimators. Fig. 6 (a) shows the detail of the
upper and lower bounds (f c, f c

) for DF and DFPCA. Notice that the noise
increases the estimation uncertainty, but DF and DFPCA give better esti-
mates of the average current. Fig. 6 (b) shows the DF and DFPCA estimates
tracking the average current during a transition from CCM to DCM.

Let us remark that the DF in this example takes as the only uncontrolled
input ut = E corresponding to the input voltage. If load disturbances were
present, the estimation performance would decrease. However, we could
define the load resistance as another uncontrolled input ut = [E,R0], allowing
the DF to give estimates under input and load disturbances. This scenario
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Figure 5: Experimental results: estimation error (mean ± stdev, 20 test runs of 1.5 s
each) for direct filter (DF), direct filter with PCA dataset (DFPCA), neural networks
(NN), extended Kalman filter (EKF), and particle filter (PF) with 4 different datasets
(m = 20, N = 10000, ε = 0.1292).

requires including in the dataset D the typical load disturbance scenarios the
system could be subject to.

5.3. Estimation Performance for the Parallel Implementation
Table 3 shows the estimation performance results of the DF and DFPCA

estimators using the four experimental datasets available. We show the mean
estimation performance loss of the DFPCA compared to the DF for the
three error measures. The table shows the average execution time of one
iteration of algorithm 2 for two different implementations: CPU running the
DF estimator sequentially and GPU running the parallel implementation of
the DFPCA estimator. The hardware used for these tests is the Nvidia Jetson
TX2, using one of the four available ARM Cortex-A57 CPU cores running
at 2.0 GHz and the Pascal GPU running at 1.12 GHz. The speedup of the
GPU+PCA implementation compared to the base CPU case is also shown.
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(a)

(b)

IL1 Aver

Figure 6: Experimental results (top to bottom): Duty cycle d and CCM-DCM boundary
d̄. Output voltage y = VC2. Input current IL1 estimate with direct filter (DF), direct filter
with PCA dataset (DFPCA), neural networks (NN), extended Kalman Filter (EKF) and
particle filter (PF).
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Table 3: Comparison of computational performance between DF and DFPCA implemen-
tations in CPU and GPU using PCA reduced dataset. N = 10000, regressor length in
original dataset 3m = 60, regressor length in PCA reduced dataset = 13.

Dataset Mean estimation perf. loss (%) Aver. exec. time (ms) / speedup
RAE RRSE RWCE CPU GPU+PCA

DS1 1.5446 1.6832 3.0170 1.6410 0.2419 / 6.7847X
DS2 0.2641 0.8726 4.0489 1.6445 0.2434 / 6.7577X
DS3 0.6703 0.1592 6.4868 1.6491 0.2437 / 6.7660X
DS4 0.4993 0.7582 1.9521 1.6428 0.2443 / 6.7235X

Notice that when we applied PCA to all datasets, the estimation per-
formance loss was less than 2% of the absolute error. On the other hand,
the algorithm implementation in the GPU using PCA allowed us to increase
the computation speed more than six times. The estimation rate achieved
was close to 4 kHz, corresponding to the sample time of the experimen-
tal dataset. These results show that using the reduced dimension datasets
in GPU provides a computation speed gain that outweighs the estimation
losses and provides a feasible implementation of the DF algorithm for real-
time applications. However, the experiments performed didn’t use a real-time
operating system (RTOS) but a general-purpose operating system (GPOS).
Consequently, we observed some jitter in the estimates produced by the DF
algorithm. This behavior may render the proposed method infeasible in ap-
plications where the satisfaction of hard deterministic timing constraints is
required. Development of real-time GPU applications for control systems
requires additional considerations [18].

The source code implementing the DF algorithm is open and available in
an online repository [19]. It includes several datasets to test the algorithm
with different regressor lengths and dataset sizes.

6. Conclusion and Perspectives

We presented a method for the design of estimators without exact knowl-
edge of the system model. We used this approach in the context of current
estimation in power converters working in both CCM and DCM. Because of
drastic dynamic changes in the system behavior when traversing the bound-
ary between CCM and DCM, the average model does not provide a good
approximation. This method can be used in PWM power converters and
is demonstrated in the case of the SEPIC DC-DC converter. Simulation
and experimental results have been presented, showing that this approach
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provides good estimation results compared to other model-based and data-
based methods. Also, we show that a real-time implementation of the direct
filter algorithm is feasible on an embedded system by exploiting its parallel
structure to run it on a GPU and applying PCA to reduce the size of the
datasets.

Future extensions of this work involve improving the computational per-
formance of the GPU implementation with additional configurations on the
Jetson embedded system such as power model, clock frequencies, CPU core
isolation, memory locks, and also applying a real-time patch to the Linux
kernel (PREEMPT-RT) to improve the determinism compared to the stock
Linux kernel. Additional improvements can be obtained with the implemen-
tation of persistent CUDA kernels to reduce the overhead of kernel launch at
each sample time [20]. Regarding the power converter, we are interested in
analyzing the dependence of the estimation performance on the parameter
space (m,N) for different converter topologies where DCM is present. Fi-
nally, a more detailed investigation of the estimation performance loss caused
by the mapping to a lower-dimensional regressor space would provide a bet-
ter understanding of the advantage of applying the PCA technique in this
context.
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