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Abstract

Color assimilation with bichromatic contours was quantified for spatial extents ranging

from von Bezold-type color assimilation to the Watercolor Effect (WCE).  The

magnitude and direction of assimilative hue change was measured as a function of the

width of a rectangular stimulus.  Assimilation was quantified by hue-cancellation.  Large

hue shifts were required to null the color of stimuli ≤ 9.3 arcmin in width, with an

exponential decrease for stimuli increasing up to 7.4 degrees.  When stimuli were viewed

through an achromatizing lens, the magnitude of the assimilation effect was reduced for

narrow stimuli, but not for wide ones.  This suggests that chromatic aberration may

account, in part, for color assimilation over small, but not large, surface areas.

Keywords: Watercolor Effect; Color assimilation; Chromatic aberration
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1. Introduction

Color assimilation is a shift in the perceived color of a region toward the appearance of a

nearby inducing stimulus.  This effect has been obtained with different kinds of patterns

since the pioneering study by von Bezold (1874).  More recently Pinna et al (2001)

demonstrated a new phenomenon, the Watercolor Effect (WCE).  Here, chromatic

assimilation occurs within an area enclosed by a light chromatic contour (e.g., orange),

which in turn is surrounded by a darker chromatic contour (e.g., purple).

Studies of chromatic assimilation have generally examined the effects of the

inducer configuration on a neutral test field in order to determine the direction of the

chromaticity shift.  Thus, the effect is strongest with narrow inducers as well as induction

fields (Helson 1963; Steger 1969; Fach and Sharpe 1986; Smith et al 2001).  Other

factors such as the luminance of the inducing stimuli can also influence the strength of

assimilation (Helson 1963; Shapley and Reid 1985; DeWeert and Spillmann 1995; Hong

and Shevell 2004).

Although the size of the induction area enclosed by the inducing contours is

known to be important for assimilation strength, it has not been systematically explored.

Devinck et al (2005) used hue-cancellation to null the WCE on a surface area that was

1.43 deg in width.  Reliable shifts in color appearance closely followed the direction of

the inducing contour, but their vector length measured in CIE u’v’ color space ranged

from only 2.61 – 4.38 % of the orange inducing contour.  Recently, Monnier and Shevell

(2003, 2004) studied assimilation using patterns composed of concentric circles

alternating between two chromaticities that stimulate the S-cones.  They found a large

shift in color appearance with thin inducing stimuli (9 arcmin) and induction fields.  This
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difference in strength of the WCE could perhaps be explained by the small area of the

induced region.  The goal of the present experiment is to test directly the strength of the

WCE as a function of the stimulus width when the inducing contours remain constant.

To control for chromatic aberration we performed a separate experiment using an

achromatizing lens.

2. General Methods

2.1. Observers

There were three viewing conditions: (i) binocular, (ii) monocular, and (iii) monocular

with achromatizing lens.  The second condition was a control experiment because the

achromatizing lens could only be used monocularly.  The latter condition was intended to

evaluate the role of chromatic aberration on the WCE.  Three observers participated in

condition (i) and two in conditions (ii) and (iii).  One observer was one of the authors and

the other two were naïve to the purpose of the experiments.  All had normal (or

corrected-to-normal) visual acuity and were normal trichromats as assessed by the Neitz

Anomaloscope, the HRR pseudoisochromatic plates and the Farnsworth F-2 plates.  Each

observer provided written informed consent for a protocol approved by the Office of

Human Research Protection of the University of California, Davis.

2.2. Apparatus

Stimuli were displayed on a color monitor (Sony Multiscan G220) controlled by a

Macintosh G4 computer with an ATI Radeon 7500 video card (10-bits per gun).  Stimuli

were generated using Matlab 5.2.1 with the Psychophysics Toolbox (Brainard 1997; Pelli
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1997).  The monitor was calibrated using a Minolta colorimeter (CS 100 Chroma Meter)

and procedures set out in Brainard et al (2002).  Observer position was stabilized by a

chinrest so that the screen was viewed at a distance of 217 cm.

2.3. Stimuli

Stimulus patterns used to produce the WCE consisted of a central test region (the

induction region) surrounded by double contours arranged in rectangular patterns that

were 5.35 deg in height and ranged between 5.4 arcmin and 7.4 deg in width (see Fig. 1).

Intermediate widths used were: 9.3 arcmin, 30.6 arcmin, 1.43 deg, and 5 deg.  The double

contours were sinusoidally shaped at 1.5 cycles per degree (amplitude = 0.13 deg) with a

width of 1.7 deg.  They were composed of two different colors: an orange (u’,v' = 0.231;

0.512; Y = 20 cd/m2) inner contour and purple (u',v' = 0.211, 0.375; Y = 55 cd/m2) outer

contour, presented on a neutral white background (u’,v' = 0.189, 0.467; Y = 80 cd/m2).

The WCE is dependent on the luminance contrast between the two borders (Devinck et al

2005; Pinna 2005).  Thus, the luminance of the orange contour was higher than that of the

purple contour with a luminance ratio of 2.75 corresponding to the higher contrast used in

a previous paper, this setting allowed to obtain a stronger WCE (Devinck et al 2005).

Under these conditions uniform orange color spreading was readily seen within the

enclosed surface area for all pattern widths tested.

Figure 1 about here
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2.4. Procedure

Observers were dark adapted for 3 minutes before beginning the experiment.  They were

asked to adjust the chromaticity of the enclosed stimulus area until it appeared

achromatic (hue-cancellation).  In a previous manuscript (Devinck et al 2005), the results

showed no difference between color-matching and hue cancellation task for the pattern

used in the present paper. In addition, observers generally found the hue-cancellation task

to be easier than matching and were able to perform this task relatively quickly.  For this

reason, all subsequent experiments in this paper used the hue-cancellation method.  For

nulling, the luminance of the induction area was held constant, while the chromaticity

was adjusted by pushing appropriate buttons on a gamepad.  Each button press changed

the hue of the test area in equal steps along a* and b* chromaticity coordinates in CIE

L*a*b* color space.  Observers were able to toggle between three step sizes by pressing a

separate button (0.5, 0.1 and 0.02 in CIE L*a*b* color space) to optimize the efficiency

of the task.  To reduce adaptation to the stimulus pattern, stimuli were presented for 2 s,

with an interstimulus interval of 2 s during which a large blank field of the same

luminance and color as the white background was interspersed.  This sequence was

repeated until the observers were satisfied with their settings and clicked a mouse to end

the trial and start the next one.  The order of the stimuli was randomized for each

observer.  Each subject made 10 settings for each stimulus width tested.  Practice trials

preceded the data collection.

Possible effects of chromatic aberration were evaluated in a separate experiment

in which the stimuli were viewed through a Powell achromatizing lens (Powell, 1981).

The apparatus was identical to the previous condition, except that stimuli were viewed
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monocularly with and without the achromatizing lens.  The position of the achromatizing

lens was adjusted horizontally and vertically for each observer before each session using

an x-y micrometer stage to align a set of red-blue nonius lines.

3. Results

Figure 2 shows each observer’s mean settings plotted in CIE u’v’ coordinates for the six

widths of the target stimulus.  The mean color direction of the settings for hue-

cancellation is opposite to that of the inducing orange contour, but not perfectly.

Therefore, we calculated the difference angle by subtracting the angle for the induced

color vector from that of the orange contour vector in the opposite direction.

Chromaticity settings were in the opposite color direction from the inducing contour with

a mean difference ranging from 17.14 – 20.5 deg in comparison with the orange vector,

for all stimulus widths and whatever the condition used.

We also calculated the magnitude of the assimilation effect by dividing the shift

vector size by the inducing contour vector.  The results are presented in Figure 3, and the

data were fit using the following exponential function: y=x(a+b), where a determines the

shape of the exponential curve, and b is a constant that determines the position of the

curve on the y-axis.  Fitting parameters are shown in Table 1.

Table 1 about here

In Figure 3, the ratio between the shift size vector and the inducing contour vector

is plotted as a function of stimulus width.  The top panel refers to binocular viewing, the

middle panel to monocular viewing and the bottom panel to monocular viewing with an
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achromatizing lens.  Results in the top panel show that there was a difference in

chromaticity shift for the different stimulus widths: when the size of the induction area

increased, the vector shift required for hue cancellation decreased exponentially.  For

example, while relatively large chromaticity shifts of 38.11% and 18.04% were needed

for the two narrowest columns (5.4 and 9.3 arcmin, respectively), shifts of only 4.61-

1.75% were required for wider columns.  Note that the magnitude of the effect for a

stimulus width of 1.43 deg is similar to that found by Devinck et al (2005) under

comparable conditions.  We conclude that the WCE is most salient for stimuli with

smaller enclosed areas.

Figures 2 and 3 about here

Figure 3 (middle panel) shows the results for monocular viewing as a function of

stimulus width.  Data were similar for binocular and monocular conditions without the

achromatizing lens.  When the stimulus was viewed through the achromatizing lens

(Figure 3, bottom panel), the shift in chromaticity decreased exponentially with

increasing stimulus width.  Data for larger stimulus widths (≥ 30.6 arcmin) were similar

to those for monocular viewing without the achromatizing lens.  However, results for the

smaller stimulus width (≤ 9.3 arcmin) differed from those obtained with binocular and

monocular viewing without the achromatizing lens.  Indeed, the perceived color was less

saturated than in the non-achromatizing lens conditions.  Thus, the chromaticity shift

required was around 16.5 – 17.1% (5.4 arcmin) and 5.1 – 8.6% (9.3 arcmin).
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4. Discussion

Several studies have shown that the magnitude of color assimilation depends upon the

induction area (Fach and Sharpe 1986; Smith et al 2001; de Weert and Spillmann 1995;

Monnier and Shevell 2003; Devinck et al 2005).  The present experiment demonstrates

the importance of stimulus width for the WCE.  Whereas the wider stimuli (≥ 30.6

arcmin) exhibited small shifts in color appearance, the narrower ones (≤ 9.3 arcmin)

produced larger shifts.  Chromatic aberration explains the stronger assimilation effect

obtained for narrow stimuli, but not for wide stimuli.

4.1. The role of chromatic aberration in color assimilation

The stronger assimilation obtained in the WCE for narrow stimuli can be explained, at

least in part, by chromatic aberration, while assimilative color perceived over wider

stimuli cannot.  If chromatic aberration would fully explain the WCE, the resulting

curves in Fig. 3 (bottom) would be expected to have no chromaticity shift, whereas the

results for both monocular conditions diverged only slightly for the wider induction area,

and decreased with the narrow stimuli when an achromatizing lens was used.

Smith et al (2001) suggested that chromatic aberration contributes to assimilation,

but that there must be additional factors.  Other studies have argued against a substantial

contribution of aberration (Fach and Sharpe 1986; Moulden et al 1993).  This difference

is reflected in studies suggesting that assimilation is present (Pinna et al 2001; Monnier

and Shevell 2003) or absent (Broerse et al 1999) depending on whether or not stimuli

were observed through an achromatizing lens.  Our data show that chromatic aberration

cannot account for the WCE in the wider stimuli that have been used in previously
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published work.  The present study may link these studies with classical color

assimilation by taking stimulus width into consideration.  Bradley et al (1992) found

chromatic aberration to be more important at higher spatial frequencies, than at lower

spatial frequencies.  Thus, the aberration will not be different, but the impact would be

more important at higher spatial frequencies.  For example, if a very thin blue bar is next

to a very thin yellow bar (high spatial frequency), then a small offset due to chromatic

aberration could cause them to overlap on the retina.  This may result in the perception of

a light bar and a dark bar rather than of blue and yellow bars.  For wider contours, the

impact would not be as great because only the edges would overlap.

Notwithstanding the effect of chromatic aberration, our data are consistent with

those of investigators who concluded that a neural process contributes to assimilation

(Hurvich and Jameson 1974; Shevell and Cao 2003), although the neural locus is still

unknown (Shevell and Cao 2004).

4.2. Relation to previous assimilation studies

Pinna et al (2001) pointed out that the induced color in the WCE continues to be seen up

to about 45 deg.  Our results show that with large stimuli, the effect is present with an

achromatizing lens.  Under our conditions, we showed that the color shift reached an

asymptotic level by about 7 deg.

Recently, Monnier and Shevell (2003, 2004) reported large shifts in color

appearance when using a patterned chromatic background composed of a concentric

inducing circle, but not for a uniformly colored background.  Thus, they showed that

color appearance depends on the spatial configuration of the context.  Nevertheless, the
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present study might help explain the strong assimilation effect found by these authors: the

induction area was small (9 arcmin).  With stimuli exceeding 1 deg, assimilation strength

might have decreased.

Finally, different stimulus configurations (Fach and Sharpe 1986; DeWeert and

Spillmann 1995; Smith et al 2001; Monnier and Shevell 2003, 2004) may be encoded

differently by the visual system.  Consequently, one may expect different amounts of

assimilation for each.

4.3. Relation to previous assimilation theories

Jameson and Hurvich (1975, 1989) proposed that color assimilation depends upon the

diameters of both center and surround regions of the underlying neural receptive fields.

Accordingly, if the stimulus elements are small relative to the receptive field centers, then

assimilation occurs due to color mixing; and if the stimulus elements are larger, then

assimilation gives way to spatial contrast.  Thus, the chromaticity shift should vary with

the width of the stimulus.  Indeed, a larger assimilation shift should be obtained with the

small widths because the inducing contour adjacent to the induced area will be weighted

strongly in the center of the receptive field.  Moreover, assimilation should decrease then

lead to a contrast effect with larger stimuli because of the inhibitory surround of the

receptive field.

Monnier and Shevell (2003, 2004) showed that a patterned background,

composed of concentric inducing circles alternating between two chromaticities that

stimulate the S-cones, produced a large shift in color assimilation.  This result is

consistent with an S-cone antagonistic center-surround (+S/-S) receptive field (Monnier
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and Shevell 2004).  Such neurons are not found in the retina (Dacey 2000), but have been

reported in the visual cortex (Conway 2001; Solomon et al 2004).  The transition from

assimilation to contrast suggested by Jameson and Hurvich (1975, 1989) might also occur

in S-cone spatial antagonism.  Further experiments are necessary to test the generality of

this model for the WCE to determine if a large shift will be also obtained using S-cone

modulated patterns.

In our experiments, the chromaticity shift decreased with increases in induced

area as expected from the spatial structure of receptive fields.  However, we did not show

a contrast effect for the larger widths.  Thus, conventional receptive field organization

seems unlikely to explain the WCE.  Several hypotheses might be proposed related to

color filling-in that involves networks derived from receptive fields.  Long-range signals

arising at the contour and propagated from the boundary to the enclosed region (with no

neural response) are required for color perception over extended areas (Gilbert 1996;

Spillmann and Werner 1996).  This may culminate in a symbolic color representation

such that signals from edge-detectors are integrated at a higher level to produce a

response that represents the color of the surface (von der Heydt et al 2003).

A neuro-computational model has been fully developed by Grossberg and

Mingolla (1985) to explain color filling-in.  This theory distinguished two parallel

processing modes, the Boundary Contour System (BCS) which generates contour

information, and the Feature Contour System (FCS) which involves filling-in processes

by which color and brightness spread.  In this model, a weakening of the boundary is a

prerequisite for the outflow of color.  In the case of the WCE, the FCS within the inner

contour will induce the orange color; at the same time, the BCS will inhibit the boundary
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between the orange contour and the background.  Consequently, the weakened boundary

will allow orange color to flow out and spread, but the presence of a strong boundary

(e.g., the purple contour) will be able to contain color spreading in one direction.  This

approach then is consistent with the perception of the orange veil in the WCE.
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Figure Legends

Fig. 1:  Two examples of WCE stimuli used in this study.

Fig. 2:  Hue-cancellation data plotted in CIE u’v’ chromaticity space.  Each panel

shows a different width of the stimulus.  The mean vector required for

cancellation is shown by the arrow originating at the white background (top

center).  Results for different widths are displayed separately.  Symbols denote

color shifts for three observers: subject 1 (), subject 2 () and subject 3 ().

The solid line shows the direction of the orange (inner) contour chromaticity

while the dotted lines represent cone-opponent axes, S/(L+M) and L/(L+M).

Error bars are ±1 SEM.

Fig. 3:  WCE quantified by color-cancellation and expressed by the shift size vector

divided by the inducing contour vector as a function of stimulus width.  Results

of hue-cancellation are displayed for the three viewing conditions: binocular

(top panel), monocular (middle panel), and monocular with an achromatizing

lens (bottom panel).  Individual observers as in Fig. 2; mean shown by bold

line and symbol .  Error bars are ±1 SEM.
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Figure 1
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Figure 2
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Table 1:  Fitting parameters for all observers and experimental conditions.

Experimental Condition Observers a b
Binocular Observer 1 -1.54 1.80

Observer 2 -1.46 1.30
Observer 3 -1.48 2.84

Mean -1.49 2.02
Monocular Observer 1 -1.48 2.02

Observer 2 -1.50 1.75
Monocular with Achromatizing Lens Observer 1 -1.08 1.92

Observer 2 -1.16 1.85


