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The melting process is studied for the case of snowflakes of aggregate type.

Snowflakes are placed in the center of an acoustic levitator with a warm air flow.

The evolution of the shape of the snowflake is recorded over time by a camera and the total melting time is measured. A model is proposed to describe the melting process. It is based on a simplified 3D geometric representation of the snowflake (spheroidal shape for the convex hull) and an accurate estimation of its bulk density throughout the melting process. This allows taking into account the very important change of the shape of the aggregate during the melting step and thus to be able to predict the total melting time with a much better accuracy than the existing models.

Introduction

Aircraft icing has been studied since the early 20th century as a major meteorological hazard during flight. In the 1990s, ice crystal icing was identified [START_REF] Mason | The ice particle threat to engines in flight[END_REF], and regulations were changed accordingly. More recently, the study of snowflake accretion icing has been of great interest to the lower flying aircraft industry such as helicopters. Indeed, service history has shown that in-flight snow conditions have caused power interruptions on some engines with air inlets that have plenums, reverse flow, or particle separation design features. To comply with certification requirements, manufacturers must prove that each engine and its air intake system can operate throughout the engine's flight power range in snow. The ability to perform physical engine tests in icing wind tunnels being very expensive with limited capability to reproduce snow conditions, numerical tools capable of accurately predicting icing in snowy conditions are an important asset to support the development and certification of new engines and aircrafts.

Consequently, a need has arisen to improve the modeling of icing with snow particles, focusing on the transport phase of the snowflake by the airflow, its impact with an aeronautical surface (wing, blade, air intake, probe, etc.) and the accretion process.

Contrary to ice crystals where high bulk densities are observed (typically of the order of 917 kg.m -3 ) with non-spherical but fairly regular geometric shapes, snowflakes are highly non-regular particles with a large variability in particle shape and bulk density. This is suggested by the seminal work of Nakaya [START_REF] Nakaya | Simultaneous observations of the mass, falling velocity and form of individual snow crystals[END_REF] on the morphological properties of crystals formed by vapour deposition (see Pruppacher et al. [START_REF] Pruppacher | Microstructure of atmospheric clouds and precipitation[END_REF] for a review). Using a MASC (Multi Angle Snowflake Camera) device, Praz et al. [START_REF] Praz | Solid hydrometeor classification and riming degree estimation from pictures collected with a multi-angle snowflake camera[END_REF] observed thousands of ground snowflakes during the 2015/2016 winter snow events at an altitude of 2500 m on the site of Davos in Switzerland, as well as on the French Antarctic base of Dumont d'Urville. A new classification containing six categories of snowflakes was drawn from these campaigns stating that snow aggregates are the most observed category during snow events.

Many studies have been carried out in the context of the transport [START_REF] Hauk | Theoretical and experimental investigation of the melting process of ice particles[END_REF][START_REF] Norde | Eulerian and lagrangian ice-crystal trajectory simulations in a generic turbofan compressor[END_REF], impact [START_REF] Senoner | Ice particle impact on solid walls : size modeling of reemited fragments[END_REF][START_REF] Reitter | Impact of an ice particle onto a dry rigid substrate : Dynamic sintering of a residual ice cone[END_REF] and accretion [START_REF] Trontin | A comprehensive accretion model for glaciated icing conditions[END_REF][START_REF] Baumert | Experimental and numerical investigations on aircraft icing at mixed phase conditions[END_REF] of ice crystals. Regarding the melting of ice particles, the pioneering work of Mason [START_REF] Mason | On the melting of hailstones[END_REF] consists of a simple one-dimensional model for the melting of falling solid ice spheres and graupel particles covered by a layer of liquid water. Based on this work, Villedieu [START_REF] Villedieu | Glaciated and mixed phase ice accretion modeling using onera 2d icing suite[END_REF] and Hauk [START_REF] Hauk | Theoretical and experimental investigation of the melting process of ice particles[END_REF] proposed an extension of this model to non-spherical particles by using a generalization of the Frossling correlation [START_REF] Frossling | The evaporation of falling drops, gerlands beitr[END_REF]. They introduced the particle sphericity in the formulations of the Nusselt and Sherwood numbers to account for the influence of the particle shape in the heat and mass transfers respectively. Experiments by Hauk et al. [START_REF] Hauk | Theoretical and experimental investigation of the melting process of ice particles[END_REF] have shown that this model can be used to predict the total melting time of non-spherical ice particles with a rather high bulk density. However, these ice particles were collected from the walls of a chest freezer leading to particles whose geometrical characteristics are far from those of a snowflake like an aggregate (with regards to size, shape and bulk density). In [START_REF] Yang | Modelling the particle trajectory and melting behaviour of non-spherical ice crystal particles[END_REF], the effect of non-spherical particle rotation on both particle trajectory and melting behavior is studied. Snowflake melting was also studied by Matsuo et al. [START_REF] Matsuo | Empirical formula for the melting rate of snowflakes[END_REF] by attaching the snowflake to a nylon net. This procedure allows a stable positioning and orientation of the snowflake, but the presence of the fiber affects the melting behavior and especially the spatial distribution of the melted water. Mitra et al. [START_REF] Mitra | A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. iv : Experiment and theory for snow flakes[END_REF] studied the melting of snowflakes in a vertical cloud tunnel where the melting of natural and laboratory-made aggregates was studied under free-fall conditions. Falling snowflakes experienced warming rates comparable to those encountered in the atmosphere (on the order of 1.25 • C per 100 m). A theoretical model using an idealized oblate spheroid snowflake for the melting process was derived from these experiments [START_REF] Mitra | A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. iv : Experiment and theory for snow flakes[END_REF] .

Figure 1 is an illustration of the melting process for an initially dry snowflake as described by Mitra et al. [START_REF] Mitra | A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. iv : Experiment and theory for snow flakes[END_REF]. It can be broken down into the following stages, from t = 0 to t = t m where t m corresponds to the moment when the particle is fully melted with a spherical shape :

1. From t = 0 to t = 0.1t m (Stage I), a significant accumulation of water appears on the outer branches of the snowflake.

2. From t = 0.1t m to t = 0.25t m (Stage II), the melt water starts to migrate from the outside of the snowflake branches to the inner part of the snowflake. During this stage, the meltwater concentrates to the connections of the snowflake branches. 3. From t = 0.25t m to t = 0.3t m (Stage III), the small peripheral branches melted whereas the main branches inside the snowflake start to melt, collecting the main flow of melted water with the onset of a collapse of the snowflake structure on itself. This causes some structural rearrangements leading to a sharp decrease in the surface area of the snowflake (Fig. 1d).

4. At the end of stage IV (t = 0.4t m ) the peripheral structure of the snowflake completely collapsed on itself leading to an ellipsoidal structure composed of a mixture of liquid water and solid ice (Fig. 1e).

5. From t = 0.4t m to t = t m , the liquid mass fraction inside the particle increases during the melting process until it reaches the value of 1. The particle is then spherical (Fig. 1f).

Mitra's experimental results (Fig. 1), supported by our own experimental results (see next part of the paper) show that the melting process of a snowflake leads to a very important change of its geometry and consequently of its exchange surface with the air. To model this process correctly, it is necessary to have a model able to take into account the influence of the complex geometry of the snowflake on the heat flux exchanged with the air, and to account for the evolution of the geometry during the melting process. This is what we propose to do in the rest of the paper.

If we restrict ourselves to simple models with at most three parameters related to the geometry of the particle, two types of models are possible :

-Type I : the ice core density based models. In this type of model, the assumed shape of the snowflake is not explicit. Its size is characterized by its volume equivalent diameter d V = (6V /π) 1/3 , which corresponds to the diameter of the sphere of the same volume V . The shape is taken into account through the sphericity of the particle defined by Φ = πd 2 V /A where A is the area of the particle. The volume πd 3 V /6 being by definition the true volume of the particle, the core density of the particle defined by ρ core p = m p /V , m p being the particle mass, is in this case very close to the ice density ρ s ≈ 917 kg.m -3 (provided that we can neglect the porosity of the particle). We thus have the following relation between the mass of the particle and its diameter : m p = ρ s πd 3 V /6. -Type II : the ice bulk density based models. In this type of model, the snowflake is represented geometrically by an oblate or prolate spheroid which corresponds to the closest spheroid that envelops the real snowflake. In the case where only a 2D image of the particle is available, this choice is arbitrary or based on an a priori knowledge of the real 3D shape.

From a mathematical point of view, the spheroid is entirely characterized by two parameters : its semi-major axis a and its eccentricity e (or equivalently its sphericity). Its volume V corresponds only to the apparent volume of the snowflake, its real volume V being in general much smaller.

To relate the mass of the snowflake to its apparent volume, it is therefore necessary to introduce the notion of bulk density of the particle defined by : ρ bulk p = m p /V , which by definition will be in general strictly lower than ρ s .

The model proposed in [START_REF] Hauk | Theoretical and experimental investigation of the melting process of ice particles[END_REF] to predict the melting time of non-spherical ice particles belongs to the first category (Type I) and that proposed by Mitra [START_REF] Mitra | A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. iv : Experiment and theory for snow flakes[END_REF] to the second (Type II). It is important to note that the second type of model offers an additional degree of freedom through the bulk density of the particle. This one allows taking into account the difference between the apparent volume of the snowflake (that of the enveloping spheroid) and its real volume. For Type II models, the deviation of the snowflake from the spherical shape is accounted for by two parameters, namely the eccentricity e of the enveloping spheroid, and the ratio ρ bulk p /ρ s .

In this paper we show that from the experimentally obtained 2D images of a levitating and melting snowflake, it is possible to estimate its bulk density. This data allows us to construct a semi-empirical law that relates the bulk density to the fraction of liquid water Y l of the snowflake. This law constitutes the essential brick to close the equations modeling the evolution of the liquid fraction and the apparent diameter d V of the snowflake during the melting process. In order to evaluate the gain in accuracy brought by this new approach, we also present in the paper a comparison between the experimental melting times and the predictions provided by Mitra's model and the core density based model proposed in [START_REF] Hauk | Theoretical and experimental investigation of the melting process of ice particles[END_REF] and already mentioned above.

In a first section (Sec. 2), the experimental apparatus is described. It consists of an acoustic levitator in which the melting of a snowflake is studied. In a second section (Sec. 3), image post-processing for particle characterization is presented.

Melting models for snowflakes are detailed in Sec. 4. They are assessed and discussed in Sec. 5. Finally, conclusions are drawn.

Melting experiments : apparatus description

The core of the experimental setup is the acoustic levitator (Fig. 2) [START_REF] Hauk | Theoretical and experimental investigation of the melting process of ice particles[END_REF], which enables levitating the investigated snowflake in an airflow. This acoustic levitator is placed in a chest freezer. A hot air blower is positioned outside of the chest freezer and blows warm air in a pipe that directs the air to the levitating snowflake. The air speed is measured once for each experimental run.

The temperature is measured by a thermocouple that is positioned directly in front of the snowflake. The humidity of the incoming airflow is measured in the pipe. The optical observation system consists of a light source, a diffusing sheet and a high resolution camera. The shadowgraphy of the melting particle allows the characterization of the particle shape and the determination of the time instance at which the particle is fully melted. However, the optical processes cannot detect the amount of liquid water in the particle.

The test matrix for the conducted experiments is given in Tab. 1. The inputs T a , v a and RH stand respectively for freestream air temperature, velocity and relative humidity. The snowflake initial temperature is given by T p0 . Uncertainties on the experimental data are given in Tab. 2. The mass m drop is that of the final droplet at the end of the melting process. It is estimated by :

m drop = π 6 ρ l d 3 drop (1) 
where ρ l = 997 kg.m -3 is the density of the liquid water and d drop is the diameter of the final droplet at the end of the melting process. t m stands for the melting time. The precise definitions of the parameters t circ , ρ bulk p0 , C i0 and Φ 0 , respectively the time after which the particle appears circular, the bulk density, circularity and sphericity of the initial dry particle (before the melting process has started) will be detailed later in the manuscript.

An estimate of the snowflake initial mass m p0 as a function of m drop is proposed following the methodology described in [START_REF] Hauk | Theoretical and experimental investigation of the melting process of ice particles[END_REF]. It takes into account mass changes due to the particle evaporation and condensation. The main hypothesis is that during the melting process, the mass transfer rate between the particle and the flow is comparable to the evaporation/condensation rate of the liquid droplet after the melting process [START_REF] Hauk | Theoretical and experimental investigation of the melting process of ice particles[END_REF]. This is illustrated in Fig. 3 for the TUDA Run38 test case where the particle projected area during the melting process is plotted. For t > t m , the particle is fully melted and supposed to be spherical. Therefore, under the effect of evaporation/condensation, the square of the diameter of the spherical droplet d 2 follows the so-called d 2 -law :

πd 2 (t) 4 - πd 2 drop 4 = K • (t -t m ) ∀t ≥ t m ( 2 
)
where K is estimated by the least squares method for t > t m (see grey dashed line in Fig. 3). Initially valid for t ≥ t m , the domain of definition of Eq. ( 2) is The red circle stands for the melting time tm.

Runs Ta • C va m s -1 RH - m drop mg Tp 0 • C tm ≈ t circ s ρ bulk p 0 kg m -3 C i 0 - Φ 0 - Light aggregates
Runs TUDA Run26 TUDA Run27 TUDA Run28 TUDA Run36 (Eq. ( 5)).

then extended to 0 ≤ t ≤ t m in order to calculate d 0 for t = 0 :

d 0 = d 2 drop - 4K π t m (3) 
The snowflake initial mass is then estimated by :

m p0 = π 6 ρ l d 3 0 (4) 
The mass variations during the melting process are estimated in Tab. 3 where the relative errors ∆m mp 0 are defined as :

∆m m p0 = m p0 -m drop m p0 (5) 
A positive error stands for mass loss through evaporation while a negative error stands for mass gain by condensation. In agreement with [START_REF] Hauk | Theoretical and experimental investigation of the melting process of ice particles[END_REF], the mass loss is low (1.6 % on average for the absolute value of ∆m/m p0 ) for the cases with the highest relative humidity (RH > 26 %). In contrast, for the drier cases (IAG Run18, Run27 and Run38), mass losses are higher.

Image post-processing for particle characterization

3.1. Particle geometrical model : from 2D image to 3D reconstructed shape Snowflake features are obtained from the camera (Fig. 2) and a single view of the particle. Thus, volume properties must be reconstructed from this single image. The procedure used is the one described in [START_REF] Aguilar | Ice crystal drag model extension to snowflakes : Experimental and numerical investigations[END_REF]. It is briefly reviewed in this section. A grayscale or black and white image of the projected surface of the snowflake is obtained by shadowgraphy. Image post-processing allows the definition of f max and f ⊥ max , respectively the particle maximum and maximum crosswise diameters of Feret (in gray in Fig. 4b). Reconstructed snowflake sha- dow area A ⊥ is also derived (in black in Fig. 4b). f ⊥ max is defined as the largest diameter among all diameters orthogonal to f max . Using Feret's diameters, it can be deduced an ellipse of major semi axis a and minor semi axis c (in gray in Fig. 5) defined by :

a = f max /2 (6a) c = f ⊥ max /2 (6b)
From the axes of the ellipse it can be constructed either an oblate spheroid (generated by rotation of the ellipse around its z minor axis, Fig. 5a) or a prolate spheroid (generated by rotation of the ellipse around its y major axis, Fig. 5b) of volume V = 4 3 πa 2 c for an oblate spheroid and V = 4 3 πc 2 a for a prolate spheroid. Using these parameters, the following characteristics can be deduced : where d V is the volume equivalent diameter of the enveloping spheroid and S is the 3D surface of the spheroid given by :

d V = 6V π 1/3 , Φ = πd 2 V S (7) 
S = 2πa 2 + π c 2 e ln 1 + e 1 -e (8) 
for an oblate spheroid and :

S = 2πa 2 1 + c ae arcsin e (9) 
for a prolate spheroid. Φ is the spheroid sphericity between 0 and 1. The eccentricity of the spheroid is defined as e = 1 -c 2 a 2 . It is worth noticing that the sphericity Φ is different from the real snowflake sphericity Φ. In general we have Φ < Φ ≤ 1. In the same way we have in general d V < d V with by definition d V = (6V /π) 1/3 , V being the real volume of the snowflake. In the following we will use the terms apparent diameter and apparent sphericity for the parameters d V and Φ respectively. On the contrary we will speak of the equivalent volume diameter and the real sphericity of the particle to designate the parameters d V and Φ respectively.

In the following, we will also need to introduce the snowflake circularity.

From A ⊥ (in black in Fig. 4b), circularity C i of the 2D projected view of the particle is defined as :

C i = 4πA ⊥ P 2 ( 10 
)
where P is the perimeter of the projected view (in blue in Fig. 4b).

Melting time estimation for experiments (t m )

In order to compare the experimental and numerical results, it is necessary to define t m , the snowflake melting time [START_REF] Kintea | Shape evolution of a melting nonspherical particle[END_REF]. For the experiments, determining t m is not obvious since it is not possible to accurately identify the time when the last ice residues will disappear by melting. A geometric criterion based on experimentally observable quantities is chosen in this study to define the melting time. t m is then approximated by t sph , the time when the particle becomes spherical. It is assumed that a spherical particle is almost fully liquid, or at least that it contains a still solid part negligible compared to the liquid part.

Particle volume information being not available from the experiments (Sec. 3.1), t sph is evaluated by t circ , the time after which the particle appears circular in the focal plane of the camera, i.e. with a circularity C i (Eq. ( 10)) close to 1.

Figure 6 shows the time evolution of the reconstructed circularity C i during the melting process of the snowflake TUDA Run28 (Tab. 1). Each symbol (solid grey circle) stands for a reconstruction of C i from a 2D view taken at a given time (Eq. ( 10)). The time evolution of C i is noisy in time. It can be approximated by the following function C reg i :

C reg i (t) = C i0 + (1 -C i0 ) f t t ∞ (11)
where t ∞ is the acquisition time by the camera, C i0 is the initial circularity of the dry snowflake evaluated by Eq. ( 10), and f is an increasing function of time

verifying f (0) = 0 and f (1) = 1 such that C reg i (0) = C i0 and C reg i (t ∞ ) = 1.
The function f , defined on [0; 1] is then decomposed as follows :

f (t) = h • g(t) ( 12 
)
where h is chosen as the sigmoid function defined by h(x) = 1 2 + 1 2 tanh(x) to be in line with the time evolution profile of C i (Fig. 6). g is an increasing function of time defined on [0; 1], with g(0) = -∞ and g(1) = +∞ to span the whole domain of definition of h. The following function g is chosen :

g(t) = κ 1 1 1 -t κ2 - 1 t κ2 (13) 
The values κ 1 = 0.78 and κ 2 = 0.83 are selected as minimizing the least square error between C reg i (t) and C i (t). By convention t circ , and thus t m , will be defined as C reg i (t circ ) = 0.99. In the rest of the manuscript, t circ will be chosen as the melting time t m . The values of t melt for each snowflake are summarized in Tab. 1.

Snowflake bulk density time evolution from experiments

The time evolution of the bulk density is estimated by :

ρ bulk p (t) = m p (t) V (t) (14) 
where, at each instant, m p (t) is the mass of the snowflake and V (t) is the volume of the reconstructed oblate spheroid from planar images of the particle (Sec. 3.1). The choice of an oblate and not prolate spheroid is the same as the one motivated in Mitra's model [START_REF] Mitra | A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. iv : Experiment and theory for snow flakes[END_REF]. The initial value of ρ bulk p (t), denoted ρ bulk p0 , is presented in Tab. 1. It stands for the bulk density of the dry snowflake before the melting process has started.

During the melting process, the mass m p (t) of the particle is between m p0 and m drop . For each case in Tab. 1, the ratio (∆m/m p0 ) / ∆ρ/ρ bulk p0 is less than 3.9 %, where ∆m/m p0 is defined in Eq. ( 5) and ∆ρ/ρ bulk p0 = ρ bulk p0 -ρ l /ρ bulk p0 . Thus, throughout the melting process, the contribution of the particle mass variation (∆m/m p0 ) to the bulk density variation (∆ρ/ρ bulk p0 ) is negligible compared to that of the particle volume variation. Therefore, a constant value for m p (t) is chosen in Eq. ( 14) to estimate the bulk density ρ bulk p (t) from experiments. This constant is chosen equal to m drop , the mass of the drop at the end of the melting process, m drop being a priori estimated more accurately than m p0 .

In the rest of the manuscript, a dimensionless value of ρ bulk p (t), noted ρbulk

p (t), is used : ρbulk p (t) = ρ bulk p (t) -ρ bulk p0 ρ l -ρ bulk p0 ( 15 
)
where ρ l = 997 kg.m -3 is the density of the liquid water which is also the final value of the bulk density. ρbulk p (t) lies thus between 0 for the initial dry particle and 1 for the final liquid droplet at the end of the melting process. (t) > 1 for stage IV (Fig. 1), at a time when the melting process leads to privileged directions for the particle before the final collapse of the snowflake structure. Thus, for stage IV, the reconstructed spheroid and therefore the value of ρ bulk p (t) depend strongly on the orientation of the particle on the image used to make the geometric 2D-to-3D reconstruction. This leads to a strong dispersion of the results with sometimes a reconstructed ρ bulk p (t) higher than 1 when the particle is highly anisotropic (needle shape for example).

For the majority of cases (Figs. A.16 and A.17), ρbulk p (t) shows three branches, as well as the time evolution of the circularity C i (t) (Fig. 6). Each of these branches can be related to the stages of Mitra's description (Fig. 1) :

-At early times (t/t m < 0.25, first branch), the evolution is slow. This corresponds to stages I and II described in [START_REF] Mitra | A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. iv : Experiment and theory for snow flakes[END_REF] and summarized in Fig. 1. Melting is most intense at the periphery of the snowflake. Capillary forces lead to the drainage of the liquid water from the periphery of the particle towards its center, without damaging the main ice frame. The main structure of the snowflake being preserved, the change in the bulk density is limited.

-At intermediate times (0.25 < t/t m < 0.8, second branch), the evolution is steeper. This corresponds to the stage III and the beginning of stage IV in [START_REF] Mitra | A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. iv : Experiment and theory for snow flakes[END_REF] and Fig. 1, with the collapse of the snowflake structure on itself and a sharp increase in the bulk density.

-At late times (t/t m > 0.8, third branch), the evolution is slow again.

This corresponds to the end of stage IV in [START_REF] Mitra | A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. iv : Experiment and theory for snow flakes[END_REF] and Fig. the initial density of the dry snowflake ρ bulk p0 is higher than 100 kg m -3 (dense aggregates), while it is lower than 100 kg m -3 for the other test cases (light ag-gregates). For light aggregates, stages I and II of the sequence described by Mitra (Fig. 1) correspond to the melting of peripheral structure, which slightly alter the particle bulk volume, leading to an almost constant value for ρbulk p (t) during the early times (branch 1 in Fig. 7). On the other hand, for dense aggregates, the melting process starts directly at stage III (Fig. 1) with a predominant melting in the core of the particle, leading to a more significant decrease in the bulk volume and an increase in the bulk density. Thus, although the sigmoid-type regression was proposed for the case of light snowflakes for which the function between 0 and 1. The distribution was measured during a flight test in the fra-mework of the European project ICEGENESIS [START_REF]Ice genesis : the next generation of 3d simulation means for icing[END_REF]. Five flights were performed from Dijon, France to fly over an area around the regional airport Les Éplatures located in La Chaux-de-Fonds, Switzerland. Particle images necessary for the 2D-to-3D geometric reconstruction of the oblate or prolate spheroid (Sec. 3.1) were recorded by a PIP probe aboard the SAFIRE ATR42-300 research aircraft. the typical size of the recorded particles is 1 to 3 mm, which is in agreement with of snow aggregates. The black circle in Fig. 8 is the mass median value equal to around 47.5 kg.m -3 , the mass of each particle being estimated by a mass/diameter relationship [START_REF] Baker | Improvement in determination of ice water content from two-dimensional particle imagery. part i : Image-to-mass relationships[END_REF]. Aggregates of density greater than 100 kg.m -3 represent less than 2% of the total snowflake mass, which allows to confirm that the majority of the snowflakes are light aggregates according to our classification (i.e. ρ bulk p0 < 100 kg.m -3 for light aggregates).

Melting models for snowflakes

During the melting step, the whole snowflake is assumed to be in thermal equilibrium and at the melting temperature (T 0 = 273.15 K). The liquid water is assumed to cover the ice core so that there is no sublimation but only evaporation.

The evolution of the particle during the melting process can be fully characterized by three geometric parameters : its liquid fraction Y l , its diameter d ref 

L f • d dt (Y l • m p ) = πd ref • N u (d ref , Φ ref ) Φ ref • k a • (T a -T 0 ) -ṁev L s (16a) d dt (m p ) = -ṁev (16b) with ṁev = πρ a d ref • Sh (d ref , Φ ref ) Φ ref • D v,a • (Y v,0 -Y v,∞ ) ( 17 
)
where ṁev is the evaporation rate. Equation (16a) describes the heat exchange that drives the melting process while Eq. (16b) stands for the particle mass loss due to the evaporation rate itself defined by Eq. ( 17). Eqs. ( 16) can be solved by an explicit numerical method. The finite difference numerical scheme is the following :

L f (T 0 ) • (Y l • m p ) n+1 -(Y l • m p ) n ∆t = πd n ref • N u n Φ n ref • k a • (T a -T 0 ) -ṁn ev L s (T 0 ) (18a) m n+1 p -m n p ∆t = -ṁn ev (18b) with ṁn ev = πρ a d n ref • Sh n Φ n ref • D v,a • (Y v,0 -Y v,∞ ) (19a) 
d n ref = 6m n p πρ n p ref 1/3 ( 19b 
)
where ∆t is the time step defined as ∆t = 0.001 • min(τ melt , τ evap ), τ melt and τ evap being respectively the melting and evaporative characteristic time scales. [START_REF] Mitra | A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. iv : Experiment and theory for snow flakes[END_REF] Based on an analogy between the electrostatic and diffusion problems for the definition of the evaporative flux, and the hypothesis N u = Sh assuming comparable thermal and mass diffusivities, Eqs. ( 16) can be rewritten as (Mitra [START_REF] Mitra | A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. iv : Experiment and theory for snow flakes[END_REF]) :

Mitra's model

L f (T 0 ) • d dt (Y l • m p ) = 4πf v Ck a (T a -T 0 ) -ṁev L s (T 0 ) (20a) d dt (m p ) = -ṁev (20b) ṁev = 4πf v Cρ a D v,a L s (T 0 ) (Y v,0 -Y v,∞ ) (20c) 
where C is defined as a capacitance and has the dimension of a length. For instance, for a sphere of diameter d, the capacitance is simply given by C = d/2.

Convective effects are accounted for by the mean ventilation coefficient f v which stands for the ratio between the mass flow rate of a moving particle and that of a stationary particle (pure diffusion) [START_REF] Pruppacher | Microphysics of Clouds and Precipitation[END_REF]. f v is analogous to the Sherwood number Sh, and Sh = 2f v is verified for a sphere. The analogy between the terms of Eqs. ( 16) and ( 20) is summarized in Tab. 4. Thus, defining

d ref , Φ ref ,
Term in Eq. ( 16) Term in Eq. ( 20)

d ref 2C Sh Φ ref 2f v
Table 4: Analogy of terms between Eqs. ( 16) and [START_REF] Baker | Improvement in determination of ice water content from two-dimensional particle imagery. part i : Image-to-mass relationships[END_REF].

N u and Sh in the general system of Eqs. ( 16) is equivalent to defining C, f v and d ref in the system of Mitra Eqs. [START_REF] Baker | Improvement in determination of ice water content from two-dimensional particle imagery. part i : Image-to-mass relationships[END_REF]. The reference diameter d ref , noted a i in the original paper of Mitra [START_REF] Mitra | A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. iv : Experiment and theory for snow flakes[END_REF], is given by :

d ref (Y l ) ≡ a i (Y l ) = 3m p 4π • AR(Y l ) • ρ Mitra p (Y l ) 1/3 (21)
where AR is the ratio between the radii of the major and minor axes of the melting snowflake, assuming the particle may be approximated by an oblate spheroid. ρ Mitra p is the snowflake density (see below). Thus, the dataset (C, f v , AR, ρ Mitra p ) can be equivalently defined instead of (C, f v , d ref ) at each stage of the melting process. To do this, Mitra suggests that these parameters depend only on the particle liquid mass fraction Y l , leading to the following definitions :

AR (Y l ) = 0.3 + 0.7 • Y l (22a) ρ Mitra p (Y l ) = 20 + 980 • Y l (22b) C C = 0.8 + 0.2 • Y l (22c)
where C is the capacitance of a simple oblate spheroid. Both C and f v are functions of AR, ρ Mitra p and m p which themselves depend on Y l [START_REF] Mitra | A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. iv : Experiment and theory for snow flakes[END_REF]. One major drawback of Eqs. [START_REF] Trontin | A comprehensive numerical model for mixed-phase and glaciated icing conditions[END_REF], is that AR(0) = 0.3 and ρ Mitra p (0) = 20 kg.m -3 for the initial dry snowflake (Y l = 0) regardless of its shape. No information on the geometric characterization of the initial dry particle is taken into account, considering in the same way a dense ice crystal and an aggregated light snowflake. Another weakness of the model is that it assumes a linear evolution of the particle bulk density with respect to the liquid fraction.

In the rest of the manuscript, Mitra's model will simply be noted as Mitra's.

Ice core density based approach : from ice crystals to snowflakes

This approach was initially developed for ice crystal icing [START_REF] Trontin | A comprehensive numerical model for mixed-phase and glaciated icing conditions[END_REF] where ice crystals are assumed to be rather compact with a bulk density of the same order as the ice core density ρ s = 917 kg.m -3 . Consistently with [START_REF] Aguilar | Ice crystal drag model extension to snowflakes : Experimental and numerical investigations[END_REF], the initial density ρ p0 of the dry snowflake (i.e. before the melting process has started), can be written :

ρ p0 = ρ core p0 = ρ s (23)
During the melting process, the snowflake of initial density ρ core p0 will turn into a spherical liquid droplet of density ρ l = 997 kg.m -3 . For the ice core density based model, the internal porosity is assumed to be negligible. This allows writting for the evolution of the snowflake density ρ core p during the melting process :

ρ core p (Y l ) = Y l ρ l + 1 -Y l ρ core p0 -1 (24) 
The reference diameter d ref is defined as the volume equivalent diameter, hence we have :

d ref = d V .
By definition of the core density, we also have :

d V = 6m p πρ core p (Y l ) 1/3 (25)
where ρ core p (Y l ) is given by Eq. ( 24) and the evolution of m p is driven by the evaporation law (Eq. ( 17)).

The Nusselt and Sherwood correlations are those in [START_REF] Villedieu | Glaciated and mixed phase ice accretion modeling using onera 2d icing suite[END_REF]. They are based on a generalization of the Frossling correlation [START_REF] Frossling | The evaporation of falling drops, gerlands beitr[END_REF] and can be written as :

N u(Φ, Re p ) = 2 √ Φ + 0.55P r 1/3 Φ 1/4 Re p (26a) Sh(Φ, Re p ) = 2 √ Φ + 0.55Sc 1/3 Φ 1/4 Re p ( 26b 
)
where P r and Sc are respectively the Prandtl and Schmidt numbers and Φ the particle sphericity. The particle Reynolds number Re p is defined as :

Re p = ρ a d ref ||u p -u a || µ a ( 27 
)
where u p is the particle velocity, d ref = d V (Eq. ( 25)), and ρ a , µ a and u a are respectively the air density, dynamic viscosity and velocity. A linear evolution of Φ versus Y l is assumed, between Φ 0 (sphericity of the initial dry snowflake) and 1 (liquid droplet at the end of the melting) :

Φ(Y l ) = (1 -Y l ) • Φ 0 + Y l ( 28 
)
In this study, the initial sphericity Φ 0 being not known a priori, it is estimated from the image of the dry snowflake (Fig. 4) by Φ 0 = C i0 (Eq. ( 10)), C i0 being the initial circularity of the dry snowflake.

In the rest of the manuscript, the ice core density based model will simply be noted as ρ core p model.

A new ice bulk density based model

Generalities

The reference diameter d ref is defined as the apparent diameter of the snowflake d V :

d ref = d V = 6V π 1/3 = 6m p πρ bulk p (Y l ) 1/3 (29)
where V is the volume of the reconstructed spheroid from planar images of the particle (Eq. ( 7), Sec. 3.1).

The correlations for N u and Sh are those in Eqs. ( 26) where the characteristic length in the definition of the particle Reynolds number Re p is d V , and the sphericity Φ ref is that of the reconstructed spheroid Φ . It is worth noticing that contrary to the real sphericity Φ, Φ does not change too much during the melting process. As can be seen in Tab. 1, the initial apparent sphericity Φ 0 is always close to 0.9. Hence arbitrarily postulating the linear model :

Φ (Y l ) = (1 -Y l ) Φ 0 + Y l (30) 
will not strongly affect the global accuracy of the melting model.

Model calibration

The objective here is to propose a law for ρ bulk p (Y l ) which, combined with the law in Eq. ( 30) for Φ will allow to complete the model in Eqs. [START_REF] Mitra | A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. iv : Experiment and theory for snow flakes[END_REF]. As seen before, we can introduce a dimensionless expression of ρ bulk p , denoted ρbulk p , defined as :

ρbulk p (Y l ) = ρ bulk p (Y l ) -ρ bulk p0 ρ l -ρ bulk p0 (31) 
where ρ l = 997 kg.m -3 and ρ bulk 

ρbulk p (Y l ) = 1 2 + 1 2 tanh c 1 1 -Y c2 l - c 1 Y c2 l ( 32 
)
where c 1 and c 2 are positive constants to be determined. By construction Eq.

(32) verifies the boundary conditions ρbulk

p (Y l ) -→ Y l →0 0 and ρbulk p (Y l ) -→ Y l →1 1.
To find the values of the constants c 1 and c 2 , we proceeded in two steps.

Firstly, for each of the runs (i) of the experimental database (Tab. 1), we identified the optimal pair (c

2,best ) that minimizes the following cost function :

err(c 1 , c 2 ) = 1 t m tm 0 ρbulk p (Y l (t)) -ρ bulk,reg p (t) 2 dt (33) 
where ρbulk p (Y l (t)) is computed by numerically solving the model of Eqs. [START_REF] Mitra | A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. iv : Experiment and theory for snow flakes[END_REF] closed with Eqs. (30) and (32). Next, we correlated the values of (c

(i) 1,best , c (i) 
2,best ) with the values of the bulk density ρ bulk p0 and circularity C i0 of the particles at the initial time. We will now detail these two steps. Figure 9 shows the result of the optimization process where ρbulk p (Y l (t)) (magenta solid line) and ρ bulk,reg p (t) (black dashed line) are compared for the test case TUDA -Run28 (Tab. 1).

For this particular case, the optimized values for c 1 and c 2 are respectively c 1,best = 0.72 and c 2,best = 0.54. See Tab. 5 for the values of c 1,best and c 2,best for all cases in Tab. 1.

It can be seen that the values of c

(i) 1,best and c (i)
2,best can vary significantly from one run (i) to another. They can therefore not simply be assumed to be constant. For the model to be closed, it is necessary to be able to express these two parameters in terms of the geometric parameters used to characterize the shape of the snowflake. A first simple solution consists in relying on the value of the bulk density at the initial time. This model will be called model P1 in the following. Another solution, a little more complex but presumably more accurate, consists in making c 1 and c 2 dependent on both ρ bulk p0 and the initial circularity C i0 . This model will be called model P2 in the following. c 1 and c 2 can be seen as the two parameters that control on the one hand the value of Y # l for which ρbulk p is 0.5, and on the other hand the value of the derivative of ρbulk p in Y # l . However, according to the experimental results, it has been seen that for a light snowflake, stage I of the Mitra's description [START_REF] Mitra | A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. iv : Experiment and theory for snow flakes[END_REF] (Fig. 1) during which the snowflake melts (thus Y l increases) at almost constant apparent volume (thus at constant ρbulk p ) is much longer than for a dense snowflake. It is therefore reasonable to think that there is a good correlation between ρbulk 

for the model P1 and :

c 22 = E 22 ρ bulk p0 ρ s • C G22 i0 F22 (39a) 
c 12 = E 12 ρ bulk p0 ρ s • C G12 i0 F12 (39b) 
for the model P2. ). The dashed lines correspond to the linear regressions derived for each of the models. The following error between t num m and t exp m is also given as an indication in Fig. 13 for each model :

err = i∈E [t num m (i) -t exp m (i)] 2 i∈E [t exp m (i)] 2 1/2 (40) 
where E represents the set of snowflakes in Tab. 1. The new bulk density based model, whether using P1 or P2 approach, is on average more accurate in estimating the melting time of the snowflake (at least by a factor of 2). The accuracy of the core density based model is of the same order of magnitude as that of the historical Mitra's model. Thus the ρ core p model, initially developed for ice crystals of higher density than snowflakes, accurately addresses the melting of a snowflake, provided that the sphericity Φ 0 of the initial dry particle can be estimated and is not too low.

Suggestions for revisiting Mitra's model have also been tested. Firstly, in Eq. in Fig. 14). Secondly, in addition to the previous assumption, the linear model for the evolution of the particle density with respect to Y l (Eq. ( 22b)) has been replaced by the model ρ bulk p (Y l ) (Eq. ( 32)) proposed in this manuscript (pink triangular symbol, and noted Mitra revisited R2 in Fig. 14). We can see that considering the specific geometry of the dry snowflake only slightly improves the estimation of the melting time. On the other hand, the use of a more elaborate model for the particle density as a function of Y l (here the bulk density ρ bulk p ) significantly improves the estimation of the melting time for the Mitra's model (error decrease from 49% to 35%). 1 are selected for discussion : a light aggregate (TUDA -Run36, Fig. 15a) and a dense aggregate (TUDA -Run25, Fig. 15b).

For the light snowflake, only the ρ bulk p model clearly shows a two-slope evolution. At early times (t/t m < 0.4 in Fig. 15a), the snowflake melts quickly with a rapid increase in Y l . This step corresponds to the early times when the values of the bulk density remains close to those of the dry snowflake, for which the contact surface with the hot outer atmosphere is maximum, thus enhancing heat exchange and the melting of the snowflake. At later times (t/t m > 0.4 in Fig. 15a), the snowflake melts not so fast with a slower evolution of Y l up to 1.

During this second step, the shape of the snowflake turns into that of a spherical particle with a smaller contact surface and thus a decrease in the dynamics of the melting process. Thus, unlike Mitra's and ρ core p models, the ρ bulk p model proposed in this manuscript leads to a two-slope melting rate, first fast and then slower, which is in agreement with the description of the successive stages of the melting process of a light aggregate (Fig. 1).

For the dense agregate (Fig. 15b), the melting process starts directly at stage III, so the time evolution of Y l is similar for the three models.

For the sake of completeness, the plots for all the cases of Tab. 1 are given in Conclusions are similar to the ones previously made.

Conclusions

In this paper, we compared three models to deal with the melting of a snowflake of arbitrary shape, namely two already existing models [START_REF] Mitra | A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. iv : Experiment and theory for snow flakes[END_REF][START_REF] Villedieu | Glaciated and mixed phase ice accretion modeling using onera 2d icing suite[END_REF] and a new model. Both the new model and the Mitra's model are based on a simple geometrical model of the snowflake (oblate enveloping spheroid) and on the notion of bulk density. This allows defining the heat flux exchanged between the air and the snowflake from only three parameters : the mass of the particle, its bulk density ρ bulk p , which corresponds (up to a multiplicative constant) to the ratio between the volume of the spheroid and the real volume of the snowflake, and the aspect ratio of the spheroid (or, which is equivalent, its sphericity).

The third model (denoted by ρ core p model) is even simpler since it uses only two independent parameters : the mass of the snowflake (directly related to its real volume or equivalent volume diameter) and its real sphericity which allows deducing its exchange surface.

Regarding the prediction of the total melting time, we can clearly say that the new proposed model is more accurate than the existing models since its average relative error with respect to the experimental data is about 20% while it is more than 40% for the other two. Moreover, for light snowflakes, contrary to the model proposed by Mitra, the new model is able to account for the evolution in three phases (slow, fast, slow) of the bulk density as a function of time. This also explains to a large extent its ability to predict more accurately the total melting time. To achieve this result, the key ingredient was the search for a non-linear (sigmoid) relationship between the bulk density of a snowflake and its liquid water fraction. In his model, Mitra had assumed an affine relationship which seems to be contradicted by our experimental results. As shown, it is possible to improve the accuracy of Mitra's model by replacing its affine relationship with the nonlinear relationship we have established. However, the estimate of total melting time still remains less accurate on average than with our new model.

Concerning the third model [START_REF] Villedieu | Glaciated and mixed phase ice accretion modeling using onera 2d icing suite[END_REF] which only uses the core density of the particle and its sphericity, its accuracy relies entirely on a correct estimation of the evolution of the sphericity of the snowflake during the melting process, since only this parameter allows us to take into account the effects related to the non-spherical shape. Once again, it seems that an affine relation between Φ and Y l is not sufficient as soon as one is interested in light snowflakes with a very low initial sphericity (of the order of 0.1 to 0.2), which was not the case in the experimental study presented in [START_REF] Hauk | Theoretical and experimental investigation of the melting process of ice particles[END_REF]. Even if we have not tried to do so, we can think that the accuracy of the ρ core p model could be improved by replacing the affine relation between Φ and Y l by a non-linear one.

To conclude, we can say first of all that our experimental study has confirmed Mitra's observations on the existence of several stages in the dynamics of the melting process of a snowflake. Moreover, in terms of modeling, we have exploited these observations to propose an empirical relation to link the bulk density of a melting snowflake to its liquid water fraction. Taking into account this highly non-linear relationship, we have proposed a new melting model capable of recovering the melting times of the 16 runs in our database with an average relative accuracy of 20%, which, given the uncertainties and simplifications inherent in this type of model, seems quite acceptable. In the future, it will be necessary to consolidate these results by continuing the validation of the model (and if necessary its improvement) using other experimental data. 

Figure 1 :

 1 Figure 1: Successive stages observed during the melting of a snowflake according to Mitra et al. [16]. The melting time tm corresponds to a fully melted particle with a spherical final shape.

Figure 2 :

 2 Figure 2: Schematic of the experimental setup consisting of a snowflake in an acoustic levitator, hot air supply, a thermocouple, a light source and a camera. The hot air blower upstream of the illustrated pipe is not shown here.

Figure 3 :

 3 Figure 3: Projected area during the melting process (TUDA Run38 test case, see Tab. 1).

  (a) Snowflake grayscale image. (b) Post processed image.

Figure 4 :

 4 Figure 4: Data post-processing illustration (TUDA Run28 test case, Tab. 1).

  (a) Oblate spheroid reconstruction. (b) Prolate spheroid reconstruction.

Figure 5 :

 5 Figure 5: Oblate and prolate spheroid reconstructions.

Figure 6 :

 6 Figure 6: Time evolution of the reconstructed circularity C i during the melting process of the snowflake TUDA Run28 (Tab. 1). Each symbol (solid grey circle) stands for a reconstruction of C i from a 2D view taken at a given time (Eq. (10)). Best fit curve (dashed black line) is the function C reg i (Eq. (11)). The empty black circle shows t circ such that C reg i (t circ ) = 0.99.

Figure 7 Figure 7 :

 77 Figure 7 shows the time evolution of ρbulk p (black symbols) for the test case TUDA -Run28 (Tab. 1). Time is scaled by the experimental melting time t m

  . The particle is quasi-spherical and mainly composed of liquid water. Its density is almost equal to ρ l , and ρbulk p (t) ≈ 1. In agreement with the three branches for the time evolution of the bulk density, a sigmoid-type function is used to approximate ρbulk p (t). In Fig. 7 (and in Figs. A.16 and A.17), the black solid line shows the sigmoid functions as regression curves (best fit) among the dispersed reconstructed values of ρbulk p (t) from the experiments. The regression curves (black solid lines), noted ρ bulk,reg p , will be used as experimental references to evaluate the different models proposed for ρ bulk p (t) (Sec. 4). For the three IAG cases and TUDA Run13 and Run25 cases (Fig. A.18), branch 1 of the sigmoid does not exist. For these five configurations (Tab. 1),

  ρbulk p (t) has 3 branches, Fig. A.18 shows that it is also suitable for cases of dense snowflakes for which the first branch is absent.

Figure 8

 8 Figure 8 shows the mass probability distribution of natural snowflakes as a function of their dry bulk density ρ bulk p0 (blue histograms) and allows estimating the occurrence probabilities (in mass) between light and dense aggregates. The black solid line stands for the associated cumulative distribution function

Figure 8 :

 8 Figure 8: Blue histograms : mass probability distribution of natural snowflakes as a function of their dry bulk density ρ bulk p 0 . Solid line : associated cumulative distribution function. Black circle : mass median value.

Figure 8

 8 Figure 8 illustrates flight F210007 of January 28, 2021 which is representative of all flights. During this flight at an altitude between 1000 m and 2000 m,

  (d V or d V depending on whether we use a type I or a type II geometric model) and its sphericity Φ ref (apparent or real depending on whether we use a type I or a type II geometric model). Writing the conservation of energy and mass we obtain the following two equations :

  d ref and Φ ref are respectively the particle reference diameter and sphericity. The parameters ρ a , T a and k a are respectively the freestream density, temperature and thermal conductivity. D v,a is the diffusion coefficient of steam in dry air. N u and Sh are respectively the Nusselt and Sherwood numbers which depend on d ref and Φ ref .The coefficients L s and L f are respectively the latent heats of sublimation and melting. Y v,∞ is the freestream steam mass fraction while Y v,0 is the steam mass fraction in the saturated region above the particle. Y v,0 is a known parameter, being a function of T 0 and the freestream pressure P ∞ .

Superscripts • n

  and • n+1 denote respectively the variables estimated at times t n and t n+1 . By definition one has m p = ρ p ref πd 3 ref /6, where ρ p ref corresponds to the particle core density or to the particle bulk density depending on the type of geometric model chosen. If the expressions of N u and Sh are assumed to be known, there remain 4 unknowns m p , Y l , ρ p ref , and Φ ref for only two differential equations (Eqs. (16)). It is therefore necessary to provide two additional closure laws. This is done in the following by relating ρ p ref and Φ ref to Y l .

p0 = ρ bulk p ( 0 )

 0 is the bulk density of the initial dry snowflake. Thus, defining ρ bulk p (Y l ) is similar to defining both a model ρbulk p (Y l ) and ρ bulk p0 . To derive a model for ρbulk p (Y l ), time evolutions ρbulk p (t) obtained from experimental observations (Sec. 3.3), and then denoted by ρbulk,exp p (t) can be used. However, since Y l is not an experimentally measured quantity, we cannot find the ρbulk p (Y l ) function only from the experimental data. To do so, one must combine modeling and experimental results and solve an inverse problem. Since the liquid mass fraction Y l is a monotonic function of time, a sigmoid shape is also assumed for ρbulk p (Y l ) in coherence with the sigmoid shape functions used for ρbulk,exp p (t) (Sec. 3.3 and Figs. A.16, A.17 and A.18). This leads to the following model for ρbulk p (Y l ) :

Figure 9 :

 9 Figure 9: Comparison between ρbulk p (Y l (t)) and ρ bulk,reg p

Figure 11 :

 11 Figure 11: Optimal linear regressions (i.e. minimizing 1 -R 2 ) obtained from Eqs. (35) (model P2).

Figure 12

 12 Figure 12 compares the evolution of ρbulk,exp p

Figure 12 :

 12 Figure 12: Comparison between ρbulk,expp

Figure 13 :

 13 Figure 13: Melting times.

( 22 )

 22 , regarding the definition of AR and ρ Mitra p as a function of Y l , instead of considering constant values for the initial values AR(0) and ρ Mitra p (0) (0.3 and 20 kg.m -3 respectively, regardless of the shape of the dry particle), the values obtained from the spheroidal 2D-to-3D geometric reconstruction for the dry snowflake have been used (orange square symbols, and noted Mitra revisited R1

Figure 14 :

 14 Figure 14: Revisited versions of the Mitra's model. Influence on the melting time.

5. 2 .Figure 15 :

 215 Figure 15 represents on the same plot the time evolution of Y l (left axis) and of the dimensionless bulk density ρbulkp

Figs. A. 19

 19 Figs. A.19 and A.20 for light aggregates, and in Fig. A.21 for dense aggregates.

Figure A. 16 :Figure A. 17 :Figure A. 18 :Figure A. 19 :Figure A. 20 :Figure A. 21 :

 161718192021 Figure A.16: Time evolution of the particle density ρp. Light aggregates (1/2).

Table 1 :

 1 Test matrix.

		TUDA Run26	24.4	0.6	41	1.578 -14.7	8.6	76	0.32 0.93
		TUDA Run27	28.0	0.7	36	1.711 -14.0	6.4	43	0.20 0.88
		TUDA Run28	25.6	0.6	38	1.575 -16.1	7.1	43	0.14 0.92
		TUDA Run36	26.6	0.7	38	0.449 -14.2	2.4	23	0.20 0.69
		TUDA Run37	28.6	0.6	34	2.046 -14.4	5.0	30	0.15 0.76
		TUDA Run38	28.2	0.6	35	0.487 -13.5	3.3	30	0.17 0.77
		TUDA Run39	28.2	0.5	36	1.652 -13.0	4.7	39	0.18 0.85
		TUDA Run40	27.2	0.6	35	1.187 -15.4	3.2	53	0.18 0.77
		TUDA Run51	28.3	0.7	32	1.059 -13.1	4.6	14	0.09 0.78
		TUDA Run71	25.2	0.5	33	2.057 -16.6	5.7	21	0.12 0.92
		TUDA Run72	26.5	0.6	30	0.964 -15.8	3.9	17	0.14 0.82
	Dense aggregates	TUDA Run13 TUDA Run25 IAG Run18	26.0 27.4 28.4	0.5 0.6 1.0	26 35 6	1.666 -14.0 2.041 -12.5 0.723 -7.0	11.3 8.9 10.1	112 120 145	0.24 0.91 0.21 0.86 0.36 0.93
		IAG Run27	33.1	0.9	4	0.318	-4.0	5.6	144	0.35 0.88
		IAG Run38	32.4	0.9	1	0.240	-7.0	7.9	132	0.28 0.98

Table 2 :

 2 Experimental data uncertainties.

Table 3 :

 3 Relative errors ∆m mp 0

Table 5 :

 5 Best coefficients c 1,best and c 2,best (Eq. (32)) minimizing the L 2 -norm between ρbulk

p (Y l (t)) and ρ bulk,reg p (t) (Eq. (

33

)).

  The coefficients of Eqs. (38) and (39) are given in Tab. 6.

	E 11	E 12	E 21	E 22	F 11	F 12	F 21	F 22	G 12	G 22
	0.285 0.246 0.229 0.396 -0.329 -0.215 -0.686 -1.113 1.363 -0.978

Table 6 :

 6 Coefficients of Eqs. (38) and (39).
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(resp. Eq. (34b), Eq. (35a) and Eq. (35b)). The parameters α 1 , β 2 (respectively in Eq. (34b) and (35a)), and the set of parameters (α 2 , γ 2 ) in Eq. (35b) are chosen to minimize 1 -R 2 via an optimization procedure, where R 2 is the coefficient of determination of the linear regression in question. The results of the linear regression for each of Eqs. (34a), (34b), (35a) and (35b) are :

with the following values for α 1 , α 2 , β 2 and γ 2 :