
HAL Id: hal-04048558
https://hal.science/hal-04048558

Submitted on 28 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Closed Resolver Project: Measuring the
Deployment of Inbound Source Address Validation

Yevheniya Nosyk, Maciej Korczyński, Qasim Lone, Marcin Skwarek, Baptiste
Jonglez, Andrzej Duda

To cite this version:
Yevheniya Nosyk, Maciej Korczyński, Qasim Lone, Marcin Skwarek, Baptiste Jonglez, et al..
The Closed Resolver Project: Measuring the Deployment of Inbound Source Address Validation.
IEEE/ACM Transactions on Networking, 2023, pp.1-15. �10.1109/TNET.2023.3257413�. �hal-
04048558�

https://hal.science/hal-04048558
https://hal.archives-ouvertes.fr


IEEE/ACM TRANSACTIONS ON NETWORKING 1

The Closed Resolver Project:
Measuring the Deployment of Inbound Source

Address Validation
Yevheniya Nosyk, Maciej Korczyński, Qasim Lone, Marcin Skwarek, Baptiste Jonglez, Andrzej Duda

Abstract—Ingress filtering, commonly referred to as Source
Address Validation (SAV), is a practice aimed at discarding
packets with spoofed source IP addresses at the network periph-
ery. Outbound SAV, i.e., dropping traffic with spoofed source IP
addresses as it leaves its source network, has received widespread
attention in operational and research communities. It is one of
the most effective ways to prevent Reflection-based Distributed
Denial-of-Service (DDoS) attacks. Contrariwise, inbound SAV, i.e.,
dropping incoming spoofed traffic at the destination network
edge, has received less attention, even though it provides pro-
tection for the deploying network. In this paper, we present the
results of the Closed Resolver Project, our initiative aimed at
finding networks without inbound SAV and raising awareness of
the issue. We perform the first Internet-wide active measurement
study to enumerate networks that enforce (or not) inbound
SAV. We reach open and closed Domain Name System (DNS)
resolvers in tested networks and determine whether they resolve
requests with spoofed source IP addresses. Our method provides
unprecedented insight into inbound SAV deployment by network
operators, revealing 49% IPv4 and 26% IPv6 Autonomous
Systems (AS) that suffer from a consistent or partial absence
of inbound filtering. By identifying dual-stack DNS resolvers
and ASes, we further show that inbound filtering is generally
deployed consistently across IPv4 and IPv6. Finally, the lack
of inbound SAV exposes 2.5M IPv4 and 100K IPv6 purportedly
closed DNS resolvers to many types of external attacks, including
NXNSAttack, zone poisoning, or zero-day vulnerabilities in DNS
software.

Index Terms—IP spoofing, ingress filtering, Source Address
Validation, DNS resolvers, IPv6, dual-stack.

I. INTRODUCTION

THE Internet relies on IP packets to enable communication
between hosts with the destination and source addresses

specified in packet headers. However, there is no packet-level
authentication mechanism to ensure that the source address has
not been altered [1]. The modification of a source IP address
is referred to as “IP spoofing”. It results in the anonymity
of the sender and prevents a packet from being traced to its
origin. Reflection-based Distributed Denial-of-Service (DDoS)
attacks leverage this mechanism and become even more de-
structive using an amplification vector [2]–[4]. As it is not
possible in general to prevent packet header modification, con-
certed efforts have been undertaken to “prohibit attackers from

Y. Nosyk, M. Korczyński, A. Duda are with Univ. Grenoble Alpes, CNRS,
Grenoble INP, LIG, F-38000 Grenoble, France.

Q. Lone is with RIPE NCC, the Netherlands.
M. Skwarek was with Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG,

F-38000 Grenoble, France. He is now with Exatel, Poland.
B. Jonglez was with Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG,

F-38000 Grenoble, France. He is now with Inria, France.

using forged source addresses which do not reside within a
range of legitimately advertised prefixes” [5]. Ingress filtering,
implemented at the periphery of Internet-connected networks,
can achieve this goal. It was first formalized in RFC 2827, also
known as Best Current Practice 38 [5]. In the network operator
and research communities, “ingress filtering” is commonly
referred to as “Source Address Validation (SAV)” [6] and the
network “periphery” as the network “edge”. We adopt this
widely-accepted terminology throughout this paper.

One reason why the volume of DDoS attacks is grow-
ing exponentially [7] is the lack of outbound SAV: it en-
ables attackers to launch destructive attacks while staying
untraceable. Some of the largest DDoS attacks known to
date relied on sending spoofed requests to open Connection-
less Lightweight Directory Access Protocol (CLDAP) [7], [8],
DNS [7], [9], Memcached [10], and Simple Mail Transfer
Protocol (SMTP) [7] services. Preventing this type of attacks
requires two actions. The first is to decrease the amplifier
landscape by ensuring that, wherever possible, services do not
accept requests from any host on the Internet. The second,
and the most important one, is to deploy outbound SAV so
that all traffic leaving the attacker network can only have
a valid source IP addresses. Given the prevalent role of IP
spoofing in cyberattacks, the deployment of outbound SAV
was extensively studied in literature [3], [11]–[15].

However, little research investigated inbound SAV, i.e.,
filtering out spoofed traffic at the edge of the destination
network. The lack of inbound SAV enables an external intruder
to masquerade as an internal host of a network. In this case,
it is enough for an attacker to spoof its source IP address so
that it matches the destination network prefix. Such a spoofed
request will reach the intended target (e.g., a closed DNS
resolver only processing requests originating from its local
network), even though the packet itself is coming from outside
the destination network. It may raise serious problems for the
victim network: all the services that were believed to be only
accessible to local clients are now accepting requests from
attackers.

For example, network administrators may wish to secure
DNS resolvers by making them closed. A closed resolver
only accepts DNS queries from known clients and does so
by matching the source IP address of a query with a list of
allowed addresses. If the attacker spoofs any address from the
list of allowed clients, she can launch any attack that com-
monly targets open resolvers and nameservers, such as zone
poisoning [16], cache poisoning [17], DNS Unchained [4],



IEEE/ACM TRANSACTIONS ON NETWORKING 2

NXDOMAIN [18], or NXNSAttack [19]. These attacks can
result in Denial-of-Service for both recursive resolvers and au-
thoritative nameservers, with a maximum packet amplification
factor of 1,620 for NXNSAttack [19]. Although IP spoofing
is not strictly required for these attacks to succeed, it can
greatly increase the number of affected DNS resolvers and
authoritative nameservers. Furthermore, IP spoofing allows
targeting closed servers for which administrators do not expect
such attacks, so, they are less likely to deploy preventive
counter-measures or monitor these servers for attacks. Deploy-
ing inbound SAV at the network edge is an effective way of
protecting closed DNS resolvers (and other services) from this
type of external attacks. Therefore, it directly protects hosts
inside the network, providing direct and immediate security
benefits to the organization deploying it.

Unlike outbound SAV, only a few initiatives (the Spoofer
project [20] and a concurrent work by Deccio et al. [21])
measured the inbound SAV deployment. In this article, we
present results of the Closed Resolver Project [22]—the first
Internet-wide scanning campaign that enumerates networks not
deploying inbound SAV. We extend our previous work [23]
and make the following main contributions:

1) We exhaustively enumerate networks that do not deploy
inbound SAV for IPv4: We propose a new measurement
technique to identify networks that do not filter inbound
traffic based on source IP addresses. We perform Internet-
wide scans of all the routable IPv4 BGP prefixes collected
by RouteViews [24]. We send a DNS request of type A to
each routable IP address (target address) in a packet with a
spoofed source IP address. When sending the request to X , we
choose X +1 as the source IP address belonging to the same
prefix. If there is no filtering both in transit networks and at the
destination network edge, the target will receive our request.
If it is a DNS resolver and our spoofed address matches the
list of allowed clients, the resolver will resolve our request.
As we spoof the source IP address, the response from the
resolver is not routed back to our scanner, preventing us from
analyzing it. However, we control the authoritative nameserver
for queried domains and we observe queries sent either directly
by the resolver under test or through a chain of forwarding
resolvers. Overall, this method identifies networks that do not
correctly filter incoming packets without the need for a vantage
point inside the network itself. The only requirement is that
the network contains a DNS resolver (possibly closed).

2) We enumerate networks that do not deploy inbound SAV
in IPv6: The adoption of IPv6 is gradually increasing [25],
so the IPv6 Internet is becoming an attractive attack vector,
especially considering that network operators do not protect
the IPv6 portion of their networks as well as they do for
IPv4 [26]. Given the number of available addresses, a complete
scan of the IPv6 address space (as explained previously for
IPv4) is not computationally feasible. Gasser et al. developed
the IPv6 Hitlist Service [27] that collects responsive IPv6
addresses from different sources, such as domain lists, DNS
ANY lookups, Certificate Transparency (CT) logs, zone trans-
fers [28], [29], etc. To enrich this list, we also deploy a two-
level DNS zone setup that forces resolvers to switch from IPv4
to IPv6 to resolve our domain names, thus discovering IPv6

resolvers as a by-product of the IPv4 scan. Then, we perform a
scan of the enumerated IPv6 addresses using the same method
as for IPv4.

3) We enumerate networks that deploy inbound SAV for IPv4
and IPv6: The above technique, when applied alone, reveals
the absence of inbound SAV at the network edge. However, we
can confirm the presence of inbound SAV (possibly in transit)
by following each spoofed query with a non-spoofed one to
detect open resolvers. If servers reply to unspoofed requests
but not to spoofed ones, we can infer the presence of SAV
for incoming traffic either at the network edge or in transit
networks.

4) We combine different methods to check SAV compliance in
both directions: We collect the Spoofer data (over one month)
and use a method proposed by Mauch [11] to infer the absence
and the presence of outbound SAV. In this way, we study
the SAV deployment policies per provider in both directions.
Previous work demonstrated the difficulty in incentivizing
providers to adopt filtering for outbound traffic as it benefits
other networks and not the network doing the deployment
[15], [30]. This work shows that even though SAV for inbound
traffic directly benefits the networks implementing it, it is less
widely deployed than outbound SAV.

5) We compare SAV deployment status for IPv4 and IPv6:
We first perform the analysis at the individual host level by
identifying candidate dual-stack DNS resolvers. We configure
our two-level DNS zones that require traversal from IPv4 to
IPv6 (or the other way round). If a recursive DNS resolver
has the connectivity over both versions of the IP protocol, we
would see its IPv4 and IPv6 addresses on our authoritative
nameserver to resolve a single domain name. For every such
(IPv4, IPv6) address pair, we gather DNS-level information
(version.bind and PTR records) and use other general-
purpose fingerprinting tools to identify services running on
ports 22, 80, 123, 443, and 587. Hardware and software
information about each pair provides evidence on whether
the two addresses belong to the same host or not. We then
compare the filtering policies at the autonomous system level
by analyzing ASes revealed during both IPv4 and IPv6 scans.
As a result, we show that inbound SAV tends to be consistently
deployed for IPv4 and IPv6.

6) We analyze the geographical distribution of networks
vulnerable to spoofing of inbound traffic: We show that the
absence of inbound SAV is widespread and not limited to any
particular geographic region. Furthermore, national Computer
Security Incident Response Teams (CSIRTs) may find it
valuable to know the extent to which networks under their
governance are vulnerable to spoofing of inbound traffic and
possibly cooperate in the notification campaign.

The rest of the paper is organized as follows. Section II
provides background on Source Address Validation and how
it protects from spoofing attacks. Section III discusses related
work in the field. Section IV introduces our methodology,
while Section V provides scan results. Sections VI, VII,
VIII discuss network characteristics, outbound vs. inbound
SAV policies and IPv4 vs. IPv6 deployment, respectively.
Section IX discusses the geographic location of vulnerable
networks. Section X-A details limitations and ethical consid-



IEEE/ACM TRANSACTIONS ON NETWORKING 3

198.51.100.0/24

198.51.100.1

Src: 203.0.113.2 
Dst: 203.0.113.1

No
outbound

SAV

No
inbound

SAV

203.0.113.0/24

203.0.113.2203.0.113.1

(a) No SAV performed at all: spoofed IP packets can reach the victim
server for further exploitation.

198.51.100.0/24

198.51.100.1

Src: 203.0.113.2 
Dst: 203.0.113.1

Outbound
SAV

203.0.113.0/24

203.0.113.2203.0.113.1

(b) Outbound SAV at the edge of the attacker network: it blocks
attacks based on IP spoofing. However, for entire elimination, all
networks would need to implement outbound SAV.

198.51.100.0/24

198.51.100.1

Src: 203.0.113.2 
Dst: 203.0.113.1

No
outbound

SAV

Inbound
SAV

203.0.113.0/24

203.0.113.2203.0.113.1

(c) Inbound SAV at the edge of the victim network: it directly
protected the network against external attackers trying to spoof
internal IP addresses.

Fig. 1: Attack scenario using IP spoofing (a) and mitigation
strategies using SAV (b, c). The attacker tries to exploit a
victim server 203.0.113.1 by spoofing the source address
of a legitimate client 203.0.113.2, hoping to go beyond
IP-based access control. Deploying inbound SAV at the edge
of the victim network (c) is directly effective at protecting
servers in this network.

erations of the proposed method. Finally, Section XI concludes
the paper and gives some directions for future work.

II. BACKGROUND

The first prominent DoS attacks started appearing in the
1990s, even though the Internet was still relatively small.
These attacks included ICMP echo, SYN, and UDP floods,
among others [31]. As the Internet community was concerned
about effective ways to fight such attacks, in 2000 Senie and
Ferguson proposed network ingress filtering (documented in
the Best Current Practice 38 [5]) as a means of mitigating DoS
attacks involving source IP address spoofing. The proposed
solution was to only allow traffic “which originates from a
downstream network to known, and intentionally advertised,
prefix(es).” [5] If deployed universally, it would greatly de-
crease the effectiveness of spoofing attacks. However, the
authors acknowledged that in some cases, such as asymmetric
routing, multihoming, or mobile IP, implementing ingress
filtering is challenging. In the subsequent Best Current Practice

84 [32], Baker and Savola presented several ways to imple-
ment ingress filtering: static ingress access lists and reverse
path forwarding.

Ingress filtering, commonly referred to as Source Address
Validation (SAV) [6], can be applied in two directions with
respect to a given network: outbound (to prevent spoofed
packets from leaving the network) and inbound (to drop
spoofed packets coming from outside the network). These
two ways of deploying SAV protect networks from different
threats.

First, attackers benefit from the absence of outbound SAV to
launch amplification and reflection DDoS attacks based on IP
spoofing. They randomly choose globally routable addresses
as sources and overload target services, effectively making
them unable to process genuine requests. Alternatively, they
use open services prone to amplification [2], [3] to which
they send requests with the source IP address of the victim.
Consequently, the victim is overloaded with the traffic coming
from reflection/amplification services rather than directly from
attackers or botnets controlled by them. In both scenarios, the
origin of the attack is not traceable. One of the most successful
attacks against Google resulted in 2.5 Tb/s traffic [7]. Attackers
sent spoofed requests with Google IP addresses as sources to
180K CLDAP, DNS, and SNMP servers.

On the other hand, the absence of inbound SAV allows
intruders to impersonate internal hosts, which may reveal
information about the inner network structure and the presence
of closed services, such as DNS resolvers, even though they
only accept queries from predefined clients. This is the attack
scenario we are interested in, shown in Figure 1a. The attacker,
located in the network 198.51.100.0/24, sends a packet
to the victim 203.0.113.1 in 203.0.113.0/24. The
attacker spoofs the source IP address of a legitimate client
of the victim server, for instance 203.0.113.2, to be able
to exploit the server.

The absence of SAV for inbound traffic may have seri-
ous security consequences when combined with the DNS
Unchained attack [4], the NXDOMAIN attack (also known
as the Water Torture Attack) [18], or NXNSAttack [19].
These attacks result in Denial-of-Service against both recursive
resolvers and authoritative servers. The NXNSAttack exploits
the way recursive resolvers deal with referral responses (do-
main delegations) that provide the mapping between a given
domain name and its authoritative nameserver without a glue
record, i.e., the IP addresses of the nameserver. The maximum
packet DDoS amplification factor of the NXNSAttack attains
1,620 [19]. It also saturates the cache of the resolver, even the
closed one, if the attack uses source IP spoofing and inbound
SAV is not in place.

The possibility of impersonating a host on the victim
network can also assist in the zone poisoning attack [16]. A
master DNS server, authoritative for a given domain, may be
configured to accept non-secure DNS dynamic updates from
a DHCP server on the same network [33]. Thus, sending a
spoofed update from the outside with an IP address of that
DHCP server will modify the content of the zone file [16]. The
attack may lead to domain hijacking. Another way to target
closed resolvers is to perform DNS cache poisoning [17]. An



IEEE/ACM TRANSACTIONS ON NETWORKING 4

attacker can send a spoofed DNS request for a specific domain
to a closed resolver, followed by forged replies before the
arrival of the response from the genuine authoritative server.
In this case, the users who query the same domain will be
redirected to where the attacker specified until the forged DNS
entry reaches its Time To Live (TTL).

IP spoofing of inbound traffic can be combined with any
vulnerable protocol (e.g., NTP, SNMP, SSDP [2], FTP, HTTP,
Telnet [34], etc.) to launch, among others, self-directed am-
plification DDoS or attacks against other hosts in the same
network. For example, NTP is known for its high amplification
factor up to 4,670. An attacker, sending spoofed requests
on behalf of the victim trusted by private NTP servers,
can generate massive traffic towards the victim in the same
network [2], [3].

Deploying SAV at the network edge can mitigate these
impersonation attacks. As shown in Figure 1b, outbound
SAV near the source of the traffic filters out forged packets
and thus prevents IP spoofing-based attacks. However, all
networks in the Internet would need to deploy outbound
SAV, a significant operational challenge, which limits SAV
deployments by network operators. Lichtblau et al. surveyed
84 network operators to check whether they deployed SAV
and learn what challenges they faced [13]. The reasons for
not performing packet filtering included incidentally filtering
out legitimate traffic, equipment limitations, and the lack
of a direct economic benefit—in case of outbound SAV, a
compliant network cannot become an attack source, but it can
still be attacked itself, which creates few incentives to become
compliant. On the other hand, deploying inbound SAV at the
destination network can directly protect the network itself from
impersonation attacks, as shown in Figure 1c. Thus, there is
a direct economic incentive to deploy inbound SAV for a
network operator.

III. RELATED WORK

A. Measuring Source Address Validation Deployment

Table I summarizes several existing methods to infer SAV
deployment. They differ in terms of the filtering direction
(inbound/outbound), whether they confirm the presence or the
absence of SAV, whether measurements can be done remotely
or on a vantage point inside the tested network, and if the
method relies on existing network misconfigurations.

The Spoofer project [20], [30], [35] deploys a client-server
infrastructure mainly based on volunteers (and “crowdwork-
ers” hired for one study through five crowdsourcing plat-
forms [36]) that run the client software from inside a network.
To test outbound SAV compliance, the active probing client
sends both unspoofed and spoofed packets to the Spoofer
server either periodically or when it detects a new network.
The server inspects received packets (if any) and analyzes
whether filtering disables spoofing and to what extent [1].
For each client running the software, the Spoofer identifies its
/24 IPv4 address block (or /40 for IPv6) and the autonomous
system number (ASN). It makes outbound SAV test results
publicly available [20]. Testing inbound SAV compliance
operates in the opposite direction—the Spoofer server sends

TABLE I: Methods to infer deployment of Source Address
Validation

Method Direction Presence/
Absence Remote

Relies on
misconfigu-
rations

Spoofer [20], [30], [35] both both no no
Forwarder-based [3], [11] outbound absence yes yes
Traceroute loops [12] outbound absence yes yes
Passive detection [13] outbound absence no no
Spoofer-IX [14] outbound absence no no
DSAV [21] inbound absence yes no
Our method [22] inbound both yes no

packets to the client with spoofed source addresses belonging
to the client network. The authors do not make the results
public to protect vulnerable networks. This approach identifies
the absence and the presence of SAV in both directions.
The results obtained by the Spoofer project provide the most
confident picture of the deployment of outbound SAV and have
covered tests from 9,751 ASes and 218 countries since 2015.
However, the network administrators who are not aware of the
dangers of spoofing or those who do not deploy SAV are less
likely to run Spoofer in their networks, which means that the
dataset may be not representative of the whole Internet.

A more practical approach is to perform such measurements
remotely. Kührer et al. [3] scanned for open DNS resolvers,
as proposed by Mauch [11] to detect the absence of outbound
SAV. They leveraged misconfigured forwarding resolvers that
forward a request to a recursive resolver with either i) the
packet source address not changed to its own address or ii) the
response to the client sent with the source IP of the recursive
resolver [3], [37]. They fingerprinted those forwarders and
found out that they were mostly embedded devices and routers.
Misconfigured forwarders originated from 2,692 autonomous
systems. We refer to this technique as forwarder-based.

Lone et al. [12] proposed another method that does not
require a vantage point inside a tested network. When a
packet is sent to a customer network with a routable but not
allocated address, it is sent back to the provider router without
changing its source IP address. The packet, having the source
IP address of the machine that sent it, should be dropped by the
router because the source IP does not belong to the customer
network. The method detected 703 autonomous systems not
deploying outbound SAV.

While the above-mentioned methods rely on actively gen-
erated (whether spoofed or not) packets, Lichtblau et al. [13]
passively observed and analyzed inter-domain traffic ex-
changed between more than 700 networks at a large inter-
connection point (IXP). They classified observed traffic into
bogon, unrouted, invalid, and valid based on the source IP
addresses and AS paths. The most conservative estimation
identified 393 networks that generated invalid traffic. Müller et
al. [14] developed Spoofer-IX, another methodology to detect
spoofing at the IXP level. Their traffic classification took into
account AS business relationships, asymmetric routing, and
traffic engineering. Deployed at one mid-sized IXP during five
weeks, it measured 40 Mb/s as the upper bound of spoofed
traffic.

In the concurrent work, Deccio et al. [21] remotely mea-



IEEE/ACM TRANSACTIONS ON NETWORKING 5

sured the absence of inbound SAV. They issued DNS requests
towards 11 million IPv4 and 785K IPv6 addresses and classi-
fied 26K IPv4 (3.9K IPv6) autonomous systems as vulnerable
to spoofing of inbound traffic. The authors refer to inbound
SAV as “destination-side source address validation” or DSAV
for short.

We are the first to propose a remote method (no van-
tage points needed in the tested networks) to estimate the
deployment of inbound SAV that does not rely on existing
misconfigurations. Instead, we take advantage of local DNS
resolvers in remote networks (both open and closed) to infer
the absence or the presence of SAV either in transit networks
or at the destination network edge. Our measurements cover
the whole routable IPv4 address space and more than 270M
responsive IPv6 addresses.

B. Identifying Dual-Stack Servers

To compare the SAV deployment status for IPv4 and IPv6,
we identify seemingly dual-stack DNS resolvers.

Several researchers used DNS to obtain candidate (IPv4,
IPv6) address pairs that likely indicate to be the same physical
machine (also called dual-stack). Berger et al. [38] developed
two passive and active techniques to find such pairs. They
deployed the passive method over the existing production in-
frastructure consisting of a two-level authoritative nameserver
hierarchy in which the first-level server, reachable over IPv4,
returns records of the second-level server. In its DNS response,
it also encodes the IPv4 address of the contacting client.
Each request arriving at the second-level nameserver over IPv6
reveals the initial IPv4 query. This method is not restricted to
open resolvers and does not actively generate additional DNS
requests. The method discovered 674K candidate pairs during
a period of six months. The second active technique relies
on sending requests to open resolvers for such multi-level
domains, which implies switching between IPv4 and IPv6
protocols using CNAME records. In a one-day measurement
session, they probed 200 times 7K open resolvers and revealed
41K address pairs.

Hendriks et al. [39] enumerated the population of open
IPv6 resolvers to analyze whether they could be used as
efficient DDoS amplifiers. They first performed an Internet-
wide scan to find open resolvers over IPv4 and queried them
for specifically-crafted domains that could only be reached by
traversing from IPv4 to IPv6. This method discovered 1.49M
unique candidate pairs and 1,038 unique IPv6 resolvers.

The two approaches described above do not necessarily find
dual-stack machines (also called siblings) but rather dual-stack
candidate pairs. There is a need to validate those results. Bev-
erly et al. [40] proposed a technique that is not limited to DNS
resolvers but also relies on collected TCP-level information
such as option signatures and timestamps. The algorithm was
97% accurate in identifying sibling relationships. In 2017,
Scheitle et al. [41] developed a machine-learning algorithm
that also gathered various TCP-level features (options, times-
tamp clock frequency, timestamp value, clock offset, etc.)
and calculated a variable clock skew. The precision of the
algorithm exceeded 99%.

Czyz et al. [26] showed that the IPv6 Internet is more
open than IPv4. They developed two candidate lists: router
IP pairs and pairs derived from DNS zone files. They probed
all addresses on various ports for services expected to run
on routers and DNS servers. To ascertain that some pairs
were indeed dual-stack machines, they collected fingerprinting
information of the following applications: HTTP, HTTPS,
SNMP, NTP, SSH, and MySQL. Based on this information,
they confirmed that 96% of router and 97% of nameserver
pairs, open on at least one of the ports, were the same physical
machines.

To compare the SAV deployment status for IPv4 and IPv6,
we have deployed a two-level hierarchical DNS zone infras-
tructure that forces a recursive resolver to switch from IPv4 to
IPv6 (and vice versa) to resolve our domain names. Whenever
we detect that an IPv4 or IPv6 resolver is also reachable
over IPv6 and IPv4, respectively, we consider such address
pairs to be dual-stack candidates. We send spoofed and non-
spoofed packets to target both open and closed resolvers. We
then fingerprint them on different ports to gather evidence on
whether each pair belongs to the same physical machine.

IV. METHODOLOGY

In this section, we present the methodology for identifying
the networks that deploy (or not) inbound SAV, locating dual-
stack DNS resolvers, and fingerprinting them.

A. IPv4 Spoofing Scan

The core idea of the spoofing scan is to send hand-crafted
DNS A requests with spoofed source addresses to all the
routable hosts. We have developed an efficient scanner capable
of sending spoofed DNS requests in bulk. It runs on a machine
in a network that does not deploy outbound SAV so that we can
send packets with spoofed IP addresses. We make the scanner
available to the interested researchers upon request. When
our query reaches a recursive DNS resolver inside a network
not deploying inbound SAV, the resolver starts the resolution
process. We observe the query on our authoritative DNS
servers. To prevent caching and to identify the true originator
in case of forwarding, we always query a unique domain
name composed of: a random string, a hex-encoded resolver
IP address (the destination of our query), a scan identifier, an
IP version subdomain and a domain name itself. The encoded
IP address lets us identify forwarders: if the IP address seen
on our authoritative nameservers is not the same as originally
queried (extracted from the domain name), we know that the
query destination is a forwarder. An example domain name is
dklL56.cb007101.s1.v4.drakkardnsv4.com.

Figure 2 shows the scanning setup for the example
203.0.113.0/24 network. In Step 1, the scanner sends one
spoofed packet to each potential host of the network (256
packets in total). The spoofed source IP address is always the
next one after the destination. If we reach the last IP address
of the network (e.g. 203.0.113.255 for 203.0.113.0/24),
we go back to the beginning and use 203.0.113.1 as a
spoofed source IP. When the scanner sends the spoofed packet
containing the DNS query, there are four possible cases:



IEEE/ACM TRANSACTIONS ON NETWORKING 6

Scanner

Authoritative  
DNS server 

(drakkardnsv4.com)

203.0.113.0/24

Local resolver 
203.0.113.1

203.0.113.2

DNS A record query: 
A? dklL56.cb007101.s1.v4.drakkardnsv4.com 
SRC: 203.0.113.2 
DST: 203.0.113.1

Root  
name server

.com 
name server

1

2

3
4

5

7

Authoritative  
DNS server 

(*.v4.drakkardnsv4.com)

6

Fig. 2: Setup of the spoofing scan over IPv4. We set up devices
on the left-hand side (scanner, authoritative nameservers) and
do not have control over the remaining infrastructure.

1) Packet filtering in transit network or random losses: The
spoofed packet can be filtered anywhere in transit or dropped
due to reasons not related to IP spoofing such as network
congestion [1].

2) Inbound SAV at the network edge: When the spoofed
DNS packet arrives at the destination network edge (therefore,
it has not been filtered anywhere in transit), the packet filter
inspects the packet source address and detects that such a
packet cannot arrive from the outside because the address
block is allocated inside the network. Thus, the filter drops
the packet.

3) No inbound SAV at the network edge and no DNS resolver
inside the network: The packet enters the network, but there is
no local DNS resolver in the tested network, so the DNS query
is not resolved. In some cases, the DNS resolver is present
but may be configured to refuse queries coming from its local
area network (for example, if the whole separate network is
dedicated to the infrastructure), so the packet is also dropped.

4) No inbound SAV at the network edge and the destination
host is a DNS resolver: The scanner eventually reaches all
the hosts in the network and the local DNS resolver, if
there is one (203.0.113.1 in Figure 2). When the local
resolver receives a DNS A record request (Step 2) from a
host on the same network (203.0.113.2), it performs query
resolution (Steps 3–6) that eventually reaches our authoritative
nameserver. The local resolver sends the response back to the
source address (Step 7).

Note that only the last case allows inferring the absence of
inbound SAV and we cannot distinguish between the first three
cases.

There are two types of resolvers: forwarders that for-
ward queries to other recursive resolvers and non-forwarders
that directly resolve queries they receive. The DNS resolver
(203.0.113.1) in Figure 2 is a non-forwarder. It inspects
the query that looks as if it were sent from 203.0.113.2

and performs the resolution by iteratively querying the root
(Step 3) and the top-level domain (Step 4) servers until it
reaches our authoritative nameservers in Steps 5 and 6. Alter-
natively, if 203.0.113.1 were a forwarder, it would forward

drakkardnsv4.com

IPv4 IPv6

drakkardnsv6.com

v4.drakkardnsv4.com

v4.drakkardnsv6.com

v6.drakkardnsv6.com

v6.drakkardnsv4.com

IPv4 IPv6IPv6 IPv4

.com

Fig. 3: DNS zone setup. Rectangles with solid lines represent
authoritative nameservers for the corresponding DNS zones
(domain names) under our control. The .com zone (dashed)
only contains glue records (IP addresses) of nameservers
authoritative for our domains and is out of our control. Edges
indicate the network protocol (IPv4 or IPv6) needed to reach
a given zone.

the query to another recursive resolver that would repeat the
same procedure as described above for non-forwarders. In
Step 7, the DNS A query response is sent to the spoofed source
(203.0.113.2).

Our goal is to scan the whole IPv4 address space, yet
taking into account only globally routable and allocated ad-
dress ranges. We use the data provided by the RouteViews
project [24] to get all the IPv4 blocks currently present in the
BGP routing table and send spoofed DNS requests to all the
hosts in these prefixes.

B. IPv6 Spoofing Scan

The complete scan of the IPv6 space is not possible, even
considering only the networks present in the BGP routing
table. We scan two sets of IPv6 addresses: those discovered by
traversing from IPv4 to IPv6 (described in Section IV-D) and
the addresses from the IPv6 Hitlist Service [27]. On the day
of the measurement, the IPv6 Hitlist Service contained 270M
addresses for scanning.

We send spoofed DNS A requests to all hosts from the
two to-scan datasets and spoof the source to be the next IP
address after the target. The format of the domain name is
similar to the IPv4 one: qGPDBe.long_int(ipv6).s1.v6.
drakkardnsv6.com. We represent the IPv6 address as a
long integer to identify the initial query destination uniquely
and to distinguish forwarders from non-forwarders. We still
send requests for the DNS A record, as changing the network
protocol does not influence the retrieved resource records.

C. Open Resolver Scan

In parallel to the spoofing scan, we perform an open
resolver scan over IPv4 and IPv6 by sending DNS A requests
with genuine source IP addresses of the scanner. To avoid
temporal changes, we send a non-spoofed query just after the
spoofed one to the same host. The format of a non-spoofed
query is almost the same as the spoofed one, the only
difference is the scan identifier (n1 referring to a non-spoofed
scan identifier instead of s1). Example domain names are



IEEE/ACM TRANSACTIONS ON NETWORKING 7

DNS resolver 
198.51.100.1 
2001:db8::1

Nameserver 
ns1.drakkardnsv4.com 

203.0.113.1

Nameserver 
ns1.v6.drakkardnsv4.com 

2001:db8::2

A? qgPDBe.c6336401.s1.v6.drakkardnsv4.com 
SRC: 198.51.100.1, DST: 203.0.113.1

ns1.v6.drakkardnsv4.com AAAA 2001:db8::2 
SRC: 203.0.113.1, DST: 198.51.100.1

A? qgPDBe.c6336401.s1.v6.drakkardnsv4.com 
SRC: 2001:db8::1, DST: 2001:db8::2

qgPDBe.c6336401.s1.v6.drakkardnsv4.com  A  192.0.2.1 
SRC: 2001:db8::2, DST: 2001:db8::1

Fig. 4: Domain name resolution that requires switching from
IPv4 to IPv6. The DNS resolver on the left-hand side contacts
the ns1.drakkardnsv4.com nameserver over IPv4. It
does not receive the answer to the A request directly, but rather
a referral to the ns1.v6.drakkardnsv4.com nameserver
only reachable over IPv6.

qGPDBe.cb007101.n1.v4.drakkardnsv4.com for IPv4
and qGPDBe.long_int(ipv6).n1.v6.drakkardnsv6.com
for IPv6. If we receive a non-spoofed request on our
authoritative nameservers, it means that we have reached an
open resolver. Moreover, if this open resolver did not resolve
the spoofed query, we infer the presence of inbound SAV
either in transit or at the tested network edge.

D. Identifying Dual-Stack Candidates

To compare the level of SAV deployment for IPv4 and IPv6
at the machine level, we collect (IPv4, IPv6) address pairs
likely belonging to the same physical machines. We do so by
deploying two-level DNS zones as shown in Figure 3.

We set up two parent domains (drakkardnsv4.com
and drakkardnsv6.com) on two distinct servers. Each
domain has only one glue record (i.e., IP address of
the nameserver) configured via the registrar control
panel: an IPv4 address for drakkardnsv4.com and
an IPv6 address for drakkardnsv6.com. For example,
the authoritative nameserver of drakkardnsv4.com is
ns1.drakkardnsv4.com. Likewise, the authoritative name-
server of drakkardnsv6.com is ns1.drakkardnsv6.com.
Thus, at the DNS level, each nameserver can only be
reached over one network layer protocol (IPv4 or IPv6) but
not over both. Two more servers host child DNS zones:
v4.drakkardnsv4.com and v6.drakkardnsv6.com.
These two domains, each reachable over only IPv4 and
IPv6, respectively, are used for IPv4 and IPv6 scans.
We then add two more child domains that require
traversal from IPv4 to IPv6 and the other way round:
v4.drakkardnsv6.com and v6.drakkardnsv4.com.
The A record of ns1.v4.drakkardnsv6.com is added
to the drakkardnsv6.com parent zone, while the AAAA
record of ns1.v6.drakkardnsv4.com is added to the
drakkardnsv4.com zone.

Figure 4 shows how a dual-stack recursive resolver on
the left (configured with IPv4 and IPv6 addresses) re-
solves our qgPDBe.c6336401.s1.v6.drakkardnsv4.com

domain name. We assume that it previously obtained the IPv4
address of ns1.drakkardnsv4.com. The resolver contacts
this nameserver over IPv4 asking for the A record of the
queried domain name. The nameserver cannot directly provide
the answer. Instead, it refers to ns1.v6.drakkardnsv4.com,
only configured with an IPv6 glue record. The resolver, if
capable of doing so, now has to switch to IPv6 and contact
ns1.v6.drakkardnsv4.com at 2001:db8::2. If success-
ful, the resolver receives the final response at its IPv6 address
(2001:db8::1).

During IPv4 and IPv6 spoofing scans, we continuously
analyze traffic captures from our nameservers to avoid
IP address churn [42] and identify DNS resolvers that
processed our requests. We only use non-forwarders as
possible dual-stack candidates as they are less likely to
be a part of a complex DNS infrastructure, not visible
from our authoritative nameservers, which includes,
but is not limited to, load balancing and DNS cache
sharing [26]. As soon as we detect non-forwarders, we
send them requests with domains that imply switching
to the other IP version. Examples of such domains are
qgPDBe.long_int(ipv6).nf.s1.v4.drakkardnsv6.com

and qgPDBe.c6336401.nf.s1.v6.drakkardnsv4.com.We
later retrieve source IP addresses that resolved these domains.
Together with the addresses encoded in domain names, they
form (IPv4, IPv6) candidate pairs. To further enrich the IPv6
Hitlist, we request all the identified IPv4 resolvers (whether
forwarders or non-forwarders) to resolve a subdomain of
v6.drakkardnsv4.com.

E. Fingerprinting

Some services expose banners and other information such
as software versions, operating systems they run on, public
keys, certificates, etc. We perform a preliminary measurement
campaign and scan 1K (IPv4, IPv6) candidate pairs for most
common ports using nmap 1. Some of the open ports are
22 (SSH), 53 (DNS), 80 (HTTP), 443 (HTTPS), and 587
(SMTP). We consider the fraction of the remaining open ports
negligible and not suitable for fingerprinting. We additionally
scan for port 123 (NTP), as NTP is a protocol commonly used
to amplify DDoS attacks [2] [3], and find that more than 10%
of addresses had port 123 open. We explain below how we
gather fingerprinting information.

1) DNS: Two types of DNS queries can be used to identify
remote DNS servers. The first one is a reverse DNS lookup
that can determine the domain name associated with an IP
address. It requires querying for a pointer (PTR) resource
record. It is a recommended practice to have a hostname
configured for every IP address [43] and it was shown that
1.2B responsive IPv4 addresses (28.17% of the whole IPv4
space) have an associated PTR record [44]. We perform reverse
DNS lookups for each (IPv4, IPv6) sibling candidate pair and
check for an exact match between returned domain names.
It is common for shared hostnames to represent a single
machine [26]. The second fingerprinting query is a CHAOS
class TXT record for version.bind name. It is one of

1https://nmap.org/book/nmap-services.html

https://nmap.org/book/nmap-services.html


IEEE/ACM TRANSACTIONS ON NETWORKING 8

TABLE II: Types of discovered DNS resolvers

# scanned hosts Total DNS resolvers Closed resolvers in networks Open resolvers in networks Open resolvers in networks
without inbound SAV without inbound SAV with inbound SAV

IPv4 2,831,160,434 7,871,673 2,522,869 3,970,827 1,377,977

IPv6 270,703,379 115,610 99,718 8,977 6,915

the specific queries originally introduced as a debugging tool
for network administrators [45]. Contrary to what its name
suggests, it is implemented in different DNS software, not
only in BIND. Unless explicitly hidden, a DNS resolver replies
with the exact installed software version. The example return
values include “9.11.10-RedHat-9.11.10-1.fc29” or “unbound
1.10.0”. We look for candidate pairs in which the same version
is displayed for both. We ignore the cases when an arbitrary
string is returned.

2) NTP: We fingerprint servers over UDP port 123 using
nmap. The NTP standard [46] specifies the version packet
header variable as a “3-bit integer representing the NTP
version number.” We use the ntp-info script 2 to collect
the version of the running NTP deamon, as well as system
and processor types.

3) SMTP: Port 587 is used for email submission by email
clients and servers [47]. An extension to SMTP allows secure
communication over the Transport Layer Security (TLS) pro-
tocol [48]. We use openssl 3 to initiate a connection and
obtain the server certificate.

4) HTTP: We use the ZGrab 2.0 4 application-layer scanner
to get home pages, headers, and certificates for the three
remaining protocols (HTTP, HTTPS, and SSH). The software
initiates a GET request to the potential web server over HTTP.
In case of a successful connection, we look for an HTTP
Server header field with the running software version.

5) HTTPS: Web servers delivering content over the TLS pro-
tocol provide more information about the machine in addition
to what we can learn with HTTP. The TLS specification [49]
defines a handshake protocol between the client and the
server. The server responds to the client request with the
ServerHello message [50]. We retrieve cipher_suite and
server_version (the TLS version chosen by the webserver
based on what is proposed by the client) parameters. We also
check the Certificate message for the returned certificate and
ServerKeyExchange message for the tls_version [26]
actually used.

6) SSH: To establish a connection over port 22, the client
and the server must perform a handshake that includes the
information on the protocol version [51], which implies send-
ing and receiving identification strings that we retrieve. If the
connection is successful, we further collect the server public
key fingerprint and the key length [26].

V. INFERRING THE PRESENCE AND THE ABSENCE OF SAV

We have been performing spoofing and open resolver scans
since July 2019. For this study, we use data from the scan

2https://nmap.org/nsedoc/scripts/ntp-info.html
3https://www.openssl.org
4https://github.com/zmap/zgrab2

carried out in March 2020, using the methodology described
in Section IV.

A. IPv4 Scan

We have sent two DNS requests (one spoofed and one
non-spoofed) to more than 2.8B hosts, excluding roughly
24M addresses from the BGP table as a result of not-to-
scan requests from network administrators (see Section X-B).
Our ns1.v4.drakkardnsv4.com authoritative nameserver
has received and processed 10.9M spoofed and 9.2M non-
spoofed A requests. We define each request as a (source IP
address, domain name) tuple. Due to proactive caching or
premature querying [52], DNS resolvers may issue repeating
lookups shortly before the TTLs of cached A records expire.
Thus, we further analyze only unique requests: 8.7M spoofed
and 7.5M non-spoofed.

As each domain name contains the hexadecimally encoded
IP address of the query target, we know which DNS resolvers
received our requests and processed them. We extract this
information from domain names and summarize the number
of found DNS resolvers in Table II. In total, we identify 7.9M
unique DNS resolvers: 6.5M (2.5M closed and 3.9M open) in
networks without inbound SAV and 1.3M open resolvers in
networks with inbound SAV in place.

B. IPv6 Scan

During the IPv6 scan, performed immediately after the IPv4
measurement, we have probed 270M IPv6 addresses from
the Hitlist Service and 105K addresses learned by traversing
from IPv4 to IPv6-only zones as discussed in Section IV-D.
We analyze all the (non)-spoofed A requests received on
ns1.v6.drakkardnsv6.com. Our authoritative nameserver
processed 290K spoofed and 40K non-spoofed A requests.
After filtering out duplicates, we get 120K and 23K unique
requests, respectively.

For the total of 115K located resolvers, 62K were discovered
by traversing from IPv4 to IPv6, 76K from the IPv6 Hitlist Ser-
vice, and 22K appeared in both groups. The results highlight
the added value of the method to identify IPv6 addresses by
sending spoofed requests to dual-stack resolvers as explained
in Section IV-D. Table II presents the number of resolvers
by type. Contrary to results in the IPv4 address space, the
great majority of them are closed (100K) and would not be
detectable without the proposed spoofing discovery technique.
Open resolvers are far less numerous, yet located mostly in
networks without inbound SAV in place.

C. Deployment of Inbound SAV

We associate each resolver IP address with the correspond-
ing /24 IPv4 (/40 IPv6) network, BGP routing prefix, and the

https://nmap.org/nsedoc/scripts/ntp-info.html
https://www.openssl.org
https://github.com/zmap/zgrab2


IEEE/ACM TRANSACTIONS ON NETWORKING 9

TABLE III: Deployment of inbound SAV

Network Type
Consistent absence of Partial absence of Consistent presence of No data Totalinbound SAV inbound SAV inbound SAV

Count Ratio (%) Count Ratio (%) Count Ratio (%) Count Ratio (%)

IPv4 Autonomous Systems 21,314 31.8 11,441 17.1 2,092 3.1 32,131 48.0 66,978
IPv4 BGP prefixes 152,316 17.9 45,292 5.4 39,341 4.7 609,839 72.0 846,788
IPv4 /24 networks 765,233 6.9 173,239 1.5 266,498 2.4 9,948,051 89.2 11,153,021

IPv6 Autonomous Systems 4,639 24.8 127 0.7 138 0.7 13,806 73.8 18,710
IPv6 BGP prefixes 6,731 8.0 142 0.2 274 0.3 76,526 91.5 83,673
IPv6 /40 networks 7,562 0.02 136 0.0002 2,874 0.006 49,408,039 99.9 49,418,611

autonomous system number using pyasn 5. Note that multiple
resolvers may belong to a single network/prefix/AS. We define
three types of networks/prefixes/ASes with respect to the
deployment of inbound SAV. They can be characterized by:

1) Consistent absence of inbound SAV: All the discovered
DNS resolvers inside a single network/prefix/AS indicate the
absence of inbound SAV.

2) Partial absence of inbound SAV: Some resolvers indicate
the absence while the others indicate the presence of inbound
SAV.

3) Consistent presence of inbound SAV: All the discovered
DNS resolvers indicate the presence of inbound SAV at the
edge of the network under measurement or filtering in transit.

With the proposed method, we cannot unambiguously as-
certain whether an entire network/prefix/AS is vulnerable to
inbound IP spoofing. However, when reporting the deployment
of inbound SAV, we refer to the results of our measurements,
i.e., whether they consistently or partially indicate the absence
or presence of inbound SAV.

Table III presents the scan results classified according to
the status of inbound SAV deployment for the IPv4 (first
three rows) and IPv6 (last three rows) address spaces. The
“Total” column indicates the number of routable networks as
of February 2020 and “No data” corresponds to the networks
that did not respond to any query sent by us. The ratios
in each of the four groups (consistent absence of inbound
SAV, partial absence of inbound SAV, consistent presence
of inbound SAV, and no data) are computed based on the
“Total” column. For IPv4, our measurements covered the
whole routable address space and we obtained the responses
from the majority of autonomous systems (52%). The coverage
of the IPv6 address space is smaller as we scanned the
target list of addresses. Nevertheless, a significant ratio of
autonomous systems (26.2%) resolved our queries.

Our measurements indicate that few networks consistently
implement inbound SAV and are thus protected from spoofing
attacks (see column “Consistent presence of inbound SAV” but
note that it includes the cases of filtering in transit). On the
contrary, most networks that responded to our requests show
the consistent or partial absence of inbound SAV (see columns
“Consistent absence of inbound SAV” and “Partial absence of
inbound SAV”), whether in the IPv4 or IPv6 address spaces.
Overall, 48.9% IPv4 and 25.5% IPv6 autonomous systems
worldwide are consistently or partially vulnerable to spoofing
of inbound traffic.

5https://github.com/hadiasghari/pyasn

Our measurements set a lower bound on the number of
networks without inbound SAV for at least three reasons. First,
some networks may be vulnerable but they do not contain DNS
resolvers. Our queries reach the intended targets but they do
not process them according to the DNS specification. Second,
some networks may contain closed DNS resolvers, but they
only accept requests from other hosts than their own local
network. As a result, even if the network is vulnerable and
contains a DNS resolver, it will never process the spoofed
query. Finally, due to filtering in transit, our spoofed packets
never reach networks without SAV with DNS resolvers that
would otherwise process our requests. Filtering in transit
is also the reason why the number of networks in column
“Consistent presence of inbound SAV” is an upper bound. As
the reported numbers include the cases of filtering in transit,
the number of networks deploying inbound SAV at the network
edge is actually lower. Some of the cases in “No data” column
of Table III are justified by the three discussed reasons. If
we presume a uniform distribution of our measurements, by
extrapolating these numbers for the entire IP address space,
we obtain over 94% of IPv4 ASes and 97% of IPv6 ASes
with consistent or partial absence of inbound SAV.

D. Comparison with the Spoofer Project

We compare the results of our active measurements with
the inbound SAV compliance tests performed by the Spoofer
project. The Spoofer client-server system provides the most
reliable method to infer SAV deployment, as it counts on
the presence of vantage points inside tested networks. The
server-side Spoofer software sends packets with forged source
IP addresses belonging to the IP range of the networks
under test. Inbound test results are not publicly available, but
we contacted CAIDA and gained access to test data from
February-March 2020. In total, 36,073 individual tests were
performed. We aggregate the data and keep the latest tests per
/24 IPv4 and /40 IPv6 networks. In addition, we only analyze
those cases for which the software succeeded in determining
the presence or absence of inbound SAV. We found 169 /24
IPv4 and 83 /40 IPv6 networks in common. Both methods
agree on the status of inbound SAV deployment for the great
majority (83% for IPv4 and 81% for IPv6) of those networks.
Note that the two methods exhibit certain limitations, such as
filtering in transit or packet losses, so, the results may differ.

https://github.com/hadiasghari/pyasn


IEEE/ACM TRANSACTIONS ON NETWORKING 10

0 5000 10000 15000 20000 25000 30000
Autonomous system size (number of IPv4 addresses)

0.2

0.4

0.6

0.8

1.0
Cu

m
ul

at
iv

e 
Pr

ob
ab

ilit
y

Consistent absence of inbound SAV
Consistent presence of inbound SAV
Partial absence of inbound SAV

Fig. 5: Sizes of IPv4 ASes computed based on the number
of unique IPv4 addresses present in the BGP routing table.
The cumulative probability shows that ASes with consistent
absence of inbound SAV tend to be smaller than other ASes.

/8 /10 /12 /14 /16 /18 /20 /22 /24 /26 /28 /30 /32
IP v4 BGP routing prefix size

0.2

0.4

0.6

0.8

1.0

Cu
m
ul
at
iv
e 
Pr
ob

ab
ilit

y Consistent absence of inbound SAV
Consistent presence of inbound SAV
Partial absence of inbound SAV

Fig. 6: Sizes of the IPv4 longest matching prefixes from the
BGP routing table. Larger prefixes are more likely to suffer
from partial absence of inbound SAV.

VI. IMPACT OF NETWORK CHARACTERISTICS ON SAV
POLICIES

Multiple factors may influence the decision of network
operators to deploy (or not) inbound SAV in their networks.
We explore some of potential reasons below.

1) Size of the address space: Previous work assumed that the
size plays an important role in SAV deployment for outbound
traffic: it is less likely that smaller organizations have resources
and incentives to implement packet filtering in their networks
[12], [37]. We need to consider this assumption with caution,
as the two methods relied on scanning a sample of networks
and the results are not necessarily representative for the general
population. Yet, we hypothesize that operators with a larger ad-
dress space are more likely to adhere to best current practices
and promote routing security. For example, MANRS (Mutually
Agreed Norms for Routing Security regulations) [53] members
are strongly encouraged to implement SAV in edge routers.

Figure 5 presents the cumulative distribution of IPv4 au-
tonomous system sizes computed as the number of announced
IPv4 addresses in the BGP routing table. It includes ASes of
the three groups, as defined in Table III: consistent absence,
partial absence, and consistent presence of inbound SAV. The
size distribution of consistently vulnerable ASes is driven by
the small ones—as many as 75.3% of these ASes contain 4,096
and fewer addresses. In contrast, partially vulnerable and non-
vulnerable networks tend to be bigger—around half of them
are /20 and bigger. We observe similar trends for the BGP
prefix sizes (see Figures 6 and 7). Overall, our results show
that non-compliant networks tend to be smaller than (partially)
compliant. One possible explanation is that the operators of
smaller networks have generally fewer resources and lower

/16 /20 /24 /28 /32 /36 /40 /44 /48 /52
IP v6 BGP routing prefix size

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Pr
ob

ab
ilit

y Consistent absence of inbound SAV
Consistent presence of inbound SAV
Partial absence of inbound SAV

Fig. 7: Sizes of the IPv6 longest matching prefixes from the
BGP routing table. Prefixes with consistent absence of inbound
SAV tend to be the smallest.

competence to deploy SAV in both directions.
2) AS stability: It is challenging to implement ACL-based

inbound SAV if BGP advertisements change frequently. We
hypothesize that ASes with stable BGP advertisements are
more likely to have SAV in place, as it would be easier to
implement static ACLs. We define AS stability as the ratio
of prefixes that remain the same compared to all announced
prefixes over time. We analyze weekly BGP announcements
[24] for the period between September 2019 and March 2020.
We find that 87% of ASes with consistent presence and 86%
of ASes with the consistent absence of inbound SAV advertise
exactly the same prefixes. On the contrary, fewer ASes that
partially deploy inbound SAV are stable (81%). While there
is a 5-6% difference between ASes with consistent filtering
and ASes with partial filtering, contrary to our hypothesis, AS
stability does not seem to play a significant role in the decision
of network operators to deploy SAV.

3) AS type: there are three types of autonomous systems
with respect to the way they are interconnected: stub (con-
nected to a single upstream provider), multihomed (connected
to multiple upstream providers), and transit (interconnect other
autonomous systems) [54]. The last two are commonly re-
ferred to as “non-stub”. The problem with non-stub providers
is that they might have customer ASes that do not announce all
routes to them due to load balancing or fault tolerance [55].
Similarly, strict filtering might not be feasible for non-stub
ASes in the case of asymmetric routing, particularly for multi-
homed networks [32].

We rely on the CAIDA AS relationship data [56] to find the
types of IPv4 autonomous systems that we have shown to be
vulnerable or not. We find that 95% and 90% of ASes with
consistent absence and presence of inbound SAV, respectively,
are stub ASes. At the same time, fewer ASes with partial
absence of inbound SAV (77%) are stubs. As stubs connect
to only one upstream provider, it is easier to implement SAV
using, for example, static access control lists.

4) Other: We have approached the operators of 30 networks
for which inbound SAV is partially deployed and asked their
reasons for not deploying inbound SAV consistently. We got
replies from three administrators. One administrator manages
a /24 IPv4 network that is logically divided into two parts.
Some IP addresses belong to virtual machines and their
OpenStack configuration provides inbound and outbound SAV,
while others are physical servers or Internet access subscribers
that do not deploy inbound SAV due to complexity, time,



IEEE/ACM TRANSACTIONS ON NETWORKING 11

and financial issues. Another network administrator confirmed
being responsible only for a subset of the /24 IPv4 network,
thus having no control over the other part. Indeed, upstream
providers may perform route aggregation of smaller customer
networks, maintained by different organizations [12] that pos-
sibly implement different anti-spoofing policies. Finally, one
network operator reported that the whole /24 network had no
inbound SAV in place, so we must have encountered packet
losses.

VII. OUTBOUND VERSUS INBOUND SAV POLICIES

Outbound SAV is the most effective way to prevent IP
spoofing attacks at their origin. Although it protects the rest of
the Internet, the deploying network does not directly benefit
from it. On the contrary, inbound SAV protects the network
itself from external attacks. We hypothesize that network
operators are more incentivized to deploy inbound SAV than
outbound. In this section, we analyze which type of SAV is
deployed at the /24 IPv4 (/40 IPv6) network and autonomous
system levels.

A. Network Level
Our scans reveal inbound filtering policies of 1.2M /24

IPv4 and 10.5K /40 IPv6 networks. To check whether these
networks configure outbound SAV, we apply the forwarder-
based method proposed by Mauch [11] on our own data and
refer to one external data source (the Spoofer project). We
next look for the overlap between these data sources.

As explained in Section III-A, the Spoofer client works by
sending spoofed and unspoofed packets using the installed
client software. The outbound SAV results are anonymized
per /24 IPv4 and /40 IPv6 address blocks and made publicly
available. The Spoofer identifies four possible states: blocked
(only an unspoofed packet was received, the spoofed packet
was blocked), rewritten (the spoofed packet was received, but
its source IP address was changed on the way), unknown
(neither packet was received), received (the spoofed packet
was received by the server).

In March 2020, we collected and aggregated the latest
Spoofer data for one month. We obtained the tests for 3,731
/24 IPv4 and 579 /40 IPv6 networks. We only keep vulner-
able to spoofing (received) and non-vulnerable to spoofing
(blocked) networks, leaving out the other two categories
(rewritten and unknown) as non-conclusive. Note that these
numbers are much smaller than 9,751 ASes tested by the
Spoofer since 2015. For the comparison in this section, we
choose only the tests conducted around the same period as
our scans. The overlap between our inbound method and the
Spoofer tests represents 473 /24 IPv4 and 17 /40 IPv6 net-
works. The minority of them have consistent filtering in both
directions: 91 /24 IPv4 (3 /40 IPv6) networks have no filtering
in both directions while 77 /24 IPv4 (2 /40 IPv6) networks
implemented both inbound and outbound SAV. Interestingly,
whenever filtering is deployed only in one direction, it is
mostly outbound (59.4% for IPv4 and 70.6% for IPv6).

We further compare two Spoofer datasets—outbound and
inbound. The latter, as mentioned in Section V-D, is not pub-
licly available and was obtained by contacting CAIDA directly.

We found that the Spoofer had results for both inbound and
outbound tests for 298 /24 IPv4 and 273 /40 IPv6 networks.
The majority of them were consistent in both directions (63%
and 65%, respectively). The remaining networks (deploying
SAV in only one direction) were mostly filtering outbound
traffic (31% for IPv4 and 32% for IPv6).

The next outbound SAV dataset comes from the forwarder-
based measurement technique. The overlap with the inbound
SAV dataset is 16K IPv4 and 3 IPv6 networks. All the IPv6
networks had no SAV in both directions. For IPv4, 33.2% of
networks have no SAV in both directions, whereas most of the
IPv4 networks without outbound SAV (66.8%) deploy inbound
SAV. The important limitation of the forwarder-based method
consists of inability to identify the presence of outbound SAV.
Therefore, we need to consider these results with caution
because we cannot compare networks with deployed outbound
SAV but without SAV for inbound traffic using the forwarder-
based method and our scheme.

B. Autonomous System Level
To evaluate the type of SAV (inbound or outbound) more

deployed at the autonomous system level, we analyzed a subset
of ASes, namely MANRS members [53].

MANRS is one of the most well-known initiatives to
improve the security and resilience of the Internet global
routing system. It requires its members to adhere to a set
of compulsory and recommended actions. “Preventing traffic
with spoofed source IP addresses” falls into the recommended
category, yet is highly encouraged. The compliance with these
standards is observed by the MANRS Observatory [57], a data
collection system and an “online tool to constantly monitor the
state of Internet routing security.” In particular, it tracks the
number of networks “preventing traffic with spoofed source
IP addresses” since 2019.

As the per-AS data is not available to non-members, we
retrieved the list of participating autonomous systems (515
at the time of writing) to find the overlap between the
Spoofer dataset, forwarder-based dataset, and our inbound
SAV measurements. Recent work showed that MANRS mem-
bers are not more likely to deploy SAV than the general
population [30]. We show that 81 MANRS ASes out of 515
are vulnerable to spoofing of outbound traffic (as shown by
the Spoofer and the forwarder-based datasets), but as many
as 311 ASes are at least partially vulnerable to spoofing of
inbound traffic.

Therefore, our results suggest that network operators are
familiar with the concept of SAV but they tend to secure
traffic only leaving their networks. This observation applies
to small networks (/24 IPv4 and /40 IPv6) as well as to large
autonomous systems.

VIII. SAV DEPLOYMENT FOR IPV4 AND IPV6
As IPv6 deployment is growing, it becomes an attractive

attack target. Previous work showed that individual hosts
as well as larger networks are generally more open over
IPv6 [26]. In this section, we analyze whether dual-stack
autonomous systems and individual hosts are more protected
from spoofing attacks over IPv4 than over IPv6.



IEEE/ACM TRANSACTIONS ON NETWORKING 12

TABLE IV: Fingerprinting dual-stack candidate pairs

Protocol/
Application

Both
closed

Only
IPv4
open

Only
IPv6
open

Both
open

Same
fingerprint

DNS (version.bind) 16.7k 13.1k 1.7k 50k 37.3k (45.8%)
DNS (PTR) 11.4k 38.1k 1.2k 30.9k 24k (29.4%)
NTP 67.1k 2k 2.5k 10k 128 (0.2%)
HTTP 27.4k 16k 3.3k 35k 34.2k (41.9%)
HTTPS 29.1k 16.8k 675 35k 22.5k (22.6%)
SSH 33.8k 2k 2.4k 43.3k 5.6k (6.9%)
SMTP 47.6k 10.1k 653 23.2k 23.1k (28.3%)

Total (unique) 61.3k (75.2%)

A. Individual Host Level

We requested all the IPv4 and IPv6 non-forwarders to
resolve domain names that require changing the IP protocol
version, e.g., from IPv4 to IPv6 and from IPv6 to IPv4. Out of
2.6M IPv4 (36K IPv6) resolvers, 2.7% and 28.5% had IPv6
and IPv4 connectivity, respectively. It is not surprising that
IPv6 resolvers are much more accessible over IPv4 than the
other way round. As the IPv6 adoption is far from univer-
sal [58]–[60], it is crucial for IPv6 resolvers to be reachable
over IPv4.

We collected 82K candidate address pairs in total, most
of them (72K) during the IPv4 scan. Indeed, DNS resolvers
are known to have complex relationships and a single address
may appear in multiple address pairs [38]. However, for our
analysis, we consider each address pair separately. We collect
fingerprinting information for each address in the pair as
described in Section IV-E. The great majority of the candidate
pairs (98.1%) had at least one fingerprinting port open for
both IPv4 and IPv6, mostly DNS and SSH. Table IV presents
the detailed results. These two ports are necessary for DNS
resolvers to be accessible and to function properly. While the
NTP port is also relatively open, in most cases, we could
merely extract the timestamp. Only 128 server pairs returned
the same software and operating system versions. Overall,
75.2% of address pairs suitable for fingerprinting had matching
signatures on at least one protocol/application. Two of the
three network operators that responded to our survey operate
dual-stack resolvers and they confirmed the correctness of our
mappings. In particular, 6 pairs had identical PTR records and
7 pairs had identical version.bind records. The remaining
pairs had either no record at all or only records for one
address in the pair. Thus, we did not consider those pairs for
classification.

From 61K seemingly dual-stack pairs, 43K responded to
our spoofed and non-spoofed queries, revealing the absence
or the presence of SAV for IPv4 and IPv6. Most of them
(99.2%) have consistent filtering policies. Out of the remaining
324 hosts, 195 (60.2%) are vulnerable to spoofing of inbound
traffic only over IPv6. Thus, at the individual host level, SAV
tends to be consistently deployed for IPv4 and IPv6.

B. Autonomous System Level

Whenever a certain security policy exists for an individual
dual-stack host, it is likely to hold for the whole autonomous
system [26]. Consequently, we generally expect to have similar

0

10

20

30

40

50

60

Fig. 8: Fraction of vulnerable to spoofing of inbound traffic
vs. all /24 IPv4 networks per country (in %)

security practices for IPv4 and IPv6, because the great major-
ity of networks have consistent policies for IPv4 and IPv6 at
the host level. As of March 2020, there are 66,978 IPv4 and
18,710 IPv6 ASNs present in BGP routing tables. 18,016 of
them advertised both IPv4 and IPv6 prefixes.

For this analysis, we choose vulnerable and non-vulnerable
to inbound spoofing ASes and keep those having results for
both IPv4 and IPv6. The resulting set includes 2,873 ASes.
The great majority of them (94.2%) have consistent filtering
policies for IPv4 and IPv6—2,650 are vulnerable and 55 are
non-vulnerable to inbound spoofing. As for the remaining
168 ASes, 19 (11.3%) are only vulnerable for IPv4 and 149
(88.7%) are only vulnerable for IPv6. Thus, we conclude that
at the AS level, SAV for inbound traffic is generally deployed
consistently for IPv4 and IPv6.

IX. GEOGRAPHIC DISTRIBUTION

Identifying countries that do not comply with the SAV
standard is the first step in mitigating the issue by, for example,
contacting local CSIRTs. We use the MaxMind database 6

to map every IP address encoded in the domain name (the
original destination of the query) to its country. Table V
summarizes the results.

Overall, 232 countries and territories contain networks that
do not deploy inbound SAV neither for IPv4, IPv6, nor for
both. When counting DNS resolvers that responded to spoofed
requests, most of them originate from China for IPv4 and
from the USA for IPv6. As explained in Section V-B, the
coverage of the IPv6 scan is smaller than that of IPv4, which
is why we have found much fewer DNS resolvers. The top
10 ranking differs greatly for IPv4 and IPv6, as only three
countries are present for both. We map individual resolvers
to the corresponding /24 IPv4 and /40 IPv6 networks and
aggregate them per country. Multiple resolvers are distributed
in fewer networks, resulting in the updated top 10 ranking,
different from the one for the resolver count.

Such absolute numbers are still not representative as coun-
tries with a large Internet infrastructure may have many DNS
resolvers and therefore reveal many vulnerable to spoofing
of inbound traffic networks that represent a small proportion
of the whole. For this reason, we compute the fraction of
vulnerable to spoofing of inbound traffic vs. all /24 IPv4
networks per country. To determine the number of all the

6https://dev.maxmind.com/geoip/geoip2/geolite2/

https://dev.maxmind.com/ geoip/geoip2/geolite2/


IEEE/ACM TRANSACTIONS ON NETWORKING 13

TABLE V: Geolocation results

Rank Resolvers (#) Networks, vulnerable to spoofing of inbound traffic (#)
Proportion of networks,

vulnerable to spoofing of inbound
traffic (%)

Country IPv4 Country IPv6 Country IPv4 Country IPv6 Country IPv4

1 China 1,970,410 USA 22,992 China 260,047 USA 1,319 Kosovo 63.6
2 Brazil 667,036 Germany 13,373 USA 162,259 Brazil 930 Comoros 52.6
3 USA 661,943 Netherlands 11,514 Russia 54,451 Germany 680 Western Sahara 50.0
4 Iran 404,134 Belarus 7,455 Italy 32,026 Netherlands 336 Armenia 49.5
5 India 348,491 Russia 6,410 Brazil 28,836 United Kingdom 309 Maldives 39.7
6 Algeria 249,931 China 5,840 Japan 27,890 China 304 Moldova 38.2
7 Russia 224,985 United Kingdom 5,151 India 27,426 Russia 289 Niue 37.5
8 Indonesia 222,602 Spain 3,996 Mexico 23,288 Czech Republic 254 Palestine 36.3
9 Italy 105,476 Czech Republic 3,357 United Kingdom 16,976 France 223 Afganistan 36.2
10 Argentina 104,850 France 2,837 Indonesia 16,798 Japan 183 Bulgaria 36.0

/24 networks per country, we map all the individual IPv4
addresses from the BGP routing table to their location, then
to the /24 block, and keep the country/territory to which most
addresses of a given network belong. Figure 8 presents the
resulting world map. We can see in Table V that the top
10 ranking has changed once again. Small countries such as
Western Sahara and Niue that have two and eight identified
resolvers each suffer from a high proportion of vulnerable
to spoofing of inbound traffic networks. One of the two
/24 networks of Western Sahara allows spoofing of inbound
traffic. On the other hand, Bulgaria is a country with a large
Internet infrastructure (16,439 /24 networks in total) and with
a large percentage of vulnerable to spoofing of inbound traffic
networks.

X. DISCUSSION

A. Limitations
Our approach has some limitations that may impact the

accuracy of the results. We rely on the main assumption—
the presence of a DNS resolver (open or closed) in a tested
network. If it is not present, we cannot conclude on the filtering
policies. Closed DNS resolvers only reveal the absence of
inbound SAV, at least for some part of networks they belong
to. Open resolvers, on the contrary, reveal both the absence and
the presence of inbound SAV (assuming that transit networks
do not deploy SAV).

Transit filtering may drop our scan packets before they even
reach the target networks. In some cases, we would not detect
vulnerable networks (if only closed resolvers are present), in
other cases, we would incorrectly classify vulnerable networks
as non-vulnerable (if open resolvers are present). However,
if our spoofed probes do arrive in the target network, we
can detect the absence of inbound SAV. In this sense, our
results indicate the lower bound of the problem—in an ideal
measurement setup without SAV in transit networks, we could
detect a larger number of networks vulnerable to spoofing of
inbound traffic.

Some other reasons, such as packet losses or temporary
network failures, may also explain the absence of data for
certain IP addresses.

B. Ethical Considerations
To make sure that our study follows the ethical rules of

network scanning, yet providing complete results, we have

adopted the recommended best practices [61], [62]. For the
IPv4 scan, we aggregate the BGP routing table to eliminate
overlapping prefixes. In this way, we send no more than two
DNS A request packets (spoofed and non-spoofed) to every
tested host. Due to packet losses, we potentially miss some
results, but we accept this limitation not to disrupt the normal
operation of tested networks. In addition, we randomize our
input list for the scanner so that we do not send consecutive
requests to the same network (apart from two consecutive
spoofed and non-spoofed packets). We spread our scanning
activities over 15 days due to limited resources on the scanning
machine (8 vCPUs and 3GB of RAM).

We have set up a website for this project on https://

closedresolver.korlabs.io and provided all the queried
domains and the fingerprinting server with a description of our
project as well as the contact information if someone wants
to exclude her networks from testing. We have received 9
requests from operators of, among others, /8, /9, and /10 IPv4
networks, who noticed our DNS requests. In total, we excluded
29M IPv4 addresses from futures scans as well as two IPv6
prefixes (/128 and /48). We also exclude these addresses from
our analysis. We do not publicly reveal the SAV policies of
individual networks and AS operators. Yet, website visitors
can see the results for the network they connect from.

XI. CONCLUSIONS

In this paper, we have presented a novel method to infer the
deployment of inbound SAV for the IPv4 and IPv6 address
spaces. We have measured the filtering policies of 52% of
routable IPv4 ASes (26% for IPv6) and 28% of all the IPv4
BGP prefixes (almost 9% for IPv6). We show that most of
the networks for which we obtained measurements are consis-
tently or partially vulnerable to spoofing of inbound traffic.

Reflection DDoS attacks have extensively used open DNS
resolvers in recent years. We have found 5.3M IPv4 and 16K
IPv6 open resolvers. New ways to misuse open resolvers con-
stantly emerge. For example, NXNSAttack can exploit open
recursive resolvers to reach an amplification factor of up to
1,620. Even worse, spoofing of inbound traffic combined with
the NXNSAttack results in additional 2.5M closed resolvers
for IPv4 (100K for IPv6) that might be either vulnerable
themselves or possibly misused against other victims.

Open resolvers when they do not resolve spoofed queries
identify the presence of inbound SAV at the edge of the

https://closedresolver.korlabs.io
https://closedresolver.korlabs.io


IEEE/ACM TRANSACTIONS ON NETWORKING 14

tested network or filtering in transit. We found that while
many providers deploy consistent filtering policies network-
wide, there are cases when a single network is only partially
protected from spoofing of inbound traffic. The results indicate
that different network characteristics are factors that prevent
operators from correctly configuring packet filtering. Overall,
the proportion of non-vulnerable networks is much lower
compared to networks with the consistent or partial absence
of inbound SAV.

We have identified and fingerprinted dual-stack DNS re-
solvers and shown that at the individual host level, inbound
filtering is generally deployed consistently for IPv4 and IPv6.
In the remaining few cases, the IPv4 part is more secure than
IPv6. This observation also holds for dual-stack ASes.

We have gathered different datasets to analyze whether out-
bound filtering is less deployed than inbound. Outbound SAV
faces the problem of misaligned economic incentives—it pro-
tects other networks but not the one deploying it. Interestingly,
SAV for outbound traffic turned out to be more deployed than
inbound at the AS level among network operators committed
to the MANRS initiative. The absence of outbound packet
filtering gained widespread attention since it enables DDoS
attacks. Under these circumstances, inbound SAV remains
neglected (or overlooked) by network operators.

Vulnerability to spoofing of inbound traffic is not lim-
ited to any geographic territory and is spread worldwide.
To draw attention to the problem of spoofing of inbound
traffic, we launched the Closed Resolver Project at https://
closedresolver.korlabs.io. Anyone can visit the project
website and check whether his/her network is vulnerable to
spoofing of inbound traffic and how many closed resolvers we
found inside. The long-term objective is to run notification
campaigns for network operators and provide them with an
accessible platform to investigate results for their networks.
The service is particularly useful for operators planning to
become MANRS participants since MANRS strongly recom-
mends deploying SAV. We expect these efforts will result in
better packet filtering on the Internet.

ACKNOWLEDGEMENTS

The authors would like to thank the reviewers and the editor
for their valuable feedback. This work was partially supported
by RIPE NCC, Carnot LSI, Grenoble Alpes Cybersecurity
Institute (under the contract ANR-15-IDEX-02), PERSYVAL-
Lab project (under the contract ANR-11-LABX-0025-01), and
DiNS project (under the contract ANR-19-CE25-0009-01).

REFERENCES

[1] R. Beverly, A. Berger, Y. Hyun, and k. claffy, “Understanding the
Efficacy of Deployed Internet Source Address Validation Filtering,” in
IMC, 2009.

[2] C. Rossow, “Amplification Hell: Revisiting Network Protocols for DDoS
Abuse,” in NDSS, 2014.

[3] M. Kührer, T. Hupperich, C. Rossow, and T. Holz, “Exit from Hell?
Reducing the Impact of Amplification DDoS Attacks,” in USENIX
Security, 2014.

[4] J. Bushart and C. Rossow, “DNS Unchained: Amplified Application-
Layer DoS Attacks Against DNS Authoritatives,” in RAID, 2018.

[5] D. Senie and P. Ferguson, “Network Ingress Filtering: Defeating Denial
of Service Attacks which Employ IP Source Address Spoofing,” RFC
2827, May 2000.

[6] R. Beverly and S. Bauer, “Tracefilter: A Tool for Locating Network
Source Address Validation Filters,” in USENIX Security, 2007.

[7] Google Cloud, “Exponential growth in DDoS attack
volumes,” https://cloud.google.com/blog/products/identity-security/
identifying-and-protecting-against-the-largest-ddos-attacks.

[8] AWS Shield, “Threat Landscape Report – Q1 2020,” https://
aws-shield-tlr.s3.amazonaws.com/2020-Q1 AWS Shield TLR.pdf.

[9] M. Prince, “The DDoS That Knocked Spamhaus Offline
(And How We Mitigated It),” https://blog.cloudflare.com/
the-ddos-that-knocked-spamhaus-offline-and-ho/.

[10] S. Kottler, “February 28th DDoS Incident Report,” https://github.blog/
2018-03-01-ddos-incident-report/.

[11] J. Mauch, “Spoofing ASNs,” http://seclists.org/nanog/2013/Aug/132.
[12] Q. Lone, M. Luckie, M. Korczyński, and M. van Eeten, “Using Loops

Observed in Traceroute to Infer the Ability to Spoof,” in PAM, 2017.
[13] F. Lichtblau, F. Streibelt, T. Krüger, P. Richter, and A. Feldmann,

“Detection, Classification, and Analysis of Inter-domain Traffic with
Spoofed Source IP Addresses,” in IMC, 2017.

[14] L. F. Müller, M. J. Luckie, B. Huffaker, kc claffy, and M. P. Barcellos,
“Challenges in Inferring Spoofed Traffic at IXPs,” in CoNEXT, 2019.

[15] Q. Lone, A. Frik, M. Luckie, M. Korczyński, M. van Eeten, and C. G.
nán, “Deployment of Source Address Validation by Network Operators:
A Randomized Control Trial,” in IEEE S&P, 2022.

[16] M. Korczyński, M. Król, and M. van Eeten, “Zone Poisoning: The How
and Where of Non-Secure DNS Dynamic Updates,” in IMC, 2016.

[17] D. Kaminsky, “It’s the End of the Cache as We Know It,” https://www.
slideshare.net/dakami/dmk-bo2-k8.

[18] X. Luo, L. Wang, Z. Xu, K. Chen, J. Yang, and T. Tian, “A Large Scale
Analysis of DNS Water Torture Attack,” in CSAI, 2018.

[19] L. Shafir, Y. Afek, and A. Bremler-Barr, “NXNSAttack: Recursive DNS
Inefficiencies and Vulnerabilities,” in USENIX Security, 2020.

[20] CAIDA, “The Spoofer Project,” https://www.caida.org/projects/spoofer/.
[21] C. Deccio, A. Hilton, M. Briggs, T. Avery, and R. Richardson, “Behind

Closed Doors: A Network Tale of Spoofing, Intrusion, and False DNS
Security,” in IMC, 2020.

[22] “The Closed Resolver Project,” https://closedresolver.korlabs.io.
[23] M. Korczyński, Y. Nosyk, Q. Lone, M. Skwarek, B. Jonglez, and

A. Duda, “Don’t Forget to Lock the Front Door! Inferring the Deploy-
ment of Source Address Validation of Inbound Traffic,” in IMC, 2020.

[24] “University of Oregon Route Views Project,” http://www.routeviews.org/
routeviews/.

[25] “Google IPv6,” https://www.google.com/intl/en/ipv6/statistics.html#tab=
ipv6-adoptionm.

[26] J. Czyz, M. Luckie, M. Allman, and M. Bailey, “Don’t Forget to Lock
the Back Door! A Characterization of IPv6 Network Security Policy,”
in NDSS, 2016.

[27] O. Gasser, Q. Scheitle, P. Foremski, Q. Lone, M. Korczyński, S. D.
Strowes, L. Hendriks, and G. Carle, “Clusters in the Expanse: Under-
standing and Unbiasing IPv6 Hitlists,” in IMC, 2018.

[28] T. Chown, “IPv6 Implications for Network Scanning,” RFC 5157, Mar.
2008. [Online]. Available: https://rfc-editor.org/rfc/rfc5157.txt

[29] M. Skwarek, M. Korczyński, W. Mazurczyk, and A. Duda, “Characteriz-
ing Vulnerability of DNS AXFR Transfers with Global-Scale Scanning,”
in IEEE S&P Workshops, 2019.

[30] M. Luckie, R. Beverly, R. Koga, K. Keys, J. Kroll, and k. claffy,
“Network Hygiene, Incentives, and Regulation: Deployment of Source
Address Validation in the Internet,” in CCS, 2019.

[31] F. Lau, S. Rubin, M. Smith, and L. Trajkovic, “Distributed Denial of
Service Attacks,” in IEEE International Conference on Systems, Man
and Cybernetics, 2000.

[32] F. Baker and P. Savola, “Ingress Filtering for Multihomed Networks,”
RFC 3704, 2004.

[33] P. Vixie, S. Thomson, Y. Rekhter, and J. Bound, “Dynamic Updates in
the Domain Name System (DNS UPDATE),” RFC 2136, 1997.

[34] M. Kührer, T. Hupperich, C. Rossow, and T. Holz, “Hell of a Handshake:
Abusing TCP for Reflective Amplification DDoS Attacks,” in WOOT,
2014.

[35] R. Beverly and S. Bauer, “The Spoofer Project: Inferring the Extent of
Source Address Filtering on the Internet,” in SRUTI, 2005.

[36] Q. Lone, M. Luckie, M. Korczyński, H. Asghari, M. Javed, and M. van
Eeten, “Using Crowdsourcing Marketplaces for Network Measurements:
The Case of Spoofer,” in TMA, 2018.

[37] Q. Lone, M. Korczyński, C. Gañán, and M. van Eeten, “SAVing the
Internet: Explaining the Adoption of Source Address Validation by
Internet Service Providers,” in WEIS, 2020.

[38] A. Berger, N. Weaver, R. Beverly, and L. Campbell, “Internet Name-
server IPv4 and IPv6 Address Relationships,” in IMC, 2013.

https://closedresolver.korlabs.io
https://closedresolver.korlabs.io
https://cloud.google.com/blog/products/identity-security/identifying-and-protecting-against-the-largest-ddos-attacks
https://cloud.google.com/blog/products/identity-security/identifying-and-protecting-against-the-largest-ddos-attacks
https://aws-shield-tlr.s3.amazonaws.com/2020-Q1_AWS_Shield_TLR.pdf
https://aws-shield-tlr.s3.amazonaws.com/2020-Q1_AWS_Shield_TLR.pdf
https://blog.cloudflare.com/the-ddos-that-knocked-spamhaus-offline-and-ho/
https://blog.cloudflare.com/the-ddos-that-knocked-spamhaus-offline-and-ho/
https://github.blog/2018-03-01-ddos-incident-report/
https://github.blog/2018-03-01-ddos-incident-report/
http://seclists.org/nanog/2013/Aug/132
https://www.slideshare.net/dakami/dmk-bo2-k8
https://www.slideshare.net/dakami/dmk-bo2-k8
https://www.caida.org/projects/spoofer/
https://closedresolver.korlabs.io
http://www.routeviews.org/routeviews/
http://www.routeviews.org/routeviews/
https://www.google.com/intl/en/ipv6/statistics.html#tab=ipv6-adoptionm
https://www.google.com/intl/en/ipv6/statistics.html#tab=ipv6-adoptionm
https://rfc-editor.org/rfc/rfc5157.txt


IEEE/ACM TRANSACTIONS ON NETWORKING 15

[39] L. Hendriks, R. de Oliveira Schmidt, R. van Rijswijk-Deij, and A. Pras,
“On the Potential of IPv6 Open Resolvers for DDoS Attacks,” in PAM,
2017.

[40] R. Beverly and A. Berger, “Server Siblings: Identifying Shared
IPv4/IPv6 Infrastructure Via Active Fingerprinting,” in PAM, 2015.

[41] Q. Scheitle, O. Gasser, M. Rouhi, and G. Carle, “Large-scale Classifi-
cation of IPv6-IPv4 Siblings with Variable Clock Skew,” in TMA, 2017.

[42] M. Kührer, T. Hupperich, J. Bushart, C. Rossow, and T. Holz, “Going
Wild: Large-Scale Classification of Open DNS Resolvers,” in IMC,
2015.

[43] D. Barr, “Common DNS Operational and Configuration Errors,” RFC
1912, 1996.

[44] T. Fiebig, K. Borgolte, S. Hao, C. Kruegel, G. Vigna, and A. Feldmann,
“In rDNS We Trust: Revisiting a Common Data-Source’s Reliability,”
in PAM, 2018.

[45] S. Woolf and D. Conrad, “Requirements for a mechanism identifying a
name server instance,” RFC 4892, 2007.

[46] J. Martin, J. Burbank, W. Kasch, and P. D. L. Mills, “Network Time
Protocol Version 4: Protocol and Algorithms Specification,” RFC 5905,
2010.

[47] D. J. C. Klensin and R. Gellens, “Message Submission for Mail,” RFC
4409, 2006.

[48] P. E. Hoffman, “SMTP Service Extension for Secure SMTP over
Transport Layer Security,” RFC 3207, 2002.

[49] E. Rescorla and T. Dierks, “The Transport Layer Security (TLS) Protocol
Version 1.2,” RFC 5246, 2008.

[50] M. Korczyński and A. Duda, “Markov Chain Fingerprinting to Classify
Encrypted Traffic,” in IEEE INFOCOM, 2014.

[51] C. M. Lonvick and T. Ylonen, “The Secure Shell (SSH) Transport Layer
Protocol,” RFC 4253, 2006.

[52] C. Shue and A. Kalafut, “Resolvers Revealed: Characterizing DNS
Resolvers and their Clients,” ACM TOIT, 2013.

[53] “Mutually Agreed Norms for Routing Security,” https://www.manrs.org/.
[54] ARIN, “Autonomous System Numbers,” https://www.arin.net/resources/

guide/asn/.
[55] A. Feldmann and J. Rexford, “IP network configuration for intradomain

traffic engineering,” IEEE Network, vol. 15, no. 5, pp. 46–57, 2001.
[56] X. Dimitropoulos, D. Krioukov, M. Fomenkov, B. Huffaker, Y. Hyun,

G. Riley et al., “AS relationships: Inference and Validation,” CCR,
vol. 37, no. 1, pp. 29–40, 2007.

[57] MANRS, “MANRS Observatory,” https://observatory.manrs.org/#/
history.

[58] J. Czyz, M. Allman, J. Zhang, S. Iekel-Johnson, E. Osterweil, and
M. Bailey, “Measuring IPv6 Adoption,” in SIGCOMM, 2014.

[59] M. Nikkhah and R. Guérin, “Migrating the Internet to IPv6: An
Exploration of the When and Why,” IEEE/ACM Trans. Netw., vol. 24,
no. 4, pp. 2291–2304, 2016.

[60] I. Livadariu, A. Elmokashfi, and A. Dhamdhere, “Measuring IPv6
Adoption in Africa,” in AFRICOMM, 2017.

[61] D. Dittrich and E. Kenneally, “The Menlo Report: Ethical Principles
Guiding Information and Communication Technology Research,” U.S.
Department of Homeland Security, Tech. Rep., August 2012.

[62] Z. Durumeric, E. Wustrow, and J. A. Halderman, “ZMap: Fast Internet-
wide Scanning and Its Security Applications,” in USENIX Security,
2013.

Yevheniya Nosyk is a Ph.D. student at Université
Grenoble Alpes, France. She received her Bache-
lor’s degree in Information Technology from the
South-Eastern Finland University of Applied Sci-
ences (2018) and a Master’s degree in Computer
Science from the Université Grenoble Alpes (2021).
She is currently doing research in the area of net-
work security and DNS from a large-scale Internet
measurements point of view.

Maciej Korczyński is an Associate Professor at
Grenoble Institute of Technology, France. He re-
ceived the HDR (2021) and Ph.D. (2012) degrees
in computer science from the Université Grenoble
Alpes. He was a post-doctoral researcher at the
Rutgers University, USA (2013-2014) and Delft Uni-
versity of Technology, the Netherlands (2014-2017).
His main research interests include Internet-wide
passive and active measurements for cybersecurity,
domain name abuse, incident data analysis, vulnera-
bility notifications, economics of cybersecurity, and

security of Internet protocols, with a focus on DNS.

Qasim Lone is a senior research engineer in the
R&D department at RIPE NCC. He received his
Ph.D. from the Delft University of Technology,
The Netherlands. Previously, he has also worked as
a visiting scientist at SLAC National Accelerator
Laboratory (SLAC), Stanford University, USA. His
research interests include internet measurements, In-
ternet outages, data analysis, and cybersecurity.

Marcin Skwarek received both his Master’s and
Engineer’s telecommunication degrees from Warsaw
University of Technology. He works as Senior R&D
Software Engineer at Exatel where he develops
highly efficient, secure, and reliable telecommunica-
tion software. He occasionally does research related
to internet-wide measurements, software deploy-
ments and misconfigurations, network traffic approx-
imation, NoSQL databases, and anything connected
to DNS protocol. He is committed to providing
suitable solutions to challenging problems in pro-

fessional and academic areas. Personally a big fan of free software especially
GNU Emacs and Linux.

Baptiste Jonglez is a Research Engineer at Inria,
the French national institute for research in digital
science and technology. He is currently working
in the STACK research group, where he is the
architect of the team’s software contributions in
Edge Computing. He received his Ph.D. in Computer
Science from Université Grenoble Alpes, France, in
2020. His research interests encompass networks and
systems in the context of the Internet. He has a
specific focus on experimental work and open large-
scale research platforms and more generally strives

to make sure that theory and practice can meet to solve the challenges arising
from modern network and system infrastructures.

Andrzej Duda is a Full Professor at Grenoble
Institute of Technology. He received his Ph.D. from
the Université de Paris-Sud and his Habilitation
diploma from Grenoble University. Previously, he
was an Assistant Professor at the Université de Paris-
Sud, a Chargé de Recherche at CNRS, and a Vis-
iting Scientist at the MIT Laboratory for Computer
Science. In 2002-2003, he was an Invited Professor
at EPFL (Swiss Federal Institute of Technology in
Lausanne). He published over 180 papers in the
areas of performance evaluation, distributed systems,

multimedia, and networks.

https://www.manrs.org/
https://www.arin.net/resources/guide/asn/
https://www.arin.net/resources/guide/asn/
https://observatory.manrs.org/#/history
https://observatory.manrs.org/#/history

	Introduction
	Background
	Related Work 
	Measuring Source Address Validation Deployment 
	Identifying Dual-Stack Servers

	Methodology
	IPv4 Spoofing Scan 
	IPv6 Spoofing Scan 
	Open Resolver Scan 
	Identifying Dual-Stack Candidates 
	Fingerprinting

	Inferring the Presence and the Absence of SAV
	IPv4 Scan
	IPv6 Scan
	Deployment of Inbound SAV
	Comparison with the Spoofer Project

	Impact of Network Characteristics on SAV Policies
	Outbound versus Inbound SAV Policies
	Network Level
	Autonomous System Level

	SAV Deployment for IPv4 and IPv6
	Individual Host Level
	Autonomous System Level

	Geographic Distribution
	Discussion
	Limitations
	Ethical Considerations

	Conclusions
	References
	Biographies
	Yevheniya Nosyk
	Maciej Korczynski
	Qasim Lone
	Marcin Skwarek
	Baptiste Jonglez
	Andrzej Duda


